JP2016191572A - Ultrasonic inspection device - Google Patents

Ultrasonic inspection device Download PDF

Info

Publication number
JP2016191572A
JP2016191572A JP2015070491A JP2015070491A JP2016191572A JP 2016191572 A JP2016191572 A JP 2016191572A JP 2015070491 A JP2015070491 A JP 2015070491A JP 2015070491 A JP2015070491 A JP 2015070491A JP 2016191572 A JP2016191572 A JP 2016191572A
Authority
JP
Japan
Prior art keywords
flaw detection
tube
phased array
ultrasonic inspection
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015070491A
Other languages
Japanese (ja)
Other versions
JP6494369B2 (en
Inventor
正光 安部
Masamitsu Abe
正光 安部
光良 中谷
Mitsuyoshi Nakatani
光良 中谷
吉晴 中山
Yoshiharu Nakayama
吉晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Nichizo Tech Inc
Original Assignee
Hitachi Zosen Corp
Nichizo Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Nichizo Tech Inc filed Critical Hitachi Zosen Corp
Priority to JP2015070491A priority Critical patent/JP6494369B2/en
Publication of JP2016191572A publication Critical patent/JP2016191572A/en
Application granted granted Critical
Publication of JP6494369B2 publication Critical patent/JP6494369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic inspection device capable of reliably and quickly detecting flaws of a weld that comprises a plurality of layers of beads and is located along an outer periphery of a pipe.SOLUTION: An ultrasonic inspection device 40 is configured to inspect a weld 10 that is located along an outer periphery of a pipe 30 and comprises two layers of beads 11, 12 by performing an ultrasonic flaw detection test. The ultrasonic inspection device 40 includes a phased array probe 55 that comprises a predetermined number (a number required for a phased array method) of array elements 56 arrayed in a depth direction of the pipe 30 and is configured to transmit ultrasonic waves in accordance with the phased array method. The ultrasonic inspection device 40 also includes a motor 52 that makes the phased array probe 55 revolve 51 about a center axis 31 of the pipe 30 along an inner surface of the pipe 30. The ultrasonic inspection device 40 further includes an ultrasonic beams setting unit 67 configured to set flaw detection directions of the phased array probe 55 to be three directions pointing to the weld 10.SELECTED DRAWING: Figure 4

Description

本発明は、主として多数の管を備える設備に対して、超音波により探傷試験を行うための超音波検査装置に関するものである。   The present invention relates to an ultrasonic inspection apparatus for performing a flaw detection test using ultrasonic waves mainly on equipment having a large number of tubes.

各種プラントにおける熱交換器や反応器などには、図5に示すように、一定の間隔で平行に配置された多数の管30と、これら管30に垂直な管板20とが溶接されている。このような熱交換器や反応器での溶接された部分(溶接部10)の検査では、上記管30の数が極めて多いので、一つ一つの管30に対しての上記検査を速やかに行うことが要求される。   As shown in FIG. 5, a large number of tubes 30 arranged in parallel at regular intervals and a tube plate 20 perpendicular to these tubes 30 are welded to heat exchangers and reactors in various plants. . In the inspection of the welded portion (welded portion 10) in such a heat exchanger or reactor, the number of the tubes 30 is very large, and thus the inspection for each of the tubes 30 is quickly performed. Is required.

上記検査を超音波により速やかに行うには、フェーズドアレイ法を採用することが考えられる。フェーズドアレイ法では、探触子において、電気的な走査を行い得るので、時間を要する機械的な走査を短縮または省略することが可能である。   In order to quickly perform the above inspection using ultrasonic waves, it is conceivable to employ a phased array method. In the phased array method, electrical scanning can be performed in the probe, so that time-consuming mechanical scanning can be shortened or omitted.

フェーズドアレイ法を採用した超音波検査装置として、溶接部に対して斜角リニアスキャンをし得るフェーズドアレイ探触子と、母材の深さを検出するシングルアレイ探触子とを備える装置が提案されている(例えば、特許文献1参照)。この特許文献1に記載された超音波検査装置によると、フェーズドアレイ探触子からの超音波が溶接部を透過することにより屈折しても、屈折した分をシングルアレイ探触子により得られる母材の深さから適切に補正が可能なので、裏波エコーと欠陥エコーとを確実に区別することができる。   Proposal of an ultrasonic inspection system that employs the phased array method includes a phased array probe that can perform oblique linear scanning on the weld and a single array probe that detects the depth of the base material. (For example, refer to Patent Document 1). According to the ultrasonic inspection apparatus described in Patent Document 1, even if the ultrasonic wave from the phased array probe is refracted by passing through the welded portion, the refracted portion is obtained by the single array probe. Since the correction can be appropriately made from the depth of the material, it is possible to reliably distinguish the back echo from the defect echo.

特許第5610444号公報Japanese Patent No. 5610444

しかしながら、上記特許文献1に記載の超音波検査装置では、フェーズドアレイ探触子による一方向の探傷方向によってのみ溶接部の欠陥を検出するので、その探傷方向に沿った面状の欠陥を検出できないおそれがある。特に、図6に示すように、検査の対象となる溶接部10が管30と管板20とを溶接した部分の場合、このような溶接部10は複数層のビード11,12からなり様々な方向の欠陥1〜4が生じ得るので、上記特許文献1に記載の超音波検査装置140では、全ての欠陥1〜4を検出できないおそれがある。また、図5に示すように、このような溶接部10は管30の外周囲に位置するので、上記超音波検査装置140では、全ての周囲に対して管30の内面から探傷試験を行う必要があり、結果として欠陥1〜4を速やかに検出することができない。   However, since the ultrasonic inspection apparatus described in Patent Document 1 detects a defect in a welded part only in one flaw detection direction by the phased array probe, it cannot detect a planar defect along the flaw detection direction. There is a fear. In particular, as shown in FIG. 6, when the welded portion 10 to be inspected is a portion where the tube 30 and the tube plate 20 are welded, such a welded portion 10 is composed of a plurality of layers of beads 11, 12. Since the directional defects 1 to 4 may occur, the ultrasonic inspection apparatus 140 described in Patent Document 1 may not be able to detect all the defects 1 to 4. Further, as shown in FIG. 5, since such a welded portion 10 is located on the outer periphery of the tube 30, the ultrasonic inspection apparatus 140 needs to perform a flaw detection test from the inner surface of the tube 30 for all the periphery. As a result, the defects 1 to 4 cannot be detected promptly.

そこで、本発明は、複数層のビードからなり管の周囲に位置する溶接部の欠陥を確実に且つ速やかに検出し得る超音波検査装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic inspection apparatus that can reliably and quickly detect defects in a welded portion formed of a plurality of layers of beads and positioned around a pipe.

上記課題を解決するため、本発明の請求項1に係る超音波検査装置は、管の周囲に位置して複数層のビードからなる溶接部を超音波による探傷試験で検査する超音波検査装置であって、
上記管の深さ方向に所定数のアレイ素子が配列されてなるとともにフェーズドアレイ法により超音波を発信するフェーズドアレイ探触子と、
このフェーズドアレイ探触子を上記管の内面に沿わせながら当該管の中心軸回りに回転させる駆動機と、
上記フェーズドアレイ探触子の探傷方向を複数方向で且つ上記溶接部に向くように設定する複数超音波ビーム設定部とを備えるものである。
In order to solve the above-described problems, an ultrasonic inspection apparatus according to claim 1 of the present invention is an ultrasonic inspection apparatus that inspects a welded portion formed of a plurality of layers of beads located around a pipe by an ultrasonic flaw detection test. There,
A phased array probe in which a predetermined number of array elements are arranged in the depth direction of the tube and emits ultrasonic waves by a phased array method;
A drive device that rotates the phased array probe around the central axis of the tube while being along the inner surface of the tube;
A plurality of ultrasonic beam setting units for setting the phased array probe to have a plurality of flaw detection directions toward the welded portion.

また、本発明の請求項2に係る超音波検査装置は、請求項1に記載の超音波検査装置において、探傷方向が、管の中心軸に垂直な方向から一方に傾斜させた方向と、管の中心軸に垂直な方向と、管の中心軸に垂直な方向から他方に傾斜させた方向との三方向であるものである。   An ultrasonic inspection apparatus according to a second aspect of the present invention is the ultrasonic inspection apparatus according to the first aspect, wherein the flaw detection direction is inclined in one direction from a direction perpendicular to the central axis of the pipe, There are three directions: a direction perpendicular to the central axis of the tube and a direction inclined from the direction perpendicular to the central axis of the tube to the other.

さらに、本発明の請求項3に係る超音波検査装置は、請求項1または2に記載の超音波検査装置における探傷試験が、リニアスキャンによるものである。
加えて、本発明の請求項4に係る超音波検査装置は、請求項2に記載の超音波検査装置において、管の中心軸に垂直な方向から一方に傾斜させた探傷方向の探傷試験と、管の中心軸に垂直な方向から他方に傾斜させた探傷方向の探傷試験とが、セクタスキャンによるものである。
Furthermore, in the ultrasonic inspection apparatus according to claim 3 of the present invention, the flaw detection test in the ultrasonic inspection apparatus according to claim 1 or 2 is based on linear scanning.
In addition, an ultrasonic inspection apparatus according to claim 4 of the present invention is the ultrasonic inspection apparatus according to claim 2, wherein a flaw detection test in a flaw detection direction inclined in one direction from a direction perpendicular to the central axis of the tube; The flaw detection test in the flaw detection direction inclined from the direction perpendicular to the central axis of the tube to the other is based on the sector scan.

また、本発明の請求項5に係る超音波検査装置は、請求項1乃至4のいずれか一項に記載の超音波検査装置において、フェーズドアレイ探触子が管の中心軸回りに回転した角度を検知する回転角検知部と、
上記回転角検知部に検知された角度、および上記フェーズドアレイ探触子に発信された超音波の反響から、探傷試験の結果である画像を探傷方向ごとに作成する画像作成部とを備えるものである。
An ultrasonic inspection apparatus according to claim 5 of the present invention is the ultrasonic inspection apparatus according to any one of claims 1 to 4, wherein the phased array probe is rotated about the central axis of the tube. A rotation angle detector for detecting
An image creation unit that creates an image as a result of the flaw detection test for each flaw detection direction from the angle detected by the rotation angle detection unit and the echo of the ultrasonic wave transmitted to the phased array probe. is there.

さらに、本発明の請求項6に係る超音波検査装置は、請求項5に記載の超音波検査装置において、画像作成部に作成された探傷方向ごとの画像を足し合わせる画像処理部を備えるものである。   Furthermore, an ultrasonic inspection apparatus according to a sixth aspect of the present invention is the ultrasonic inspection apparatus according to the fifth aspect, further comprising an image processing unit that adds the images for each flaw detection direction created in the image creating unit. is there.

上記超音波検査装置によると、探傷方向が管の深さ方向に異なる複数方向となるので、溶接部の欠陥を確実に検出することができる。また、管の中心軸回りを回転しながら探傷試験を行うので、溶接部の欠陥を速やかに検出することができる。   According to the ultrasonic inspection apparatus, since the flaw detection direction is a plurality of directions different from the depth direction of the pipe, it is possible to reliably detect defects in the welded portion. Further, since the flaw detection test is performed while rotating around the central axis of the tube, it is possible to quickly detect defects in the welded portion.

本発明の実施の形態に係る超音波検査装置による探傷試験の一つ(三方向の探傷方向のうちの一つ)を示す縦断面図である。It is a longitudinal cross-sectional view which shows one (one of three flaw detection directions) of the flaw detection test by the ultrasonic inspection apparatus which concerns on embodiment of this invention. 同超音波検査装置による探傷試験の他の一つ(三方向の探傷方向のうちの他の一つ)を示す縦断面図である。It is a longitudinal cross-sectional view which shows another one (other one of three flaw detection directions) of the flaw detection test by the same ultrasonic inspection apparatus. 同超音波検査装置による探傷試験の残りの一つ(三方向の探傷方向のうちの残りの一つ)を示す縦断面図である。It is a longitudinal cross-sectional view which shows the remaining one (the remaining one of the three flaw detection directions) of the flaw detection test by the same ultrasonic inspection apparatus. 同超音波検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the same ultrasonic inspection apparatus. 同超音波検査装置による検査の対象となる管と管板とを示す一部切欠斜視図である。It is a partially notched perspective view which shows the pipe | tube and tube sheet used as the object of the test | inspection by the same ultrasonic inspection apparatus. 従来の超音波検査装置による探傷試験を示す縦断面図である。It is a longitudinal cross-sectional view which shows the flaw detection test by the conventional ultrasonic inspection apparatus.

以下、本発明の実施の形態に係る超音波検査装置について図面に基づき説明する。
まず、上記超音波検査装置に係る技術的思想の概略について説明する。
上記超音波検査装置における検査(超音波による探傷試験)の対象は、図5に示すように、一定の間隔で平行に配置された多数の管30と、これら管30に垂直な管板20とが溶接された部分(以下、溶接部10という)である。このような溶接部10は、確実な溶接の強度を確保するために、複数回のパスが施されており、その結果として複数層(本実施の形態では一例として2層)のビード11,12からなる。このような溶接部10には、図6に示すように、欠陥1〜4が、ビード11,12と管30および管板20との境界だけでなく、ビード11,12同士の境界にも生じ得る。このため、これら欠陥1〜4は様々な方向の面状となるので、探傷方向が一方向である従来の超音波検査装置140では、その探傷方向に沿う方向の欠陥3を検出できないおそれがある。
Hereinafter, an ultrasonic inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
First, an outline of the technical idea related to the ultrasonic inspection apparatus will be described.
As shown in FIG. 5, an object of inspection (ultrasonic flaw detection test) in the ultrasonic inspection apparatus is a large number of tubes 30 arranged in parallel at regular intervals, and a tube plate 20 perpendicular to these tubes 30. Is a welded portion (hereinafter referred to as a welded portion 10). Such a welded portion 10 is subjected to a plurality of passes in order to ensure reliable welding strength, and as a result, beads 11 and 12 having a plurality of layers (two layers as an example in the present embodiment). Consists of. In such a welded portion 10, as shown in FIG. 6, defects 1 to 4 occur not only at the boundary between the beads 11 and 12 and the tube 30 and the tube plate 20 but also at the boundary between the beads 11 and 12. obtain. For this reason, since these defects 1 to 4 have surface shapes in various directions, the conventional ultrasonic inspection apparatus 140 in which the flaw detection direction is one direction may not detect the defect 3 in the direction along the flaw detection direction. .

そこで、本発明の超音波による探傷試験では、図1〜3に示すように、フェーズドアレイ法により探傷方向を管30の深さ方向に異なる三方向(複数方向であればよい)にすることで、上記溶接部10に生じ得るような様々な方向の欠陥1〜4でも、確実に検出できる。勿論、上記三方向は、いずれも上記溶接部10に向くようにされる。また、探傷試験の際に、フェーズドアレイ法のための探触子であるフェーズドアレイ探触子(詳しくは後述する)55を管30の中心軸31回りに回転51させることで、管30の外周囲に位置する溶接部10(図5参照)の欠陥1〜4を速やかに検出することができる。   Therefore, in the flaw detection test using ultrasonic waves according to the present invention, as shown in FIGS. 1 to 3, the flaw detection direction is set to three different directions in the depth direction of the tube 30 (a plurality of directions may be used) by the phased array method. The defects 1 to 4 in various directions that can occur in the welded portion 10 can be reliably detected. Of course, the three directions are all directed toward the welded portion 10. Further, during the flaw detection test, a phased array probe 55 (details will be described later) 55 which is a probe for the phased array method is rotated 51 around the central axis 31 of the tube 30, so that the outside of the tube 30 is removed. Defects 1 to 4 of welded part 10 (see FIG. 5) located around can be quickly detected.

以下、本発明の実施の形態に係る超音波検査装置40について図1〜図4に基づき詳細に説明する。
この超音波検査装置40は、図4に示すように、管30に挿入されて当該管30の中心軸31回りに回転51しつつ当該管30の内面から溶接部10にフェーズドアレイ法の探傷試験を行う回転探傷部50と、この回転探傷部50の回転51および探傷試験を制御する制御部60とを有する。なお、以下では、上記管30において、回転探傷部50が挿入される元を管手前といい、回転探傷部50が挿入される先を管奥という。
Hereinafter, an ultrasonic inspection apparatus 40 according to an embodiment of the present invention will be described in detail with reference to FIGS.
As shown in FIG. 4, this ultrasonic inspection apparatus 40 is inserted into a tube 30 and rotates 51 around the central axis 31 of the tube 30, and a flaw detection test using a phased array method is performed from the inner surface of the tube 30 to the welded portion 10. And a control unit 60 that controls the rotation 51 of the rotary flaw detector 50 and the flaw detection test. In the following, in the tube 30, the source where the rotating flaw detector 50 is inserted is referred to as the front of the tube, and the tip where the rotating flaw detector 50 is inserted is referred to as the back of the tube.

[回転探傷部50]
回転探傷部50は、管30の深さ方向に配列された所定数(フェーズドアレイ法に必要な数)のアレイ素子56からなるフェーズドアレイ探触子55と、図示しないバッテリーからの電力により駆動して回転探傷部50を管30の中心軸31回りに回転51させるモータ(駆動機の一例である)52と、管30の中心軸31回りに回転51した回転探傷部50の角度の信号を発するエンコーダ53とを有する。上記フェーズドアレイ探触子55は、その各アレイ素子56の発振時54を調整することで、超音波による探傷方向および探傷範囲を自在に変更可能である。また、図示しないが、上記回転探傷部50は、上記フェーズドアレイ探触子55を覆うとともに管30の内面に面し得るウェッジと、このウェッジの周囲から超音波による探傷試験に必要な接触媒体(水またはグリセリンなど)を供給し得る媒体供給穴とを有する。さらに、上記回転探傷部50は、上記管30の内面とウェッジとの間隔が数μm〜数百μmとなる大きさにされることで、上記媒体供給穴から供給された接触媒体を毛細管現象により上記間隔に満たし得るものである。
[Rotating flaw detector 50]
The rotating flaw detector 50 is driven by a phased array probe 55 including a predetermined number of array elements 56 (the number required for the phased array method) arranged in the depth direction of the tube 30 and power from a battery (not shown). Then, a motor 52 (which is an example of a drive unit) that rotates 51 the rotating flaw detector 50 around the central axis 31 of the tube 30 and an angle signal of the rotary flaw detector 50 that rotates 51 around the central axis 31 of the tube 30 are generated. And an encoder 53. The phased array probe 55 can freely change the flaw detection direction and flaw detection range by ultrasonic waves by adjusting the oscillation time 54 of each array element 56. Although not shown, the rotary flaw detector 50 includes a wedge that covers the phased array probe 55 and can face the inner surface of the tube 30, and a contact medium necessary for a flaw detection test using ultrasonic waves from the periphery of the wedge ( Medium supply holes through which water or glycerin can be supplied. Further, the rotary flaw detector 50 has a size such that the distance between the inner surface of the tube 30 and the wedge is several μm to several hundred μm, so that the contact medium supplied from the medium supply hole is caused by capillary action. The above interval can be satisfied.

[制御部60]
上記制御部60は、上記回転探傷部50の回転51に関する構成として、上記回転探傷部50を作動させる指示部61と、この指示部61からの指示によりモータ52を駆動させる駆動部62と、上記エンコーダ53からの信号により回転探傷部50の回転51した角度を検知する回転角検知部63とを有する。また、上記制御部60は、上記回転探傷部50の超音波による探傷試験に関する構成として、上記指示部61からの指示によりフェーズドアレイ探触子55の探傷方向が三方向になるように設定する複数超音波ビーム設定部67と、この複数超音波ビーム設定部67の設定に基づいてフェーズドアレイ探触子55に超音波を発信させる発信部64と、この発信部64によりフェーズドアレイ探触子55から発信された超音波の反射(以下では反射エコーという)を受信する受信部65と、この受信部65に受信された反射エコーから欠陥1〜4の有無を判別するための画像を作成する画像作成部66と、この画像作成部66により作成された画像を処理する画像処理部68とを有する。
[Control unit 60]
The control unit 60 includes, as a configuration related to the rotation 51 of the rotary flaw detection unit 50, an instruction unit 61 that operates the rotary flaw detection unit 50, a drive unit 62 that drives the motor 52 in accordance with an instruction from the instruction unit 61, and A rotation angle detection unit 63 that detects an angle of rotation 51 of the rotation flaw detection unit 50 by a signal from the encoder 53 is provided. In addition, as a configuration related to the ultrasonic flaw detection test of the rotating flaw detector 50, the control unit 60 sets a plurality of settings so that the flaw detection direction of the phased array probe 55 becomes three directions according to an instruction from the instruction unit 61. An ultrasonic beam setting unit 67, a transmission unit 64 that transmits ultrasonic waves to the phased array probe 55 based on the settings of the multiple ultrasonic beam setting unit 67, and the transmission unit 64 from the phased array probe 55. Receiving unit 65 that receives a reflection of transmitted ultrasonic waves (hereinafter referred to as a reflected echo), and image creation for creating an image for determining the presence or absence of defects 1 to 4 from the reflected echo received by the receiving unit 65 And an image processing unit 68 for processing an image created by the image creation unit 66.

上記指示部61は、図示しないスタートボタンに接続されて、このスタートボタンが押されることにより、または、上記回転角検知部63で検知された角度に基づいて、上記駆動部62および複数超音波ビーム設定部67に指示する。上記駆動部62は、上記指示部61からの指示により、上記モータ52とバッテリーとの電気的な接続をON/OFFに切り替える。上記回転角検知部63は、検知した回転探傷部50の角度を、モータ52を停止させる判断のために指示部61に知らせるとともに、検出された欠陥1〜4の位置を特定させるために画像作成部66に知らせる。   The instructing unit 61 is connected to a start button (not shown), and when the start button is pressed or based on the angle detected by the rotation angle detecting unit 63, the driving unit 62 and the plurality of ultrasonic beams The setting unit 67 is instructed. The drive unit 62 switches the electrical connection between the motor 52 and the battery to ON / OFF according to an instruction from the instruction unit 61. The rotation angle detection unit 63 informs the instruction unit 61 of the detected angle of the rotation flaw detection unit 50 for determination to stop the motor 52 and creates an image for identifying the positions of the detected defects 1 to 4. Inform section 66.

上記複数超音波ビーム設定部67は、上記フェーズドアレイ探触子55の探傷方向を管30の中心軸31に垂直な方向から管奥側(図1参照)にする第一斜角スキャン部71と、上記フェーズドアレイ探触子55の探傷方向を管30の中心軸31に垂直な方向(図2参照)にする垂直スキャン部72と、上記フェーズドアレイ探触子55の探傷方向を管30の中心軸31に垂直な方向から管手前側(図3参照)にする第二斜角スキャン部73とからなる。上記第一斜角スキャン部71は、図1に示すように、上記フェーズドアレイ探触子55の探傷方向が管30の中心軸31に垂直な方向から管奥側になるよう、すなわちアレイ素子56の発振時54を管手前側から管奥側につれて遅延させるように設定する。上記垂直スキャン部72は、図2に示すように、上記フェーズドアレイ探触子55の探傷方向が管30の中心軸31に垂直な方向になるよう、すなわちアレイ素子56の発振時54を同時として設定する。上記第二斜角スキャン部73は、図3に示すように、上記フェーズドアレイ探触子55の探傷方向が管30の中心軸31に垂直な方向から管手前側になるよう、すなわちアレイ素子56の発振時54を管奥側から管手前側につれて遅延させるように設定する。また、上記複数超音波ビーム設定部67は、その第一斜角スキャン部71、垂直スキャン部72および第二斜角スキャン部73を介して、それぞれ発信部64によりフェーズドアレイ探触子55から超音波を発信させるタイミングは、略同時または僅かに遅れたものとされる。ここで、略同時とは、上記フェーズドアレイ探触子55が上記三種類の超音波を可能な限り遅れることなく発信する時間をいう。また、僅かに遅れたとは、その遅れを人が自然に体感できない程度、例えば、1/30秒〜1/90秒程度をいう。   The multiple ultrasonic beam setting unit 67 includes a first oblique angle scanning unit 71 that changes the flaw detection direction of the phased array probe 55 from the direction perpendicular to the central axis 31 of the tube 30 to the tube back side (see FIG. 1). The vertical scanning unit 72 for setting the flaw detection direction of the phased array probe 55 to the direction perpendicular to the central axis 31 of the tube 30 (see FIG. 2), and the flaw detection direction of the phased array probe 55 as the center of the tube 30 A second oblique angle scanning unit 73 is provided on the tube front side (see FIG. 3) from a direction perpendicular to the shaft 31. As shown in FIG. 1, the first oblique angle scanning unit 71 is arranged so that the flaw detection direction of the phased array probe 55 is from the direction perpendicular to the central axis 31 of the tube 30 to the tube back side, that is, the array element 56. The oscillation time 54 is set so as to be delayed from the front side of the pipe toward the back side of the pipe. As shown in FIG. 2, the vertical scanning unit 72 is arranged so that the flaw detection direction of the phased array probe 55 is perpendicular to the central axis 31 of the tube 30, that is, simultaneously with the oscillation 54 of the array element 56. Set. As shown in FIG. 3, the second oblique angle scanning unit 73 is arranged so that the flaw detection direction of the phased array probe 55 is from the direction perpendicular to the central axis 31 of the tube 30 to the front side of the tube, that is, the array element 56. The oscillation time 54 is set so as to be delayed from the back side of the tube toward the front side of the tube. The multiple ultrasonic beam setting unit 67 is superposed from the phased array probe 55 by the transmitting unit 64 via the first oblique angle scanning unit 71, the vertical scanning unit 72, and the second oblique angle scanning unit 73, respectively. The timing of transmitting the sound wave is assumed to be substantially the same or slightly delayed. Here, “substantially simultaneously” means a time during which the phased array probe 55 transmits the three types of ultrasonic waves without delay as much as possible. Moreover, being slightly delayed refers to the extent that a person cannot feel the delay naturally, for example, about 1/30 seconds to 1/90 seconds.

上記画像作成部66は、上記受信部65に受信された反射エコーと、回転角検知部63により知らされた回転探傷部50の回転51した角度とから、上記三種類の超音波ごとに(上記三方向の探傷方向ごとに)三種類の画像を作成する。それぞれの画像は、例えば、縦軸を上記管30の内面から外方に向かう方向、横軸を管手前から管奥に向かう方向、および、色彩を上記反射エコー強度、とするコンター図である。上記画像処理部68は、上記三種類の画像を足し合わせることで、1枚の画像にする。この1枚の画像は、上記三種類の反射エコー強度の情報を全て含むことになる。   The image creating unit 66 is configured for each of the three types of ultrasonic waves from the reflected echo received by the receiving unit 65 and the rotation angle of the rotation flaw detection unit 50 notified by the rotation angle detection unit 63 for each of the three types of ultrasonic waves (described above). Create three types of images (for each flaw detection direction). Each image is a contour diagram in which, for example, the vertical axis is the direction from the inner surface of the tube 30 outward, the horizontal axis is the direction from the front of the tube to the back of the tube, and the color is the reflected echo intensity. The image processing unit 68 adds the three types of images into a single image. This one image includes all the information of the three types of reflected echo intensities.

以下、上記超音波検査装置40を使用する超音波検査方法について説明する。
まず、回転探傷部50を管30に挿入することで、溶接部10に管30の内面から超音波による探傷試験のための準備を行う。次に、スタートボタンを押すことにより、指示部61から駆動部62および複数超音波ビーム設定部67に指示される。すると、回転探傷部50は、モータ52により管30の中心軸31回りに回転51するとともに、フェーズドアレイ探触子55から溶接部10に向けて超音波が発信される。フェーズドアレイ探触子55から発信される超音波は、探傷方向が管30の中心軸31に垂直な方向から管奥側になるようなもの(図1参照)と、探傷方向が管30の中心軸31に垂直な方向になるようなもの(図2参照)と、探傷方向が管30の中心軸31に垂直な方向から管手前側になるようなもの(図3参照)との三種類である。すなわち、上記超音波検査方法における探傷試験では、探傷方向が三方向となる。これら三種類の超音波が発信されるタイミングは、略同時または僅かに遅れる。
Hereinafter, an ultrasonic inspection method using the ultrasonic inspection apparatus 40 will be described.
First, the rotating flaw detector 50 is inserted into the tube 30 to prepare the welded portion 10 for a flaw detection test using ultrasonic waves from the inner surface of the tube 30. Next, an instruction unit 61 instructs the drive unit 62 and the multiple ultrasonic beam setting unit 67 by pressing a start button. Then, the rotating flaw detector 50 is rotated 51 around the central axis 31 of the tube 30 by the motor 52 and ultrasonic waves are transmitted from the phased array probe 55 toward the welded portion 10. The ultrasonic wave transmitted from the phased array probe 55 has a flaw detection direction from the direction perpendicular to the central axis 31 of the tube 30 to the back side of the tube (see FIG. 1), and the flaw detection direction is the center of the tube 30. There are three types: one in which the direction is perpendicular to the shaft 31 (see FIG. 2) and one in which the flaw detection direction is from the direction perpendicular to the central axis 31 of the tube 30 to the front side of the tube (see FIG. 3). is there. That is, in the flaw detection test in the ultrasonic inspection method, the flaw detection direction is three directions. The timings at which these three types of ultrasonic waves are transmitted are substantially simultaneously or slightly delayed.

これら超音波の反射、つまり反射エコーが、フェーズドアレイ探触子55を通じて受信部65により受信される。この受信部65に受信された超音波の反響と、回転角検知部63により知らされた回転探傷部50の回転51した角度とから、上記三種類の超音波ごとに三種類の画像が画像作成部66により作成される。これら三種類の画像は、画像処理部68により足し合わされて1つの画像にされる。   These ultrasonic reflections, that is, reflected echoes are received by the receiving unit 65 through the phased array probe 55. Three types of images are created for each of the three types of ultrasonic waves from the echo of the ultrasonic waves received by the receiving unit 65 and the rotation angle of the rotation flaw detection unit 50 notified by the rotation angle detection unit 63. Created by the unit 66. These three types of images are added together by the image processing unit 68 to form one image.

このように、上記超音波検査装置40によると、探傷方向が管30の深さ方向に異なる三方向(複数方向)となるので、上記溶接部10の欠陥1〜4を確実に検出することができる。また、フェーズドアレイ探触子55が管30の中心軸31回りを回転51しながら探傷試験を行うので、上記溶接部10の欠陥1〜4を速やかに検出することができる。   Thus, according to the ultrasonic inspection apparatus 40, since the flaw detection direction becomes three directions (a plurality of directions) different from the depth direction of the tube 30, defects 1 to 4 of the welded portion 10 can be reliably detected. it can. Further, since the phased array probe 55 performs the flaw detection test while rotating 51 around the central axis 31 of the tube 30, the defects 1 to 4 of the welded portion 10 can be detected quickly.

さらに、上記探傷方向が、管30の中心軸31に垂直な方向から管奥側(一方)に傾斜させた方向と、管30の中心軸31に垂直な方向と、管30の中心軸31に垂直な方向から管手前側(他方)に傾斜させた方向であるから、これら探傷方向は様々な方向であるといえる。このため、上記溶接部10の欠陥1〜4が様々な方向を向くものであっても、これら全ての探傷方向の探傷試験で検出されない欠陥1〜4の確率を下げることにつながり、結果として上記溶接部10の欠陥1〜4をより確実に検出することができる。   Further, the flaw detection direction is inclined from the direction perpendicular to the central axis 31 of the tube 30 to the back side (one side), the direction perpendicular to the central axis 31 of the tube 30, and the central axis 31 of the tube 30. Since the direction is inclined from the vertical direction to the tube front side (the other side), it can be said that these flaw detection directions are various directions. For this reason, even if the defects 1 to 4 of the welded portion 10 face in various directions, this leads to a decrease in the probability of the defects 1 to 4 that are not detected in the flaw detection test in all these flaw detection directions. The defects 1 to 4 of the welded part 10 can be detected more reliably.

加えて、上記画像作成部66により作成される画像により、探傷試験の結果が可視化されるので、視覚的に欠陥1〜4の有無を判別しやすくすることにつながり、結果として上記溶接部10の欠陥1〜4をより確実に検出することができる。   In addition, since the result of the flaw detection test is visualized by the image created by the image creation unit 66, it is easy to visually determine the presence or absence of defects 1 to 4, and as a result, the weld 10 Defects 1 to 4 can be detected more reliably.

また、上記画像処理部68により、画像作成部66の画像が足し合わされて1枚の画像にされることで、管30ごとの探傷試験の結果が1枚の画像として可視化されるので、視覚的に欠陥1〜4の有無を一層判別しやすくすることにつながり、結果として上記溶接部10の欠陥1〜4を一層確実に検出することができる。   Further, the image processing unit 68 adds the images of the image creation unit 66 to form one image, so that the result of the flaw detection test for each tube 30 is visualized as one image. As a result, the defects 1 to 4 of the welded portion 10 can be more reliably detected.

ところで、上記実施の形態での探傷試験は、図1〜図3における各アレイ素子56の発振時54から全ての探傷方向でリニアスキャンによるものとして図示したが、これに限定されるものではない。例えば、管30の中心軸31に垂直な方向から管奥側(一方)に傾斜させた探傷方向の探傷試験と、管30の中心軸31に垂直な方向から管手前側(他方)に傾斜させた探傷方向の探傷試験とが、セクタスキャンによるものであってもよい。これにより、探傷範囲が広がることになり、様々な方向の欠陥を検出する確率が高まるので、上記溶接部10の欠陥1〜4を一層確実に検出することができる。なお、探傷試験が全ての探傷方向でリニアスキャンによるものとすると、上記三方向の探傷試験で条件が同一になるので、探傷試験の精度を高めることができる。   By the way, although the flaw detection test in the above-described embodiment is illustrated as being performed by linear scanning in all flaw detection directions from the oscillation time 54 of each array element 56 in FIGS. 1 to 3, it is not limited to this. For example, a flaw detection test in a flaw detection direction inclined from the direction perpendicular to the central axis 31 of the tube 30 to the back side of the tube (one side), and an inclination from the direction perpendicular to the central axis 31 of the tube 30 to the front side of the tube (the other side). The flaw detection test in the flaw detection direction may be based on sector scanning. As a result, the flaw detection range is expanded, and the probability of detecting defects in various directions is increased, so that the defects 1 to 4 of the welded portion 10 can be detected more reliably. If the flaw detection test is performed by linear scanning in all flaw detection directions, the conditions are the same in the three-direction flaw detection tests, so that the accuracy of the flaw detection test can be increased.

また、上記実施の形態では、溶接部10が管30と管板20との溶接された部分として説明したが、管30の周囲に位置するものであればよい。   In the above-described embodiment, the welded portion 10 has been described as a welded portion between the tube 30 and the tube plate 20, but it may be any as long as it is located around the tube 30.

1〜4 欠陥
10 溶接部
11 ビード(1層目)
12 ビード(2層目)
20 管板
30 管
31 中心軸
40 超音波検査装置
50 回転探触部
51 回転
52 モータ
53 エンコーダ
54 発振時
55 フェーズドアレイ探触子
56 アレイ素子
60 制御部
62 駆動部
67 複数超音波ビーム設定部
1-4 Defect 10 Welded part 11 Bead (first layer)
12 beads (2nd layer)
20 Tube plate 30 Tube 31 Central axis 40 Ultrasonic inspection apparatus 50 Rotation probe 51 Rotation 52 Motor 53 Encoder 54 Oscillating 55 Phased array probe 56 Array element 60 Control unit 62 Drive unit 67 Multiple ultrasonic beam setting unit

Claims (6)

管の周囲に位置して複数層のビードからなる溶接部を超音波による探傷試験で検査する超音波検査装置であって、
上記管の深さ方向に所定数のアレイ素子が配列されてなるとともにフェーズドアレイ法により超音波を発信するフェーズドアレイ探触子と、
このフェーズドアレイ探触子を上記管の内面に沿わせながら当該管の中心軸回りに回転させる駆動機と、
上記フェーズドアレイ探触子の探傷方向を複数方向で且つ上記溶接部に向くように設定する複数超音波ビーム設定部とを備えることを特徴とする超音波検査装置。
An ultrasonic inspection apparatus for inspecting a welded portion consisting of multiple layers of beads positioned around a pipe by an ultrasonic flaw detection test,
A phased array probe in which a predetermined number of array elements are arranged in the depth direction of the tube and emits ultrasonic waves by a phased array method;
A drive device that rotates the phased array probe around the central axis of the tube while being along the inner surface of the tube;
An ultrasonic inspection apparatus comprising: a plurality of ultrasonic beam setting units configured to set a flaw detection direction of the phased array probe in a plurality of directions and toward the welded portion.
探傷方向が、管の中心軸に垂直な方向から一方に傾斜させた方向と、管の中心軸に垂直な方向と、管の中心軸に垂直な方向から他方に傾斜させた方向との三方向であることを特徴とする請求項1に記載の超音波検査装置。   The flaw detection direction has three directions: a direction inclined from one direction perpendicular to the central axis of the pipe, a direction perpendicular to the central axis of the pipe, and a direction inclined from the direction perpendicular to the central axis of the pipe to the other. The ultrasonic inspection apparatus according to claim 1, wherein: 探傷試験が、リニアスキャンによるものであることを特徴とする請求項1または2に記載の超音波検査装置。   The ultrasonic inspection apparatus according to claim 1, wherein the flaw detection test is based on linear scanning. 管の中心軸に垂直な方向から一方に傾斜させた探傷方向の探傷試験と、管の中心軸に垂直な方向から他方に傾斜させた探傷方向の探傷試験とが、セクタスキャンによるものであることを特徴とする請求項2に記載の超音波検査装置。   The flaw detection test in the flaw detection direction inclined in one direction from the direction perpendicular to the central axis of the tube and the flaw detection test in the flaw detection direction inclined in the other direction from the direction perpendicular to the central axis of the tube are based on sector scanning. The ultrasonic inspection apparatus according to claim 2. フェーズドアレイ探触子が管の中心軸回りに回転した角度を検知する回転角検知部と、
上記回転角検知部に検知された角度、および上記フェーズドアレイ探触子に発信された超音波の反響から、探傷試験の結果である画像を探傷方向ごとに作成する画像作成部とを備えることを特徴とする請求項1乃至4のいずれか一項に記載の超音波検査装置。
A rotation angle detector that detects the angle at which the phased array probe rotates about the central axis of the tube;
An image creation unit for creating an image as a result of the flaw detection test for each flaw detection direction from the angle detected by the rotation angle detection unit and the echo of the ultrasonic wave transmitted to the phased array probe. The ultrasonic inspection apparatus according to claim 1, wherein the ultrasonic inspection apparatus is characterized.
画像作成部に作成された探傷方向ごとの画像を足し合わせる画像処理部を備えることを特徴とする請求項5に記載の超音波検査装置。
The ultrasonic inspection apparatus according to claim 5, further comprising an image processing unit that adds the images for each flaw detection direction created in the image creation unit.
JP2015070491A 2015-03-31 2015-03-31 Ultrasonic inspection equipment Active JP6494369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070491A JP6494369B2 (en) 2015-03-31 2015-03-31 Ultrasonic inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070491A JP6494369B2 (en) 2015-03-31 2015-03-31 Ultrasonic inspection equipment

Publications (2)

Publication Number Publication Date
JP2016191572A true JP2016191572A (en) 2016-11-10
JP6494369B2 JP6494369B2 (en) 2019-04-03

Family

ID=57245383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070491A Active JP6494369B2 (en) 2015-03-31 2015-03-31 Ultrasonic inspection equipment

Country Status (1)

Country Link
JP (1) JP6494369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650281A (en) * 2020-05-29 2020-09-11 国网河南省电力公司电力科学研究院 Ultrasonic phased array detection method for tower welding seam
JP2021047091A (en) * 2019-09-19 2021-03-25 日立造船株式会社 Method and device for ultrasonic inspection

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150335A (en) * 1983-02-17 1984-08-28 Nippon Kokan Kk <Nkk> Flaw detection for multi-layered welding
JPS63137595A (en) * 1986-11-28 1988-06-09 Mitsubishi Heavy Ind Ltd Laser seal welding method
JPH0523332A (en) * 1991-07-19 1993-02-02 Hitachi Medical Corp Probe and ultrasonic diagnosing apparatus using the same
JPH05133942A (en) * 1991-11-15 1993-05-28 Tokyo Gas Co Ltd Trackless type ultrasonic flaw detection running device
JPH05288735A (en) * 1992-04-09 1993-11-02 Mitsubishi Heavy Ind Ltd Ultrasonic probe for flaw-detecting boiler tube
JPH0975347A (en) * 1995-09-08 1997-03-25 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic system
JPH10246722A (en) * 1997-03-03 1998-09-14 Sekisui Chem Co Ltd Method for inspecting weld-bonded part of plastic tube
JPH1183817A (en) * 1997-09-03 1999-03-26 Toshiba Corp Pipe welding part inspection apparatus and ultrasonic flaw detection method
JPH11254136A (en) * 1998-03-09 1999-09-21 Chubu Electric Power Co Inc Magnetic stir-welding method
JP2000197631A (en) * 1999-01-04 2000-07-18 Toshiba Corp Ultrasonic probe and ultrasonic diagnostic device
JP2001324484A (en) * 2000-05-16 2001-11-22 Toshiba Corp Ultrasonic flaw detection method and apparatus
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
JP2007263780A (en) * 2006-03-29 2007-10-11 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and device
WO2007145200A1 (en) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
JP2008122209A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device and method
CN101254566A (en) * 2008-04-23 2008-09-03 哈尔滨电机厂有限责任公司 Real turbine rotary wheel rich argon mixture gas subsection welding method
US20090078742A1 (en) * 2005-07-05 2009-03-26 Saipem S.A. Method and a device for Inspecting a pipe connection weld by an ultrasound probe
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2010014626A (en) * 2008-07-04 2010-01-21 Toshiba Corp 3d ultrasonographic device
JP2010025676A (en) * 2008-07-17 2010-02-04 Toshiba Corp Ultrasonic flaw detecting method and device
JP2014048169A (en) * 2012-08-31 2014-03-17 Institute Of Nuclear Safety System Inc Ultrasonic flaw detection method and ultrasonic flaw detection device

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150335A (en) * 1983-02-17 1984-08-28 Nippon Kokan Kk <Nkk> Flaw detection for multi-layered welding
JPS63137595A (en) * 1986-11-28 1988-06-09 Mitsubishi Heavy Ind Ltd Laser seal welding method
JPH0523332A (en) * 1991-07-19 1993-02-02 Hitachi Medical Corp Probe and ultrasonic diagnosing apparatus using the same
JPH05133942A (en) * 1991-11-15 1993-05-28 Tokyo Gas Co Ltd Trackless type ultrasonic flaw detection running device
JPH05288735A (en) * 1992-04-09 1993-11-02 Mitsubishi Heavy Ind Ltd Ultrasonic probe for flaw-detecting boiler tube
JPH0975347A (en) * 1995-09-08 1997-03-25 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic system
JPH10246722A (en) * 1997-03-03 1998-09-14 Sekisui Chem Co Ltd Method for inspecting weld-bonded part of plastic tube
JPH1183817A (en) * 1997-09-03 1999-03-26 Toshiba Corp Pipe welding part inspection apparatus and ultrasonic flaw detection method
JPH11254136A (en) * 1998-03-09 1999-09-21 Chubu Electric Power Co Inc Magnetic stir-welding method
JP2000197631A (en) * 1999-01-04 2000-07-18 Toshiba Corp Ultrasonic probe and ultrasonic diagnostic device
JP2001324484A (en) * 2000-05-16 2001-11-22 Toshiba Corp Ultrasonic flaw detection method and apparatus
US20090078742A1 (en) * 2005-07-05 2009-03-26 Saipem S.A. Method and a device for Inspecting a pipe connection weld by an ultrasound probe
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
JP2007263780A (en) * 2006-03-29 2007-10-11 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and device
WO2007145200A1 (en) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
JP2008122209A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device and method
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
CN101254566A (en) * 2008-04-23 2008-09-03 哈尔滨电机厂有限责任公司 Real turbine rotary wheel rich argon mixture gas subsection welding method
JP2010014626A (en) * 2008-07-04 2010-01-21 Toshiba Corp 3d ultrasonographic device
JP2010025676A (en) * 2008-07-17 2010-02-04 Toshiba Corp Ultrasonic flaw detecting method and device
JP2014048169A (en) * 2012-08-31 2014-03-17 Institute Of Nuclear Safety System Inc Ultrasonic flaw detection method and ultrasonic flaw detection device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"最近における溶接の問題点(I)", 日本金属学会会報, vol. 1巻1号, JPN6018045056, 1962, JP, pages 8 - 15, ISSN: 0003968892 *
"最近における溶接の問題点(II)", 日本金属学会会報, vol. 1巻2号, JPN6018045057, 1962, JP, pages 112 - 119, ISSN: 0003968893 *
"最近における溶接の問題点(III)", 日本金属学会会報, vol. 1巻、3号, JPN6018045058, 1962, JP, pages 186 - 194, ISSN: 0003968894 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047091A (en) * 2019-09-19 2021-03-25 日立造船株式会社 Method and device for ultrasonic inspection
WO2021053939A1 (en) * 2019-09-19 2021-03-25 日立造船株式会社 Ultrasonic examination method and ultrasonic examination device
CN114341632A (en) * 2019-09-19 2022-04-12 日立造船株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
JP7316888B2 (en) 2019-09-19 2023-07-28 日立造船株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
JP7450098B2 (en) 2019-09-19 2024-03-14 日立造船株式会社 Ultrasonic testing method and ultrasonic testing equipment
CN111650281A (en) * 2020-05-29 2020-09-11 国网河南省电力公司电力科学研究院 Ultrasonic phased array detection method for tower welding seam

Also Published As

Publication number Publication date
JP6494369B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP4694576B2 (en) Turbine component defect detection method and apparatus
US9816964B1 (en) Ultrasonic method and device for volumetric examination of aluminothermic rail welds
KR20140033404A (en) Three-dimensional matrix phased array spot weld inspection system
US7900517B2 (en) System and method for inspecting a pipeline with ultrasound
JP7450098B2 (en) Ultrasonic testing method and ultrasonic testing equipment
JP3861833B2 (en) Ultrasonic inspection method and apparatus
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
JP2007170877A (en) Ultrasonic flaw detection method and ultrasonic flaw detector
JP2013134118A (en) Ultrasonic flaw detection device for pipe weld zone
JP6494369B2 (en) Ultrasonic inspection equipment
JP2009069077A (en) Device for inspecting pipe welded section
KR100975330B1 (en) Multi Channel Ultrasonic Welding Inspection System and Control Method
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
EP2594935A1 (en) Method of determining a size of a defect using an ultrasonic linear phased array
JP5292012B2 (en) Ultrasonic inspection equipment
JP2005351718A (en) Omnidirectional flaw detection probe
CN115380223A (en) Ultrasound probe with row and column addressed array
JP2011237234A (en) Phased-array ultrasonic inspection device, and inspection method and coke drum using the phased-array ultrasonic inspection device
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP2004020333A (en) Ultrasonic flaw detecting apparatus
JP2007232478A (en) Method for checking coupling of ultrasonic probe and computer program
JP2019174239A (en) Ultrasonic flaw detection method
KR100814089B1 (en) An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Transducers And Method Thereof
JP4909045B2 (en) Ultrasonic flaw detector
JPH11211701A (en) Ultrasonic inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190305

R150 Certificate of patent or registration of utility model

Ref document number: 6494369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250