JP2016193798A - Method for manufacturing method of calcium phosphate sintered body particle - Google Patents

Method for manufacturing method of calcium phosphate sintered body particle Download PDF

Info

Publication number
JP2016193798A
JP2016193798A JP2015073467A JP2015073467A JP2016193798A JP 2016193798 A JP2016193798 A JP 2016193798A JP 2015073467 A JP2015073467 A JP 2015073467A JP 2015073467 A JP2015073467 A JP 2015073467A JP 2016193798 A JP2016193798 A JP 2016193798A
Authority
JP
Japan
Prior art keywords
ceramic
particles
particle
particle group
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015073467A
Other languages
Japanese (ja)
Other versions
JP5980982B1 (en
Inventor
康充 小粥
Yasumitsu Kokayu
康充 小粥
大輔 能美
Daisuke Nomi
大輔 能美
カーロ和重 河邉
Karl Kazushige Kawabe
カーロ和重 河邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SofSera Corp
Original Assignee
SofSera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SofSera Corp filed Critical SofSera Corp
Priority to JP2015073467A priority Critical patent/JP5980982B1/en
Application granted granted Critical
Publication of JP5980982B1 publication Critical patent/JP5980982B1/en
Publication of JP2016193798A publication Critical patent/JP2016193798A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Medicinal Preparation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide calcium phosphate sintered body particles without causing events of air bubble generation and having smaller particle diameter regardless of application aspects and manufacturing means.SOLUTION: There is provided ceramic particles consisting of ceramic particles with substantially spherical form, where particle diameter of the ceramic particles in a range of 10 to 700 nm, variation coefficient of the ceramic particles is 20% or less, the ceramic particle is calcium phosphate sintered body particle and the ceramic particles contain practically no calcium carbonate.SELECTED DRAWING: None

Description

本発明は、新規なリン酸カルシウム焼結体粒子、その製造方法及びその用途に関する。   The present invention relates to a novel calcium phosphate sintered body particle, a production method thereof, and an application thereof.

ハイドロキシアパタイト(HAp)は、高い生体親和性を示すことが知られており、バイオマテリアルをはじめとする様々な分野で活用されている。   Hydroxyapatite (HAp) is known to exhibit high biocompatibility and is used in various fields including biomaterials.

ところで、当該HApを生体材料に用いる場合、生体内での溶解性や分解性を低減させるため、高温で焼成させて高結晶化度のハイドロキシアパタイト粒子(セラミック粒子)を作成することが提案されている。但し、この焼結の際にハイドロキシアパタイト(HAp)粒子(一次粒子)間の融着により結合が生じ、一次粒子が結合した不定形な二次粒子となり、分散性及び比表面積が低下してしまうという問題点があった。   By the way, when using the HAp as a biomaterial, it has been proposed to produce hydroxyapatite particles (ceramic particles) with high crystallinity by firing at a high temperature in order to reduce in vivo solubility and degradability. Yes. However, during this sintering, bonding occurs due to fusion between hydroxyapatite (HAp) particles (primary particles), resulting in irregular secondary particles in which the primary particles are bonded, resulting in a decrease in dispersibility and specific surface area. There was a problem.

そこで、先行特許文献1には、焼結前のセラミック原料からなる一次粒子の粒子間に融着防止剤が介在するように混合して混合粒子とし、当該混合粒子を焼結し、当該焼成後に融着防止剤を洗い流す製法が提案されている。当該製法によれば、結晶化度が高く且つ粒子径が小さいセラミック粒子群を得ることが可能となる。   Therefore, in prior patent document 1, mixed particles are mixed so that the anti-fusing agent is interposed between the primary particles made of the ceramic raw material before sintering, and the mixed particles are sintered, and after the firing A method for washing away the anti-fusing agent has been proposed. According to the production method, it is possible to obtain a group of ceramic particles having a high crystallinity and a small particle size.

特許第5043436号公報Japanese Patent No. 5043436

しかしながら、本発明者らは、当該製法により得られたセラミック粒子群には、炭酸カルシウムの結晶相が含まれている知見を得た。用途、特に生体内に導入される医療機器にリン酸カルシウムを用いる際には、生体親和性発現、溶解性変化の観点より好ましくない事象が生じ得る。更には、リン酸カルシウムは、エンドトキシンを積極的に吸着する性質があり、製造過程において洗浄に使用する水、容器等にわずかに含まれるエンドトキシンの吸着は避けがたい。一方で、エンドトキシンは発熱物質として知られており、当該リン酸カルシウムを生体内導入用医療材料(例えばDDS)として用いる場合には、当該吸着されたエンドトキシンを除去する必要がある。そのため、300℃程度で加熱処理を行い、当該吸着されたエンドトキシンを分解する。しかしながら、この際、本発明者らは、当該加熱処理を行うと、元々の粒径が倍以上となるという知見を得た。特に、より微小な粒径が求められる用途にリン酸カルシウム焼成体を用いる際には、このような粒径増大は好ましくない事象である。よって、本発明は、使用態様に拘わらず、炭酸カルシウムに起因する生体親和性低下や溶解性変化が極力抑制され、且つ、より小さい粒径のリン酸カルシウム焼結体粒子群を提供することを課題とする。   However, the present inventors have obtained knowledge that the ceramic particle group obtained by the production method contains a crystal phase of calcium carbonate. When calcium phosphate is used for an application, particularly a medical device introduced into a living body, an undesirable event may occur from the viewpoint of biocompatibility and change in solubility. Furthermore, calcium phosphate has a property of actively adsorbing endotoxin, and it is difficult to avoid adsorption of endotoxin contained in water, containers, and the like used for washing in the production process. On the other hand, endotoxin is known as a pyrogen, and when the calcium phosphate is used as a medical material for in vivo introduction (for example, DDS), it is necessary to remove the adsorbed endotoxin. Therefore, heat treatment is performed at about 300 ° C. to decompose the adsorbed endotoxin. However, at this time, the present inventors have found that the original particle size is doubled or more when the heat treatment is performed. In particular, such an increase in particle size is an undesirable phenomenon when the calcium phosphate fired body is used for applications where a finer particle size is required. Therefore, it is an object of the present invention to provide a calcium phosphate sintered body particle group having a smaller particle diameter in which a decrease in biocompatibility and a change in solubility due to calcium carbonate are suppressed as much as possible regardless of the mode of use. To do.

ところで、特許文献1では、融着防止剤として、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基又はアミノ基のいずれかを有する高分子化合物が使用可能であることが記載されており、具体的な化合物として、ポリアクリル酸、ポリメタクリル酸、ポリグルタミン酸、エチレンスルホン酸、ポリメタクリル酸アルキルスルホン酸エステル、ポリアクリロイルアミノメチルホスホン酸、ポリペプチドが挙げられている。これを踏まえ、本発明者らは、炭酸カルシウム生成の原因が、融着防止剤として用いた高分子化合物の分解物である炭酸であると推定した。よって、本発明者は、融着防止剤を使用することなく、結晶化度が高く且つ粒子径が小さいリン酸カルシウム焼結体粒子群を得る手法を検討し、本発明を完成するに至った。   By the way, in Patent Document 1, a polymer compound having any of a carboxyl group, a sulfate group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, or an amino group in the side chain can be used as an anti-fusing agent. Specific examples of the compound include polyacrylic acid, polymethacrylic acid, polyglutamic acid, ethylenesulfonic acid, polymethacrylic acid alkylsulfonic acid ester, polyacryloylaminomethylphosphonic acid, and polypeptide. Based on this, the present inventors estimated that the cause of calcium carbonate generation was carbonic acid, which is a decomposition product of the polymer compound used as an anti-fusing agent. Therefore, the present inventor has studied a technique for obtaining a calcium phosphate sintered body particle group having a high crystallinity and a small particle diameter without using an anti-fusing agent, and has completed the present invention.

本発明は、略球状のセラミック粒子からなるセラミック粒子群であって、
前記セラミック粒子の粒子径が、10nm〜700nmの範囲内で、且つ前記セラミック粒子群の粒子径の変動係数が、20%以下であり、
前記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、
前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群である。ここで、本特許請求の範囲及び本明細書における「実質的に炭酸カルシウムを含有しない」とは、X線回折を行なった場合に炭酸カルシウムが検出限界以下{具体的には、炭酸カルシウム(式量:100.09)/ハイドロキシアパタイト(式量:1004.62)=0.1/99.9(式量換算比)以下}であり、且つ、医薬部外品原料規格2006(ヒドロキシアパタイト)に準じて試験した際、気泡発生量が0.25mL以下であることをいう。
本発明は、略球状のセラミック粒子からなるセラミック粒子群であって、
単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊を単結晶一次粒子とすると、
前記セラミック粒子群に含まれる単結晶一次粒子の割合が過半数を占め、
上記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、
前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群である。
ここで、上記セラミック粒子の粒子径が、10nm〜700nmの範囲内であってもよい。
また、上記セラミック粒子群の粒子径の変動係数が20%以下であってもよい。
本発明は、ロッド状のセラミック粒子からなるセラミック粒子群であって、
前記セラミック粒子の粒子径が、短軸の最大直径が50nm〜5μm、長軸が75nm〜10μmであり、c軸方向に成長し、結晶のアスペクト比(c軸長/a軸長)が、1〜30であり、先端角が斜角面を有する截頭形柱状構造のセラミック粒子であって、
前記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、
前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群である。
ここで、上記セラミック粒子が、ハイドロキシアパタイト焼結体粒子であってもよい。
また、前記セラミック粒子群が水洗浄されたものであり、
前記水洗浄後の前記セラミック粒子群の粒子径を基準としたとき、前記水洗浄後に空気中常圧下にて300℃で加熱した際の粒子径の変化率が±20%であってもよい。
本発明は、前記セラミック粒子群を用いて得られたものであることを特徴とする生体内導入用医療材料である。
本発明は、前記生体内導入用医療材料を一材料として得られた医療機器である。
本発明は、粒子状のセラミック粒子からなるセラミック粒子群の製造方法において、
焼結前のセラミック原料である一次粒子を含有する水系媒体を凍結して凍結体を得た後に当該凍結体を解凍させて解凍体を得る前工程と、
前記解凍体から前記水系媒体を除去して得られた前記一次粒子を焼成する焼成工程と、
前記焼成工程により得られた焼成体を粉砕して前記セラミック粒子群を得る粉砕工程と
を含み、
前記セラミック粒子が、リン酸カルシウム焼結体粒子である
ことを特徴とするセラミック粒子群の製造方法である。
ここで、前記粒子状が、略球状又は略ロッド状であってもよい。
また、上記セラミック粒子が、ハイドロキシアパタイト焼結体粒子であってもよい。
また、前記セラミック粒子群が生体内導入用医療材料であってもよい。
また、前記セラミック粒子群が医療機器用であってもよい。
The present invention is a group of ceramic particles composed of substantially spherical ceramic particles,
The particle diameter of the ceramic particles is within a range of 10 nm to 700 nm, and the coefficient of variation of the particle diameter of the ceramic particle group is 20% or less,
The ceramic particles are sintered calcium phosphate particles, and
The ceramic particle group is substantially free of calcium carbonate. Here, “substantially does not contain calcium carbonate” in the claims and the specification means that calcium carbonate is below the detection limit when X-ray diffraction is performed {specifically, calcium carbonate (formula Amount: 100.09) / hydroxyapatite (formula weight: 1004.62) = 0.1 / 99.9 (formula weight conversion ratio) or less} and quasi-drug raw material standard 2006 (hydroxyapatite) When tested in conformity, it means that the amount of bubbles generated is 0.25 mL or less.
The present invention is a group of ceramic particles composed of substantially spherical ceramic particles,
When a primary particle composed of a single crystal or a particle lump in which primary particles composed of the single crystal are aggregated by ionic interaction is defined as a single crystal primary particle,
The proportion of single crystal primary particles contained in the ceramic particle group accounts for the majority,
The ceramic particles are calcium phosphate sintered body particles, and
The ceramic particle group is substantially free of calcium carbonate.
Here, the particle diameter of the ceramic particles may be in the range of 10 nm to 700 nm.
Further, the coefficient of variation of the particle diameter of the ceramic particle group may be 20% or less.
The present invention is a group of ceramic particles composed of rod-shaped ceramic particles,
The ceramic particles have a minor axis maximum diameter of 50 nm to 5 μm and a major axis of 75 nm to 10 μm, grow in the c-axis direction, and have an aspect ratio (c-axis length / a-axis length) of 1 ˜30, and the ceramic particles having a truncated columnar structure having a beveled front end angle,
The ceramic particles are sintered calcium phosphate particles, and
The ceramic particle group is substantially free of calcium carbonate.
Here, the ceramic particles may be hydroxyapatite sintered particles.
Also, the ceramic particles are washed with water,
Based on the particle size of the ceramic particle group after the water washing, a change rate of the particle size when heated at 300 ° C. under atmospheric pressure after the water washing may be ± 20%.
The present invention is a medical material for introduction into a living body, which is obtained using the ceramic particle group.
The present invention is a medical device obtained using the medical material for introduction into a living body as one material.
The present invention is a method for producing a group of ceramic particles composed of particulate ceramic particles.
A pre-process for obtaining a thawed body by thawing the frozen body after freezing the aqueous medium containing the primary particles that are the ceramic raw material before sintering and obtaining the frozen body;
A firing step of firing the primary particles obtained by removing the aqueous medium from the thawed body,
And crushing the fired body obtained by the firing step to obtain the ceramic particles,
The method for producing a ceramic particle group, wherein the ceramic particles are calcium phosphate sintered particles.
Here, the particle shape may be a substantially spherical shape or a substantially rod shape.
The ceramic particles may be hydroxyapatite sintered particles.
The ceramic particle group may be a medical material for introduction into a living body.
Further, the ceramic particle group may be for medical equipment.

本発明によれば、炭酸カルシウムの結晶相が混入しない、結晶性が高く且つ粒子径が小さいセラミック粒子群を提供することが可能となる。更に、理由は定かでないが、本発明に係るリン酸カルシウム焼成体は、エンドトキシンを除去するために300℃にて加熱しても、殆ど粒径が変化しない。よって、本発明によれば、より小さい粒径のリン酸カルシウム焼結体粒子群を得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the ceramic particle group with a high crystallinity and a small particle diameter which the calcium carbonate crystal phase does not mix. Further, although the reason is not clear, the calcined calcium phosphate according to the present invention hardly changes in particle size even when heated at 300 ° C. to remove endotoxin. Therefore, according to the present invention, it is possible to obtain a calcium phosphate sintered body particle group having a smaller particle diameter.

図1は、実施例1で得られたハイドロキシアパタイト(HAp)焼結体粒子のX線回折の結果を示すチャートである。1 is a chart showing the results of X-ray diffraction of hydroxyapatite (HAp) sintered particles obtained in Example 1. FIG. 図2は、比較例で得られたハイドロキシアパタイト(HAp)焼結体粒子のX線回折の結果を示すチャートである。FIG. 2 is a chart showing the results of X-ray diffraction of hydroxyapatite (HAp) sintered particles obtained in the comparative example. 図3は、実施例1で得られたハイドロキシアパタイト(HAp)焼結体粒子群のSEM写真である。FIG. 3 is a SEM photograph of the hydroxyapatite (HAp) sintered body particle group obtained in Example 1. 図4は、実施例1で得られたハイドロキシアパタイト(HAp)焼結体粒子群のSEM写真である。4 is a SEM photograph of the hydroxyapatite (HAp) sintered body particle group obtained in Example 1. FIG. 図5は、実施例2で得られたハイドロキシアパタイト(HAp)焼結体粒子群のSEM写真である。FIG. 5 is an SEM photograph of the hydroxyapatite (HAp) sintered body particle group obtained in Example 2. 図6は、実施例2で得られたハイドロキシアパタイト(HAp)焼結体粒子群のSEM写真である。6 is an SEM photograph of the hydroxyapatite (HAp) sintered body particle group obtained in Example 2. FIG.

以下、本発明に係るリン酸カルシウム粒子群の製造方法を説明し、次いで、当該製造方法により得られたセラミック粒子群を説明し、次いで、当該セラミック粒子群の用途について説明する。   Hereinafter, the manufacturing method of the calcium phosphate particle group according to the present invention will be described, then the ceramic particle group obtained by the manufacturing method will be described, and then the application of the ceramic particle group will be described.

≪1.セラミック粒子群の製造方法≫
<1−1.原料>
焼成前のセラミック原料であるリン酸カルシウム(CaP)としては、具体例として、ハイドロキシアパタイト(Ca10(PO(OH))、リン酸三カルシウム(Ca(PO)、メタリン酸カルシウム(Ca(PO)、Ca10(PO、Ca10(POCl等が挙げられる。ここで、当該リン酸カルシウム(CaP)は、湿式法や、乾式法、加水分解法、水熱法等の公知の製造方法によって、人工的に製造されたものであってもよく、また、骨、歯等から得られる天然由来のものであってもよい。
<< 1. Manufacturing method of ceramic particles >>
<1-1. Raw material>
Specific examples of calcium phosphate (CaP) that is a ceramic raw material before firing include hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), tricalcium phosphate (Ca 3 (PO 4 ) 2 ), and calcium metaphosphate. (Ca (PO 3 ) 2 ), Ca 10 (PO 4 ) 6 F 2 , Ca 10 (PO 4 ) 6 Cl 2 and the like. Here, the calcium phosphate (CaP) may be artificially produced by a known production method such as a wet method, a dry method, a hydrolysis method, or a hydrothermal method. Naturally derived ones obtained from the above may be used.

<1−2.プロセス>
(1−1.一次粒子生成工程)
<1-2. Process>
(1-1. Primary particle generation step)

・略球状セラミック粒子の一次粒子生成工程
まず、「一次粒子」とは、セラミック粒子群の製造工程の焼結前に、セラミック原料{リン酸カルシウム(CaP)、ハイドロキシアパタイト(HAp)等}によって形成された粒子のことを意味する。即ち、セラミック粒子の製造工程において、初めて形成された粒子のことを意味する。また狭義には単結晶粒子のことを意味する。尚、特許請求の範囲及び明細書において「一次粒子」とは、非晶質(アモルファス)、低結晶性の状態のもの、及びその後に焼結を行なった焼結体の状態のものをも含む意味である。これに対して「二次粒子」とは、複数の「一次粒子」同士が、融着等の物理的結合、Van der Waals力や静電的相互作用又は共有結合等の化学的結合によって、結合して形成された状態の粒子を意味する。特に一次粒子同士の結合の個数、結合後の形状等は限定されるものではなく、2つ以上の一次粒子が結合したもの全てを意味する。また、特に「単結晶一次粒子」とは、セラミック原料の単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊を意味する。尚、前記「イオン的相互作用にて集合化した粒子塊」とは、水もしくは有機溶媒を含む媒体にて分散させた場合にイオン的相互作用で自己集合する粒子塊であって、焼結により粒子間が溶融して多結晶化した二次粒子を含まないものである。
-Primary particle generation process of substantially spherical ceramic particles First, "primary particles" were formed of ceramic raw materials {calcium phosphate (CaP), hydroxyapatite (HAp), etc.} before sintering in the manufacturing process of the ceramic particles. Means particles. That is, it means a particle formed for the first time in the production process of ceramic particles. In a narrow sense, it means single crystal particles. In the claims and specification, “primary particles” include those in an amorphous state, a low crystalline state, and those in a sintered body state after sintering. Meaning. On the other hand, “secondary particles” are a combination of multiple “primary particles” by physical bonds such as fusion, chemical bonds such as Van der Waals force, electrostatic interaction, or covalent bonds. It means a particle in a state of being formed. In particular, the number of bonds between primary particles, the shape after bonding, and the like are not limited, and mean all bonded two or more primary particles. In particular, the “single crystal primary particle” means a primary particle made of a single crystal of a ceramic raw material or a particle lump in which the primary particles made of the single crystal are assembled by ionic interaction. The “particle aggregate assembled by ionic interaction” is a particle aggregate that self-assembles by ionic interaction when dispersed in a medium containing water or an organic solvent. It does not contain secondary particles that are melted and polycrystallized.

当該一次粒子生成工程は、それ自体公知であり、上記一次粒子を生成することができる工程であれば特に限定されるものではなく、製造するセラミックの原料により適宜選択の上、採用すればよい。例えば、常温下において水酸化カルシウムスラリーにリン酸を滴下すれば、リン酸カルシウム(CaP)の粒子が沈殿する。   The primary particle generation step is known per se and is not particularly limited as long as it is a step capable of generating the primary particles, and may be appropriately selected depending on the ceramic raw material to be manufactured. For example, if phosphoric acid is dropped into a calcium hydroxide slurry at room temperature, calcium phosphate (CaP) particles are precipitated.

本発明に係るセラミック粒子群の製造方法は、上記の一次粒子生成工程によって生成した一次粒子からなる一次粒子群を、融着等を防止しながら焼結してセラミック粒子群を製造するものである。よって、当該一次粒子生成工程によって生成された一次粒子の状態(粒子径、粒度分布)が、最終生産物であるセラミック粒子の状態(粒子径、粒度分布)にそのまま反映される。したがって、粒子径が微細(ナノメートルサイズ)で且つ粒子径が均一な(粒度分布が狭い)セラミック粒子群を製造しようとする場合においては、当該一次粒子生成工程において粒子径が微細(ナノメートルサイズ)で且つ粒子径が均一な(粒度分布が狭い)一次粒子群を生成しておく必要がある。   The method for producing a ceramic particle group according to the present invention is a method for producing a ceramic particle group by sintering the primary particle group composed of the primary particles produced by the primary particle production step while preventing fusion or the like. . Therefore, the state (particle size, particle size distribution) of the primary particles generated by the primary particle generation step is directly reflected in the state (particle size, particle size distribution) of the ceramic particles as the final product. Therefore, in the case of producing a ceramic particle group having a fine particle size (nanometer size) and a uniform particle size (narrow particle size distribution), the particle size is fine (nanometer size) in the primary particle generation step. ) And a uniform particle size (narrow particle size distribution) must be generated.

かかる場合の好ましい一次粒子の粒子径(平均粒子径及び粒度分布)としては、10nm〜500nmが好ましく、15nm〜450nmが更に好ましく、20nm〜400nmが最も好ましい。また、一次粒子からなる一次粒子群の粒子径の変動係数が、20%以下であることが好ましく、18%以下であることがさらに好ましく、15%以下であることが最も好ましい。尚、一次粒子の粒子径及び変動係数は、動的光散乱法又は電子顕微鏡を用い、少なくとも100個以上の一次粒子について粒子径を測定して計算すればよい。   In this case, the preferred primary particle size (average particle size and particle size distribution) is preferably 10 nm to 500 nm, more preferably 15 nm to 450 nm, and most preferably 20 nm to 400 nm. Further, the coefficient of variation of the particle diameter of the primary particle group composed of primary particles is preferably 20% or less, more preferably 18% or less, and most preferably 15% or less. The particle diameter and coefficient of variation of the primary particles may be calculated by measuring the particle diameter of at least 100 primary particles using a dynamic light scattering method or an electron microscope.

尚、「変動係数」は、標準偏差÷平均粒子径×100(%)で計算することができる粒子間の粒子径のバラツキを示す値である。   The “variation coefficient” is a value indicating the variation in particle diameter between particles that can be calculated by standard deviation ÷ average particle diameter × 100 (%).

上記のような微細(ナノメートルサイズ)で且つ粒子径が均一な(粒度分布が狭い)一次粒子群を生成する方法については、特に限定されるものではなく、例えば、特開2002−137910号公報、特許第5043436号公報、Journal of Nanoscience and Nanotechnology Vol. 7, 848-851, 2007に記載された方法を挙げることができる。   There is no particular limitation on the method of generating the primary particle group that is fine (nanometer size) and has a uniform particle size (narrow particle size distribution) as described above. For example, JP 2002-137910 A No. 5044336, Journal of Nanoscience and Nanotechnology Vol. 7, 848-851, 2007.

また、本工程には、生成した一次粒子を水等で洗浄する工程、遠心分離、ろ過等で一次粒子を回収する工程が含まれていてもよい。   In addition, this step may include a step of washing the generated primary particles with water or the like, and a step of collecting the primary particles by centrifugation, filtration, or the like.

・略ロッド状セラミック粒子の一次粒子生成工程
略ロッド状セラミック粒子{粒子の粒子径が、短軸の最大直径が30nm〜5μm、長軸が75nm〜10μmであり、c軸方向に成長し、結晶のアスペクト比(c軸長/a軸長)が、1〜30であり、先端角が斜角面を有する截頭形柱状構造のセラミック粒子}の一次粒子生成工程は、それ自体公知であり、例えば、特開2002−137910号公報、Journal of Nanoparticle Research (2007) 9:807-815に記載された方法を挙げることができる。
Primary rod generation process of substantially rod-shaped ceramic particles {Roughly rod-shaped ceramic particles {particles having a maximum minor axis diameter of 30 nm to 5 μm, a major axis of 75 nm to 10 μm, and growing in the c-axis direction to form crystals The primary particle production process of the aspect ratio (c-axis length / a-axis length) of 1 to 30 and the tip angle of the ceramic particles having a truncated columnar structure having an oblique surface is known per se, For example, the method described in Unexamined-Japanese-Patent No. 2002-137910, Journal of Nanoparticle Research (2007) 9: 807-815 can be mentioned.

また、本工程には、生成した一次粒子を水等で洗浄する工程、遠心分離、ろ過等で一次粒子を回収する工程が含まれていてもよい。   In addition, this step may include a step of washing the generated primary particles with water or the like, and a step of collecting the primary particles by centrifugation, filtration, or the like.

(凍結工程)
凍結工程は、焼結前のリン酸カルシウム(CaP)を含有する水系媒体を凍結する工程である。ここで、水系媒体は、水を主成分(好適には液体媒体の全質量を基準として90質量%以上)をした液体媒体である。好適には、水のみであり、他に水と混和性のある液体(アルコール等)を適宜添加してもよい。また、一次粒子であるリン酸カルシウム(CaP)を製造した液、即ち、リン酸源とカルシウム源とを水に溶解させることにより得られた液をそのまま凍結させてもよい。ここで、凍結温度は、好適には、−1〜−269℃である。さらに好適には、−5〜−196℃である。また、凍結時間は、好適には、1分〜24時間である。
(Freezing process)
The freezing step is a step of freezing the aqueous medium containing calcium phosphate (CaP) before sintering. Here, the aqueous medium is a liquid medium containing water as a main component (preferably 90% by mass or more based on the total mass of the liquid medium). Preferably, only water is used, and a liquid miscible with water (alcohol or the like) may be appropriately added. In addition, a solution for producing calcium phosphate (CaP) as primary particles, that is, a solution obtained by dissolving a phosphate source and a calcium source in water may be frozen as it is. Here, the freezing temperature is preferably −1 to −269 ° C. More preferably, it is −5 to −196 ° C. The freezing time is preferably 1 minute to 24 hours.

(解凍工程)
解凍工程は、前記凍結工程にて得た凍結体を、凍結体の水系媒体の融点を超える温度下に配し、当該水系媒体を融解させる工程である。
(Thawing process)
The thawing step is a step in which the frozen body obtained in the freezing step is placed at a temperature exceeding the melting point of the aqueous medium of the frozen body to melt the aqueous medium.

(分離工程)
分離工程は、前記解凍工程にて融解した、リン酸カルシウムを含有する水系媒体から、リン酸カルシウムを分離する工程である。分離手法としては、解凍後の沈殿を濾取する手法であってもよく、遠心分離捕集する手法であってもよい。
(Separation process)
The separation step is a step of separating calcium phosphate from the aqueous medium containing calcium phosphate melted in the thawing step. The separation method may be a method of collecting the precipitate after thawing, or a method of collecting by centrifugation.

(焼成工程)
当該焼結工程は、上記分離工程によって得られた、リン酸カルシウム一次粒子組成物を焼結温度に曝して、当該組成物に含まれる一次粒子をセラミック粒子(焼結体粒子)にする工程である。理由は定かでないが、特許文献1のような融着防止剤を使用せずとも、前記の凍結・解凍工程を得て焼成させた場合、焼結工程における高温条件に曝された場合であっても一次粒子同士の融着を防止することができるというものである。ここで、当該焼結工程における焼結温度は、セラミック粒子の結晶性が所望の硬度となるように適宜設定すればよく、例えば、300〜1000℃が好適である。また、当該焼結工程における昇温速度は、例えば、1〜20℃/minが好適である。更には、当該焼結工程における焼結時間は、セラミック粒子の硬度等を基準に適宜設定すればよく、例えば、0.5〜3時間が好適である。尚、当該焼結工程に用いる装置等は特に限定されるものではなく、製造規模、製造条件等に応じて市販の焼成炉を適宜選択の上、採用すればよい。
(Baking process)
The said sintering process is a process which exposes the calcium-phosphate primary particle composition obtained by the said isolation | separation process to sintering temperature, and makes the primary particle contained in the said composition a ceramic particle (sintered body particle). Although the reason is not clear, even when the anti-fusing agent as in Patent Document 1 is not used, when the above freeze / thaw process is obtained and fired, it is exposed to high temperature conditions in the sintering process. Also, it is possible to prevent fusion between primary particles. Here, the sintering temperature in the sintering step may be appropriately set so that the crystallinity of the ceramic particles has a desired hardness, and for example, 300 to 1000 ° C. is suitable. Moreover, 1-20 degrees C / min is suitable for the temperature increase rate in the said sintering process, for example. Furthermore, the sintering time in the sintering step may be appropriately set based on the hardness of the ceramic particles and the like, and for example, 0.5 to 3 hours is preferable. In addition, the apparatus etc. which are used for the said sintering process are not specifically limited, What is necessary is just to employ | adopt after selecting a commercially available baking furnace suitably according to a manufacturing scale, manufacturing conditions, etc.

(粉砕工程)
粉砕工程は、前記焼結工程後の凝集体を粉砕し、所望サイズの焼成リン酸カルシウム粒子群を得る工程である。ここで、通常、二次粒子化した焼成体は、相当程度の粉砕工程を実施しても一次粒子サイズまで微小化することはほぼ不可能である。他方、本発明の手法によると、簡素な粉砕工程でも、容易に一次粒子サイズレベルまで粉砕することが可能となる。ここで、粉砕手法は、特に限定されず、例えば、超音波処理、粉砕球を用いての粉砕処理である。尚、粉砕処理後、未粉砕のものを除去する等して、より径の小さい粒子を収集してもよい。
(Crushing process)
The pulverization step is a step of pulverizing the aggregate after the sintering step to obtain a calcined calcium phosphate particle group having a desired size. Here, normally, the fired body that has been made into secondary particles can hardly be reduced to the size of the primary particles even if a considerable pulverization step is performed. On the other hand, according to the method of the present invention, it is possible to easily pulverize to the primary particle size level even with a simple pulverization process. Here, the pulverization method is not particularly limited, and examples thereof include ultrasonic treatment and pulverization using a pulverized sphere. After the pulverization treatment, particles having a smaller diameter may be collected by removing unpulverized ones.

(洗浄工程)
洗浄工程は、焼成リン酸カルシウム粒子以外の成分、例えば、リン酸カルシウムの一次粒子を製造する際に用いた原料由来の不純物(例えば、リン酸カルシウム形成に関与しなかったカルシウムやリン酸由来の不純物、硝酸やアンモニウム由来の不純物)を洗浄する工程である。好適には、水を用いて洗浄することが好適である。尚、ハイドロキシアパタイト(HAp)焼結体粒子の場合は、pH4.0以下の条件においてハイドロキシアパタイト(HAp)焼結体粒子が溶解するため、pH4.0〜pH12.0で除去工程を行なうことが好適である。また、粉砕工程や洗浄工程を交互に行う等、この順番は問わない。
(Washing process)
The washing step is a component other than the calcined calcium phosphate particles, for example, impurities derived from raw materials used in producing the primary particles of calcium phosphate (for example, calcium or phosphate-derived impurities not involved in calcium phosphate formation, nitric acid or ammonium-derived This is a step of cleaning the impurities. It is preferable to wash with water. In the case of hydroxyapatite (HAp) sintered body particles, since the hydroxyapatite (HAp) sintered body particles dissolve under conditions of pH 4.0 or lower, the removal step can be performed at pH 4.0 to pH 12.0. Is preferred. Moreover, this order does not ask | require, such as performing a grinding | pulverization process and a washing | cleaning process alternately.

(乾燥工程)
乾燥工程は、前記粉砕工程や前記洗浄工程後、加熱する等して、溶媒を除去し、リン酸カルシウム粒子群を得る工程である。乾燥手法は、特に限定されない。
(Drying process)
A drying process is a process of removing a solvent by heating etc. after the said grinding | pulverization process or the said washing | cleaning process, and obtaining a calcium-phosphate particle group. The drying method is not particularly limited.

(エンドトキシン除去工程)
エンドトキシン除去工程は、空気下、常圧にて300℃加熱することにより行う工程である。リン酸カルシウム焼成体は、焼成後、上述した洗浄工程にて好適には水洗浄に付される。この際、リン酸カルシウム焼成体は、水中、保管容器や取り扱い雰囲気など環境中に僅かに存在するエンドトキシンを吸着する。ここで、このエンドトキシンは有害物質であり、リン酸カルシウム焼成体に残存していることは、特に生体材料として当該リン酸カルシウム焼成体を用いる場合には不適である。よって、当該処理を実施する。尚、当該エンドトキシン除去工程は、上述した乾燥工程を併せて行ってもよい。
(Endotoxin removal step)
The endotoxin removal step is a step performed by heating at 300 ° C. in air at normal pressure. The calcined calcium phosphate is preferably subjected to water washing in the washing step described above after firing. At this time, the calcined calcium phosphate adsorbs endotoxin that is slightly present in the environment such as in water, in a storage container or in a handling atmosphere. Here, this endotoxin is a harmful substance, and remaining in the calcined calcium phosphate is unsuitable particularly when the calcined calcium phosphate is used as a biomaterial. Therefore, this processing is performed. In addition, you may perform the said endotoxin removal process combining the drying process mentioned above.

≪2.本製造方法により得られるリン酸カルシウム焼結体粒子群≫
<2−1.略球状リン酸カルシウム焼結体粒子群>
本製造方法により得られる略球状リン酸カルシウム焼結体粒子群は、略球状のセラミック粒子からなるセラミック粒子群であって、前記セラミック粒子の粒子径が、10nm〜700nmの範囲内で、且つ前記セラミック粒子群の粒子径の変動係数が、20%以下であり、前記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群である。当該セラミック粒子群は、微粒子且つ粒子径の均一な(粒度分布が狭い)ものである。それゆえ、特に高度な分級等の付加的な操作を行なうことなく、医療用高分子材料に対してより均一に吸着させることができるという効果を奏する。しかも、炭酸カルシウムを実質的に含有しないので、生体材料として使用した際に、材料の生体親和性、溶解性が変化する事態を防止することが可能となる。
≪2. Calcium phosphate sintered particles obtained by this production method >>
<2-1. Spherical Calcium Phosphate Sintered Particle Group>
The substantially spherical calcium phosphate sintered body particle group obtained by the present production method is a ceramic particle group composed of substantially spherical ceramic particles, and the ceramic particle has a particle diameter in the range of 10 nm to 700 nm. The particle diameter variation coefficient of the group is 20% or less, the ceramic particle is a calcium phosphate sintered body particle, and the ceramic particle group does not substantially contain calcium carbonate. A group. The ceramic particle group is a fine particle and a uniform particle size (narrow particle size distribution). Therefore, there is an effect that it can be more uniformly adsorbed to the medical polymer material without performing an additional operation such as a particularly advanced classification. Moreover, since calcium carbonate is not substantially contained, it is possible to prevent a situation in which the biocompatibility and solubility of the material change when used as a biomaterial.

また、別の側面からは、本製造方法により得られる略球状リン酸カルシウム焼結体粒子群は、略球状のセラミック粒子からなるセラミック粒子群であって、単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊を単結晶一次粒子とすると、前記セラミック粒子群に含まれる単結晶一次粒子の割合が過半数を占め、上記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群である。当該セラミック粒子群は、その過半数が溶媒中で分散性の優れた単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)として存在している。それゆえ、既述の医療用高分子基材への吸着がし易くなるという効果を奏する。また、一次粒子同士の結合が無いため、比表面積が高い。更には、生体内で安定性が高く、分散性に優れることから薬剤の担持及び徐放が可能な医療用材料として利用できるという効果を奏する。しかも、炭酸カルシウムを実質的に含有しないので、生体材料として使用した際に、材料の生体親和性やリン酸カルシウム本来の溶解性が維持される。   Further, from another aspect, the substantially spherical calcium phosphate sintered body particle group obtained by the present production method is a ceramic particle group composed of substantially spherical ceramic particles, and is composed of primary particles composed of a single crystal or the single crystal. When the particle aggregate in which the primary particles are aggregated by ionic interaction is a single crystal primary particle, the ratio of the single crystal primary particles contained in the ceramic particle group occupies a majority, and the ceramic particles are sintered with calcium phosphate. The ceramic particle group is a particle group, and the ceramic particle group substantially does not contain calcium carbonate. The ceramic particle group is a primary particle composed of a single crystal having a superior dispersibility in a solvent, or a particle lump in which the primary particles composed of the single crystal are assembled by ionic interaction (single crystal primary particles). Exist as. Therefore, there is an effect that the adsorption to the medical polymer base material described above is facilitated. Moreover, since there is no coupling | bonding of primary particles, a specific surface area is high. Furthermore, since it is highly stable in vivo and excellent in dispersibility, it has an effect that it can be used as a medical material capable of carrying and sustained release of a drug. And since it does not contain calcium carbonate substantially, when it uses as a biomaterial, the biocompatibility of material and the original solubility of calcium phosphate are maintained.

また、当該セラミック粒子群は、上記セラミック粒子群に含まれる単結晶一次粒子の割合が、70%以上であってもよい。このような構成を採ることで、医療用高分子基材への吸着がし易くなるという効果を奏する。   Further, in the ceramic particle group, the ratio of the single crystal primary particles contained in the ceramic particle group may be 70% or more. By adopting such a configuration, there is an effect that the adsorption to the medical polymer base material is facilitated.

また、当該セラミック粒子群は、上記セラミック粒子の粒子径が、10nm〜700nmの範囲内であってもよい。当該構成によれば、医療用高分子材料に対してより均一に吸着させることができるという効果を奏する。   Moreover, the ceramic particle group may have a particle diameter of the ceramic particles in a range of 10 nm to 700 nm. According to the said structure, there exists an effect that it can adsorb | suck more uniformly with respect to medical polymeric material.

また、当該セラミック粒子群は、上記セラミック粒子群の粒子径の変動係数が、20%以下であってもよい。当該構成を採ることにより、特に高度な分級等の付加的な操作を行なうことなく、医療用高分子材料に対してより均一に吸着させることができるという効果を奏する。   The ceramic particle group may have a coefficient of variation of the particle diameter of the ceramic particle group of 20% or less. By adopting this configuration, there is an effect that it can be more uniformly adsorbed to the medical polymer material without performing an additional operation such as particularly high classification.

また、当該セラミック粒子が、ハイドロキシアパタイト焼結体粒子であってもよい。当該粒子は、更に生体適合性が高く、広範な用途に利用可能なハイドロキシアパタイト焼結体で構成されている。そのため、医療用材料として特に好ましい。   The ceramic particles may be hydroxyapatite sintered particles. The particles are composed of a hydroxyapatite sintered body that has higher biocompatibility and can be used for a wide range of applications. Therefore, it is particularly preferable as a medical material.

また、当該セラミック粒子群は、水洗浄されたものであり、且つ、前記水洗浄後の前記セラミック粒子群の粒子径を基準としたとき、前記水洗浄後に空気中常圧下にて300℃で加熱した際の粒子径の変化率が±20%であってもよい。   Further, the ceramic particle group was washed with water, and heated at 300 ° C. under atmospheric pressure in the air after the water washing, based on the particle diameter of the ceramic particle group after the water washing. The change rate of the particle diameter at the time may be ± 20%.

<2−2.略ロッド状リン酸カルシウム焼結体粒子群>
本製造方法により得られる略ロッド状リン酸カルシウム焼結体粒子群は、ロッド状のセラミック粒子からなるセラミック粒子群であって、前記セラミック粒子の粒子径が、短軸の最大直径が50nm〜5μm、長軸が75nm〜10μmであり、c軸方向に成長し、結晶のアスペクト比(c軸長/a軸長)が、1〜30であり、先端角が斜角面を有する截頭形柱状構造のセラミック粒子であって、前記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群である。当該ロッド状リン酸カルシウム焼成粒子群は、接着に供する面積が従来の微粒子より格段に広いため、高分子基材との接着性を向上できるので、カテーテル等の生体親和性医療材料など、高分子表面に修飾するのに適している。しかも、炭酸カルシウムを実質的に含有しないので、生体材料として使用した際に、材料から炭酸ガスが発生する事態を防止することが可能となる。尚、高分子表面に修飾する方法としては、リン酸カルシウム(例えばハイドロキシアパタイトナノ粒子)の活性基と高分子基体、例えば、表面にカルボキシル基を有するビニル系重合性単量体をグラフト重合させたシリコーンゴム、の活性基と化学反応させて複合体とする方法や、硬化性接着剤を用いる方法、高分子基材を融点近傍まで加熱して基材に埋設させる方法等を用いることができる(これは前記の略球状リン酸カルシウム焼結体粒子群も同様)。
<2-2. Substantially rod-shaped calcium phosphate sintered body particle group>
The substantially rod-shaped calcium phosphate sintered body particle group obtained by this production method is a ceramic particle group composed of rod-shaped ceramic particles, and the ceramic particle has a short axis maximum diameter of 50 nm to 5 μm and a long length. It has a truncated columnar structure having an axis of 75 nm to 10 μm, grown in the c-axis direction, a crystal aspect ratio (c-axis length / a-axis length) of 1 to 30, and a tip angle having an oblique surface. Ceramic particles, wherein the ceramic particles are calcium phosphate sintered particles, and the ceramic particles are substantially free of calcium carbonate. Since the rod-shaped calcium phosphate baked particle group has a much wider area for adhesion than conventional fine particles, it can improve the adhesion to the polymer substrate, so it can be applied to the polymer surface such as biocompatible medical materials such as catheters. Suitable for modification. And since it does not contain calcium carbonate substantially, when using as a biomaterial, it becomes possible to prevent the situation where carbon dioxide gas is generated from a material. As a method for modifying the polymer surface, an active group of calcium phosphate (for example, hydroxyapatite nanoparticles) and a polymer substrate, for example, a silicone rubber obtained by graft polymerization of a vinyl polymerizable monomer having a carboxyl group on the surface , A method of chemically reacting with an active group, a method of using a curable adhesive, a method of heating a polymer substrate to near the melting point and embedding it in the substrate, etc. The same applies to the substantially spherical calcium phosphate sintered body particle group).

また、当該セラミック粒子が、ハイドロキシアパタイト焼結体粒子であってもよい。当該粒子は、更に生体適合性が高く、広範な用途に利用可能なハイドロキシアパタイト焼結体で構成されている。そのため、医療用材料として特に好ましい。   The ceramic particles may be hydroxyapatite sintered particles. The particles are composed of a hydroxyapatite sintered body that has higher biocompatibility and can be used for a wide range of applications. Therefore, it is particularly preferable as a medical material.

また、当該セラミック粒子群は、水洗浄されたものであり、且つ、前記水洗浄後の前記セラミック粒子群の粒子径を基準としたとき、前記水洗浄後に空気中常圧下にて300℃で加熱した際の粒子径の変化率が±20%であってもよい。   Further, the ceramic particle group was washed with water, and heated at 300 ° C. under atmospheric pressure in the air after the water washing, based on the particle diameter of the ceramic particle group after the water washing. The change rate of the particle diameter at the time may be ± 20%.

≪用途≫
本発明に係るリン酸カルシウム焼成体粒子群は、生体親和性、生体活性が非常に高いため、医療分野において、例えば、骨充填剤、歯科用充填剤、薬物徐放剤等の歯科用材料又は医療用材料として広く用いることができる。
≪Usage≫
Since the calcium phosphate calcined particles according to the present invention have extremely high biocompatibility and bioactivity, in the medical field, for example, dental materials such as bone fillers, dental fillers, sustained drug release agents, or medical use It can be widely used as a material.

≪製造例≫
(実施例1:球状ハイドロキシアパタイト焼成体粒子群)
脱イオン水が入った反応容器内に、撹拌しながら、硝酸カルシウム四水和物、リン酸水素二アンモニウム水溶液及びアンモニア水を添加し{カルシウム:リン酸(モル比)=5:3}、ハイドロキシアパタイトの一次粒子を得た。その後、反応容器内の上澄みを廃水容器に移した後、脱イオン水を加え、攪拌器で撹拌し、上澄みを廃棄容器に移す、という作業を2回繰り返した。その後、当該沈殿物の入った反応容器ごと、−10℃〜−15℃にて一夜冷凍した。その後、室温で解凍し、解凍後の沈殿をろ取した。その後、焼成皿に約400gの沈殿を入れ、焼成炉に入れ、1時間強かけて600℃までにし、600℃1時間保った後、1時間以上かけて冷却することで焼成を実施した。その後、焼成体へ脱イオン水を加え、30分間以上超音波照射した。そして、ポッドミルへ移し、粉砕球を入れて1時間粉砕した。粉砕終了後、手付きビーカーへ移し、目開き150μm篩を用い、未粉砕焼成体を除去した。尚、この後、脱イオン水洗浄を6回繰り返した。その後、60〜80℃で乾燥し、実施例1に係るハイドロキシアパタイト焼成体を得た。
≪Production example≫
(Example 1: Spherical hydroxyapatite fired body particle group)
In a reaction vessel containing deionized water, calcium nitrate tetrahydrate, diammonium hydrogen phosphate aqueous solution and aqueous ammonia were added with stirring {calcium: phosphoric acid (molar ratio) = 5: 3}, and hydroxy Apatite primary particles were obtained. Thereafter, the operation of transferring the supernatant in the reaction vessel to a waste water vessel, adding deionized water, stirring with a stirrer, and transferring the supernatant to a waste vessel was repeated twice. Thereafter, the reaction vessel containing the precipitate was frozen overnight at −10 ° C. to −15 ° C. Thereafter, the mixture was thawed at room temperature and the thawed precipitate was collected by filtration. Thereafter, about 400 g of precipitate was put in a baking dish, put in a baking furnace, heated to 600 ° C. over 1 hour, kept at 600 ° C. for 1 hour, and then cooled for 1 hour or more to carry out baking. Then, deionized water was added to the fired body and irradiated with ultrasonic waves for 30 minutes or more. Then, the mixture was transferred to a pod mill, and pulverized balls were added and pulverized for 1 hour. After the pulverization was completed, the powder was transferred to a hand-held beaker, and an unground baked product was removed using a sieve having an opening of 150 μm. Thereafter, deionized water washing was repeated 6 times. Then, it dried at 60-80 degreeC and the hydroxyapatite baking body which concerns on Example 1 was obtained.

(実施例2:ロッド状ハイドロキシアパタイト焼成体粒子群)
脱イオン水が入った反応容器内に、硝酸カルシウム四水和物水溶液を撹拌しながら、リン酸水素二アンモニウム水溶液及びアンモニア水を硝酸カルシウム四水和物水溶液に滴下し{カルシウム:リン酸(モル比)=5:3}、ハイドロキシアパタイトの一次粒子を得た。その後、反応容器内の上澄みを廃水容器に移した後、脱イオン水を加え、攪拌器で撹拌し、上澄みを廃棄容器に移す、という作業を5回繰り返した。その後、当該沈殿物の入った反応容器ごと、−10℃〜−15℃にて一夜冷凍した。その後、室温で解凍し、解凍後の沈殿をろ取した。その後、焼成皿に約400gの沈殿を入れ、焼成炉に入れ、1時間強かけて600℃までにし、600℃1時間保った後、1時間以上かけて冷却することで焼成を実施した。その後、焼成体へ脱イオン水を加え、30分間以上超音波照射した。そして、ポッドミルへ移し、粉砕球を入れて1時間粉砕した。粉砕終了後、手付きビーカーへ移し、目開き150μm篩を用い、未粉砕焼成体を除去した。尚、この後、脱イオン水洗浄を7回繰り返した。その後、60〜80℃で乾燥し、実施例2に係るハイドロキシアパタイト焼成体を得た。尚、当該セラミック粒子の粒子径は、短軸の平均最大直径が47、長軸が146であり、c軸方向に成長し、結晶のアスペクト比(c軸長/a軸長)が、3.1であり、先端角が斜角面を有する截頭形柱状構造のセラミック粒子であった。
(Example 2: Rod-like hydroxyapatite fired particles)
In a reaction vessel containing deionized water, while stirring the calcium nitrate tetrahydrate aqueous solution, diammonium hydrogen phosphate aqueous solution and aqueous ammonia were dropped into the calcium nitrate tetrahydrate aqueous solution {calcium: phosphoric acid (mol). Ratio) = 5: 3} to obtain primary particles of hydroxyapatite. Thereafter, the operation of transferring the supernatant in the reaction vessel to a waste water vessel, adding deionized water, stirring with a stirrer, and transferring the supernatant to a waste vessel was repeated 5 times. Thereafter, the reaction vessel containing the precipitate was frozen overnight at −10 ° C. to −15 ° C. Thereafter, the mixture was thawed at room temperature and the thawed precipitate was collected by filtration. Thereafter, about 400 g of precipitate was put in a baking dish, put in a baking furnace, heated to 600 ° C. over 1 hour, kept at 600 ° C. for 1 hour, and then cooled for 1 hour or more to carry out baking. Then, deionized water was added to the fired body and irradiated with ultrasonic waves for 30 minutes or more. Then, the mixture was transferred to a pod mill, and pulverized balls were added and pulverized for 1 hour. After the pulverization was completed, the powder was transferred to a hand-held beaker, and an unground baked product was removed using a sieve having an opening of 150 μm. Thereafter, deionized water washing was repeated 7 times. Then, it dried at 60-80 degreeC and the hydroxyapatite baking body which concerns on Example 2 was obtained. The ceramic particles have a minor axis average maximum diameter of 47 and a major axis of 146, grow in the c-axis direction, and the crystal aspect ratio (c-axis length / a-axis length) is 3. The ceramic particles had a truncated columnar structure with a tip angle of 1 and a beveled surface.

(比較例)
特許第5043436号公報の実施例1に従い、比較例に係るハイドロキシアパタイト焼成体を得た。
(Comparative example)
According to Example 1 of Japanese Patent No. 5043436, a hydroxyapatite fired body according to a comparative example was obtained.

≪X線回折試験≫
図1及び図2は、それぞれ実施例1及び比較例に係るハイドロキシアパタイト焼成体のX線回折の結果である。当該図から分かるように、図1では炭酸カルシウムのピークが観察されなかったのに対し、図2では炭酸カルシウムの明確なピークが観察された。より具体的には、図1では、ハイドロキシアパタイト(PDF 74-0565)に一致するパターンのみ確認出来、一方、図2では、ハイドロキシアパタイトには存在しないピークが29.4°に観察され炭酸カルシウム(calcite : PDF 72-1937)と一致した。尚、X線回折装置及び測定条件は下記の通りである。粉末X線回析装置{理学電機(株)製、MiniFlex}を用いて、結晶構造解析を行った。XRDで使用したX線源としてはCuKα線源{λ=1.541841Å(オングストローム)}を用い、出力は30kV/15mA、スキャンスピードは1.0°/min、サンプリング幅は0.01°、測定モードは連続の条件とした。
≪X-ray diffraction test≫
1 and 2 show the results of X-ray diffraction of the fired hydroxyapatite bodies according to Example 1 and Comparative Example, respectively. As can be seen from the figure, no calcium carbonate peak was observed in FIG. 1, whereas a clear peak of calcium carbonate was observed in FIG. More specifically, in FIG. 1, only a pattern corresponding to hydroxyapatite (PDF 74-0565) can be confirmed, while in FIG. 2, a peak that does not exist in hydroxyapatite is observed at 29.4 ° and calcium carbonate ( calcite: PDF 72-1937). The X-ray diffractometer and measurement conditions are as follows. Crystal structure analysis was performed using a powder X-ray diffraction device {MiniFlex} manufactured by Rigaku Corporation. The X-ray source used in XRD was a CuKα source {λ = 1.541841 Å (angstrom)}, output was 30 kV / 15 mA, scan speed was 1.0 ° / min, sampling width was 0.01 °, measurement The mode was a continuous condition.

≪外観観察試験≫
図3及び図4は、実施例1に係るハイドロキシアパタイト焼成体粒子群のSEM写真である(スケール違い)。これら写真から、実施例1に係るハイドロキシアパタイト焼成体粒子群は、略球状のハイドロキシアパタイト焼成体粒子からなるハイドロキシアパタイト焼成体粒子群であって、単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊を単結晶一次粒子とすると、前記ハイドロキシアパタイト焼成体粒子群に含まれる単結晶一次粒子の割合が過半数を占めることが分かる。また、図5及び図6は、実施例2に係るハイドロキシアパタイト焼成体粒子群のSEM写真である(スケール違い)。
≪Appearance observation test≫
3 and 4 are SEM photographs of the hydroxyapatite fired particles according to Example 1 (difference in scale). From these photographs, the hydroxyapatite fired body particle group according to Example 1 is a hydroxyapatite fired body particle group composed of substantially spherical hydroxyapatite fired body particles, and is composed of primary particles composed of a single crystal or the single crystal. When the particle lump in which the primary particles are aggregated by ionic interaction is defined as the single crystal primary particle, it can be seen that the majority of the single crystal primary particles contained in the hydroxyapatite fired body particle group occupy the majority. 5 and 6 are SEM photographs of the hydroxyapatite fired particles according to Example 2 (difference in scale).

≪粒径測定試験≫
実施例1及び比較例に係るハイドロキシアパタイト焼成体(エンドトキシン未不活性化)に関し、平均粒径及び標準偏差(SEMにて100個の粒子の粒径を確認し、平均値及び標準偏差を算出)した。加えて、実施例1及び比較例に係るハイドロキシアパタイト焼成体(エンドトキシン未不活性化)を不活性化したものに関し、同じく平均粒径及び標準偏差(SEMにて100個の粒子の粒径を確認し、平均値及び標準偏差を算出)した。尚、不活性化手順は、(1)あらかじめ乾熱滅菌(300℃、2時間)アンプルにHAp粉体を計り入れる、(2)、HApを入れたアンプルを開封状態のまま乾熱滅菌器にて、乾熱滅菌(300℃、2時間)、(3)室温まで冷却したアンプルを溶封(封管)、(4)封管済みアンプルを再度乾熱滅菌器にて、乾熱滅菌(300℃、2時間)、である。表1は、実施例1に係るハイドロキシアパタイト焼成体であり、表2は、比較例に係るハイドロキシアパタイト焼成体である。
≪Particle size measurement test≫
Regarding the hydroxyapatite fired bodies (endotoxin non-inactivated) according to Example 1 and Comparative Example, the average particle size and standard deviation (the particle size of 100 particles was confirmed by SEM, and the average value and standard deviation were calculated) did. In addition, regarding the inactivated hydroxyapatite fired bodies (endotoxin non-inactivated) according to Example 1 and Comparative Example, the average particle diameter and the standard deviation (the particle diameter of 100 particles were confirmed by SEM). Average value and standard deviation were calculated). The inactivation procedure is as follows: (1) dry heat sterilization (300 ° C., 2 hours), measure HAp powder into ampoule; (2) leave the ampoule with HAp open in a dry heat sterilizer. Dry heat sterilization (300 ° C., 2 hours), (3) sealing the ampule cooled to room temperature (sealed tube), and (4) sterilizing the sealed ampule again with a dry heat sterilizer (300 ° C, 2 hours). Table 1 shows the hydroxyapatite fired body according to Example 1, and Table 2 shows the hydroxyapatite fired body according to the comparative example.

≪発泡確認試験≫
実施例1及び2並びに比較例に係るハイドロキシアパタイト焼成体について、医薬部外品原料規格2006「ヒドロキシアパタイト」に収載の純度試験(4)炭酸塩に示された手順に準じて試験実施した。具体的には、常温(20℃)にてサンプル1.0gを秤量し、水5mLを加え振り混ぜ、アスピレーターを用いて1時間減圧し脱気した。脱気後、濃塩酸(35.0質量%)2mLを加え、発泡の有無を確認した。その結果、実施例により得られたHApでは、発泡は確認できなかった(気体発生量が0.25ml未満)。他方、比較例により得られたHApでは、生じた泡で上澄みが白濁するほど発泡した。
≪Foaming confirmation test≫
The hydroxyapatite fired bodies according to Examples 1 and 2 and Comparative Example were tested according to the procedure shown in Purity Test (4) Carbonate Listed in Quasi-drug Raw Material Standard 2006 “Hydroxyapatite”. Specifically, 1.0 g of a sample was weighed at room temperature (20 ° C.), 5 mL of water was added and shaken, and the mixture was deaerated by reducing pressure for 1 hour using an aspirator. After deaeration, 2 mL of concentrated hydrochloric acid (35.0% by mass) was added to check for foaming. As a result, foaming could not be confirmed in the HAp obtained in the example (gas generation amount was less than 0.25 ml). On the other hand, in the HAp obtained by the comparative example, the resulting foam was so foamed that the supernatant became cloudy.

Claims (14)

略球状のセラミック粒子からなるセラミック粒子群であって、
前記セラミック粒子の粒子径が、10nm〜700nmの範囲内で、且つ前記セラミック粒子群の粒子径の変動係数が、20%以下であり、
前記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、
前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群。
A group of ceramic particles composed of substantially spherical ceramic particles,
The particle diameter of the ceramic particles is within a range of 10 nm to 700 nm, and the coefficient of variation of the particle diameter of the ceramic particle group is 20% or less,
The ceramic particles are sintered calcium phosphate particles, and
The ceramic particle group, wherein the ceramic particle group does not substantially contain calcium carbonate.
略球状のセラミック粒子からなるセラミック粒子群であって、
単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊を単結晶一次粒子とすると、
前記セラミック粒子群に含まれる単結晶一次粒子の割合が過半数を占め、
上記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、
前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群。
A group of ceramic particles composed of substantially spherical ceramic particles,
When a primary particle composed of a single crystal or a particle lump in which primary particles composed of the single crystal are aggregated by ionic interaction is defined as a single crystal primary particle,
The proportion of single crystal primary particles contained in the ceramic particle group accounts for the majority,
The ceramic particles are calcium phosphate sintered body particles, and
The ceramic particle group, wherein the ceramic particle group does not substantially contain calcium carbonate.
上記セラミック粒子の粒子径が、10nm〜700nmの範囲内である、請求項2記載のセラミック粒子群。   The ceramic particle group according to claim 2, wherein a particle diameter of the ceramic particles is in a range of 10 nm to 700 nm. 上記セラミック粒子群の粒子径の変動係数が20%以下である、請求項2又は3記載のセラミック粒子群。   The ceramic particle group according to claim 2 or 3, wherein a coefficient of variation of the particle diameter of the ceramic particle group is 20% or less. ロッド状のセラミック粒子からなるセラミック粒子群であって、
前記セラミック粒子の粒子径が、短軸の最大直径が30nm〜5μm、長軸が75nm〜10μmであり、c軸方向に成長し、結晶のアスペクト比(c軸長/a軸長)が、1〜30であり、先端角が斜角面を有する截頭形柱状構造のセラミック粒子であって、
前記セラミック粒子が、リン酸カルシウム焼結体粒子であり、且つ、
前記セラミック粒子群が炭酸カルシウムを実質的に含有しないことを特徴とするセラミック粒子群。
A group of ceramic particles composed of rod-shaped ceramic particles,
The ceramic particles have a minor axis maximum diameter of 30 nm to 5 μm and a major axis of 75 nm to 10 μm, grow in the c-axis direction, and have an aspect ratio (c-axis length / a-axis length) of 1 ˜30, and the ceramic particles having a truncated columnar structure having a beveled front end angle,
The ceramic particles are sintered calcium phosphate particles, and
The ceramic particle group, wherein the ceramic particle group does not substantially contain calcium carbonate.
上記セラミック粒子が、ハイドロキシアパタイト焼結体粒子である、請求項1〜5のいずれか一項記載のセラミック粒子群。   The ceramic particle group according to claim 1, wherein the ceramic particles are hydroxyapatite sintered body particles. 前記セラミック粒子群が水洗浄されたものであり、
前記水洗浄後の前記セラミック粒子群の粒子径を基準としたとき、前記水洗浄後に空気中常圧下にて300℃で加熱した際の粒子径の変化率が±20%である、請求項1〜6のいずれか一項記載のセラミック粒子群。
The ceramic particles are washed with water,
The change rate of the particle diameter when heated at 300 ° C. under atmospheric pressure after the water cleaning is ± 20%, based on the particle diameter of the ceramic particle group after the water cleaning. The ceramic particle group according to claim 6.
請求項1〜7のいずれか一項記載のセラミック粒子群を用いて得られたものであることを特徴とする生体内導入用医療材料。   A medical material for introduction into a living body, wherein the medical material is obtained using the ceramic particle group according to any one of claims 1 to 7. 請求項8記載の生体内導入用医療材料を一材料として得られた医療機器。   A medical device obtained using the medical material for introduction into a living body according to claim 8 as one material. 粒子状のセラミック粒子からなるセラミック粒子群の製造方法において、
焼結前のセラミック原料である一次粒子を含有する水系媒体を凍結して凍結体を得た後に当該凍結体を解凍させて解凍体を得る前工程と、
前記解凍体から前記水系媒体を除去して得られた前記一次粒子を焼成する焼成工程と、
前記焼成工程により得られた焼成体を粉砕して前記セラミック粒子群を得る粉砕工程と
を含み、
前記セラミック粒子が、リン酸カルシウム焼結体粒子である
ことを特徴とするセラミック粒子群の製造方法。
In the method for producing a ceramic particle group composed of particulate ceramic particles,
A pre-process for obtaining a thawed body by thawing the frozen body after freezing the aqueous medium containing the primary particles that are the ceramic raw material before sintering and obtaining the frozen body;
A firing step of firing the primary particles obtained by removing the aqueous medium from the thawed body,
And crushing the fired body obtained by the firing step to obtain the ceramic particles,
The method for producing a group of ceramic particles, wherein the ceramic particles are calcium phosphate sintered body particles.
前記粒子状が、略球状又は略ロッド状である、請求項10記載の製造方法。   The manufacturing method according to claim 10, wherein the particle shape is approximately spherical or approximately rod-shaped. 上記セラミック粒子が、ハイドロキシアパタイト焼結体粒子である、請求項10又は11記載の製造方法。   The method according to claim 10 or 11, wherein the ceramic particles are hydroxyapatite sintered particles. 前記セラミック粒子群が生体内導入用医療材料である、請求項10〜12のいずれか一項記載の製造方法。   The manufacturing method according to claim 10, wherein the ceramic particle group is a medical material for introduction into a living body. 前記セラミック粒子群が医療機器用である、請求項13記載の製造方法。   The manufacturing method according to claim 13, wherein the ceramic particle group is for a medical device.
JP2015073467A 2015-03-31 2015-03-31 Method for producing sintered calcium phosphate particles Active JP5980982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073467A JP5980982B1 (en) 2015-03-31 2015-03-31 Method for producing sintered calcium phosphate particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073467A JP5980982B1 (en) 2015-03-31 2015-03-31 Method for producing sintered calcium phosphate particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016137525A Division JP2016222537A (en) 2016-07-12 2016-07-12 Manufacturing method of calcium phosphate sintered body particle

Publications (2)

Publication Number Publication Date
JP5980982B1 JP5980982B1 (en) 2016-08-31
JP2016193798A true JP2016193798A (en) 2016-11-17

Family

ID=56820041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073467A Active JP5980982B1 (en) 2015-03-31 2015-03-31 Method for producing sintered calcium phosphate particles

Country Status (1)

Country Link
JP (1) JP5980982B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018033638A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Implant for medical use
JP2018033640A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying sheet for medical use
WO2018043623A1 (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying stent
JP2018033639A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Collagen production promoting agent
WO2018043620A1 (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying medical tube and/or cuff
JP2018110557A (en) * 2017-01-12 2018-07-19 学校法人近畿大学 Plant affinity material and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102514477B1 (en) * 2016-04-25 2023-03-24 메디컬 파운데이션 내추럴 스마일 Dental prosthesis and parts thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396845A (en) * 1989-09-08 1991-04-22 Sekisui Plastics Co Ltd Powder chlorine apatite and carbon dioxide gas detecting element
JPH05176984A (en) * 1991-02-07 1993-07-20 Kureha Chem Ind Co Ltd Dried body of filter cake of hydroxyapatite
JP2002137910A (en) * 2000-10-31 2002-05-14 Japan Science & Technology Corp Hydroxy-apatite nano particle and its manufacturing method
JP2003128404A (en) * 2001-10-18 2003-05-08 Konica Corp Method of manufacturing precursor of fluorescent substance and fluorescent substance
WO2006030782A1 (en) * 2004-09-14 2006-03-23 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
JP2006315871A (en) * 2005-05-10 2006-11-24 Pentax Corp Calcium phosphate-based compound nanoparticle, its dispersion liquid, and their production method
JP2008156213A (en) * 2006-11-20 2008-07-10 Japan Science & Technology Agency Dispersion, calcium phosphate hollow particle, calcium phosphate porous body, calcium phosphate composite fine particle, methods for producing them, and applications thereof
JP2008201636A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Porous ceramic body having macro-porous communicating pore and method of manufacturing the same
JP2014065653A (en) * 2012-09-06 2014-04-17 Mitsubishi Paper Mills Ltd Hydroxyapatite microparticle dispersion and manufacturing method therefor
JP2015024970A (en) * 2013-07-25 2015-02-05 学校法人近畿大学 Cosmetic material and cosmetics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396845A (en) * 1989-09-08 1991-04-22 Sekisui Plastics Co Ltd Powder chlorine apatite and carbon dioxide gas detecting element
JPH05176984A (en) * 1991-02-07 1993-07-20 Kureha Chem Ind Co Ltd Dried body of filter cake of hydroxyapatite
JP2002137910A (en) * 2000-10-31 2002-05-14 Japan Science & Technology Corp Hydroxy-apatite nano particle and its manufacturing method
JP2003128404A (en) * 2001-10-18 2003-05-08 Konica Corp Method of manufacturing precursor of fluorescent substance and fluorescent substance
WO2006030782A1 (en) * 2004-09-14 2006-03-23 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
JP2006315871A (en) * 2005-05-10 2006-11-24 Pentax Corp Calcium phosphate-based compound nanoparticle, its dispersion liquid, and their production method
JP2008156213A (en) * 2006-11-20 2008-07-10 Japan Science & Technology Agency Dispersion, calcium phosphate hollow particle, calcium phosphate porous body, calcium phosphate composite fine particle, methods for producing them, and applications thereof
JP2008201636A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Porous ceramic body having macro-porous communicating pore and method of manufacturing the same
JP2014065653A (en) * 2012-09-06 2014-04-17 Mitsubishi Paper Mills Ltd Hydroxyapatite microparticle dispersion and manufacturing method therefor
JP2015024970A (en) * 2013-07-25 2015-02-05 学校法人近畿大学 Cosmetic material and cosmetics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018033638A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Implant for medical use
JP2018033640A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying sheet for medical use
WO2018043623A1 (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying stent
JP2018033639A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Collagen production promoting agent
WO2018043620A1 (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying medical tube and/or cuff
JP2018110557A (en) * 2017-01-12 2018-07-19 学校法人近畿大学 Plant affinity material and use thereof
JP7072157B2 (en) 2017-01-12 2022-05-20 学校法人近畿大学 Plant-affinity materials and their uses

Also Published As

Publication number Publication date
JP5980982B1 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5980982B1 (en) Method for producing sintered calcium phosphate particles
Molino et al. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: A short review
KR100898218B1 (en) Ceramic Particle Group and Method for Production Thereof and Use Thereof
JP6072967B1 (en) Method for producing sintered calcium phosphate particles
WO2018003130A1 (en) Calcium phosphate sintered body particles and method for producing same
JP6072968B1 (en) Method for producing sintered calcium phosphate particles
Pramanik et al. Capping agent-assisted synthesis of nanosized hydroxyapatite: comparative studies of their physicochemical properties
Ferrairo et al. Production of bovine hydroxyapatite nanoparticles as a promising biomaterial via mechanochemical and sonochemical methods
Xiao et al. Deagglomeration of HA during the precipitation synthesis
JP6548616B2 (en) Medical implant
Gandou et al. Nanosized calcium-deficient carbonated hydroxyapatite synthesized by microwave activation
JP7125754B2 (en) Sintered calcium phosphate particles and method for producing the same
JP2016222537A (en) Manufacturing method of calcium phosphate sintered body particle
JP2021181400A (en) Method for producing calcium phosphate sintered compact particle
JP2018002580A (en) Method for producing calcium phosphate sintered compact particle
Tyliszczak et al. Stabilization of ceramics particles with anionic polymeric dispersants
JP6548618B2 (en) Ceramic particle carrying medical sheet
JP7125755B2 (en) Novel ceramic particle composites
Madrigal et al. Comparison of the physicochemical properties and osteoblast viability of nanocrystalline hydroxyapatite synthesized in batch and continuous systems
JP6548617B2 (en) Collagen production promoter
JP6555722B2 (en) Tooth surface restoration material
WO2018043623A1 (en) Ceramic particle carrying stent
JP2018002579A (en) Method for producing calcium phosphate sintered compact particle
WO2018043620A1 (en) Ceramic particle carrying medical tube and/or cuff
Buitrago Vásquez et al. Evaluación de los métodos de centrifugación y de tratamiento hidrotermal para la obtención de nanopartículas de fosfatos de calcio

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370