JPH11254136A - Magnetic stir-welding method - Google Patents

Magnetic stir-welding method

Info

Publication number
JPH11254136A
JPH11254136A JP10073017A JP7301798A JPH11254136A JP H11254136 A JPH11254136 A JP H11254136A JP 10073017 A JP10073017 A JP 10073017A JP 7301798 A JP7301798 A JP 7301798A JP H11254136 A JPH11254136 A JP H11254136A
Authority
JP
Japan
Prior art keywords
welding
magnetic
joint
stirring
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10073017A
Other languages
Japanese (ja)
Inventor
Kazuhide Enoo
一秀 榎尾
Yuji Yasuda
祐司 安田
Kenji Hirano
賢治 平野
Takahiro Arakawa
敬弘 荒川
Koreaki Tamaoki
維昭 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
IHI Corp
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc, IHI Corp filed Critical Toshiba Corp
Priority to JP10073017A priority Critical patent/JPH11254136A/en
Publication of JPH11254136A publication Critical patent/JPH11254136A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the ultrasonic permeability of the joint weld zone of an austenitic stainless steel. SOLUTION: When welding a groove 4 for joint, which is formed between base materials 3 consisting of the austenitic stainless steel, a stirring force F by magnetism is given to a melting pool 5a by setting a magnetic frequency from 4 to 10 Hz. Consequently, since the stirring frequency of the melting pool 5a can be increased and sufficient stirring can be performed without being affected by gravity, the texture of the joint weld zone 5 can be micronized even by welding in any welding position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は継手溶接部の組織を
微細化して超音波透過性を向上できるようにした磁気攪
拌溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic stir welding method capable of improving the ultrasonic permeability by making the structure of a joint weld finer.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼の継手溶
接部は、柱状晶組織が著しく成長し且つ音速異方性があ
るため、一般に、炭素鋼等と比較して超音波探傷は困難
であるとされている。
2. Description of the Related Art Ultrasonic flaw detection is generally considered to be more difficult in austenitic stainless steel joint welds than in carbon steel or the like because the columnar crystal structure grows remarkably and has sonic anisotropy. I have.

【0003】すなわち、図7(イ)(ロ)に示す如く、
オーステナイト系ステンレス鋼製の母材aの超音波探傷
検査を行う場合において、母材aの途中に継手溶接部が
ないときには、探触子bを介して超音波ビームcを発し
て斜角探傷させると、たとえば、底部の欠陥部dに当っ
て戻ってきたエコーを大きいノイズとして検出すること
ができて、欠陥部dまでの距離W1 を求めることができ
るが、図8(イ)(ロ)に示す如く、母材aの途中に継
手溶接部eが介在していて、その継手溶接部eを超音波
ビームcが透過する位置で欠陥部dを検出した場合に
は、継手溶接部eの柱状晶組織の存在により、超音波ビ
ームcが湾曲したり、疑似エコーが発生したりするの
で、欠陥部dまでの距離がW1 よりも長いW2 として求
められてしまい、精度よく探傷検査を行うことはできな
い。
That is, as shown in FIGS. 7A and 7B,
When performing an ultrasonic inspection of a base material a made of austenitic stainless steel, if there is no joint weld in the middle of the base material a, the ultrasonic beam c is emitted via the probe b to perform angle beam inspection. For example, it is possible to detect an echo that returns after hitting the defective portion d at the bottom as a large noise and obtain the distance W1 to the defective portion d. As shown in the figure, when a joint weld e is interposed in the middle of the base material a and a defect d is detected at a position where the ultrasonic beam c passes through the joint weld e, the columnar shape of the joint weld e is determined. Due to the presence of the crystal structure, the ultrasonic beam c is curved or a pseudo echo is generated, so that the distance to the defective portion d is determined as W2 longer than W1, and it is difficult to perform the flaw detection inspection with high accuracy. Can not.

【0004】オーステナイト系ステンレス鋼の継手溶接
部の超音波透過性を向上させるためには、継手溶接部の
組織を微細化することが必要であり、そのための溶接方
法として、継手用開先内に形成した溶融プールに磁気に
よる攪拌力を与えつつ溶接を行うようにした磁気攪拌溶
接方法が知られている(特開平3−27878号公報
等)。
[0004] In order to improve the ultrasonic permeability of the welded portion of austenitic stainless steel, it is necessary to refine the structure of the welded portion of the joint. There is known a magnetic stir welding method in which welding is performed while applying a magnetic stirring force to the formed molten pool (Japanese Patent Application Laid-Open No. 3-27878).

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来の
磁気攪拌溶接方法では、通常の下向き溶接姿勢におい
て、たとえば、メカオシレートと磁気周波数とを、前者
を1Hz、後者を2Hzの如く同期させて溶融プールの攪拌
状態を制御することにより、継手溶接部の超音波特性を
改善できるものであるが、溶接姿勢が下向き以外の立向
き上進、立向き下進、上向き等に変わると、溶融プール
の形状が重力の影響により変化してしまうので、溶融金
属が凝固するときに攪拌され難くなってしまう。又、他
の施工条件(速度やワイヤ量など)によっても、超音波
特性の改善度に差が生じてしまう。
However, in the conventional magnetic stir welding method described above, in a normal downward welding position, for example, the mechanical oscillation and the magnetic frequency are synchronized by synchronizing the former at 1 Hz and the latter at 2 Hz. By controlling the agitation state of the pool, it is possible to improve the ultrasonic characteristics of the welded joint.However, if the welding posture changes to a vertical upward, vertical downward, upward, etc. Since the shape changes due to the effect of gravity, it becomes difficult to stir the molten metal when it solidifies. Also, the degree of improvement in the ultrasonic characteristics varies depending on other construction conditions (speed, amount of wires, etc.).

【0006】そこで、本発明は溶接姿勢にとらわれるこ
となく、大きな攪拌効果が得られるようにして、オース
テナイト系ステンレス鋼の継手溶接部の超音波特性を改
善することができるようにしようとするものである。
Therefore, the present invention is intended to improve the ultrasonic characteristics of a welded portion of austenitic stainless steel by obtaining a large stirring effect without being restricted by the welding position. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、母材の継手用開先内に形成した溶融プー
ルに磁気による攪拌力を与えつつ溶接するようにしてあ
る磁気攪拌溶接方法において、溶融プール攪拌のための
磁気周波数を4〜10Hzとして、継手溶接部を形成させ
るようにする。
In order to solve the above-mentioned problems, the present invention provides a magnetic stirrer in which a molten pool formed in a joint groove of a base material is welded while applying a magnetic stirring force. In the welding method, the magnetic frequency for stirring the molten pool is set to 4 to 10 Hz to form a joint weld.

【0008】磁気周波数を4〜10Hzと高くすると、溶
融プールの攪拌回数が増加するため、如何なる溶接姿勢
であっても重力に影響されずに溶融プールが充分に攪拌
されることにより、継手溶接部の組織が微細化される。
したがって、継手溶接部の超音波特性を改善できること
になる。
[0008] When the magnetic frequency is increased to 4 to 10 Hz, the number of times of stirring of the molten pool increases, so that the molten pool is sufficiently stirred without being affected by gravity regardless of the welding posture, so that the welded portion of the joint is welded. Is refined.
Therefore, the ultrasonic characteristics of the joint weld can be improved.

【0009】又、継手溶接部となる溶接ビードを1層形
成する毎に、溶接方向を変えるようにすることによっ
て、組織が同一方向に成長することが抑えられるので、
超音波特性を更に改善できるようになる。
Further, by changing the welding direction every time one layer of weld bead to be a joint weld is formed, the growth of the structure in the same direction can be suppressed.
The ultrasonic characteristics can be further improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1(イ)(ロ)は本発明の実施の一形態
を示すもので、溶接トーチ1の先端部外周位置に電磁コ
イル2を装備させた溶接装置を用い、オーステナイト系
ステンレス鋼からなる母材3の継手用開先4内に、溶接
トーチ1の先端から発したアークで図示しないワイヤを
溶融させて溶融プール5aを形成し、このとき同時に、
電磁コイル2により溶接部付近に磁界をかけて、溶融プ
ール5aにローレンツカによる攪拌力Fを与えつつ溶接
するようにしてある磁気攪拌溶接方法において、溶融プ
ール5aの攪拌のための磁気周波数を4〜10Hzに設定
して、微細化組織の継手溶接部5を形成させるようにす
る。
FIGS. 1 (a) and 1 (b) show an embodiment of the present invention, in which a welding device equipped with an electromagnetic coil 2 at the outer peripheral position of the tip of a welding torch 1 is used to form an austenitic stainless steel. An unillustrated wire is melted by an arc emitted from the tip of the welding torch 1 in the joint groove 4 of the base material 3 to form a molten pool 5a.
In the magnetic stirring welding method in which a magnetic field is applied to the vicinity of the welded portion by the electromagnetic coil 2 to apply welding force F by Lorentzka to the molten pool 5a, the magnetic frequency for stirring the molten pool 5a is set to 4 The frequency is set to 10 to 10 Hz to form the joint weld 5 having a fine structure.

【0012】又、上記継手溶接部5となる溶接ビード5
bを1層(1パス)形成する毎に、溶接方向(溶接トー
チ1の進行方向)を逆向きに変えるようにする。
Also, a weld bead 5 serving as the joint weld 5 is provided.
Each time b is formed in one layer (one pass), the welding direction (the traveling direction of the welding torch 1) is changed in the opposite direction.

【0013】本発明では、母材3間の継手用開先4を溶
接して継手溶接部5を形成するに当り、磁気周波数を4
〜10Hzと高くした状態で磁気攪拌溶接を行うようにす
るので、溶融金属が凝固して組織が成長するときに、溶
融プール5aの攪拌回数を多くすることができる。これ
により、溶融プール5aは、如何なる溶接姿勢であって
も重力に影響されずに充分に攪拌されることになるた
め、メカオシレートとの同期をとる必要のない簡単な施
工で継手溶接部5の組織を微細化することができる。す
なわち、溶接姿勢や施工条件が変わると、凝固速度が変
って攪拌とのタイミングが大きな影響を与えるが、攪拌
回数が多いと充分に攪拌されるので、重力の影響を受け
にくくなる。したがって、継手溶接部5の超音波透過性
を向上でき、超音波特性を改善することができる。
In the present invention, when the joint groove 4 between the base materials 3 is welded to form the joint weld 5, the magnetic frequency is set to 4.
Since the magnetic stirring welding is performed at a high frequency of 10 to 10 Hz, the number of times of stirring of the molten pool 5a can be increased when the molten metal solidifies and the structure grows. This allows the molten pool 5a to be sufficiently stirred without being affected by gravity regardless of the welding position, so that it is not necessary to synchronize with the mechaosylate, and the joint welding portion 5 can be easily formed. The structure can be miniaturized. That is, when the welding posture and the working conditions change, the solidification rate changes and the timing of stirring is greatly affected. However, if the number of times of stirring is large, the stirring is sufficiently performed, and the influence of gravity is less likely. Therefore, the ultrasonic permeability of the joint weld 5 can be improved, and the ultrasonic characteristics can be improved.

【0014】又、上記継手溶接部5は、継手用開先4内
の底層から上層へ向け何層にも溶接ビード5bを積み重
ねて行うような多パス溶接を行うことになるが、その
際、溶接ビード5bを1層(1パス)形成する毎に溶接
方向を逆向きに変えるようにするので、同一方向に組織
が成長することを抑えることができて、組織を更に微細
化することができて、超音波特性を更に改善することが
できる。
In addition, the joint welded portion 5 performs multi-pass welding in which the weld beads 5b are stacked in multiple layers from the bottom layer to the upper layer in the groove 4 for joint. Since the welding direction is changed every time the weld bead 5b is formed in one layer (one pass), the growth of the structure in the same direction can be suppressed, and the structure can be further refined. Thus, the ultrasonic characteristics can be further improved.

【0015】[0015]

【実施例】次に、本発明が行った超音波透過性試験の結
果について説明する。
Next, the results of the ultrasonic transmission test performed by the present invention will be described.

【0016】先ず、図2に示す如く、母材3′として板
厚10mmのSUS316鋼を用い、この母材3′に、厚
さ2.5mm、幅6mmを残して60°の開先4′を設け、
該開先4′に、ステンレス系溶材(Y316L)を用い
て各溶接姿勢(下向き、立向き上進、立向き下進、上向
き)での磁気攪拌溶接(多層パス)による継手溶接部
5′を形成した。又、比較のため、磁気攪拌によらない
通常溶接による試験片も製作した。
First, as shown in FIG. 2, SUS316 steel having a thickness of 10 mm is used as a base material 3 ', and a groove 4' of 60 ° is formed on the base material 3 'while leaving a thickness of 2.5 mm and a width of 6 mm. Is established,
At the groove 4 ', a joint welded portion 5' is formed by magnetic stirring welding (multi-layer pass) in each welding position (downward, vertical upward, vertical upward, downward) using a stainless steel material (Y316L). Formed. For comparison, a test piece by normal welding without magnetic stirring was also manufactured.

【0017】磁気攪拌溶接により組織が微細化されてい
ることを組織観察で確認した後、継手溶接部5′の厚さ
が8mmとなるように表裏面を1mm宛研削して超音波透過
性試験片を製作した。
After confirming by microscopic observation that the structure has been refined by magnetic stirring welding, the front and back surfaces are ground to 1 mm so that the thickness of the joint welded portion 5 ′ is 8 mm, and an ultrasonic permeability test is performed. A piece was made.

【0018】次に、すべての試験片に対し屈折角45度
の2MHz斜角探傷時の超音波透過性を評価した。試験方
法は、図3(イ)(ロ)(ハ)に示す如く、送信用探触
子6aを継手溶接部5′の裏面に固定し、表面側で受信
用探触子6bを走査させて、直射で最大の透過音圧(エ
コー高さ)が得られた探触子位置で透過音圧を測定し
た。測定の方向は、ビード中心線上をビード方向及びビ
ードと逆方向の2方向とし、それぞれ同一方向で3個所
の位置で測定を行った。
Next, all the test pieces were evaluated for ultrasonic permeability at 2 MHz oblique flaw detection at a refraction angle of 45 degrees. As shown in FIGS. 3 (a), 3 (b) and 3 (c), the test method is such that the transmitting probe 6a is fixed to the back surface of the joint welded portion 5 ', and the receiving probe 6b is scanned on the front surface side. The transmitted sound pressure was measured at the probe position where the maximum transmitted sound pressure (echo height) was obtained by direct irradiation. The measurement was performed at two positions on the bead center line, that is, the bead direction and the direction opposite to the bead, and the measurement was performed at three positions in the same direction.

【0019】図4は通常溶接(下向き)を行った試験片
と、各溶接姿勢で磁気周波数を1Hzとして磁気攪拌溶接
を行った場合との超音波透過性の比較結果を示し、図5
は通常溶接を行った試験片と、各溶接姿勢で磁気周波数
を6Hzとして磁気攪拌溶接を行った場合との超音波透過
性の比較結果を示すものである。
FIG. 4 shows a comparison result of ultrasonic permeability between a test piece which was subjected to normal welding (downward) and a case where magnetic stirring was performed with a magnetic frequency of 1 Hz in each welding position.
Fig. 7 shows the comparison results of ultrasonic permeability between a test piece which was normally welded and a case where magnetic stirring was performed at a magnetic frequency of 6 Hz in each welding position.

【0020】図4及び図5から明らかな如く、横波超音
波の透過性を100%とした場合、通常溶接では約20
%まで大きく減衰しており、一方、磁気攪拌溶接では、
いずれの溶接姿勢においても超音波の透過性が向上して
いるが、磁気周波数が1Hzの場合、溶接姿勢が立向き下
進、上向きでは約30%と改善度が低い。これに対し、
磁気周波数が6Hzの場合は、いずれの溶接姿勢でも透過
率は40%以上と大きく改善されている。これは、磁気
周波数が大きくなると溶融プールが絶えず攪拌され、重
力の影響を受けにくくなるためと考えられる。
As is apparent from FIGS. 4 and 5, when the transmittance of the shear wave ultrasonic wave is set to 100%, about 20% is obtained by ordinary welding.
%, While in magnetic stir welding,
In any of the welding positions, the permeability of the ultrasonic wave is improved. However, when the magnetic frequency is 1 Hz, the degree of improvement is low at about 30% when the welding position is upright and downward and upward. In contrast,
When the magnetic frequency is 6 Hz, the transmittance is greatly improved to 40% or more in any welding position. This is considered to be because when the magnetic frequency is increased, the molten pool is constantly stirred and becomes less affected by gravity.

【0021】図6は板厚20mmの試験片を用いて行った
同様な試験の結果を示すもので、通常溶接では、超音波
透過性が約5%程度まで大きく減衰しているが、磁気攪
拌溶接では、約25%以上となり、通常溶接に比べて約
5倍以上も透過率が向上していることが分かる。これ
は、磁気攪拌溶接では、組織が微細化して組織が同一方
向に成長しているため、板厚が厚くなっても超音波の減
衰が少ないと考えられる。
FIG. 6 shows the results of a similar test performed using a test piece having a thickness of 20 mm. In the ordinary welding, the ultrasonic transmission was greatly attenuated to about 5%, but the magnetic stirring was performed. It can be seen that the transmittance is about 25% or more in the welding, and the transmittance is improved about 5 times or more compared to the normal welding. This is considered that in magnetic stirring welding, the microstructure is refined and the microstructure grows in the same direction, so that even when the plate thickness is increased, the attenuation of the ultrasonic wave is small.

【0022】なお、本発明者の試験によると、磁気周波
数を3Hz以下とした場合には、1Hzのときの場合とほぼ
同様に溶接姿勢の影響を受け易く、一方、11Hz以上と
した場合には、溶融プールが慣性の影響により動きにく
くなり、逆に攪拌効果が小さくなることが確認されてい
る。
According to the test conducted by the present inventors, when the magnetic frequency is set to 3 Hz or less, the magnetic head is susceptible to the influence of the welding posture almost as in the case of 1 Hz. However, it has been confirmed that the molten pool becomes difficult to move due to the influence of inertia, and conversely, the stirring effect is reduced.

【0023】このように、磁気攪拌溶接を用いることに
より、オーステナイト系ステンレス鋼の継手溶接におい
ても、磁気周波数を4〜10Hzにすることで組織を微細
化することができて、超音波透過性を改善できることが
確認された。特に、磁気周波数を6Hzとした場合には、
溶接姿勢の影響がなく、超音波透過性を安定して向上さ
せることが分かった。
As described above, by using magnetic stir welding, even in the welding of austenitic stainless steel joints, the structure can be refined by setting the magnetic frequency to 4 to 10 Hz, and the ultrasonic permeability can be improved. It was confirmed that it could be improved. In particular, when the magnetic frequency is 6 Hz,
It was found that there was no effect of the welding position and the ultrasonic transmission was improved stably.

【0024】[0024]

【発明の効果】以上述べた如く、本発明の磁気攪拌溶接
方法によれば、次の如き優れた効果を発揮する。 (1) 母材の継手用開先内に形成した溶融プールに磁気に
よる攪拌力を与えつつ溶接するようにしてある磁気攪拌
溶接方法において、溶融プール攪拌のための磁気周波数
を4〜10Hzとして、継手溶接部を形成させるようにす
るので、溶融プールの攪拌回数を増加させることができ
ることにより、如何なる溶接姿勢であっても重力に影響
されずに溶融プールを充分に攪拌することができる結
果、継手溶接部の組織を微細化することができ、したが
って、従来では超音波探傷が困難とされていたオーステ
ナイト系ステンレス鋼の継手溶接部であっても超音波透
過性を向上させることができて、超音波特性を改善する
ことができる。 (2) 継手溶接部となる溶接ビードを1層形成する毎に、
溶接方向を変えるようにすることにより、組織が同一方
向に成長することを抑えることができるので、超音波特
性を更に改善することができる。
As described above, according to the magnetic stir welding method of the present invention, the following excellent effects are exhibited. (1) In a magnetic stir welding method in which the molten pool formed in the joint groove of the base material is welded while applying a magnetic stirring force, the magnetic frequency for stirring the molten pool is set to 4 to 10 Hz. Since the joint weld is formed, the number of times of stirring of the molten pool can be increased, so that the molten pool can be sufficiently stirred without being affected by gravity in any welding posture. The microstructure of the weld can be refined, and therefore, even in the case of austenitic stainless steel joint welds where ultrasonic testing was conventionally difficult, ultrasonic permeability can be improved, The sound characteristics can be improved. (2) Each time one layer of weld bead to be the joint weld is formed,
By changing the welding direction, the growth of the structure in the same direction can be suppressed, so that the ultrasonic characteristics can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示すもので、(イ)は
継手溶接部を形成している状態の概要図、(ロ)は
(イ)のA−A矢視図である。
FIG. 1 shows an embodiment of the present invention, in which (a) is a schematic view showing a state in which a joint weld is formed, and (b) is a view taken along the line AA of (a).

【図2】試験片の概略図である。FIG. 2 is a schematic view of a test piece.

【図3】超音波透過性試験を行っている状態を示すもの
で、(イ)は平面図、(ロ)は(イ)のB−B矢視図、
(ハ)は(イ)のC−C矢視図である。
3A and 3B show a state in which an ultrasonic permeability test is being performed, wherein FIG. 3A is a plan view, FIG.
(C) is a view taken along the line CC of (A).

【図4】板厚が10mmの試験による通常溶接を行った場
合と各溶接姿勢で磁気周波数を1Hzとして磁気攪拌溶接
を行った場合との超音波透過性の比較結果を示す図であ
る。
FIG. 4 is a view showing a comparison result of ultrasonic permeability between a case where normal welding is performed by a test with a plate thickness of 10 mm and a case where magnetic stirring is performed with a magnetic frequency of 1 Hz in each welding position.

【図5】板厚が10mmの試験による通常溶接を行った場
合と各溶接姿勢で磁気周波数を6Hzとして磁気攪拌溶接
を行った場合との超音波透過性の比較結果を示す図であ
る。
FIG. 5 is a diagram showing comparison results of ultrasonic permeability between a case where normal welding is performed by a test with a plate thickness of 10 mm and a case where magnetic stirring is performed with a magnetic frequency of 6 Hz in each welding position.

【図6】板厚が20mmの試験による通常溶接を行った場
合と各溶接姿勢で磁気周波数を6Hzとして磁気攪拌溶接
を行った場合との超音波透過性の比較結果を示す図であ
る。
FIG. 6 is a diagram showing a comparison result of ultrasonic transmission between a case where normal welding is performed by a test with a plate thickness of 20 mm and a case where magnetic stirring is performed with a magnetic frequency of 6 Hz in each welding position.

【図7】継手溶接部のない位置での母材の超音波探傷検
査方式を示すもので、(イ)は側面図、(ロ)は検査結
果の一例を示す図である。
FIGS. 7A and 7B show an ultrasonic inspection method of a base material at a position where there is no joint weld, wherein FIG. 7A is a side view and FIG.

【図8】継手溶接部が介在する位置での母材の超音波探
傷検査方式を示すもので、(イ)は側面図、(ロ)は検
査結果の一例を示す図である。
8A and 8B show an ultrasonic inspection method for a base material at a position where a joint weld is interposed, wherein FIG. 8A is a side view and FIG. 8B is a diagram showing an example of an inspection result.

【符号の説明】[Explanation of symbols]

3 母材 4 継手用開先 5 継手溶接部 5a 溶融プール 5b 溶接ビード F 攪拌力 3 Base Material 4 Joint Groove 5 Joint Weld 5a Melt Pool 5b Weld Bead F Stirring Force

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 祐司 神奈川県横浜市磯子区新杉田町8 株式会 社東芝内 (72)発明者 平野 賢治 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 荒川 敬弘 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 玉置 維昭 三重県津市上浜町1515 三重大学工学部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Yasuda 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshibauchi Co., Ltd. (72) Inventor Kenji Hirano 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawajima-Harima Heavy Industries Inside the Technical Research Institute Co., Ltd. (72) Inventor Norihiro Arakawa 1 Shinnakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawashima-Harima Heavy Industries Co., Ltd. (72) Inventor Iwaaki Tamaki 1515 Kamihamacho, Tsu-shi, Mie Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 母材の継手用開先内に形成した溶融プー
ルに磁気による攪拌力を与えつつ溶接するようにしてあ
る磁気攪拌溶接方法において、溶融プール攪拌のための
磁気周波数を4〜10Hzとして、継手溶接部を形成させ
るようにすることを特徴とする磁気攪拌溶接方法。
In a magnetic stir welding method in which a molten pool formed in a joint groove of a base material is welded while applying a magnetic stirring force, a magnetic frequency for stirring the molten pool is 4 to 10 Hz. A magnetic stir welding method characterized by forming a joint weld.
【請求項2】 継手溶接部となる溶接ビードを1層形成
する毎に、溶接方向を変えるようにする請求項1記載の
磁気攪拌溶接方法。
2. The magnetic stir welding method according to claim 1, wherein the welding direction is changed every time one layer of a weld bead to be a joint weld is formed.
JP10073017A 1998-03-09 1998-03-09 Magnetic stir-welding method Pending JPH11254136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10073017A JPH11254136A (en) 1998-03-09 1998-03-09 Magnetic stir-welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10073017A JPH11254136A (en) 1998-03-09 1998-03-09 Magnetic stir-welding method

Publications (1)

Publication Number Publication Date
JPH11254136A true JPH11254136A (en) 1999-09-21

Family

ID=13506158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10073017A Pending JPH11254136A (en) 1998-03-09 1998-03-09 Magnetic stir-welding method

Country Status (1)

Country Link
JP (1) JPH11254136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191572A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Ultrasonic inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191572A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Ultrasonic inspection device

Similar Documents

Publication Publication Date Title
CN111458406B (en) Ultrasonic detection method for austenitic stainless steel fillet weld
US20070234809A1 (en) Laser-ultrasonic detection of subsurface defects in processed metals
EP1688738B1 (en) Ultrasonic in-process monitoring and feedback of resistance spot weld quality
JP2010500581A (en) On-line ultrasonic inspection method for welds made using electrical resistance welding
JP2011515222A (en) Friction stir welding using ultrasonic waves
JPS61111461A (en) Ultrasonic flaw detecting method of welded part of seam welded pipe
JP4700923B2 (en) Method for producing thermal spray coated article and ultrasonic test method
CN208872710U (en) A kind of ultrasound examination reference block of incomplete fusion length
CN109641306A (en) Vertical narrow groove gas-shielded arc welding method
JP3740874B2 (en) Inspection method and apparatus for welded seam welded thin plate
JP2011203126A (en) Method for inspecting spot welded part
Sweeney et al. In-process phased array ultrasonic weld pool monitoring
JPH11254136A (en) Magnetic stir-welding method
Polamuri et al. Study on the arc behavior and mechanical properties of energy-efficient hybrid CMT-pulsed gas metal arc narrow gap mild steel welds
Sharafiev et al. Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints
JP2011235350A (en) Multi-electrode submerged arc welding method excellent in weldability
JP2000180421A (en) Method and apparatus for inspecting thin plate lap seam welded part
Mozurkewich et al. Spatially resolved ultrasonic attenuation in resistance spot welds: Implications for nondestructive testing
CN115436480A (en) Ultrasonic detection method for austenitic stainless steel fillet weld
JP4619092B2 (en) Inspection method and inspection apparatus for laser welded joint
JP2008100250A (en) Welding method and welding apparatus using ultrasonic blow
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JPH01157792A (en) Method of determining weldability of part
Yang The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steels
Ahsan et al. Ultrasonic Evaluation at the Interface of Aluminum/Steel Obtained by TIG Welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206