JP2002137910A - Hydroxy-apatite nano particle and its manufacturing method - Google Patents

Hydroxy-apatite nano particle and its manufacturing method

Info

Publication number
JP2002137910A
JP2002137910A JP2000333638A JP2000333638A JP2002137910A JP 2002137910 A JP2002137910 A JP 2002137910A JP 2000333638 A JP2000333638 A JP 2000333638A JP 2000333638 A JP2000333638 A JP 2000333638A JP 2002137910 A JP2002137910 A JP 2002137910A
Authority
JP
Japan
Prior art keywords
surfactant
hydroxy
hydroxyapatite
axis
apatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000333638A
Other languages
Japanese (ja)
Other versions
JP4076203B2 (en
Inventor
Junzo Tanaka
順三 田中
Tsutomu Furuzono
勉 古薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT CARDIOVASCULAR CT
Japan Science and Technology Agency
National Institute for Materials Science
Japan National Cardiovascular Center
Original Assignee
NAT CARDIOVASCULAR CT
National Institute for Materials Science
Japan National Cardiovascular Center
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT CARDIOVASCULAR CT, National Institute for Materials Science, Japan National Cardiovascular Center, Japan Science and Technology Corp filed Critical NAT CARDIOVASCULAR CT
Priority to JP2000333638A priority Critical patent/JP4076203B2/en
Publication of JP2002137910A publication Critical patent/JP2002137910A/en
Application granted granted Critical
Publication of JP4076203B2 publication Critical patent/JP4076203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture hydroxy-apatite nano particles in a certain shape, large crystallization with large surface area. SOLUTION: A hydroxy-atatite nano particle is 50 nm-5 μm in a maximum diameter of a minor axis and 75 nm-10 μm in a maximum diameter of a major axis. The particle is grown in a c-axis direction with a 1-5 aspect ratio (c-axis length/a-axis length) of crystallization, and is truncated column structure having an oblique angle plane at a top-end angle. In manufacturing the hydroxy-apatite fine particles, a calcium solution and a phosphoric acid solution are dissolved in, mixed with, and reacted to a surfactant/water/oil type emulsion phase at a surfactant clouding point or more. By changing ratio of a surfactant functional group and a hydrophile/hydrophobe ratio, a size of hydroxy-apatite nano particles is controlled. The hydroxy-apatite nano particles are used for surface modification of organic high polymer in order to enhance reaction of the particles and the matrix, and are suitable as chromatography packing agents.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイドロキシアパ
タイトナノ粒子およびその製造方法ならびにハイドロキ
シアパタイトナノ粒子の用途に関する。
TECHNICAL FIELD The present invention relates to hydroxyapatite nanoparticles, a method for producing the same, and uses of the hydroxyapatite nanoparticles.

【0002】[0002]

【従来の技術】ハイドロキシアパタイトは骨および歯の
修復材等に用いられている。また、生体高分子化合物の
分離や精製等に用いられるクロマトグラフィーの充填剤
や、医薬剤やたんぱく質を担持して生体内を輸送するた
めの担体としても使用される。さらに、高分子材料から
なるカテーテル基体の、生体への装着状態において生体
組織と接触する部分に、ハイドロキシアパタイトを蒸着
法等で被覆することも知られている(特開平10−28
728号公報)。
2. Description of the Related Art Hydroxyapatite is used as a material for restoring bone and teeth. It is also used as a packing material for chromatography used for separation and purification of biopolymer compounds, and as a carrier for carrying a pharmaceutical agent or protein and transporting it in a living body. Further, it is also known that a portion of a catheter base made of a polymer material, which comes into contact with a living tissue when attached to a living body, is coated with hydroxyapatite by a vapor deposition method or the like (Japanese Patent Laid-Open No. 10-28).
728).

【0003】ハイドロキシアパタイト微粒子の製造方法
としては、界面活性剤−水−無極性有機液体系、または
界面活性剤−水−アルカノール無極性有機液体系W/O
マイクロエマルジョン相に、Ca(NO3 2 /アンモ
ニア水溶液および(NH4 2 HPO4 /アンモニア水
溶液をそれぞれ可溶化させ、これら可溶化液を混合する
ことにより粒径100nm以下の球状水酸アパタイト超
微粒子を製造する方法が知られている(特開平5−17
111号公報)。また、水熱方法によりa,b軸方向に
成長した板状アパタイト(特開平6−206713号公
報)やa面を優先的に成長させた板状アパタイト(特開
平10−45405号公報)も知られている。
Method for producing hydroxyapatite fine particles
As a surfactant-water-non-polar organic liquid system, or
Surfactant-water-alkanol non-polar organic liquid W / O
In the microemulsion phase, Ca (NOThree)Two/ Ammo
Near aqueous solution and (NHFour) TwoHPOFour/ Ammonia water
Solubilize each solution and mix these lysates
Spherical hydroxyapatite with a particle size of 100 nm or less
A method for producing fine particles is known (JP-A-5-17 / 1990).
No. 111). Also, in the a and b axis directions by hydrothermal method
Growing plate-like apatite (JP-A-6-206713)
Report) and plate-like apatite with preferentially grown a-plane
JP-A-10-45405) is also known.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、骨結合
性および軟組織適合性材料の開発を目指し、共有結合を
介したハイドロキシアパタイ卜(Hap)・高分子複合
体の合成に関する研究を行ってきた。ハイドロキシアパ
タイト超微粒子の形態は、上述のように、製造法により
多様であるが、大がかりな装置、設備を必要としない点
で、エマルジョン法は好ましい方法である。
DISCLOSURE OF THE INVENTION The present inventors aimed at the development of osteosynthetic and soft tissue compatible materials, and conducted research on the synthesis of hydroxyapatite (Hap) -polymer composites via covalent bonds. I went. As described above, the form of the hydroxyapatite ultrafine particles varies depending on the production method, but the emulsion method is a preferable method because extensive equipment and equipment are not required.

【0005】上記のエマルジョン法によるハイドロキシ
アパタイト超微粒子の製造方法では、界面活性剤の曇点
より低い反応温度の合成条件が用いられている。しか
し、そのような条件では、界面活性剤より構成されたミ
セルが熱力学的に安定な構造をとるため、界面活性剤ミ
セル内で起こるハイドロキシアパタイトの結晶成長が抑
制されることになり、得られた微粒子の形態が球状〜不
定形状となる。 しかも、結晶の大きさが直径20〜1
00nmと制限されることから、特定形状の大きい結晶
が得られなかった。イオン結合および共有結合でHap
粒子を高分子気体に結合させる場合に、Hap粒子と基
体との反応を高めるには、より大きな接着表面積のHa
p粒子を作製する必要がある。
In the above-mentioned method for producing hydroxyapatite ultrafine particles by the emulsion method, synthesis conditions at a reaction temperature lower than the cloud point of the surfactant are used. However, under such conditions, since the micelles composed of the surfactant have a thermodynamically stable structure, the crystal growth of hydroxyapatite occurring in the micelles of the surfactant is suppressed, which is obtained. The fine particles have a spherical to irregular shape. Moreover, the size of the crystal is 20 to 1 in diameter.
Due to the restriction to 00 nm, a crystal having a large specific shape could not be obtained. Hap with ionic and covalent bonds
In order to enhance the reaction between the Hap particles and the substrate when the particles are bound to a polymer gas, a larger adhesion surface area of Ha
It is necessary to make p particles.

【0006】[0006]

【課題を解決するための手段】本発明者は、エマルジョ
ン法によりハイドロキシアパタイ卜ナノ粒子を製造する
方法において、得られる微粒子の形態制御を行うことに
よって高分子表面とHap微粒子との接着性に優れた截
頭形柱状構造のナノオーダーの微粒子を製造できること
を見出した。
Means for Solving the Problems In the method for producing hydroxyapatite nanoparticles by the emulsion method, the present inventor controlled the morphology of the obtained fine particles to improve the adhesion between the polymer surface and the Hap fine particles. It has been found that nano-order fine particles having an excellent truncated columnar structure can be produced.

【0007】すなわち、本発明は、短軸の最大直径が5
0nm〜5μm、長軸が75nm〜10μmであり、c
軸方向に成長し、結晶のアスペクト比(c軸長/a軸
長)が1〜5であり、先端角が斜角面を有する截頭形柱
状構造のハイドロキシアパタイ卜ナノ粒子である。
That is, according to the present invention, the maximum diameter of the short axis is 5
0 nm to 5 μm, the major axis is 75 nm to 10 μm, c
It is a hydroxyapatite nanoparticle that grows in the axial direction, has a crystal aspect ratio (c-axis length / a-axis length) of 1 to 5, and has a truncated columnar structure having a beveled tip angle.

【0008】また、本発明は、界面活性剤/水/オイル
系エマルジョン相にカルシウム溶液およびリン酸溶液を
可溶化して混合させ、反応させてハイドロキシアパタイ
卜微粒子を合成する方法において、界面活性剤の曇点以
上で反応させることを特徴とする請求項1記載のハイド
ロキシアパタイ卜ナノ粒子の製造方法である。
The present invention also relates to a method for synthesizing hydroxyapatite fine particles by solubilizing and mixing a calcium solution and a phosphoric acid solution in a surfactant / water / oil emulsion phase and reacting the same. 2. The method for producing hydroxyapatite nanoparticles according to claim 1, wherein the reaction is performed at a temperature higher than the cloud point of the agent.

【0009】また、本発明は、界面活性剤の官能基およ
び親水性/疎水性比の割合を変えることによりハイドロ
キシアパタイトナノ粒子の大きさを制御することを特徴
とする上記のハイドロキシアパタイ卜ナノ粒子の製造方
法である。
Further, the present invention provides the above-mentioned hydroxyapatite nano-particle, wherein the size of the hydroxyapatite nano-particle is controlled by changing the functional group of the surfactant and the ratio of the hydrophilic / hydrophobic ratio. This is a method for producing particles.

【0010】また、本発明は、上記のハイドロキシアパ
タイ卜ナノ粒子からなるクロマトグラフィー充填剤であ
る。
[0010] The present invention is also a chromatography packing comprising the above hydroxyapatite nanoparticles.

【0011】また、本発明は、上記のハイドロキシアパ
タイ卜ナノ粒子を用いて表面修飾した有機高分子であ
る。
[0011] The present invention is also an organic polymer surface-modified with the above hydroxyapatite nanoparticles.

【0012】本発明の製造方法により得られるハイドロ
キシアパタイトナノ粒子は、短軸の最大直径が50nm
〜5μm、望ましくは90〜150nm、長軸が75n
m〜10μm、望ましくは100〜300nmと大き
く、c軸方向に成長し、結晶のアスペクト比(c軸長/
a軸長)が1〜5であり、先端角が斜角面を有する截頭
形柱状構造の単結晶体である。
The hydroxyapatite nanoparticles obtained by the production method of the present invention have a maximum minor axis diameter of 50 nm.
55 μm, desirably 90 to 150 nm, and the long axis is 75 n
m to 10 μm, desirably 100 to 300 nm, grows in the c-axis direction, and has a crystal aspect ratio (c-axis length /
It is a single crystal having a truncated columnar structure having an a-axis length of 1 to 5 and a tip angle having a bevel.

【0013】本発明のハイドロキシアパタイトナノ粒子
の形態は、これまでのエマルジョン法によるハイドロキ
シアパタイト微粒子の形態とは全く異なり、その形状
は、クロマトグラフィー分離用充填剤として好適であ
る。
The form of the hydroxyapatite nanoparticles of the present invention is completely different from the form of hydroxyapatite fine particles obtained by the conventional emulsion method, and the form is suitable as a filler for chromatography separation.

【0014】また、本発明のハイドロキシアパタイトナ
ノ粒子は、接着に供する面積が従来の微粒子より格段に
広いため、高分子基材との接着性を向上できるので、カ
テーテル等の生体親和性医療材料など、高分子表面に修
飾するのに適している。高分子表面に修飾する方法とし
ては、ハイドロキシアパタイトナノ粒子の活性基と高分
子基体、例えば、表面にカルボキシル基を有するビニル
系重合性単量体をグラフト重合させたシリコーンゴム、
の活性基と化学反応させて複合体とする方法や、硬化性
接着剤を用いる方法、高分子基材を融点近傍まで加熱し
て基材に埋設させる方法などを用いることができる。
Further, the hydroxyapatite nanoparticles of the present invention have a much larger area for bonding than conventional fine particles, so that the adhesiveness to a polymer base material can be improved. Therefore, biocompatible medical materials such as catheters and the like can be used. Suitable for modifying a polymer surface. As a method of modifying the polymer surface, active groups of hydroxyapatite nanoparticles and a polymer substrate, for example, a silicone rubber obtained by graft polymerization of a vinyl polymerizable monomer having a carboxyl group on the surface,
And a method using a curable adhesive, a method in which a polymer base material is heated to near the melting point and embedded in the base material, and the like.

【0015】界面活性剤/水/オイル系エマルジョン相
にカルシウム溶液およびリン酸溶液を可溶化して混合さ
せ、反応させてハイドロキシアパタイ卜微粒子を合成す
る方法においては、界面活性剤のミセルの中でハイドロ
キシアパタイトの核が成長し、結晶成長する。本発明の
ハイドロキシアパタイトナノ粒子の製造方法の特徴は、
反応温度を界面活性剤の曇点以上とすることにより、ミ
セルの熱力学的安定性を制御した点である。
In the method of solubilizing and mixing a calcium solution and a phosphoric acid solution in a surfactant / water / oil emulsion phase and reacting them to synthesize hydroxyapatite fine particles, the surfactant micelle is used. Then, the nucleus of hydroxyapatite grows and crystal grows. Features of the method for producing hydroxyapatite nanoparticles of the present invention,
The point is that the thermodynamic stability of the micelles was controlled by setting the reaction temperature to the cloud point of the surfactant or higher.

【0016】界面活性剤の曇点以上に反応温度を上げる
ということは、界面活性剤のミセルを形成する力を下げ
るということである。そうすると、ミセルという枠の中
で制限を受けていたアパタイトの結晶成長の駆動力がミ
セルの枠を維持しようとする駆動力より大きくなると考
えられる。そのメカニズムを利用して結晶の形を制御で
きる。反応温度の上限は、水溶液の反応であるから溶液
が沸騰しない温度であれば特に限定されず、90℃以下
程度とすればよい。
Increasing the reaction temperature above the cloud point of the surfactant means lowering the surfactant's ability to form micelles. Then, it is considered that the driving force for crystal growth of apatite, which has been restricted in the micelle frame, is larger than the driving force for maintaining the micelle frame. The crystal shape can be controlled using the mechanism. The upper limit of the reaction temperature is not particularly limited as long as the solution does not boil since the reaction is an aqueous solution, and may be about 90 ° C. or less.

【0017】界面活性剤の曇点は、種類によって異な
る。本発明の方法において用いる界面活性剤の種類は、
特に限定されず、上記の特開平5−17111号公報に
開示された他種類の公知の陰イオン、陽イオン、非イオ
ン性界面活性剤から適宜選択して用いることができる。
界面活性剤のミセルを作る場合に、界面活性剤の官能基
(親水性部位)および分子内の親水性/疎水性比が重要
であり、この違いによってミセルの安定性、曇点も異な
ってくる。
The cloud point of a surfactant differs depending on the type. The type of surfactant used in the method of the present invention,
There is no particular limitation, and it can be appropriately selected from other kinds of known anions, cations, and nonionic surfactants disclosed in the above-mentioned JP-A-5-17111.
When making micelles of surfactants, the functional groups (hydrophilic sites) of the surfactants and the hydrophilic / hydrophobic ratio in the molecule are important, and the differences result in different micelle stability and cloud point. .

【0018】界面活性剤の曇点より高い温度で反応させ
ると、界面活性剤分子の疎水性が高まり形成したミセル
が熱力学的に不安定となり、Hapの結晶性成長がより
強調される。界面活性剤は、その曇点で一瞬にして10
0%疎水性になるわけではなく、温度の上昇によって徐
々に疎水性に傾いていく。その度合いは、界面活性剤の
官能基、親水性・疎水性比、分子量が影響する。
When the reaction is performed at a temperature higher than the cloud point of the surfactant, the hydrophobicity of the surfactant molecule is increased, and the formed micelle becomes thermodynamically unstable, and the crystal growth of Hap is further emphasized. Surfactants instantaneously reach 10% at their cloud point.
It does not become 0% hydrophobic, but gradually becomes hydrophobic as the temperature rises. The degree depends on the functional group of the surfactant, the hydrophilic / hydrophobic ratio, and the molecular weight.

【0019】[0019]

【実施例】実施例1 連続オイル相としてドデカン[CH3 (CH2 10CH
3 ]、非イオン性界面活性剤として曇点31℃のペンタ
エチレングリコールドデシルエーテル[CH3(C
2 10CH2 O(CH2 CH2 O)4 CH2 CH2
H]を用いた。室温で界面活性剤を0.5g含有したオ
イル相40mlを調製した後、Ca(OH) 2 分散水溶
液(2.5M)を10ml添加した。十分に攪拌後、そ
の水/オイル(W/O)溶液に1.5M−KH2 PO4
溶液を10ml添加し24時間攪拌し反応温度50℃で
反応させた。
EXAMPLE 1 Dodecane [CH as continuous oil phaseThree(CHTwo)TenCH
ThreePentane having a cloud point of 31 ° C. as a nonionic surfactant
Ethylene glycol dodecyl ether [CHThree(C
HTwo)TenCHTwoO (CHTwoCHTwoO)FourCHTwoCHTwoO
H] was used. At room temperature, containing 0.5 g of a surfactant.
After preparing 40 ml of the il phase, Ca (OH) TwoWater dispersion
10 ml of the liquid (2.5 M) was added. After thorough stirring,
1.5M-KH in water / oil (W / O) solutionTwoPOFour
Add 10 ml of the solution and stir for 24 hours at a reaction temperature of 50 ° C.
Reacted.

【0020】反応物は遠沈により精製し、60℃にて乾
燥後、800℃にて1時間仮焼させた。得られたハイド
ロキシアパタイト焼結体はBタイプ炭酸アパタイトであ
り、高い生体活性を有することが確認された。また、元
素分析によりCa/P比は1.61であり、本アパタイ
トはカルシウム欠損アパタイトであった。
The reaction product was purified by centrifugation, dried at 60 ° C., and calcined at 800 ° C. for 1 hour. The obtained hydroxyapatite sintered body was B-type carbonate apatite, and was confirmed to have high biological activity. The elemental analysis revealed that the Ca / P ratio was 1.61, and the apatite was a calcium-deficient apatite.

【0021】図1に得られたHapナノ粒子の透過型電
子顕微鏡(TEM)像を示す。TEMの観察から粒径が
100〜200nmで、先端角が斜角面を有する截頭形
柱状構造の形態を有することを確認した。また、電子線
回折による分析の結果、得られた粒子はc軸方向に配向
していた。
FIG. 1 shows a transmission electron microscope (TEM) image of the obtained Hap nanoparticles. It was confirmed from TEM observation that the particle diameter was 100 to 200 nm and that the tip angle had a truncated columnar structure having a bevel. Further, as a result of analysis by electron beam diffraction, the obtained particles were oriented in the c-axis direction.

【0022】比較例1 反応温度を25℃とした以外は実施例1と同じ条件で得
られたハイドロキシアパタイトナノ粒子は、図2に示す
TEMの観察から球状〜不定形ロッド状で粒径が30〜
60nmであった。
Comparative Example 1 The hydroxyapatite nanoparticles obtained under the same conditions as in Example 1 except that the reaction temperature was 25 ° C., were observed from TEM observation shown in FIG. ~
It was 60 nm.

【0023】[0023]

【発明の効果】本発明の截頭形柱状構造のナノオーダー
の微粒子は、従来の球状の粒子に比べて高分子界面の接
着に供する面積が格段に広くなり、高分子基材へのアパ
タイト焼結体粒子の接着において優れた特性を発揮す
る。また、本発明の方法は、ハイドロキシアパタイトナ
ノ粒子の大きさ、形態を反応温度の選択によって制御す
ることを可能にした。また、反応温度条件に加えて界面
活性剤の種類を変更することによって、製造されるHa
p粒子の形態、サイズがより細かく制御可能となった。
As described above, the nano-sized fine particles having a truncated columnar structure according to the present invention have a much larger area for bonding at the polymer interface than conventional spherical particles, and the apatite firing on the polymer base material is greatly improved. Demonstrates excellent properties in bonding of consolidated particles. Further, the method of the present invention has made it possible to control the size and morphology of hydroxyapatite nanoparticles by selecting the reaction temperature. In addition, by changing the type of the surfactant in addition to the reaction temperature conditions, the produced Ha
The morphology and size of p-particles can be controlled more finely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1で得られたHapナノ粒子の
透過型電子顕微鏡(TEM)像を示す図面代用写真であ
る。
FIG. 1 is a drawing substitute photograph showing a transmission electron microscope (TEM) image of the Hap nanoparticles obtained in Example 1.

【図2】図2は、比較例1で得られたHapナノ粒子の
透過型電子顕微鏡(TEM)像を示す図面代用写真であ
る。
FIG. 2 is a drawing substitute photograph showing a transmission electron microscope (TEM) image of the Hap nanoparticles obtained in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古薗 勉 大阪府吹田市青山台3−50 D12−206 Fターム(参考) 4C081 AB04 BB04 CF031 DA11 DB02 EA02 4C089 AA06 BA03 BA15 CA02 CA05 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tsutomu Furuzono 3-50 D12-206 Aoyamadai, Suita-shi, Osaka F-term (reference) 4C081 AB04 BB04 CF031 DA11 DB02 EA02 4C089 AA06 BA03 BA15 CA02 CA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 短軸の最大直径が50nm〜5μm、長
軸が75nm〜10μmであり、c軸方向に成長し、結
晶のアスペクト比(c軸長/a軸長)が1〜5であり、
先端角が斜角面を有する截頭形柱状構造のハイドロキシ
アパタイ卜ナノ粒子。
The maximum diameter of the minor axis is 50 nm to 5 μm, the major axis is 75 nm to 10 μm, the crystal grows in the c-axis direction, and the crystal has an aspect ratio (c-axis length / a-axis length) of 1 to 5. ,
Hydroxyapatite nanoparticles having a truncated columnar structure with a beveled tip angle.
【請求項2】 界面活性剤/水/オイル系エマルジョン
相にカルシウム溶液およびリン酸溶液を可溶化して混合
させ、反応させてハイドロキシアパタイ卜微粒子を合成
する方法において、界面活性剤の曇点以上で反応させる
ことを特徴とする請求項1記載のハイドロキシアパタイ
卜ナノ粒子の製造方法。
2. A method for solubilizing and mixing a calcium solution and a phosphoric acid solution in a surfactant / water / oil emulsion phase and reacting them to produce hydroxyapatite fine particles. The method for producing hydroxyapatite nanoparticles according to claim 1, wherein the reaction is performed as described above.
【請求項3】 界面活性剤の官能基および親水性/疎水
性比の割合を変えることによりハイドロキシアパタイト
ナノ粒子の大きさを制御することを特徴とする請求項2
記載のハイドロキシアパタイ卜ナノ粒子の製造方法。
3. The size of the hydroxyapatite nanoparticles is controlled by changing the functional group of the surfactant and the ratio of the hydrophilicity / hydrophobicity ratio.
A method for producing the hydroxyapatite nanoparticles according to the above.
【請求項4】 請求項1記載のハイドロキシアパタイ卜
ナノ粒子からなるクロマトグラフィー充填剤。
4. A chromatography packing comprising the hydroxyapatite nanoparticles according to claim 1.
【請求項5】 請求項1記載のハイドロキシアパタイ卜
ナノ粒子を用いて表面修飾した有機高分子。
5. An organic polymer surface-modified with the hydroxyapatite nanoparticles according to claim 1.
JP2000333638A 2000-10-31 2000-10-31 Hydroxyapatite nanoparticles and production method thereof Expired - Lifetime JP4076203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333638A JP4076203B2 (en) 2000-10-31 2000-10-31 Hydroxyapatite nanoparticles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333638A JP4076203B2 (en) 2000-10-31 2000-10-31 Hydroxyapatite nanoparticles and production method thereof

Publications (2)

Publication Number Publication Date
JP2002137910A true JP2002137910A (en) 2002-05-14
JP4076203B2 JP4076203B2 (en) 2008-04-16

Family

ID=18809680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333638A Expired - Lifetime JP4076203B2 (en) 2000-10-31 2000-10-31 Hydroxyapatite nanoparticles and production method thereof

Country Status (1)

Country Link
JP (1) JP4076203B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051381A (en) * 2002-12-12 2004-06-18 성윤모 Sythesis of Hydroxyapatite Nanopowder
JP2006008429A (en) * 2004-06-23 2006-01-12 National Institute Of Advanced Industrial & Technology Calcium phosphate nanoparticle and producing method therefor
WO2006030782A1 (en) 2004-09-14 2006-03-23 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
WO2006049032A1 (en) * 2004-11-01 2006-05-11 Tokyo Medical And Dental University Preparation of nanogel-apatite composite
JP2007246299A (en) * 2006-03-13 2007-09-27 Japan Science & Technology Agency Calcium phosphate transparent material and method for manufacturing the same
JP2007277516A (en) * 2006-03-13 2007-10-25 Ishihara Chem Co Ltd Nanocomposite
WO2009157543A1 (en) 2008-06-27 2009-12-30 公立大学法人大阪市立大学 Medical composition and medical kit
US7727497B2 (en) 2005-08-09 2010-06-01 Hoya Corporation Method for producing particles, particles, and sintered body
WO2010106668A1 (en) 2009-03-19 2010-09-23 サウスコーストデンタル株式会社 Tooth surface repairing material
WO2010137122A1 (en) 2009-05-26 2010-12-02 株式会社ソフセラ Collagen production enhancer
DE102010017210A1 (en) 2009-06-02 2011-02-24 Hoya Corp. Process for the preparation of powder, powder and adsorption device
WO2012074037A1 (en) 2010-12-01 2012-06-07 株式会社ソフセラ Breast enhancement accelerator
JP5980982B1 (en) * 2015-03-31 2016-08-31 株式会社ソフセラ Method for producing sintered calcium phosphate particles
JP6072967B1 (en) * 2016-06-30 2017-02-01 株式会社ソフセラ Method for producing sintered calcium phosphate particles
JP6072968B1 (en) * 2016-07-07 2017-02-01 株式会社ソフセラ Method for producing sintered calcium phosphate particles
CN107265427A (en) * 2017-05-16 2017-10-20 四川大学 Nano-particle of controllable appearance and preparation method thereof is prepared based on sandwich interface method
WO2018003130A1 (en) 2016-06-30 2018-01-04 株式会社ソフセラ Calcium phosphate sintered body particles and method for producing same
JP2018002579A (en) * 2016-12-27 2018-01-11 株式会社ソフセラ Method for producing calcium phosphate sintered compact particle
JP2018002580A (en) * 2016-12-27 2018-01-11 株式会社ソフセラ Method for producing calcium phosphate sintered compact particle
WO2018043620A1 (en) 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying medical tube and/or cuff
WO2018043621A1 (en) 2016-08-30 2018-03-08 株式会社ソフセラ Calcium phosphate sintered particles and production method therefor
JP2018035085A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Tooth-plane restorative material
CN109803736A (en) * 2016-09-29 2019-05-24 生物辐射实验室股份有限公司 The ceramic apatite of agarose filling
US11504452B2 (en) 2016-08-30 2022-11-22 Sofsera Corporation Ceramic particle composite material

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051381A (en) * 2002-12-12 2004-06-18 성윤모 Sythesis of Hydroxyapatite Nanopowder
JP4625923B2 (en) * 2004-06-23 2011-02-02 独立行政法人産業技術総合研究所 Method for producing calcium phosphate nanoparticles
JP2006008429A (en) * 2004-06-23 2006-01-12 National Institute Of Advanced Industrial & Technology Calcium phosphate nanoparticle and producing method therefor
US8153255B2 (en) 2004-09-14 2012-04-10 Japan Science And Technology Agency Ceramic particle group comprising sintered particles of hydroxyapatite
EP1808411A1 (en) * 2004-09-14 2007-07-18 Japan Science and Technology Agency Ceramic particle group and method for production thereof and use thereof
US7749429B2 (en) 2004-09-14 2010-07-06 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
JPWO2006030782A1 (en) * 2004-09-14 2008-05-15 独立行政法人科学技術振興機構 Ceramic particle group, method for producing the same and use thereof
WO2006030782A1 (en) 2004-09-14 2006-03-23 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
EP1808411A4 (en) * 2004-09-14 2011-11-02 Japan Science & Tech Agency Ceramic particle group and method for production thereof and use thereof
KR100898218B1 (en) 2004-09-14 2009-05-18 재팬 사이언스 앤드 테크놀로지 에이젼시 Ceramic Particle Group and Method for Production Thereof and Use Thereof
JPWO2006049032A1 (en) * 2004-11-01 2008-05-29 国立大学法人 東京医科歯科大学 Preparation of nanogel-apatite composite
JP5439650B2 (en) * 2004-11-01 2014-03-12 国立大学法人 東京医科歯科大学 Preparation of nanogel-apatite composite
WO2006049032A1 (en) * 2004-11-01 2006-05-11 Tokyo Medical And Dental University Preparation of nanogel-apatite composite
US7727497B2 (en) 2005-08-09 2010-06-01 Hoya Corporation Method for producing particles, particles, and sintered body
JP2007277516A (en) * 2006-03-13 2007-10-25 Ishihara Chem Co Ltd Nanocomposite
JP2007246299A (en) * 2006-03-13 2007-09-27 Japan Science & Technology Agency Calcium phosphate transparent material and method for manufacturing the same
US9642938B2 (en) 2008-06-27 2017-05-09 Osaka City University Medical composition and medical kit
WO2009157543A1 (en) 2008-06-27 2009-12-30 公立大学法人大阪市立大学 Medical composition and medical kit
WO2010106668A1 (en) 2009-03-19 2010-09-23 サウスコーストデンタル株式会社 Tooth surface repairing material
WO2010137122A1 (en) 2009-05-26 2010-12-02 株式会社ソフセラ Collagen production enhancer
DE102010017210A1 (en) 2009-06-02 2011-02-24 Hoya Corp. Process for the preparation of powder, powder and adsorption device
WO2012074037A1 (en) 2010-12-01 2012-06-07 株式会社ソフセラ Breast enhancement accelerator
JP5980982B1 (en) * 2015-03-31 2016-08-31 株式会社ソフセラ Method for producing sintered calcium phosphate particles
JP2016193798A (en) * 2015-03-31 2016-11-17 株式会社ソフセラ Method for manufacturing method of calcium phosphate sintered body particle
WO2018003130A1 (en) 2016-06-30 2018-01-04 株式会社ソフセラ Calcium phosphate sintered body particles and method for producing same
JP6072967B1 (en) * 2016-06-30 2017-02-01 株式会社ソフセラ Method for producing sintered calcium phosphate particles
JP6072968B1 (en) * 2016-07-07 2017-02-01 株式会社ソフセラ Method for producing sintered calcium phosphate particles
US11504452B2 (en) 2016-08-30 2022-11-22 Sofsera Corporation Ceramic particle composite material
US11168031B2 (en) 2016-08-30 2021-11-09 Sofsera Corporation Calcium phosphate sintered particles and production method therefor
WO2018043620A1 (en) 2016-08-30 2018-03-08 株式会社ソフセラ Ceramic particle carrying medical tube and/or cuff
WO2018043621A1 (en) 2016-08-30 2018-03-08 株式会社ソフセラ Calcium phosphate sintered particles and production method therefor
JP2018035085A (en) * 2016-08-30 2018-03-08 株式会社ソフセラ Tooth-plane restorative material
CN109803736A (en) * 2016-09-29 2019-05-24 生物辐射实验室股份有限公司 The ceramic apatite of agarose filling
JP2018002580A (en) * 2016-12-27 2018-01-11 株式会社ソフセラ Method for producing calcium phosphate sintered compact particle
JP2018002579A (en) * 2016-12-27 2018-01-11 株式会社ソフセラ Method for producing calcium phosphate sintered compact particle
CN107265427B (en) * 2017-05-16 2020-01-24 四川大学 Preparation of morphology-controllable nano particles based on sandwich interface method and preparation method thereof
CN107265427A (en) * 2017-05-16 2017-10-20 四川大学 Nano-particle of controllable appearance and preparation method thereof is prepared based on sandwich interface method

Also Published As

Publication number Publication date
JP4076203B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP2002137910A (en) Hydroxy-apatite nano particle and its manufacturing method
C Thomas et al. Ceramic nanoparticles: fabrication methods and applications in drug delivery
Okada et al. Hydroxylapatite nanoparticles: fabrication methods and medical applications
Sonoda et al. Influence of emulsion on crystal growth of hydroxyapatite
Furuzono et al. Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticles in an emulsion system
CN107412877B (en) Preparation method and application of calcium phosphate/gelatin composite material nanoparticles
Salarian et al. Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol
CN112830464B (en) Strontium-doped hydroxyapatite nanotube and preparation method thereof
Xu et al. Biomimetic controlling of CaCO3 and BaCO3 superstructures by zwitterionic polymer
Salahuddin et al. Different methods for preparation of hydroxyapatite nanostructures
Sadjadi et al. In situ biomimetic synthesis and characterization of nano hydroxyapatite in gelatin matrix
Paul et al. Nanohydroxyapatite‐Based Composite Materials and Processing
Anandan et al. Synthesis methods of hydroxyapatite and biomedical applications: an updated review
JP5300056B2 (en) Repeated protein complex and its preparation
JP3641298B2 (en) Method for producing plate-like hydroxyapatite large crystals
CN111097071B (en) Porous material, casein calcium phosphorus microsphere and preparation method and application thereof
WO2004074171A1 (en) Method for introducing functional material into organic nanotube
JP5439650B2 (en) Preparation of nanogel-apatite composite
Amin et al. Synthesis and Characterization of Nano Hydroxyapatite using Reverse Micro Emulsions as Nano Reactors.
JP2010064956A (en) Particle and method for producing the same, and gel
DineshKumar et al. Synthesis and characterization of polymer nanocomposites for biomedical applications-current perspectives and challenges
JP6842170B2 (en) Manufacturing method of biological tissue adhesive and biological tissue adhesive
JP4257412B2 (en) Preparation method of particle size controlled carbonate apatite fine particles
JP4465465B2 (en) Spherical biodegradable polymer / ceramic composite having porous structure inside and method for producing the same
Mohammad et al. Effect of surfactant concentrations on pore characteristics of mesoporous carbonated hydroxyapatite prepared by soft-templating hydrothermal method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4076203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term