JP2009069077A - Device for inspecting pipe welded section - Google Patents

Device for inspecting pipe welded section Download PDF

Info

Publication number
JP2009069077A
JP2009069077A JP2007240045A JP2007240045A JP2009069077A JP 2009069077 A JP2009069077 A JP 2009069077A JP 2007240045 A JP2007240045 A JP 2007240045A JP 2007240045 A JP2007240045 A JP 2007240045A JP 2009069077 A JP2009069077 A JP 2009069077A
Authority
JP
Japan
Prior art keywords
pipe
welded portion
reflected wave
ultrasonic
boundary line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007240045A
Other languages
Japanese (ja)
Other versions
JP4792440B2 (en
Inventor
Masahiro Miki
将裕 三木
Shoji Hayashi
章二 林
Motoyuki Nakamura
基征 中村
Zenji Makihara
善次 牧原
Mitsuru Odakura
満 小田倉
Satoshi Shinohara
悟史 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007240045A priority Critical patent/JP4792440B2/en
Publication of JP2009069077A publication Critical patent/JP2009069077A/en
Application granted granted Critical
Publication of JP4792440B2 publication Critical patent/JP4792440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for inspecting a pipe welded portion capable of improving detection precision of a defect. <P>SOLUTION: The device for inspecting the welded portion 2 of a pipe 1 includes an ultrasonic wave oblique probe 6 located in the outer circumference side of the pipe 1 and for transmitting ultrasonic waves towards the inner circumference side of the pipe 1 at an inclined angle and receiving reflected waved thereof; a flaw detection information storage 19 of a central control unit 10 for recording flaw detection information containing location information of the ultrasonic wave oblique probe 6 and waveform information of the reflected waves received by the ultrasonic wave oblique probe 6; and a display device 11 for converting reflected waves to reflection locations on a cross section in the plate-thickness direction of the pipe 1 based on the flaw detection information recorded in the flaw detection information storage 19, calculating and specifying the border line 28 of the welded portion 2 based on the locations of a plurality of reflected images 26a corresponding to the border of the welded portion 2, and determining a reflected image 26c at a location, which is located nearer to the pipe base material side than the border line 28 of this welded portion 2 and separated a prescribed threshold value or greater from the border line 28 of the welded portion 2, that is equivalent to a defect and then identifying to display it. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超音波検査により配管の溶接部を検査する配管溶接部検査装置に関する。   The present invention relates to a pipe welded portion inspection apparatus that inspects a welded portion of a pipe by ultrasonic inspection.

例えば原子力プラントのPLR(Primary Loop Re-circulation System:一次冷却材再循環系)配管等における突合せ溶接部の供用中検査では、配管の外周側から溶接部(詳細には、溶接金属及び熱影響部)に欠陥が生じていないかどうかを検査する必要がある。従来、このような配管の溶接部の検査を行うための超音波探傷装置が開示されている(例えば、特許文献1参照)。   For example, during in-service inspection of butt welds in nuclear power plant PLR (Primary Loop Recirculation System) pipes, etc., welds from the outer circumference side of the pipes (in detail, weld metal and heat affected zone) ) Must be inspected for defects. Conventionally, an ultrasonic flaw detector for inspecting the welded part of such a pipe has been disclosed (for example, see Patent Document 1).

特許文献1に記載の超音波探傷装置は、配管の外周側に配置され、配管の内周側に向け傾斜した角度で超音波を発信するとともにその反射波を受信する超音波斜角探触子と、この超音波斜角探触子を配管の軸方向及び周方向に移動させるスキャナと、このスキャナを介して超音波斜角探触子の位置を制御するとともに超音波斜角探触子による超音波の発信を制御し、超音波斜角探触子の位置情報及び超音波斜角探触子で受信した反射波の波形情報を自動収録し、平面展開図及び板厚方向断面図上で反射波を画像表示する制御・収録・処理装置とを備えている。また、例えば欠陥に相当する反射波画像が表示されて欠陥が有りとなった場合、制御・収録・処理装置は、反射波の強度により欠陥の程度を区分けして表示するようになっている。   An ultrasonic flaw detector described in Patent Literature 1 is disposed on the outer peripheral side of a pipe, and transmits an ultrasonic wave at an angle inclined toward the inner peripheral side of the pipe and receives the reflected wave thereof. A scanner that moves the ultrasonic oblique probe in the axial direction and the circumferential direction of the pipe, and the position of the ultrasonic oblique probe is controlled via the scanner and the ultrasonic oblique probe is used. Controls the transmission of ultrasonic waves, automatically records the position information of the ultrasonic oblique angle probe and the reflected wave waveform information received by the ultrasonic oblique angle probe, on the plane development view and the plate thickness direction sectional view It has a control, recording, and processing device that displays reflected waves as an image. For example, when a reflected wave image corresponding to a defect is displayed and a defect is present, the control / recording / processing device displays the degree of the defect according to the intensity of the reflected wave.

特開2007−47116号公報JP 2007-471116 A

しかしながら、上記従来技術には以下のような課題が存在する。
すなわち、特許文献1には明確に記載されていないが、上記制御・収録・処理装置は、板厚方向断面における反射波画像と設計図(詳細には、溶接部の設計境界線等)とを重ね合わせて表示しており、作業者の目視判断により欠陥の有無の判定を行っている。ところが、通常、配管の外周面はグラインダ等で平滑処理されて溶接部と配管母材との境界が特定できないため溶接部の位置を正確に把握できない場合には、反射波画像と設計図との位置関係を正確に合わせることが困難であった。また、例えば配管母材及び溶接金属がオーステナイト系ステンレス鋼又はニッケル基合金等で形成された場合、溶接部の境界等で反射した反射波が得られる。そのため、板厚方向断面における溶接部の境界近傍に表示された反射波画像が、溶接部の境界に相当するものなのかそれとも欠陥に相当するものなのかを正確に判定することができなかった。したがって、欠陥の検出精度の点で改善の余地があった。
However, there are the following problems in the above-described prior art.
That is, although not clearly described in Patent Document 1, the control / recording / processing apparatus includes a reflected wave image and a design drawing (specifically, a design boundary line of a welded portion, etc.) in a cross section in the plate thickness direction. The images are displayed in a superimposed manner, and the presence or absence of defects is determined by visual judgment of the operator. However, when the outer periphery of the pipe is usually smoothed by a grinder or the like and the boundary between the weld and the pipe base material cannot be specified, the position of the weld cannot be accurately grasped. It was difficult to match the positional relationship accurately. In addition, for example, when the pipe base material and the weld metal are formed of austenitic stainless steel or nickel-base alloy, a reflected wave reflected at the boundary of the welded portion or the like is obtained. Therefore, it has not been possible to accurately determine whether the reflected wave image displayed in the vicinity of the boundary of the welded portion in the cross section in the plate thickness direction corresponds to the boundary of the welded portion or to the defect. Therefore, there is room for improvement in terms of defect detection accuracy.

本発明の目的は、欠陥の検出精度を高めることができる配管溶接部検査装置を提供することにある。   An object of the present invention is to provide a pipe welded portion inspection apparatus that can improve the detection accuracy of defects.

上記目的を達成するために、本発明は、超音波検査により配管の溶接部を検査する配管溶接部検査装置において、前記配管の外周側に配置され、前記配管の内周側に向けて傾斜した角度で超音波を発信するとともにその反射波を受信する超音波探触子と、前記超音波探触子の位置情報及び前記超音波探触子で受信した反射波の波形情報を含む探傷情報を収録する探傷情報記憶手段と、前記探傷情報記憶手段で収録された探傷情報に基づき反射波を前記配管の板厚方向断面の反射位置に変換して画像表示する反射波画像表示手段と、前記反射波画像表示手段で表示され前記溶接部の境界に相当する複数の反射波画像の位置に基づき前記溶接部の境界線を演算して設定する境界線設定手段と、前記反射波画像表示手段で表示された複数の反射波画像のうち、前記境界線演算手段で設定された前記溶接部の境界線より配管母材側に位置しかつ前記溶接部の境界線より予め設定された閾値以上離れた位置のものを、欠陥に相当すると判定して識別表示させる欠陥判定手段とを備える。   In order to achieve the above object, the present invention provides an apparatus for inspecting a welded portion of a pipe by ultrasonic inspection, and is arranged on the outer peripheral side of the pipe and is inclined toward the inner peripheral side of the pipe. An ultrasonic probe that transmits ultrasonic waves at an angle and receives reflected waves thereof, and flaw detection information including positional information of the ultrasonic probes and waveform information of reflected waves received by the ultrasonic probes. Flaw detection information storage means for recording, reflected wave image display means for converting the reflected wave into a reflection position of the cross section in the plate thickness direction of the pipe based on the flaw detection information recorded by the flaw detection information storage means, and the reflection Boundary line setting means for calculating and setting the boundary lines of the welds based on the positions of a plurality of reflected wave images corresponding to the boundaries of the welds displayed by the wave image display means, and displayed by the reflected wave image display means Multiple reflected wave images Among them, the one located on the pipe base material side from the boundary line of the welded portion set by the boundary line calculation means and the position away from the boundary line of the welded portion by a predetermined threshold or more corresponds to a defect. Then, defect determination means for determining and identifying and displaying is provided.

本発明においては、境界線設定手段は、溶接部の境界に相当する反射波画像の位置に基づき溶接部の境界線を演算して設定するので、溶接部の境界線を正確に特定することができる。また、欠陥判定手段は、設定された溶接部の境界線を基準として欠陥に相当する反射波画像の有無を判定し、例えば欠陥に相当する反射波画像がある場合はそれを識別表示させる。したがって本発明においては、例えば作業者の目視判断により欠陥の有無を判定する場合と比べ、欠陥の検出精度を高めることができる。   In the present invention, since the boundary line setting means calculates and sets the boundary line of the welded part based on the position of the reflected wave image corresponding to the boundary of the welded part, the boundary line of the welded part can be accurately specified. it can. Further, the defect determining means determines the presence or absence of a reflected wave image corresponding to the defect with reference to the set boundary line of the welded portion, and for example, if there is a reflected wave image corresponding to the defect, displays it. Therefore, in this invention, compared with the case where the presence or absence of a defect is determined, for example by an operator's visual judgment, the detection accuracy of a defect can be improved.

本発明によれば、欠陥の検出精度を高めることができる。   According to the present invention, it is possible to improve the detection accuracy of defects.

以下、本発明の一実施形態を、図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態による配管溶接部検査装置の全体構成を表す概略図である。また、図2は、超音波斜角探触子を配管の溶接部とともに表す配管断面図である。   FIG. 1 is a schematic diagram illustrating the overall configuration of the pipe welded portion inspection apparatus according to the present embodiment. FIG. 2 is a pipe cross-sectional view showing the ultrasonic oblique angle probe together with the welded part of the pipe.

これら図1及び図2において、配管溶接部検査装置は、配管1の溶接部2の検査(特に、配管母材3の内周面から発生するひび4の検出)を目的とするものであり、配管1の外周側に取り付けられたガイドレール5と、このガイドレール5を介し配管1の周方向に移動可能に設けられ、超音波斜角探触子6を備えた探触子移動装置7と、この探触子移動制御装置7を駆動制御して超音波斜角探触子6の位置を制御する探触子位置制御装置8と、超音波斜角探触子6による超音波の発信及びその反射波の受信を制御する超音波探傷制御装置9と、これら探触子位置制御装置8及び超音波探傷制御装置9を連携して制御するとともに、探傷情報(詳細には、超音波斜角探触子3の位置情報と超音波斜角探触子3で受信した反射波の波形情報を含む)を収録する中央制御装置10と、この中央制御装置10に収録された探傷情報に基づき、反射波を配管1の板厚方向断面の反射位置に変換して画像表示する表示装置11と、配管1の溶接部2の設計境界線(配管母材3の開先線)を含む設計データを記憶する設計データ記憶装置12とを備えている。   In these FIG.1 and FIG.2, the pipe welding part test | inspection apparatus aims at the test | inspection of the welding part 2 of the piping 1 (especially detection of the crack 4 which generate | occur | produces from the internal peripheral surface of the piping base material 3), A guide rail 5 attached to the outer peripheral side of the pipe 1, and a probe moving device 7 provided with an ultrasonic oblique angle probe 6 provided so as to be movable in the circumferential direction of the pipe 1 via the guide rail 5. The probe movement control device 7 is driven and controlled to control the position of the ultrasonic oblique angle probe 6, and the transmission of ultrasonic waves by the ultrasonic oblique angle probe 6 and The ultrasonic flaw detection control device 9 that controls the reception of the reflected wave, the probe position control device 8 and the ultrasonic flaw detection control device 9 are controlled in cooperation with each other, and flaw detection information (in detail, an ultrasonic oblique angle). Includes position information of the probe 3 and waveform information of the reflected wave received by the ultrasonic oblique angle probe 3 , A display device 11 for displaying an image by converting a reflected wave into a reflection position of a cross section in the thickness direction of the pipe 1 based on the flaw detection information recorded in the central control apparatus 10, and the pipe 1 And a design data storage device 12 for storing design data including a design boundary line of the welded portion 2 (a groove line of the piping base material 3).

探触子移動装置7は、上記超音波斜角探触子6と、配管1の軸方向(図1及び図2中左右方向)に延在し超音波斜角探触子3を支持するアーム13と、このアーム13を配管1の軸方向に移動可能に支持する複数の車輪14と、これら車輪14を回転制御してアーム13(言い換えれば、超音波斜角探触子6)を配管1の軸方向に移動させる軸方向移動制御機構15と、ガイドレール5に噛み合う歯車16と、この歯車16を回転制御して装置本体(言い換えれば、超音波斜角探触子6)を配管1の周方向に移動させる周方向移動制御機構17とを備えている。なお、ガイドレール5は、配管1の外周側に取り付け可能なように分割構造となっている。   The probe moving device 7 includes the ultrasonic oblique probe 6 and an arm that extends in the axial direction of the pipe 1 (left and right in FIGS. 1 and 2) and supports the ultrasonic oblique probe 3. 13, a plurality of wheels 14 that support the arm 13 so as to be movable in the axial direction of the pipe 1, and the arm 13 (in other words, the ultrasonic oblique probe 6) is connected to the pipe 1 by controlling the rotation of the wheels 14. An axial movement control mechanism 15 for moving the axial direction of the apparatus, a gear 16 meshing with the guide rail 5, and rotation of the gear 16 to control the apparatus main body (in other words, the ultrasonic oblique probe 6) of the pipe 1. A circumferential movement control mechanism 17 that moves in the circumferential direction is provided. The guide rail 5 has a divided structure so that it can be attached to the outer peripheral side of the pipe 1.

超音波斜角探触子6は、配管1の内周側に向けて傾斜した角度で超音波を発信するとともに、配管1の溶接部2の境界(詳細には、溶接金属と配管母材3との境界、及び溶接金属の垂れ込みの内周面)で反射された反射波や、配管母材2の内周面から発生したひび4等の欠陥で反射された反射波を受信するようになっている(図2中点線矢印で超音波の経路を示す)。   The ultrasonic oblique angle probe 6 transmits ultrasonic waves at an angle inclined toward the inner peripheral side of the pipe 1, and at the boundary of the welded part 2 of the pipe 1 (in detail, the weld metal and the pipe base material 3 So as to receive the reflected wave reflected at the boundary between and the weld metal sag and the reflected wave reflected by defects such as cracks 4 generated from the inner peripheral surface of the pipe preform 2. (The ultrasonic path is indicated by a dotted arrow in FIG. 2).

超音波は音響インピーダンス(=媒質密度×音速)の差がある部位で反射し、音響インピーダンスの差が大きいほど反射効率が高くなる。例えばオーステナイト系ステンレス鋼で形成された溶接部2及び配管母材3は、密度差がほとんどない。しかしながら、配管母材3では、結晶組織の向きがランダムであるから超音波の伝播方向に関係なく音速が一定であるのに対し、溶接部2では、結晶組織の向きが揃うことから音速の音響異方性を有する。そして、図3に示すように、溶接部2の柱状晶組織の方向に対する超音波の入射角度が0度、45度、90度である場合、溶接部2と配管母材3との間の音速比が大きくなり(特に、縦波に比べて横波の方が大きくなり)、溶接部2の境界における反射効率が高くなる。また、図4に示すように、溶接部2の柱状晶組織の生成方向は境界上で法線方向となることから、溶接部2の境界線に対する超音波の入射角を45度にすると、反射効率が高くなる。また、溶接部2の境界線は、例えば配管1の板厚方向に対し0度〜25度の範囲の傾き部分を有している。以上のことから、超音波斜角探触子6は、横波の超音波を発信するとともに、その屈折角θを45度〜70度の範囲で設定することが好ましい。   Ultrasound is reflected at a portion where there is a difference in acoustic impedance (= medium density × sound velocity), and the reflection efficiency increases as the difference in acoustic impedance increases. For example, the weld 2 and the pipe base material 3 formed of austenitic stainless steel have almost no density difference. However, in the pipe base material 3, the direction of the crystal structure is random, so that the sound speed is constant regardless of the propagation direction of the ultrasonic wave, whereas in the welded portion 2, the direction of the crystal structure is aligned, so Has anisotropy. And as shown in FIG. 3, when the incident angle of the ultrasonic wave with respect to the direction of the columnar crystal structure of the welded portion 2 is 0 degree, 45 degrees, and 90 degrees, the sound velocity between the welded part 2 and the pipe base material 3 is obtained. The ratio is increased (in particular, the transverse wave is larger than the longitudinal wave), and the reflection efficiency at the boundary of the welded portion 2 is increased. Also, as shown in FIG. 4, the generation direction of the columnar crystal structure of the welded portion 2 is a normal direction on the boundary. Therefore, when the incident angle of the ultrasonic wave with respect to the boundary line of the welded portion 2 is 45 degrees, Increases efficiency. Moreover, the boundary line of the welding part 2 has the inclination part of the range of 0 degree-25 degree | times with respect to the plate | board thickness direction of the piping 1, for example. From the above, it is preferable that the ultrasonic oblique angle probe 6 transmits a transverse ultrasonic wave and sets the refraction angle θ in a range of 45 degrees to 70 degrees.

中央制御装置10は、探触子位置制御装置8及び超音波探傷制御装置9にトリガ信号を出力するトリガ信号発生部18と、探傷情報を収録する探傷情報記憶部19とを備えている。   The central controller 10 includes a trigger signal generator 18 that outputs a trigger signal to the probe position controller 8 and the ultrasonic flaw detector 9 and a flaw information storage 19 that records flaw information.

探触子位置制御装置8は、中央制御装置10のトリガ信号発生部18からのトリガ信号に対し予め設定された走査パターン(例えば配管1の周方向位置を変えて軸方向の走査を繰り返すような矩形走査パターン)に基づいて演算処理が行われ、生成した駆動制御信号(所定の移動量に相当する信号)を探触子移動装置7の軸方向移動制御機構15及び周方向移動制御機構17に出力する走査制御回路20と、この走査制御回路20の制御情報に基づき超音波斜角探触子6の移動方向及び移動量を演算して超音波斜角探触子6の位置を演算する移動量演算回路21と、この移動量演算回路21で演算された超音波斜角探触子6の位置情報をアナログ信号からデジタル信号に変換して、中央制御装置10の探傷情報記憶部19に出力するA/D変換回路22とを備えている。   The probe position controller 8 repeats scanning in the axial direction by changing a preset scanning pattern (for example, changing the circumferential position of the pipe 1 in response to the trigger signal from the trigger signal generator 18 of the central controller 10. Is calculated based on the rectangular scanning pattern), and the generated drive control signal (a signal corresponding to a predetermined movement amount) is sent to the axial movement control mechanism 15 and the circumferential movement control mechanism 17 of the probe moving device 7. The scanning control circuit 20 to output and the movement for calculating the position and position of the ultrasonic oblique probe 6 by calculating the moving direction and moving amount of the ultrasonic oblique probe 6 based on the control information of the scanning control circuit 20 The position information of the amount calculation circuit 21 and the ultrasonic oblique angle probe 6 calculated by the movement amount calculation circuit 21 is converted from an analog signal to a digital signal and output to the flaw detection information storage unit 19 of the central controller 10. A / D change And a circuit 22.

超音波探傷制御装置9は、中央制御装置10のトリガ信号発生部18からのトリガ信号に応じて超音波斜角探触子6に超音波の発信指令を送信する送信回路23と、超音波斜角探触子6で受信した反射波を受信する受信回路24と、この受信回路24で受信した反射波の波形情報をアナログ信号からデジタル信号に変換して、中央制御装置10の探傷情報記憶部19に出力するA/D変換回路25とを備えている。   The ultrasonic flaw detection control device 9 includes a transmission circuit 23 that transmits an ultrasonic wave transmission command to the ultrasonic oblique angle probe 6 in response to a trigger signal from the trigger signal generation unit 18 of the central control device 10, and an ultrasonic oblique signal. A receiving circuit 24 that receives the reflected wave received by the angular probe 6, and converts the waveform information of the reflected wave received by the receiving circuit 24 from an analog signal to a digital signal, so that the flaw detection information storage unit of the central controller 10 19 is provided with an A / D conversion circuit 25 that outputs to A / D converter 19.

中央制御装置10の探傷情報記憶部19は、探触子位置制御装置8からの超音波斜角探触子6の位置情報及び超音波探傷制御装置9からの反射波の波形情報が入力されると、これらを探傷情報として収録し、トリガ信号発生部18にトリガ信号の発信指令を出力する。そして、トリガ信号発生部18は、トリガ信号の発信指令に応じてトリガ信号を出力し、探触子移動装置8及び超音波探傷制御装置を連携して制御する。このようにして、超音波斜角探触子6を配管1上で走査させながら探傷情報を自動収録するようになっている。   The flaw detection information storage unit 19 of the central control device 10 receives position information of the ultrasonic oblique angle probe 6 from the probe position control device 8 and waveform information of reflected waves from the ultrasonic flaw detection control device 9. These are recorded as flaw detection information, and a trigger signal transmission command is output to the trigger signal generator 18. The trigger signal generator 18 outputs a trigger signal in response to a trigger signal transmission command, and controls the probe moving device 8 and the ultrasonic flaw detection control device in cooperation with each other. In this way, flaw detection information is automatically recorded while the ultrasonic oblique angle probe 6 is scanned on the pipe 1.

ここで本実施形態の大きな特徴として、中央制御装置10の探傷情報記憶部19には、配管1の溶接部2の境界で反射した反射波に関する探傷情報が収録されている。そして、表示装置11は、中央制御装置10の探傷情報記憶部19に収録された複数の探傷情報に基づき反射波を配管1の板厚方向断面の反射位置に変換して画像表示するとともに、それら配管1の溶接部2の境界に相当する複数の反射波画像の位置に基づき溶接部2の境界線を演算して設定し、この溶接部2の境界線を重ね合わせて表示する。また、溶接部2の境界線を基準として欠陥に相当する反射波画像の有無を判定し、例えば欠陥に相当する反射画像がある場合はそれを識別表示させるようになっている。このような表示装置11の制御手順を図5により説明する。   Here, as a major feature of the present embodiment, the flaw detection information storage unit 19 of the central controller 10 stores flaw detection information related to the reflected wave reflected at the boundary of the welded portion 2 of the pipe 1. Then, the display device 11 converts the reflected wave into the reflection position of the cross section in the plate thickness direction of the pipe 1 based on the plurality of flaw detection information recorded in the flaw detection information storage unit 19 of the central control device 10, and displays these images. The boundary line of the welded part 2 is calculated and set based on the positions of the plurality of reflected wave images corresponding to the boundary of the welded part 2 of the pipe 1, and the boundary line of the welded part 2 is superimposed and displayed. Also, the presence or absence of a reflected wave image corresponding to a defect is determined with reference to the boundary line of the welded portion 2, and for example, if there is a reflected image corresponding to a defect, it is identified and displayed. The control procedure of the display device 11 will be described with reference to FIG.

図5は、表示装置11の制御処理内容を表すフローチャートである。   FIG. 5 is a flowchart showing the contents of control processing of the display device 11.

この図5において、まず、ステップ100において、表示装置11は、中央制御装置10の探傷情報記憶部19に収録された複数の探傷情報を読み込み、電気ノイズを除去するために振幅が予め設定された閾値以上の反射波を抽出する。その後、ステップ110に進んで、抽出した反射波を配管1の板厚方向断面の位置に変換して画像(詳細には、反射波の振幅を等高線で表した画像)として表示させる。詳細には、図6に示すように、配管1の軸方向における超音波斜角探触子6の位置をX軸とし、超音波のビーム路程(詳細には、超音波が反射されて戻るまでの片道の伝播時間を距離で表したもの)をY軸とし、このY軸を超音波の屈折角θの分だけ傾斜させた斜交座標系を用いて、反射波を配管1の板厚方向断面の位置に変換する。なお、本実施形態では、作業者が配管1の外周面に溶接部2の仮想中心線27(前述の図1及び図2参照)をペン等で付しており、この仮想中心線27に超音波斜角探触子6の初期位置を合わせることで、仮想中心線27の位置(基準位置)を座標原点Oとしている。そして、例えば図6に示すように、溶接金属と配管母材3との境界に相当する複数の反射波画像26aと、溶接金属の垂れ込みの内周面に相当する反射波画像26bと、配管母材3の内周面から発生したひび4の角部に相当する反射波画像26cとが表示される。   In FIG. 5, first, in step 100, the display device 11 reads a plurality of flaw detection information recorded in the flaw detection information storage unit 19 of the central control device 10, and the amplitude is preset in order to remove electrical noise. Extract reflected waves above the threshold. Thereafter, the process proceeds to step 110 where the extracted reflected wave is converted into the position of the cross section in the plate thickness direction of the pipe 1 and displayed as an image (specifically, an image representing the amplitude of the reflected wave with contour lines). Specifically, as shown in FIG. 6, the position of the ultrasonic oblique probe 6 in the axial direction of the pipe 1 is taken as the X axis, and the ultrasonic beam path (specifically, until the ultrasonic wave is reflected and returned). The one-way propagation time is expressed in distance) as the Y axis, and the reflected wave is transmitted in the thickness direction of the pipe 1 using an oblique coordinate system in which the Y axis is inclined by the ultrasonic refraction angle θ. Convert to cross-sectional position. In this embodiment, the operator attaches a virtual center line 27 (see FIGS. 1 and 2 described above) of the welded portion 2 to the outer peripheral surface of the pipe 1 with a pen or the like. By matching the initial position of the acoustic angle probe 6, the position (reference position) of the virtual center line 27 is set as the coordinate origin O. For example, as shown in FIG. 6, a plurality of reflected wave images 26 a corresponding to the boundary between the weld metal and the pipe base material 3, a reflected wave image 26 b corresponding to the inner peripheral surface of the sag of the weld metal, and the pipe A reflected wave image 26c corresponding to the corner of the crack 4 generated from the inner peripheral surface of the base material 3 is displayed.

そして、ステップ120に進み、表示装置11は、設計データ記憶装置12に記憶された溶接部2の設計境界線を読み込み(設計図から抽出処理してもよい)、上述した反射波画像26a,26b,26cの位置との相関性により設計境界線の位置を演算する。具体例としては、溶接部2の境界に相当するものとして互いの位置間隔が閾値以下となる反射波画像26aを抽出し、これらの反射波画像26aの位置を直線近似し、設計境界線をX軸方向に移動させて最も相関性が高くなる位置を演算する。相関性を求める方法としては、最尤法や最小二乗法等がある。このようにして溶接部2の境界線28を設定し、上述した反射画像26a〜26cに重ね合わせて表示する(図6参照)。   In step 120, the display device 11 reads the design boundary line of the welded portion 2 stored in the design data storage device 12 (or may be extracted from the design drawing), and the reflected wave images 26a and 26b described above. , 26c, the position of the design boundary line is calculated. As a specific example, the reflected wave images 26a whose position intervals are equal to or less than the threshold are extracted as those corresponding to the boundary of the welded portion 2, the positions of these reflected wave images 26a are linearly approximated, and the design boundary line is defined as X The position where the correlation is highest is calculated by moving in the axial direction. As a method for obtaining the correlation, there are a maximum likelihood method and a least square method. In this way, the boundary line 28 of the welded portion 2 is set and displayed superimposed on the above-described reflection images 26a to 26c (see FIG. 6).

そして、ステップ130に進み、例えば溶接部2の境界線28より配管母材側(図6中右側)に位置し配管母材の内周面を含むように予め設定された検査範囲29(例えば境界線28の中心位置28aから配管1の軸方向に10mm移動した範囲)において、境界線28より予め設定された閾値以上離れた反射波画像の有無を判定する。そして、例えば図6に示すように、検査範囲29において境界線28より予め設定された閾値以上離れた反射画像26cがある場合は、ステップ130の判定が満たされてステップ140に進み、反射画像26cを色等で識別表示させる。   Then, the process proceeds to step 130, for example, an inspection range 29 (for example, a boundary, for example) that is set on the pipe base material side (right side in FIG. 6) from the boundary line 28 of the welded portion 2 and includes the inner peripheral surface of the pipe base material. In the range of 10 mm in the axial direction of the pipe 1 from the center position 28a of the line 28), it is determined whether or not there is a reflected wave image separated from the boundary line 28 by a predetermined threshold or more. Then, for example, as shown in FIG. 6, when there is a reflection image 26 c that is separated from the boundary line 28 by a predetermined threshold or more in the inspection range 29, the determination in step 130 is satisfied and the process proceeds to step 140, and the reflection image 26 c Is identified and displayed by color or the like.

なお、上記において、中央制御装置10の探傷情報記憶部19は、特許請求の範囲記載の超音波探触子の位置情報及び超音波探触子で受信した反射波の波形情報を含む探傷情報を収録する探傷情報記憶手段を構成する。表示装置11が行うステップ110は、探傷情報記憶手段で収録された探傷情報に基づき反射波を配管の板厚方向断面の反射位置に変換して画像表示する反射波画像表示手段を構成する。また、表示装置11が行うステップ120は、反射波画像表示手段で表示され溶接部の境界に相当する複数の反射波画像の位置に基づき溶接部の境界線を演算して設定する境界線設定手段を構成する。また、表示装置11が行うステップ130及び140は、反射波画像表示手段で表示された複数の反射波画像のうち、境界線演算手段で設定された溶接部の境界線より配管母材側に位置しかつ溶接部の境界線より予め設定された閾値以上離れた位置のものを、欠陥に相当すると判定して識別表示させる欠陥判定手段を構成する。また、超音波斜角探触子6、探触子移動装置7、及び探触子位置制御装置8は、配管1の外周面に付した基準位置を入力可能な入力手段を構成する。   In the above description, the flaw detection information storage unit 19 of the central controller 10 includes flaw detection information including the position information of the ultrasonic probe described in the claims and the waveform information of the reflected wave received by the ultrasonic probe. The flaw detection information storage means to record is comprised. Step 110 performed by the display device 11 constitutes reflected wave image display means for displaying the image by converting the reflected wave into the reflection position of the cross section in the plate thickness direction of the pipe based on the flaw detection information recorded in the flaw detection information storage means. The step 120 performed by the display device 11 is a boundary line setting means for calculating and setting the boundary line of the welded portion based on the positions of a plurality of reflected wave images displayed on the reflected wave image display means and corresponding to the boundary of the welded portion. Configure. Steps 130 and 140 performed by the display device 11 are positioned closer to the pipe base material than the boundary line of the welded portion set by the boundary line calculation means among the plurality of reflected wave images displayed by the reflected wave image display means. In addition, a defect determination unit is configured to identify and display a position at a position separated from the boundary of the weld by a predetermined threshold or more as being equivalent to a defect. Further, the ultrasonic oblique angle probe 6, the probe moving device 7, and the probe position control device 8 constitute an input unit that can input a reference position attached to the outer peripheral surface of the pipe 1.

以上のように構成された本実施形態においては、表示装置11は、配管1の溶接部2の境界に相当する反射波画像26a等に基づき溶接部2の境界線を演算して設定するので、溶接部2の境界線を正確に特定することができる。また、設定された溶接部2の境界線を基準として欠陥に相当する反射波画像の有無を判定し、例えば欠陥に相当する反射波画像26cがある場合はそれを識別表示させる。したがって、例えば作業者の目視判断により欠陥の有無を判定する場合と比べ、欠陥の検出精度を高めることができる。   In the present embodiment configured as described above, the display device 11 calculates and sets the boundary line of the welded part 2 based on the reflected wave image 26a corresponding to the boundary of the welded part 2 of the pipe 1 and so on. The boundary line of the weld 2 can be accurately specified. Also, the presence or absence of a reflected wave image corresponding to a defect is determined with reference to the set boundary line of the welded portion 2, and for example, if there is a reflected wave image 26c corresponding to a defect, it is identified and displayed. Therefore, compared with the case where the presence or absence of a defect is determined, for example by visual judgment of an operator, the defect detection accuracy can be improved.

なお、上記一実施形態においては、表示装置11は、境界線設定機能として、複数の反射波画像26a等の位置との相関性により溶接部2の設計境界線の位置を演算して設定する場合を例にとって説明したが、これに限られない。すなわち、例えば、溶接部2の境界に相当するものとして互いの位置間隔が閾値以下となる反射波画像26aを抽出し、これらの反射波画像26aの位置に基づき回帰線(溶接部2の境界線)を演算して設定してもよい。このような場合も、上記同様の効果を得ることができる。   In the above embodiment, the display device 11 calculates and sets the position of the design boundary line of the welded part 2 based on the correlation with the positions of the plurality of reflected wave images 26a and the like as the boundary line setting function. However, the present invention is not limited to this. That is, for example, a reflected wave image 26a in which the mutual position interval is equal to or smaller than a threshold value is extracted as corresponding to the boundary of the welded portion 2, and a regression line (boundary line of the welded portion 2) ) May be calculated and set. In such a case, the same effect as described above can be obtained.

また、上記一実施形態においては、配管1の内周側に向けて傾斜した角度で超音波を発信するとともにその反射波を受信する超音波探触子として、超音波斜角探触子3を備えた場合を例にとって説明したが、これに限られない。すなわち、超音波斜角探触子3に代えて、例えば超音波アレイセンサを設けてもよい。このような変形例を以下説明する。   In the above-described embodiment, the ultrasonic oblique angle probe 3 is used as an ultrasonic probe that transmits ultrasonic waves at an angle inclined toward the inner peripheral side of the pipe 1 and receives the reflected waves. Although the case where it is provided has been described as an example, it is not limited thereto. That is, instead of the ultrasonic oblique angle probe 3, for example, an ultrasonic array sensor may be provided. Such a modification will be described below.

図7は、第1の変形例における超音波アレイセンサの構成を表す概略図である。なお、この第1の変形例において、上記一実施形態と同等の部分は、適宜説明及び図示を省略する。   FIG. 7 is a schematic diagram illustrating the configuration of the ultrasonic array sensor according to the first modification. In the first modification, the description and illustration of the parts equivalent to those of the above embodiment will be omitted as appropriate.

第1の変形例では、探触子移動装置7のアーム13には、配管1の軸方向に配設された複数(図7では8個)の振動子30を有する超音波アレイセンサ31が設けられている。また、複数の振動子31からの球面超音波32の発信及び位相をそれぞれ制御する振動子制御装置33(振動子制御手段)が備えられている。振動子制御装置33は、複数の振動子31への電圧印加時間(言い換えれば、遅延時間)をそれぞれ制御して、振動子31から発生する球面超音波32の位相の重ね合わせ位置を制御することにより、干渉波34の角度及び集束を可変制御する。これにより、任意の集束目標点P(好ましくは配管母材の内周面)及び任意の傾斜角度θで干渉波34を発信するようになっている。   In the first modification, the arm 13 of the probe moving device 7 is provided with an ultrasonic array sensor 31 having a plurality of (eight in FIG. 7) transducers 30 arranged in the axial direction of the pipe 1. It has been. Further, a vibrator control device 33 (vibrator control means) for controlling the transmission and phase of the spherical ultrasonic waves 32 from the plurality of vibrators 31 is provided. The vibrator control device 33 controls the superposition position of the phases of the spherical ultrasonic waves 32 generated from the vibrator 31 by controlling the voltage application time (in other words, the delay time) to each of the plurality of vibrators 31. Thus, the angle and focusing of the interference wave 34 are variably controlled. As a result, the interference wave 34 is transmitted at an arbitrary focusing target point P (preferably the inner peripheral surface of the pipe base material) and at an arbitrary inclination angle θ.

このように構成された第1の変形例においても、上記一実施形態同様、欠陥の検出精度を高めることができる。   Also in the first modified example configured as described above, the defect detection accuracy can be increased as in the above-described embodiment.

図8は、第2の変形例における超音波アレイセンサを配管の溶接部とともに表す配管断面図である。なお、この第2の変形例において、上記一実施形態と同等の部分は、適宜説明を省略する。   FIG. 8 is a pipe cross-sectional view showing the ultrasonic array sensor according to the second modified example together with the welded part of the pipe. Note that in this second modification, the description of the same parts as in the above embodiment will be omitted as appropriate.

第2の変形例では、配管1の軸方向に配設された多数(図8では20個以上)の振動子30を有する超音波アレイセンサ31Aと、振動子30からの球面超音波32の発信及び位相をそれぞれ制御する振動子制御装置33A(振動子制御手段、図示せず)とを備えている。振動子制御装置33Aは、多数の振動子30のうち互いに隣接する例えば8つの振動子30を選択し、それら選択した振動子31への電圧印加時間(言い換えれば、遅延時間)をそれぞれ制御して、振動子31から発生する球面超音波32の位相の重ね合わせ位置を制御することにより、干渉波34の角度及び集束を可変制御する。これにより、任意の集束目標点(好ましくは配管母材の内周面)及び任意の傾斜角度で干渉波34を発信するようになっている。   In the second modification, an ultrasonic array sensor 31A having a large number (20 or more in FIG. 8) of transducers 30 arranged in the axial direction of the pipe 1, and transmission of spherical ultrasonic waves 32 from the transducers 30. And a vibrator control device 33A (vibrator control means, not shown) for controlling the phase respectively. The vibrator control device 33A selects, for example, eight vibrators 30 adjacent to each other among the many vibrators 30, and controls the voltage application time (in other words, delay time) to the selected vibrators 31, respectively. By controlling the superposition position of the phase of the spherical ultrasonic wave 32 generated from the transducer 31, the angle and focusing of the interference wave 34 are variably controlled. Thereby, the interference wave 34 is transmitted at an arbitrary focusing target point (preferably the inner peripheral surface of the pipe base material) and at an arbitrary inclination angle.

また、振動子制御装置33Aは、干渉波34の入射位置を配管1の軸方向に移動させるため、電圧を印加する8つの振動子30を適宜選択するようになっている(なお、振動子31への電圧印加時間のパターン、言い換えれば遅延時間のパターンは一定とする)。なお、図示しない周方向移動制御機構によって、超音波アレイセンサ31Aは配管1の周方向に移動するようになっている。   In addition, the vibrator control device 33A appropriately selects eight vibrators 30 to which a voltage is applied in order to move the incident position of the interference wave 34 in the axial direction of the pipe 1 (note that the vibrator 31). The voltage application time pattern, in other words, the delay time pattern is constant). Note that the ultrasonic array sensor 31A is moved in the circumferential direction of the pipe 1 by a circumferential movement control mechanism (not shown).

このように構成された第2の変形例においても、上記一実施形態同様、欠陥の検出精度を高めることができる。また、第2の変形例では、振動子制御装置33Aは、電圧を印加する振動子31を適宜選択することにより、干渉波34の入射位置を移動させている。これにより、上記一実施形態のようにアーム13、車輪14、及び軸方向移動機構15を備えさせて超音波探触子を機械的に移動させる場合と比べ、配管1の軸方向における走査速度を高めることができる。したがって、検査時間の短縮を図ることができる。   Also in the second modified example configured as described above, the detection accuracy of defects can be increased as in the above-described embodiment. In the second modification, the transducer control device 33A moves the incident position of the interference wave 34 by appropriately selecting the transducer 31 to which the voltage is applied. Thereby, compared with the case where the arm 13, the wheel 14, and the axial movement mechanism 15 are provided and the ultrasonic probe is mechanically moved as in the above-described embodiment, the scanning speed in the axial direction of the pipe 1 is increased. Can be increased. Therefore, the inspection time can be shortened.

なお、以上においては、溶接部2及び配管母材3がオーステナイト系ステンレス鋼で形成された場合を例にとって説明したが、これに限られず、例えばニッケル基合金等で形成されてもよい。この場合も、上記同様の効果を得ることができる。   In the above description, the case where the welded portion 2 and the pipe base material 3 are formed of austenitic stainless steel has been described as an example. However, the present invention is not limited thereto, and may be formed of, for example, a nickel-based alloy. In this case, the same effect as described above can be obtained.

本発明の配管溶接部検査装置の一実施形態の全体構成を表す概略図である。It is the schematic showing the whole structure of one Embodiment of the piping welding part test | inspection apparatus of this invention. 本発明の配管溶接部検査装置の一実施形態を構成する超音波斜角探触子を配管の溶接部とともに表す配管断面図である。It is a piping sectional view showing the ultrasonic oblique angle probe which constitutes one embodiment of the piping welding part inspection device of the present invention with the welding part of piping. 配管の溶接部における音速異方性を説明するための特性図である。It is a characteristic view for demonstrating the sonic anisotropy in the welding part of piping. 配管の溶接部における柱状晶組織を説明するための配管断面図である。It is piping sectional drawing for demonstrating the columnar crystal structure in the welding part of piping. 本発明の配管溶接部検査装置の一実施形態を構成する表示装置の制御処理内容を表すフローチャートである。It is a flowchart showing the control processing content of the display apparatus which comprises one Embodiment of the piping welding part test | inspection apparatus of this invention. 本発明の配管溶接部検査装置の一実施形態を構成する表示装置で処理された反射波の画像及び溶接部の境界線を一例として表す図である。It is a figure showing the image of the reflected wave processed with the display apparatus which comprises one Embodiment of the piping welding part inspection apparatus of this invention, and the boundary line of a welding part as an example. 本発明の配管溶接部検査装置の第1の変形例を構成する超音波アレイセンサの構成を表す概略図である。It is the schematic showing the structure of the ultrasonic array sensor which comprises the 1st modification of the pipe welding part test | inspection apparatus of this invention. 本発明の配管溶接部検査装置の第2の変形例を構成する超音波アレイセンサを配管の溶接部とともに表す配管断面図である。It is a piping sectional view showing the ultrasonic array sensor which constitutes the 2nd modification of the piping welding part inspection device of the present invention with the welding part of piping.

符号の説明Explanation of symbols

1 配管
2 溶接部
3 配管母材
4 ひび
6 超音波斜角探触子
11 表示装置
12 設計データ記憶装置
19 探傷情報記憶部
26a 反射波画像
26b 反射波画像
26c 反射波画像
28 境界線
30 振動子
31 超音波アレイセンサ
31A 超音波アレイセンサ
32 球面超音波
33 振動子制御装置
33A 振動子制御装置
DESCRIPTION OF SYMBOLS 1 Piping 2 Welding part 3 Piping base material 4 Crack 6 Ultrasonic oblique angle probe 11 Display apparatus 12 Design data memory | storage device 19 Flaw detection information memory | storage part 26a Reflected wave image 26b Reflected wave image 26c Reflected wave image 28 Boundary line 30 Vibrator 31 Ultrasonic Array Sensor 31A Ultrasonic Array Sensor 32 Spherical Ultrasound 33 Transducer Controller 33A Transducer Controller

Claims (5)

超音波検査により配管の溶接部を検査する配管溶接部検査装置において、
前記配管の外周側に配置され、前記配管の内周側に向けて傾斜した角度で超音波を発信するとともにその反射波を受信する超音波探触子と、
前記超音波探触子の位置情報及び前記超音波探触子で受信した反射波の波形情報を含む探傷情報を収録する探傷情報記憶手段と、
前記探傷情報記憶手段で収録された探傷情報に基づき反射波を前記配管の板厚方向断面の反射位置に変換して画像表示する反射波画像表示手段と、
前記反射波画像表示手段で表示され前記溶接部の境界に相当する複数の反射波画像の位置に基づき前記溶接部の境界線を演算して設定する境界線設定手段と、
前記反射波画像表示手段で表示された複数の反射波画像のうち、前記境界線演算手段で設定された前記溶接部の境界線より配管母材側に位置しかつ前記溶接部の境界線より予め設定された閾値以上離れた位置のものを、欠陥に相当すると判定して識別表示させる欠陥判定手段とを備えたことを特徴とする配管溶接部検査装置。
In pipe weld inspection equipment that inspects pipe welds by ultrasonic inspection,
An ultrasonic probe that is disposed on the outer peripheral side of the pipe and transmits an ultrasonic wave at an angle inclined toward the inner peripheral side of the pipe and receives the reflected wave;
Flaw detection information storage means for recording flaw detection information including position information of the ultrasonic probe and waveform information of reflected waves received by the ultrasonic probe;
Reflected wave image display means for converting the reflected wave into the reflection position of the cross section in the plate thickness direction of the pipe based on the flaw detection information recorded in the flaw detection information storage means, and displaying the image.
Boundary line setting means for calculating and setting the boundary line of the welded part based on the position of a plurality of reflected wave images displayed on the reflected wave image display means and corresponding to the boundary of the welded part;
Among the plurality of reflected wave images displayed by the reflected wave image display means, the pipe is located on the pipe base material side from the boundary line of the welded portion set by the boundary line calculating means, and in advance from the boundary line of the welded portion. A pipe welded part inspection apparatus comprising: defect determination means for determining that a position at a distance apart from a set threshold or more is equivalent to a defect and displaying the defect.
請求項1記載の配管溶接部検査装置において、前記溶接部の設計境界線を記憶する設計境界線記憶手段をさらに備え、前記境界線設定手段は、前記反射波画像表示手段で表示された複数の反射波画像の位置との相関性により前記溶接部の設計境界線の位置を演算して設定することを特徴とする配管溶接部検査装置。   2. The pipe welded portion inspection apparatus according to claim 1, further comprising design boundary line storage means for storing a design boundary line of the welded portion, wherein the boundary line setting means includes a plurality of pieces displayed by the reflected wave image display means. An apparatus for inspecting a welded part of a pipe, wherein the position of a design boundary line of the welded part is calculated and set based on a correlation with a position of a reflected wave image. 請求項1記載の配管溶接部検査装置において、前記配管の外周面に付した基準位置を入力可能な入力手段を有し、前記反射波画像表示手段は、前記入力手段で入力された基準位置を座標原点として反射波画像を表示することを特徴とする配管溶接部検査装置。   2. The pipe welded portion inspection apparatus according to claim 1, further comprising an input unit capable of inputting a reference position attached to an outer peripheral surface of the pipe, wherein the reflected wave image display unit displays the reference position input by the input unit. An apparatus for inspecting a welded portion of a pipe, wherein a reflected wave image is displayed as a coordinate origin. 請求項1記載の配管溶接部検査装置において、前記超音波探触子は、前記配管の軸方向に配設された複数の振動子を有する超音波アレイセンサであり、前記複数の振動子からの球面超音波の発信及び位相をそれぞれ制御する振動子制御手段を備えたことを特徴とする配管溶接部検査装置。   2. The pipe welded portion inspection apparatus according to claim 1, wherein the ultrasonic probe is an ultrasonic array sensor having a plurality of vibrators arranged in an axial direction of the pipe, A pipe welded portion inspection apparatus comprising vibrator control means for controlling the transmission and phase of spherical ultrasonic waves. 請求項1記載の配管溶接部検査装置において、前記配管母材及び溶接金属は、オーステナイト系ステンレス鋼又はニッケル基合金で形成されたことを特徴とする配管溶接部検査装置。   2. The pipe weld inspection apparatus according to claim 1, wherein the pipe base material and the weld metal are made of austenitic stainless steel or a nickel base alloy.
JP2007240045A 2007-09-14 2007-09-14 Pipe weld inspection system Active JP4792440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240045A JP4792440B2 (en) 2007-09-14 2007-09-14 Pipe weld inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240045A JP4792440B2 (en) 2007-09-14 2007-09-14 Pipe weld inspection system

Publications (2)

Publication Number Publication Date
JP2009069077A true JP2009069077A (en) 2009-04-02
JP4792440B2 JP4792440B2 (en) 2011-10-12

Family

ID=40605480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240045A Active JP4792440B2 (en) 2007-09-14 2007-09-14 Pipe weld inspection system

Country Status (1)

Country Link
JP (1) JP4792440B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157210A (en) * 2010-12-09 2011-08-17 华东理工大学 Simplified assessment method for defects of welding joint area at piping safety end of pressure vessel of AP1000 nuclear reactor
JP2012141207A (en) * 2010-12-28 2012-07-26 Global Nuclear Fuel-Japan Co Ltd Method for predicting boiling transition location in axial direction
JP2012145399A (en) * 2011-01-11 2012-08-02 Mitsubishi Heavy Ind Ltd Conduit line construction method, and pipe body and nuclear facility
JP2013134118A (en) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection device for pipe weld zone
WO2014013940A1 (en) 2012-07-17 2014-01-23 Jfeスチール株式会社 Ultrasonic wave measuring method and ultrasonic wave measuring device
JP2014106130A (en) * 2012-11-28 2014-06-09 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2014163902A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Weld section repair method and weld section repair device
RU2653955C1 (en) * 2017-07-28 2018-05-15 Дмитрий Олегович Буклешев Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157210A (en) * 2010-12-09 2011-08-17 华东理工大学 Simplified assessment method for defects of welding joint area at piping safety end of pressure vessel of AP1000 nuclear reactor
CN102157210B (en) * 2010-12-09 2012-11-21 华东理工大学 Simplified assessment method for defects of welding joint area at piping safety end of pressure vessel of AP1000 nuclear reactor
JP2012141207A (en) * 2010-12-28 2012-07-26 Global Nuclear Fuel-Japan Co Ltd Method for predicting boiling transition location in axial direction
JP2012145399A (en) * 2011-01-11 2012-08-02 Mitsubishi Heavy Ind Ltd Conduit line construction method, and pipe body and nuclear facility
JP2013134118A (en) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection device for pipe weld zone
WO2014013940A1 (en) 2012-07-17 2014-01-23 Jfeスチール株式会社 Ultrasonic wave measuring method and ultrasonic wave measuring device
US9683838B2 (en) 2012-07-17 2017-06-20 Jfe Steel Corporation Ultrasonic measurement method and ultrasonic measurement apparatus
JP2014106130A (en) * 2012-11-28 2014-06-09 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2014163902A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Weld section repair method and weld section repair device
EP2772334A3 (en) * 2013-02-27 2017-08-09 Mitsubishi Heavy Industries, Ltd. Weld portion repairing method and weld portion repairing apparatus
RU2653955C1 (en) * 2017-07-28 2018-05-15 Дмитрий Олегович Буклешев Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave

Also Published As

Publication number Publication date
JP4792440B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4792440B2 (en) Pipe weld inspection system
JP4839333B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
US7650789B2 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
US9423380B2 (en) Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
CN105699492A (en) An ultrasonographic method used for weld seam detection
JP5889742B2 (en) Ultrasonic flaw detection apparatus and method
WO2011140911A1 (en) Crack detection system and method
JP5731765B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5565904B2 (en) Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program
JP3861833B2 (en) Ultrasonic inspection method and apparatus
JP6204833B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2011208978A (en) Ultrasonic inspection method and device for turbine blade fitting section
JP6058284B2 (en) Ultrasonic flaw detection apparatus and method
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JP6290748B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2013019715A (en) Ultrasonic inspection method and ultrasonic inspection device
JP4827670B2 (en) Ultrasonic inspection equipment
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
JP2010038820A (en) Ultrasonic inspection device
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JPS6326343B2 (en)
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP4527216B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4792440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150