JP2016192590A - 電力増幅モジュール - Google Patents

電力増幅モジュール Download PDF

Info

Publication number
JP2016192590A
JP2016192590A JP2015070089A JP2015070089A JP2016192590A JP 2016192590 A JP2016192590 A JP 2016192590A JP 2015070089 A JP2015070089 A JP 2015070089A JP 2015070089 A JP2015070089 A JP 2015070089A JP 2016192590 A JP2016192590 A JP 2016192590A
Authority
JP
Japan
Prior art keywords
bias
transistor
bias control
control voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015070089A
Other languages
English (en)
Inventor
将夫 近藤
Masao Kondo
将夫 近藤
松本 秀俊
Hidetoshi Matsumoto
秀俊 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2015070089A priority Critical patent/JP2016192590A/ja
Priority to US15/077,124 priority patent/US9660589B2/en
Priority to CN201610187685.4A priority patent/CN106026932B/zh
Publication of JP2016192590A publication Critical patent/JP2016192590A/ja
Priority to US15/380,383 priority patent/US9735739B2/en
Priority to US15/646,743 priority patent/US10141890B2/en
Priority to US16/169,488 priority patent/US10601374B2/en
Priority to US16/789,827 priority patent/US11101773B2/en
Priority to US17/375,474 priority patent/US11855586B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/105A non-specified detector of the power of a signal being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/318A matching circuit being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21131Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers the input bias voltage of a power amplifier being controlled, e.g. by a potentiometer or an emitter follower

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

【課題】複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御する。
【解決手段】電力増幅モジュールのバイアス回路は、第1の動作方式における第1の電源電圧又は第2の動作方式における第2の電源電圧が供給され、第1の信号が入力され、第1の信号を増幅した第2の信号を出力する増幅トランジスタ200A_1・・・Nと、増幅トランジスタにバイアス電流を供給するバイアス回路210A2とを備える。バイアス回路は、第1の抵抗312A_1_Nと、第1の抵抗と直列に接続され、第1の動作方式の際に供給される第1のバイアス制御電圧VC1_1によりオンとなる第1のトランジスタ300A_1_1・・・Nと、第2の抵抗312A_2_Nと、第2の抵抗と直列に接続され、第2の動作方式の際に供給される第2のバイアス制御電圧によりオンとなる第2のトランジスタ300A_2_1・・・Nと、を含む。
【選択図】図5

Description

本発明は、電力増幅モジュールに関する。
携帯電話等の移動体通信機においては、基地局へ送信する信号の電力を増幅するために電力増幅モジュールが用いられる。近年、携帯電話においては、高速なデータ通信の規格である、HSUPA(High Speed Uplink Packet Access)やLTE(Long Term Evolution)、LTE−Advancedなどの変調方式が採用されてきている。このような通信規格では、通信速度を向上させるために、位相や振幅のずれを小さくすることが重要となる。すなわち、電力増幅モジュールに高い線形性が求められる。また、このような通信規格では、通信速度を向上させるために、信号の振幅が変化する範囲(ダイナミックレンジ)が広くなることが多い。そして、ダイナミックレンジが大きい場合においても線形性を高くするためには、高い電源電圧が必要となり、電力増幅モジュールにおける消費電力が大きくなる傾向にある。
他方、携帯電話においては、通話や通信の可能時間を長くするために、消費電力を低減させることが求められる。例えば、特許文献1には、入力される変調信号の振幅レベルに応じて電源電圧を制御することによって電力効率の向上を図る、エンベロープトラッキング方式を採用した電力増幅モジュールが開示されている。
特表2005−513943号公報
エンベロープトラッキング方式は、特に、高電力動作時における電力付加効率の向上に有効である。他方、低電力動作時には、ゲインの線形性を向上させるために、例えば、平均パワートラッキング方式等の他の方式が採用されることがある。
一般的に、電力増幅モジュールは、電力増幅用のトランジスタにバイアスを供給するためのバイアス回路を備える。このバイアス回路は、例えば、バイアス制御電圧がベースに供給されるトランジスタと、該トランジスタのエミッタに接続されるバラスト抵抗とを備える。バイアス制御電圧及びバラスト抵抗の抵抗値の適切な値は、電力増幅モジュールの動作方式や出力レベルによって異なる。そのため、使用モードに合わせた最適な回路をその都度、提供することは困難である。
本発明はこのような事情に鑑みてなされたものであり、複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御可能とすることを目的とする。
本発明の一側面に係る電力増幅モジュールは、第1の動作方式における第1の電源電圧、または、第2の動作方式における第2の電源電圧が供給され、第1の信号が入力され、第1の信号を増幅した第2の信号を出力する増幅トランジスタと、増幅トランジスタにバイアス電流を供給するバイアス回路と、を備え、バイアス回路は、第1の抵抗と、第1の抵抗と直列に接続され、第1の動作方式の際に供給される第1のバイアス制御電圧によりオンとなる第1のトランジスタと、第2の抵抗と、第2の抵抗と直列に接続され、第2の動作方式の際に供給される第2のバイアス制御電圧によりオンとなる第2のトランジスタと、を含む。
本発明によれば、複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御することが可能となる。
本発明の一実施形態である電力増幅モジュールを含む送信ユニットの構成例を示す図である。 電力増幅モジュール113の構成例を示す図である。 バイアス回路210A,210Bの構成例を示す図である。 ET方式での動作時における出力レベル(dBm)と電力付加効率(%)との関係の一例を示す図であって、そのバイアス制御電圧VC及び抵抗値RB(バラスト抵抗)による変化が示されている。 APT方式での動作時における出力レベル(dBm)とゲイン(dB)との関係の一例を示す図であって、そのバイアス制御電圧VC及び抵抗値RB(バラスト抵抗)による変化が示されている。 増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。 増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。 バイアス回路210Aの構成例を示す図である。 バイアス回路210Aの構成例を示す図である。 増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。 増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。 バイアス回路210Aの構成例を示す図である。 バイアス回路210Aの構成例を示す図である。 増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。 バイアス回路210Aの構成例を示す図である。 バイアス回路210Aの構成例を示す図である。
以下、図面を参照して本発明の一実施形態について説明する。図1は、本発明の一実施形態である電力増幅モジュールを含む送信ユニットの構成例を示す図である。送信ユニット100は、例えば、携帯電話等の移動体通信機において、音声やデータなどの各種信号を基地局へ送信するために用いられる。本実施形態の送信ユニット100は、無線周波数(RF:Radio Frequency)における複数の周波数帯域(マルチバンド)に対応している。なお、移動体通信機は基地局から信号を受信するための受信ユニットも備えるが、ここでは説明を省略する。
図1に示すように、送信ユニット100は、ベースバンド部110、RF部111、電源回路112、電力増幅モジュール113、フロントエンド部114、及びアンテナ115を備える。
ベースバンド部110は、HSUPAやLTE等の変調方式に基づいて、音声やデータなどの入力信号を変調し、変調信号を出力する。本実施形態では、ベースバンド部110から出力される変調信号は、振幅および位相をIQ平面上で表したIQ信号(I信号及びQ信号)として出力される。IQ信号の周波数は、例えば、数MHzから数10MHz程度である。
また、ベースバンド部110は、電力増幅モジュール113の動作方式を指示するモード信号MODEを出力する。本実施形態では、電力増幅モジュール113は、エンベロープトラッキング(ET:Envelope Tracking)方式及び平均パワートラッキング(APT:Average Power Tracking)方式により動作可能である。ベースバンド部110は、例えば、電力増幅モジュール113の出力が所定レベル以上である場合はET方式を指示するモード信号MODEを出力し、電力増幅モジュール113の出力が所定レベル未満である場合はAPT方式を指示するモード信号MODEを出力することができる。
さらに、ベースバンド部110は、電力増幅モジュールの動作方式に応じて電源電圧を制御するための制御信号を出力する。具体的には、例えば、ET方式の場合、ベースバンド部110は、IQ信号に基づいて変調信号の振幅レベルを検出し、電力増幅モジュール113に供給される電源電圧VREGがRF信号の振幅レベルに応じたレベルとなるように、電源回路112に対して電源制御信号CTRLETを出力する。また、例えば、APT方式の場合、ベースバンド部110は、電力増幅モジュール113に供給される電源電圧VREGが電力増幅モジュール113の平均パワーに応じたレベルとなるように、電源回路112に対して電源制御信号CTRLAPTを出力する。
RF部111は、ベースバンド部110から出力されるIQ信号から、無線送信を行うためのRF信号(RFIN)を生成する。RF信号は、例えば、数百MHzから数GHz程度である。なお、RF部111において、IQ信号からRF信号へのダイレクトコンバージョンが行われるのではなく、IQ信号が中間周波数(IF:Intermediate Frequency)信号に変換され、IF信号からRF信号が生成されることとしてもよい。
電源回路112は、モード信号MODE及び電源制御信号CTRLET又はCTRLAPTに基づいて、動作方式に応じたレベルの電源電圧VREGを生成し、電力増幅モジュール113に供給する。具体的には、電源回路112は、ET方式の場合、電源制御信号CTRLETに応じた電源電圧VREG(第1の電源電圧)を生成する。また、電源回路112は、APT方式の場合、電源制御信号CTRLAPTに応じた電源電圧VREG(第2の電源電圧)を生成する。電源回路112は、例えば、入力電圧(例えばバッテリ電圧VBAT等)から所望のレベルの電源電圧VREGを生成するDC−DCコンバータを含むことができる。
電力増幅モジュール113は、電源回路112から供給される電源電圧VREGに基づいて、RF部111から出力されるRF信号(RFIN)の電力を、基地局に送信するために必要なレベルまで増幅し、増幅信号(RFOUT)を出力する。
フロントエンド部114は、増幅信号(RFOUT)に対するフィルタリングや、基地局から受信する受信信号とのスイッチングなどを行う。フロントエンド部114から出力される増幅信号は、アンテナ115を介して基地局に送信される。
図2は、電力増幅モジュール113の構成例を示す図である。図2に示すように、電力増幅モジュール113は、トランジスタ200A,200B、バイアス回路210A,210B、整合回路220,221,222、インダクタ230A,230B、及びバイアス制御回路240を含んでいる。
トランジスタ200A,200Bは、二段の増幅器を構成しており、入力されるRF信号(RFIN)を増幅して、増幅信号(RFOUT)を出力する。トランジスタ200A,200Bは、それぞれ、バイポーラトランジスタ(例えばヘテロ接合バイポーラトランジスタ(HBT:Hetelojunction Bipolar Transistor))により構成される。1段目(ドライブ段)のトランジスタ200Aは、入力信号を増幅した信号を出力する。2段目のトランジスタ200Bは、トランジスタ200Aから出力される信号を増幅した信号を出力する。なお、増幅器の段数は二段に限られず、一段であってもよいし、三段以上であってもよい。
バイアス回路210A,210Bは、それぞれ、トランジスタ200A,200Bに対してバイアスを供給する。バイアス回路210Aは、バイアス制御回路240から出力されるバイアス制御信号SC1に応じたバイアス電流IBIAS1をトランジスタ200Aに供給する。また、バイアス回路210Bは、バイアス制御回路240から出力されるバイアス制御信号SC2に応じたバイアス電流IBIAS2をトランジスタ200Bに供給する。
整合回路220,221,222は、回路間のインピーダンスをマッチングさせるために設けられている。整合回路220,221,222は、それぞれ、例えば、インダクタやキャパシタを用いて構成される。
インダクタ230A,230Bは、RF信号のアイソレーション用に設けられている。トランジスタ200A,200Bには、それぞれ、インダクタ230A,230Bを介して、電源電圧VREGが供給される。なお、電力増幅モジュール113では、トランジスタ200A,200Bの双方に電源電圧VREGが供給されているが、いずれか一方には所定レベルの電源電圧(例えばバッテリ電圧VBAT)が供給されてもよい。
バイアス制御回路240は、モード信号MODEに基づいて、トランジスタ200A,200Bに供給されるバイアスが動作方式(ET方式/APT方式)に応じた適切なレベルとなるように、バイアス制御信号SC1,SC2を出力する。バイアス制御信号SC1,SC2による制御については後述する。なお、バイアス制御回路240は、電力増幅モジュール113の外部に設けられてもよい。
図3は、バイアス回路210A,210Bの構成例を示す図である。バイアス回路210A1は、トランジスタ300A_1,300A_2及び抵抗310A_1,310A_2,312A_1,312A_2を含む。図3に示すように、バイアス制御回路240から出力されるバイアス制御信号SC1には、バイアス制御電圧VC1_1,VC1_2が含まれる。また、バイアス制御回路240から出力されるバイアス制御信号SC2には、バイアス制御電圧VC2_1,VC2_2が含まれる。
トランジスタ300A_1,300A_2は、バイポーラトランジスタ(例えばHBT)である。トランジスタ300A_1(第1のトランジスタ)のベースには、抵抗310A_1を介してバイアス制御電圧VC1_1(第1のバイアス制御電圧)が供給される。トランジスタ300A_2(第2のトランジスタ)のベースには、抵抗310A_2を介してバイアス制御電圧VC1_2(第2のバイアス制御電圧)が供給される。トランジスタ300A_1,300A_2のコレクタには、所定レベルの電源電圧(例えばバッテリ電圧VBAT)が供給される。
抵抗312A_1(第1の抵抗)は、一端がトランジスタ300A_1のエミッタと接続され、他端がトランジスタ200Aのベースと接続される。即ち、抵抗312A_1は、トランジスタ300A_1と直列接続されている。また、抵抗312A_2(第2の抵抗)は、一端がトランジスタ300A_2のエミッタと接続され、他端がトランジスタ200Aのベースと接続される。即ち、抵抗312A_2は、トランジスタ300A_2と直列接続されている。なお、抵抗312A_1の抵抗値RB1_1は、抵抗312A_2の抵抗値RB1_2とは異なる。
バイアス回路210A1では、バイアス制御電圧VC1_1,VC1_2の制御により、トランジスタ300A_1,300A_2の何れか一方がオンとなる。そして、オンとなった方のトランジスタと、当該トランジスタと直列接続されている抵抗とを介して、バイアス電流IBIAS1が出力される。具体的には、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ300A_1がオン、トランジスタ300A_2がオフとなる。この場合、バイアス回路210A1は、バイアス制御電圧VC1_1及び抵抗値RB1_1により定まるバイアス電流IBIAS1を出力する。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ300A_1がオフ、トランジスタ300A_2がオンとなる。この場合、バイアス回路210A1は、バイアス制御電圧VC1_2及び抵抗値RB1_2により定まるバイアス電流IBIAS1を出力する。
バイアス回路210B1は、バイアス回路210A1と同等の構成を有している。バイアス回路210A1と同等の構成には、同等の符号を付して説明を省略する。バイアス回路210B1においても、抵抗312B_1の抵抗値RB2_1は、抵抗312B_2の抵抗値RB2_2とは異なる。
バイアス回路210B1においては、例えば、バイアス制御電圧VC2_1がハイレベル、バイアス制御電圧VC2_2がローレベルの場合、トランジスタ300B_1がオン、トランジスタ300B_2がオフとなる。この場合、バイアス回路210B1は、バイアス制御電圧VC2_1及び抵抗値RB2_1により定まるバイアス電流IBIAS2を出力する。また例えば、バイアス制御電圧VC2_1がローレベル、バイアス制御電圧VC2_2がハイレベルの場合、トランジスタ300B_1がオフ、トランジスタ300B_2がオンとなる。この場合、バイアス回路210B1は、バイアス制御電圧VC2_2及び抵抗値RB2_2により定まるバイアス電流IBIAS2を出力する。
電力増幅モジュール113では、例えば、ET方式の場合、バイアス制御電圧VC1_1,VC2_1がハイレベル、バイアス制御電圧VC1_2,VC2_2がローレベルに制御される。また例えば、APT方式の場合、バイアス制御電圧VC1_1,VC2_1がローレベル、バイアス制御電圧VC1_2,VC2_2がハイレベルに制御される。これにより、電力増幅モジュール113では、動作方式に応じた適切なバイアス制御電圧及び抵抗値により、バイアス電流を生成することが可能となる。なお、バイアス制御電圧VC1_1とバイアス制御電圧VC1_2のハイレベル時の電圧は異なってもよい。例えば、バイアス制御電圧VC1_1のハイレベル時の電圧(例えば2.85V)は、バイアス制御電圧VC1_2のハイレベル時の電圧(例えば2.8V)より高くてもよい。バイアス制御電圧VC2_1とバイアス制御電圧VC2_2の関係についても同様である。
図4Aは、ET方式での動作時における出力レベル(dBm)と電力付加効率(%)との関係の一例を示す図である。図4Aには、バイアス制御電圧VC(VC1_1,VC1_2等)及び抵抗値RB(RB1_1,RB1_2等)による電力付加効率の変化が示されている。ET方式では、電力付加効率を向上させることが重要である。従って、ET方式では、電力付加効率が大きくなるように、バイアス制御電圧VC及び抵抗値RBを決定する必要がある。
図4Bは、APT方式での動作時における出力レベル(dBm)とゲイン(dB)との関係の一例を示す図である。図4Bには、バイアス制御電圧VC(VC1_1,VC1_2等)及び抵抗値RB(RB1_1,RB1_2等)によるゲインの変化が示されている。APT方式では、線形性を向上させることが重要である。従って、APT方式では、高い線形性が得られるように、バイアス制御電圧VC及び抵抗値RBを決定する必要がある。
図4A及び図4Bに示したように、ET方式の場合とAPT方式の場合とでは、バイアス制御電圧VC及び抵抗値RBを決定する際の基準が異なる。そのため、一方の方式に適したバイアス制御電圧VC及び抵抗値RBが、他方の方式において適切な値であるとは限らない。この点、電力増幅モジュール113では、バイアス回路210A1,210B1において、動作方式に応じた適切なバイアス制御電圧VC(VC1_1,VC1_2等)及び抵抗値RB(RB1_1,RB1_2等)を選択することができる。これにより、複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御することが可能となる。
図5は、増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。なお、バイアス回路210A1と同等の要素には同等の符号を付して説明を省略する。また、増幅トランジスタ200Bがマルチフィンガー構成である場合のバイアス回路210Bも、同様の構成とすることが可能である。
図5に示す例では、トランジスタ200Aは、N個の単位トランジスタ(フィンガー)200A_1〜200A_Nが並列接続された構成となっている。バイアス回路210A2は、バイアス回路210A1におけるトランジスタ300A_1,300A_2及び抵抗312A_1,312A_2を、フィンガー数(N個)分設けた構成である。
バイアス回路210A2では、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ300A_1_1〜300A_1_Nがオン、トランジスタ300A_2_1〜300A_2_Nがオフとなる。この場合、バイアス回路210A2は、バイアス制御電圧VC1_1及び抵抗値RB1_1_kにより定まるバイアス電流IBIAS1_kをトランジスタ200A_kに出力する(k=1〜N)。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ300A_1_1〜300A_1_Nがオフ、トランジスタ300A_2_1〜300A_2_Nがオンとなる。この場合、バイアス回路210A2は、バイアス制御電圧VC1_2及び抵抗値RB1_2_kにより定まるバイアス電流IBIAS1_kをトランジスタ200A_kに出力する(k=1〜N)。これにより、バイアス回路210A1と同様の効果を得ることができる。
図6は、増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。なお、バイアス回路210A1,210A2と同等の要素には同等の符号を付して説明を省略する。また、増幅トランジスタ200Bがマルチフィンガー構成である場合のバイアス回路210Bも、同様の構成とすることが可能である。
図6に示すバイアス回路210A3は、バイアス回路210A1における抵抗312Aを、フィンガー数(N個)分設けた構成である。
バイアス回路210A3では、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ300A_1がオン、トランジスタ300A_2がオフとなる。この場合、バイアス回路210A3は、バイアス制御電圧VC1_1及び抵抗値RB1_1_kにより定まるバイアス電流IBIAS1_kをトランジスタ200A_kに出力する(k=1〜N)。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ300A_1がオフ、トランジスタ300A_2がオンとなる。この場合、バイアス回路210A3は、バイアス制御電圧VC1_2及び抵抗値RB1_2,RB1_1_kにより定まるバイアス電流IBIAS1_kをトランジスタ200A_kに出力する(k=1〜N)。これにより、バイアス回路210A1と同様の効果を得ることができる。
図7は、バイアス回路210Aの構成例を示す図である。なお、バイアス回路210A1と同等の要素には同等の符号を付して説明を省略する。また、バイアス回路210Bも、同様の構成とすることが可能である。
図7に示す例では、バイアス回路210A4は、トランジスタ300A_k及び抵抗312A_kの組をN個(N>2)とした構成である。トランジスタ及び抵抗の組がN個となったことに伴い、バイアス制御回路240からのバイアス制御電圧もN種類入力されている。
バイアス回路210A4では、バイアス制御電圧VC1_kがハイレベル、他のバイアス制御電圧がローレベルの場合、トランジスタ300A_n(n=1〜N)のうち、トランジスタ300A_kがオン、他のトランジスタがオフとなる。この場合、バイアス回路210A4は、バイアス制御電圧VC1_k及び抵抗値RB1_kにより定まるバイアス電流IBIAS1をトランジスタ200Aに出力する(k=1〜N)。これにより、バイアス回路210A1と同様の効果を得ることができる。
図8は、バイアス回路210Aの構成例を示す図である。なお、バイアス回路210A1と同等の要素には同等の符号を付して説明を省略する。また、バイアス回路210Bも、同様の構成とすることが可能である。
図8に示すバイアス回路210A5は、バイアス回路210A1におけるトランジスタ300A_1,300A_2の代わりに、トランジスタ800A_1,800A_2を備える。さらに、バイアス回路210A5は、トランジスタ810A及び抵抗820Aを備える。また、バイアス回路210A5には、バイアス制御回路240から、バイアス制御電圧VC1_1,VC1_2に加えて、バイアス制御電圧VC1_3も入力される。
トランジスタ800A_1,800A_2は、電界効果トランジスタ(FET:Field Effect Transistor)である。トランジスタ800A_1(第1のトランジスタ)のゲートには、抵抗310A_1を介してバイアス制御電圧VC1_1(第1のバイアス制御電圧)が供給される。トランジスタ800A_2(第2のトランジスタ)のゲートには、抵抗310A_2を介してバイアス制御電圧VC1_2(第2のバイアス制御電圧)が供給される。トランジスタ800A_1,800A_2のドレインは、トランジスタ810Aのエミッタと接続される。また、トランジスタ800A_1,800A_2のソースは、それぞれ、抵抗312A_1,312A_2と接続される。
トランジスタ810Aは、バイポーラトランジスタ(例えばHBT)である。トランジスタ810A(第3のトランジスタ)のベースには、抵抗820A(第3の抵抗)を介してバイアス制御電圧VC1_3(第3のバイアス制御電圧)が供給される。トランジスタ810Aのコレクタには、所定レベルの電源電圧(例えばバッテリ電圧VBAT)が供給される。また、トランジスタ810Aのエミッタは、トランジスタ800A_1,800A_2のドレインと接続される。即ち、トランジスタ810Aは、トランジスタ800A_1,800A_2と直列接続されている。
バイアス回路210A5では、バイアス制御電圧VC1_1,VC1_2の制御により、トランジスタ800A_1,800A_2の何れか一方がオンとなる。また、バイアス回路210A5では、バイアス制御電圧VC1_3により、トランジスタ800A_1,800A_2に供給される電流が制御される。例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ800A_1がオン、トランジスタ800A_2がオフとなる。この場合、バイアス回路210A5は、バイアス制御電圧VC1_1,VC1_3及び抵抗値RB1_1により定まるバイアス電流IBIAS1を出力する。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ800A_1がオフ、トランジスタ800A_2がオンとなる。この場合、バイアス回路210A5は、バイアス制御電圧VC1_2,VC1_3及び抵抗値RB1_2により定まるバイアス電流IBIAS1を出力する。これにより、バイアス回路210A1と同様の効果を得ることができる。
図9は、増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。なお、バイアス回路210A2,210A5と同等の要素には同等の符号を付して説明を省略する。また、増幅トランジスタ200Bがマルチフィンガー構成である場合のバイアス回路210Bも、同様の構成とすることが可能である。
図9に示すバイアス回路210A6は、バイアス回路210A5におけるトランジスタ800A_1,800A_2及び抵抗312A_1,312A_2を、フィンガー数(N個)分設けた構成である。
バイアス回路210A6では、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ800A_1_kがオン、トランジスタ800A_2_kがオフとなる(k=1〜N)。この場合、バイアス回路210A6は、バイアス制御電圧VC1_1,VC1_3及び抵抗値RB1_1により定まるバイアス電流IBIASkを出力する(k=1〜N)。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ800A_1_kがオフ、トランジスタ800A_2_kがオンとなる(k=1〜N)。この場合、バイアス回路210A6は、バイアス制御電圧VC1_2,VC1_3及び抵抗値RB1_1により定まるバイアス電流IBIASkを出力する(k=1〜N)。これにより、バイアス回路210A1と同様の効果を得ることができる。
図10は、増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。なお、バイアス回路210A3,210A5と同等の要素には同等の符号を付して説明を省略する。また、増幅トランジスタ200Bがマルチフィンガー構成である場合のバイアス回路210Bも、同様の構成とすることが可能である。
図10に示すバイアス回路210A7は、バイアス回路210A5における抵抗312A_1を、フィンガー数(N個)分設けた構成である。
バイアス回路210A7では、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ800A_1がオン、トランジスタ800A_2がオフとなる。この場合、バイアス回路210A7は、バイアス制御電圧VC1_1,VC1_3及び抵抗値RB1_1_kにより定まるバイアス電流IBIASkを出力する(k=1〜N)。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ800A_1がオフ、トランジスタ800A_2がオンとなる。この場合、バイアス回路210A7は、バイアス制御電圧VC1_2,VC1_3及び抵抗値RB1_2,RB1_1_kにより定まるバイアス電流IBIASkを出力する(k=1〜N)。これにより、バイアス回路210A1と同様の効果を得ることができる。
図11は、バイアス回路210Aの構成例を示す図である。なお、バイアス回路210A5と同等の要素には同等の符号を付して説明を省略する。また、バイアス回路210Bも、同様の構成とすることが可能である。
バイアス回路210A8は、バイアス回路210A5の変形例である。バイアス回路210A8では、直列に接続された抵抗312A_1,312A_2が、トランジスタ810Aのエミッタに接続されている。そして、トランジスタ800A_1は、ドレインが抵抗312A_2の一端に接続され、ソースが抵抗312A_2の他端に接続されている。また、トランジスタ800A_2は、ドレインが抵抗312A_1の一端に接続され、ソースが抵抗312A_1の他端に接続されている。
バイアス回路210A8では、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ800A_1がオン、トランジスタ800A_2がオフとなる。この場合、バイアス回路210A8は、バイアス制御電圧VC1_1,VC1_3及び抵抗値RB1_1により定まるバイアス電流IBIAS1を出力する。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ800A_1がオフ、トランジスタ800A_2がオンとなる。この場合、バイアス回路210A8は、バイアス制御電圧VC1_2,VC1_3及び抵抗値RB1_2により定まるバイアス電流IBIAS1を出力する。これにより、バイアス回路210A1と同様の効果を得ることができる。
図12は、バイアス回路210Aの構成例を示す図である。なお、バイアス回路210A8と同等の要素には同等の符号を付して説明を省略する。また、バイアス回路210Bも、同様の構成とすることが可能である。
バイアス回路210A9は、バイアス回路210A8の変形例である。バイアス回路210A9は、バイアス回路210A8における抵抗310A_2及びトランジスタ800A_2を備えない点を除き、バイアス回路210A8と同一の構成である。
バイアス回路210A9では、例えば、バイアス制御電圧VC1_1がハイレベルの場合、トランジスタ800A_1がオンとなる。この場合、バイアス回路210A9は、バイアス制御電圧VC1_1及び抵抗値RB1_1により定まるバイアス電流IBIAS1を出力する。また例えば、バイアス制御電圧VC1_1がローレベルの場合、トランジスタ800A_1がオフとなる。この場合、バイアス回路210A9は、バイアス制御電圧VC1_3及び抵抗値RB1_1,RB1_2により定まるバイアス電流IBIAS1を出力する。これにより、バイアス回路210A1と同様の効果を得ることができる。
図13は、増幅用のトランジスタ200Aがマルチフィンガー構成である場合のバイアス回路210Aの構成例を示す図である。なお、バイアス回路210A7,210A9と同等の要素には同等の符号を付して説明を省略する。また、増幅トランジスタ200Bがマルチフィンガー構成である場合のバイアス回路210Bも、同様の構成とすることが可能である。
図13に示すバイアス回路210A10は、バイアス回路210A9における抵抗312A_1を、フィンガー数(N個)分設けた構成である。
バイアス回路210A10では、例えば、バイアス制御電圧VC1_1がハイレベルの場合、トランジスタ800A_1がオンとなる。この場合、バイアス回路210A10は、バイアス制御電圧VC1_1及び抵抗値RB1_1_kにより定まるバイアス電流IBIASkを出力する(k=1〜N)。また例えば、バイアス制御電圧VC1_1がローレベルの場合、トランジスタ800A_1がオフとなる。この場合、バイアス回路210A10は、バイアス制御電圧VC1_3及び抵抗値RB1_2,RB1_1_kにより定まるバイアス電流IBIASkを出力する(k=1〜N)。これにより、バイアス回路210A1と同様の効果を得ることができる。
図14は、バイアス回路210Aの構成例を示す図である。なお、バイアス回路210A1,210A5と同等の要素には同等の符号を付して説明を省略する。また、バイアス回路210Bも、同様の構成とすることが可能である。
図14に示すバイアス回路210A11は、バイアス回路210A5におけるトランジスタ800A_1,800A_2の代わりに、トランジスタ300A_1,300A_2を備える。
トランジスタ300A_1は、コレクタが、抵抗312A_1を介してトランジスタ810Aのエミッタと接続され、エミッタが、トランジスタ200Aと接続される。トランジスタ300A_2は、コレクタが、抵抗312A_2を介してトランジスタ810Aのエミッタと接続され、エミッタが、トランジスタ200Aと接続される。
バイアス回路210A11では、バイアス制御電圧VC1_1,VC1_2の制御により、トランジスタ300A_1,300A_2の何れか一方がオンとなる。また、バイアス回路210A11では、バイアス制御電圧VC1_3により、トランジスタ300A_1,300A_2に供給される電流が制御される。例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ300A_1がオン、トランジスタ300A_2がオフとなる。この場合、バイアス回路210A11は、バイアス制御電圧VC1_1,VC1_3及び抵抗値RB1_1により定まるバイアス電流IBIAS1を出力する。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ300A_1がオフ、トランジスタ300A_2がオンとなる。この場合、バイアス回路210A11は、バイアス制御電圧VC1_2,VC1_3及び抵抗値RB1_2により定まるバイアス電流IBIAS1を出力する。これにより、バイアス回路210A1と同様の効果を得ることができる。
図15は、バイアス回路210Aの構成例を示す図である。なお、バイアス回路210A8と同等の要素には同等の符号を付して説明を省略する。また、バイアス回路210Bも、同様の構成とすることが可能である。
バイアス回路210A12は、バイアス回路210A8の変形例である。バイアス回路210A12は、バイアス回路210A8におけるトランジスタ800A_1,800A_2の代わりに、トランジスタ300A_1,300A_2を備える。トランジスタ300A_1は、コレクタが抵抗312A_2の一端に接続され、エミッタが抵抗312A_2の他端に接続されている。また、トランジスタ300A_2は、コレクタが抵抗312A_1の一端に接続され、エミッタが抵抗312A_1の他端に接続されている。
バイアス回路210A12では、例えば、バイアス制御電圧VC1_1がハイレベル、バイアス制御電圧VC1_2がローレベルの場合、トランジスタ300A_1がオン、トランジスタ300A_2がオフとなる。この場合、バイアス回路210A12は、バイアス制御電圧VC1_1,VC1_3及び抵抗値RB1_1により定まるバイアス電流IBIAS1を出力する。また例えば、バイアス制御電圧VC1_1がローレベル、バイアス制御電圧VC1_2がハイレベルの場合、トランジスタ300A_1がオフ、トランジスタ300A_2がオンとなる。この場合、バイアス回路210A12は、バイアス制御電圧VC1_2,VC1_3及び抵抗値RB1_2により定まるバイアス電流IBIAS1を出力する。これにより、バイアス回路210A1と同様の効果を得ることができる。
以上、本発明の例示的な実施形態について説明した。電力増幅モジュール113では、例えば、バイアス回路210A1〜210A8,210A11,210A12を備えることにより、第1の動作方式(例えばET方式)の際に供給されるバイアス制御電圧VC1_1と、第2の動作方式(例えばAPT方式)の際に供給されるバイアス制御電圧VC1_2とによって、2つのトランジスタのオン/オフを相補的に切り替えることにより、動作方式に応じたバイアス制御電圧及び抵抗値によりバイアス電流を生成することができる。従って、複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御することが可能となる。
また、電力増幅モジュール113では、例えば、バイアス回路210A5〜210A8,210A11,210A12を備えることにより、バイアス制御電圧VC1_1と、バイアス制御電圧VC1_2とによって、2つのトランジスタのオン/オフを相補的に切り替えるとともに、バイアス制御電圧VC1_3によって、これらのトランジスタに供給される電流を制御することにより、動作方式に応じたバイアス制御電圧及び抵抗値によりバイアス電流を生成することができる。従って、複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御することが可能となる。
また、電力増幅モジュール113では、例えば、バイアス回路210A9,210A10を備えることにより、第1の動作方式(例えばET方式)の際に供給されるバイアス制御電圧VC1_1によってトランジスタのオン/オフを切り替えるとともに、バイアス制御電圧VC1_3によって、このトランジスタに供給される電流を制御することにより、動作方式に応じたバイアス制御電圧及び抵抗値によりバイアス電流を生成することができる。従って、複数の動作方式を有する電力増幅モジュールにおいて、バイアスを適切に制御することが可能となる。
以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
100 送信ユニット
110 ベースバンド部
111 RF部
112 電源回路
113 電力増幅モジュール
114 フロントエンド部
115 アンテナ
200A,200A_k(k=1〜N)200B,300A_k(k=1〜N),300A_1_k(k=1〜N),300A_2_k(k=1〜N),300B_1,300B_2,800A_1,800A_1_k(k=1〜N),800A_2,800A_2_k(k=1〜N),810A トランジスタ
210A,210A1〜210A12,210B バイアス回路
220,221,222 整合回路
230A,230B インダクタ
240 バイアス制御回路
310A_k(k=1〜N),310B_1,310B_2,312A_1,312A_1_k(k=1〜N),312A_2,312A_2_k(k=1〜N),820A 抵抗

Claims (7)

  1. 第1の動作方式における第1の電源電圧、または、第2の動作方式における第2の電源電圧が供給され、第1の信号が入力され、前記第1の信号を増幅した第2の信号を出力する増幅トランジスタと、
    前記増幅トランジスタにバイアス電流を供給するバイアス回路と、
    を備え、
    前記バイアス回路は、
    第1の抵抗と、
    前記第1の抵抗と直列に接続され、前記第1の動作方式の際に供給される第1のバイアス制御電圧によりオンとなる第1のトランジスタと、
    第2の抵抗と、
    前記第2の抵抗と直列に接続され、前記第2の動作方式の際に供給される第2のバイアス制御電圧によりオンとなる第2のトランジスタと、
    を含む、電力増幅モジュール。
  2. 請求項1に記載の電力増幅モジュールであって、
    前記第1及び第2のバイアス制御電圧を出力するバイアス制御回路をさらに備える、
    電力増幅モジュール。
  3. 請求項1に記載の電力増幅モジュールであって、
    前記バイアス回路は、
    前記第1及び第2のトランジスタと直列に接続され、前記第1及び第2の動作方式の際に供給される第3のバイアス制御電圧によりオンとなる第3のトランジスタをさらに含む、
    電力増幅モジュール。
  4. 請求項3に記載の電力増幅モジュールであって、
    前記第1〜第3のバイアス制御電圧を出力するバイアス制御回路をさらに備える、
    電力増幅モジュール。
  5. 第1の動作方式における第1の電源電圧、または、第2の動作方式における第2の電源電圧が供給され、第1の信号が入力され、前記第1の信号を増幅した第2の信号を出力する増幅トランジスタと、
    前記増幅トランジスタにバイアス電流を供給するバイアス回路と、
    を備え、
    前記バイアス回路は、
    第1の抵抗と、
    前記第1の抵抗と直列に接続され、前記第1の動作方式の際に供給される第1のバイアス制御電圧によりオンとなる第1のトランジスタと、
    前記第1の抵抗と直列に接続され、前記第1のトランジスタと並列に接続された第2の抵抗と、
    前記第1のトランジスタと直列に接続され、前記第1及び第2の動作方式の際に供給される第3のバイアス制御電圧によりオンとなる第3のトランジスタと、
    を含む、電力増幅モジュール。
  6. 請求項5に記載の電力増幅モジュールであって、
    前記第1及び第3のバイアス制御電圧を出力するバイアス制御回路をさらに備える、
    電力増幅モジュール。
  7. 請求項1〜6の何れか一項に記載の電力増幅モジュールであって、
    前記第1の動作方式は、エンベロープトラッキング方式であり、
    前記第2の動作方式は、平均パワートラッキング方式である、
    電力増幅モジュール。
JP2015070089A 2015-03-30 2015-03-30 電力増幅モジュール Pending JP2016192590A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015070089A JP2016192590A (ja) 2015-03-30 2015-03-30 電力増幅モジュール
US15/077,124 US9660589B2 (en) 2015-03-30 2016-03-22 Power amplifier module
CN201610187685.4A CN106026932B (zh) 2015-03-30 2016-03-29 功率放大模块
US15/380,383 US9735739B2 (en) 2015-03-30 2016-12-15 Power amplifier module
US15/646,743 US10141890B2 (en) 2015-03-30 2017-07-11 Power amplifier module
US16/169,488 US10601374B2 (en) 2015-03-30 2018-10-24 Power amplifier module
US16/789,827 US11101773B2 (en) 2015-03-30 2020-02-13 Power amplifier module
US17/375,474 US11855586B2 (en) 2015-03-30 2021-07-14 Power amplifier module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070089A JP2016192590A (ja) 2015-03-30 2015-03-30 電力増幅モジュール

Publications (1)

Publication Number Publication Date
JP2016192590A true JP2016192590A (ja) 2016-11-10

Family

ID=57015346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070089A Pending JP2016192590A (ja) 2015-03-30 2015-03-30 電力増幅モジュール

Country Status (3)

Country Link
US (6) US9660589B2 (ja)
JP (1) JP2016192590A (ja)
CN (1) CN106026932B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622412A (zh) * 2017-04-04 2019-12-27 天工方案公司 用于功率放大器的偏置切换的装置和方法
JP2020022163A (ja) * 2018-08-01 2020-02-06 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 可変電力増幅器バイアスインピーダンス
KR20210050447A (ko) 2019-10-28 2021-05-07 가부시키가이샤 무라타 세이사쿠쇼 전력 증폭 모듈 및 전력 증폭 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974038B2 (en) 2016-06-30 2018-05-15 Macom Technology Solutions Holdings, Inc. Circuits and operating methods thereof for correcting phase errors caused by gallium nitride devices
KR20180110449A (ko) * 2017-03-29 2018-10-10 삼성전기주식회사 전력 증폭기
KR20180111117A (ko) * 2017-03-31 2018-10-11 삼성전기주식회사 듀얼 동작모드 파워 증폭 장치
US10505498B2 (en) * 2017-10-24 2019-12-10 Samsung Electro-Mechanics Co., Ltd. Envelope tracking bias circuit and power amplifying device
JP2022002350A (ja) * 2018-09-19 2022-01-06 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
DE112020000387T5 (de) * 2019-01-10 2021-09-23 Skyworks Solutions, Inc. Vorrichtungen und Verfahren zur Vorspannung von Leistungsverstärkern
US11082021B2 (en) 2019-03-06 2021-08-03 Skyworks Solutions, Inc. Advanced gain shaping for envelope tracking power amplifiers
US11239800B2 (en) 2019-09-27 2022-02-01 Skyworks Solutions, Inc. Power amplifier bias modulation for low bandwidth envelope tracking
US11482975B2 (en) 2020-06-05 2022-10-25 Skyworks Solutions, Inc. Power amplifiers with adaptive bias for envelope tracking applications
US11855595B2 (en) 2020-06-05 2023-12-26 Skyworks Solutions, Inc. Composite cascode power amplifiers for envelope tracking applications
US11509269B2 (en) * 2020-08-17 2022-11-22 Qualcomm Incorporated Radio frequency (RF) amplifier bias circuit

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332542A (ja) * 1999-05-20 2000-11-30 Mitsubishi Electric Corp 多段電力増幅器のバイアス回路及びそのバイアス供給方法
JP3631060B2 (ja) * 1999-09-30 2005-03-23 株式会社東芝 線形増幅器及びこれを用いた無線通信装置
WO2002025810A2 (en) * 2000-09-22 2002-03-28 U.S. Monolithics, L.L.C. Mmic folded power amplifier
JP2003037454A (ja) * 2001-07-23 2003-02-07 Hitachi Ltd 高周波電力増幅回路
US6583667B1 (en) * 2001-12-20 2003-06-24 Institute Of Microelectronics High frequency CMOS differential amplifiers with fully compensated linear-in-dB variable gain characteristic
CN1672322A (zh) 2001-12-24 2005-09-21 皇家飞利浦电子股份有限公司 功率放大器
WO2003073627A1 (fr) * 2002-02-28 2003-09-04 Renesas Technology Corp. Circuit amplificateur de puissance haute frequence et composant electronique de communication
JP2005045440A (ja) 2003-07-25 2005-02-17 Toshiba Corp 電力増幅器及びこれを用いた無線通信装置
US20050140439A1 (en) * 2003-12-26 2005-06-30 Hyoung Chang H. Predistortion linearizer for power amplifier
US7151409B2 (en) * 2004-07-26 2006-12-19 Texas Instruments Incorporated Programmable low noise amplifier and method
US7248111B1 (en) * 2005-04-14 2007-07-24 Anadigics, Inc Multi-mode digital bias control for enhancing power amplifier efficiency
JP2007258949A (ja) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd 高周波電力増幅器
US7639080B2 (en) * 2006-06-07 2009-12-29 Panasonic Corporation Radio frequency amplifier circuit and mobile communication terminal using the same
JP4271708B2 (ja) * 2007-02-01 2009-06-03 シャープ株式会社 電力増幅器、およびそれを備えた多段増幅回路
JP2009253918A (ja) * 2008-04-10 2009-10-29 Panasonic Corp 高周波電力増幅器および通信装置
JP2010041233A (ja) * 2008-08-01 2010-02-18 Panasonic Corp 検波回路及び無線通信システム
CN101677228B (zh) * 2008-09-16 2011-11-09 财团法人工业技术研究院 功率放大器系统及其控制方法及控制装置
US8022770B1 (en) * 2010-05-27 2011-09-20 Skyworks Solutions, Inc. System and method for preventing power amplifier supply voltage saturation
US8688061B2 (en) * 2010-08-09 2014-04-01 Skyworks Solutions, Inc. System and method for biasing a power amplifier
CN102006017B (zh) * 2010-12-02 2013-11-06 无锡中普微电子有限公司 偏置电路及其功率放大电路
JP2012129592A (ja) * 2010-12-13 2012-07-05 Mitsubishi Electric Corp 電力増幅器
CN201956978U (zh) * 2011-01-14 2011-08-31 苏州英诺迅科技有限公司 用于射频功率放大器的可调有源偏置电路
JP5673361B2 (ja) * 2011-05-31 2015-02-18 三菱電機株式会社 電力増幅器
CN104025452B (zh) * 2011-12-28 2016-09-21 株式会社村田制作所 高频信号处理装置及无线通信装置
US8666339B2 (en) * 2012-03-29 2014-03-04 Triquint Semiconductor, Inc. Radio frequency power amplifier with low dynamic error vector magnitude
CN202634371U (zh) * 2012-06-13 2012-12-26 南通大学 一种偏置电流可调节的功率放大器
CN102969995B (zh) * 2012-11-23 2015-05-06 锐迪科创微电子(北京)有限公司 应用于线性模式功率放大器的动态偏置控制电路
KR101422952B1 (ko) * 2012-12-14 2014-07-23 삼성전기주식회사 듀얼 전력 모드를 갖는 바이어스 회로 및 전력 증폭기
JP5939404B2 (ja) * 2013-03-19 2016-06-22 株式会社村田製作所 無線周波数増幅回路及び電力増幅モジュール
US9294038B2 (en) * 2013-04-29 2016-03-22 Nokia Solutions And Networks Oy Power amplifier transistor characteristic stabilization during bias switching
WO2014203439A1 (ja) * 2013-06-19 2014-12-24 パナソニックIpマネジメント株式会社 電力増幅器
US9917549B1 (en) 2013-08-09 2018-03-13 Skyworks Solutions, Inc. Dynamically configurable bias circuit for controlling gain expansion of multi-mode single chain linear power amplifiers
CN103684278A (zh) * 2013-09-11 2014-03-26 许文 一种功率放大器偏置电路
TWI830070B (zh) * 2021-10-05 2024-01-21 立積電子股份有限公司 功率放大器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622412A (zh) * 2017-04-04 2019-12-27 天工方案公司 用于功率放大器的偏置切换的装置和方法
JP2020516194A (ja) * 2017-04-04 2020-05-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 電力増幅器をバイアススイッチングする装置と方法
US11394347B2 (en) 2017-04-04 2022-07-19 Skyworks Solutions, Inc. Apparatus and methods for bias switching of power amplifiers
JP7221212B2 (ja) 2017-04-04 2023-02-13 スカイワークス ソリューションズ,インコーポレイテッド 携帯デバイス、パッケージ状モジュール、及び電力増幅器にバイアスを与える方法
JP2023052828A (ja) * 2017-04-04 2023-04-12 スカイワークス ソリューションズ,インコーポレイテッド 携帯デバイス、パッケージ状モジュール、及び電力増幅器にバイアスを与える方法
US11728773B2 (en) 2017-04-04 2023-08-15 Skyworks Solutions, Inc. Apparatus and methods for bias switching of power amplifiers
CN110622412B (zh) * 2017-04-04 2024-01-23 天工方案公司 用于功率放大器的偏置切换的装置和方法
JP2020022163A (ja) * 2018-08-01 2020-02-06 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 可変電力増幅器バイアスインピーダンス
US11894808B2 (en) 2018-08-01 2024-02-06 Skyworks Solutions, Inc. Power amplifier with variable bias impedance
KR20210050447A (ko) 2019-10-28 2021-05-07 가부시키가이샤 무라타 세이사쿠쇼 전력 증폭 모듈 및 전력 증폭 방법
US11431305B2 (en) 2019-10-28 2022-08-30 Murata Manufacturing Co., Ltd. Power amplifier module and power amplification method

Also Published As

Publication number Publication date
US11855586B2 (en) 2023-12-26
US10601374B2 (en) 2020-03-24
US11101773B2 (en) 2021-08-24
US20170099034A1 (en) 2017-04-06
US9735739B2 (en) 2017-08-15
US20190058444A1 (en) 2019-02-21
US9660589B2 (en) 2017-05-23
US20200186094A1 (en) 2020-06-11
US20210344304A1 (en) 2021-11-04
CN106026932A (zh) 2016-10-12
US20160294328A1 (en) 2016-10-06
US10141890B2 (en) 2018-11-27
CN106026932B (zh) 2021-01-12
US20170310281A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US11855586B2 (en) Power amplifier module
JP5861844B2 (ja) 電力増幅モジュール
US10778262B2 (en) Power amplification module
US9705451B2 (en) Power amplification module
US10224892B2 (en) Power amplification module
JP6680235B2 (ja) 電力増幅回路および高周波モジュール
US10778169B2 (en) Power amplification module
US20160373144A1 (en) Power amplification module
JP2017098892A (ja) 電力増幅モジュール
JP2017195536A (ja) 電力増幅モジュール
Kim et al. Wideband envelope amplifier for envelope-tracking operation of handset power amplifier