JP2016190842A - 骨形成促進剤 - Google Patents

骨形成促進剤 Download PDF

Info

Publication number
JP2016190842A
JP2016190842A JP2016067077A JP2016067077A JP2016190842A JP 2016190842 A JP2016190842 A JP 2016190842A JP 2016067077 A JP2016067077 A JP 2016067077A JP 2016067077 A JP2016067077 A JP 2016067077A JP 2016190842 A JP2016190842 A JP 2016190842A
Authority
JP
Japan
Prior art keywords
tryptophan
gene
bone
differentiation
bone marrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016067077A
Other languages
English (en)
Other versions
JP6853467B2 (ja
Inventor
拓男 窪木
Takuo Kuboki
拓男 窪木
充昭 大野
Mitsuaki Ono
充昭 大野
タン ハイ ファン
Thanh Hai Pham
タン ハイ ファン
サトシ エミリオ ハラ
Emilio Satoshi Hara
サトシ エミリオ ハラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Publication of JP2016190842A publication Critical patent/JP2016190842A/ja
Application granted granted Critical
Publication of JP6853467B2 publication Critical patent/JP6853467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

【課題】安全性が高く、骨形成を促進する効果に優れた骨形成促進剤を提供する。
【解決手段】トリプトファン若しくはその代謝産物である下記式(1)で示されるキヌレニン又はそれらの薬学的に許容される塩を有効成分として含有する骨形成促進剤である。

【選択図】なし

Description

本発明は、骨形成促進剤に関する。
近年、高齢化に伴って、骨折、骨粗鬆症等の骨疾患が増加する傾向にあり、このような骨疾患に対しては、骨形成を促進させる医薬による治療が期待されている。骨形成の促進は、間葉系幹細胞から骨芽細胞への分化を促進させる因子により達成されると考えられ、代表的なものとして、BMP-2(Bone Morphogenetic Protein-2)等の生理活性物質が知られている。しかしながら、BMP-2等の生理活性物質は生産コストが高く、また治療が必要な部位に局所投与するための手術が必要となるため、臨床応用への課題があった。
一方、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)は、分化多能性を有することから、目的の細胞に分化誘導して再生医療に応用することが期待されている。特許文献1には、培地中に、アミノ酸として少なくとも必須アミノ酸であるスレオニン、バリン、イソロイシン、フェニルアラニン、トリプトファン、リジン及びヒスタミンを含み、かつメチオニン、ロイシン、システイン、チロシン及びアルギニンからなる群より選ばれる少なくとも一つのアミノ酸を含まない分化培地で、哺乳動物由来の多能性幹細胞を培養することを含む、多能性幹細胞を分化誘導する方法が記載されており、哺乳動物由来の多能性幹細胞が、ヒト又はマウス由来のES細胞又はiPS細胞であることが記載されている。これによれば、簡便な手段で、ES細胞やiPS細胞を効率よく分化誘導でき、未分化細胞の混入を軽減又は除去できるとされている。しかしながら、特許文献1には、骨芽細胞への分化を促進することについての記載はなく、安全性の高い骨形成促進剤が望まれていた。
WO2012/56997号
本発明は上記課題を解決するためになされたものであり、安全性が高く、骨形成を促進する効果に優れた骨形成促進剤を提供することを目的とするものである。
上記課題は、トリプトファン若しくはその代謝産物である下記式(1)で示されるキヌレニン又はそれらの薬学的に許容される塩を有効成分として含有する骨形成促進剤を提供することによって解決される。
本発明の骨形成促進剤は、安全性が高く、骨形成を促進する効果に優れている。したがって、骨折治療、骨粗鬆症治療等に好適に使用することができる。
一次スクリーニングの結果を示した図である。 二次スクリーニングの結果を示した図である。 実施例1において、FACS解析、定量性RT-PCR及び免疫染色(CD146)の結果を示した図である(L-トリプトファン)。 実施例1において、細胞遊走アッセイ及び細胞生存率の結果を示した図である(L-トリプトファン)。 実施例1において、骨芽細胞分化、軟骨細胞分化及び脂肪細胞分化の結果を示した図である(L-トリプトファン)。 実施例2において、FACS解析及び定量性RT-PCRの結果を示した図である(D-トリプトファン)。 実施例3において、FACS解析及び定量性RT-PCRの結果を示した図である(D-トリプトファン、L-トリプトファン)。 実施例3において、細胞遊走アッセイ及び骨芽細胞分化の結果を示した図である(D-トリプトファン、L-トリプトファン)。 実施例4において、コロニー形成アッセイ及びFACS解析の結果を示した図である(L-トリプトファン)。 実施例4において、定量性RT-PCRの結果を示した図である(L-トリプトファン)。 実施例4において、骨芽細胞分化及び脂肪細胞分化の結果を示した図である(L-トリプトファン)。 実施例4において、骨再生量の評価結果を示した図である(L-トリプトファン)。 実施例4において、海綿骨量の評価結果を示した図である(L-トリプトファン)。 実施例5において、FACS解析、定量性RT-PCR及び免疫染色(NANOG)の結果を示した図である(L-キヌレニン)。 実施例5において、コロニー形成アッセイ、免疫染色(Ki-67)及び細胞遊走アッセイの結果を示した図である(L-キヌレニン)。 実施例5において、骨芽細胞分化、軟骨細胞分化及び脂肪細胞分化の結果を示した図である(L-キヌレニン)。 実施例6において、骨再生量の評価結果を示した図である(L-キヌレニン)。 実施例6において、海綿骨量の評価結果を示した図である(L-キヌレニン)。 実施例7及び8において、骨再生量の評価結果を示した図である(L-トリプトファン、L-キヌレニン)。
本発明の骨形成促進剤は、その有効成分として、トリプトファン若しくはその代謝産物である下記式(1)で示されるキヌレニン又はそれらの薬学的に許容される塩を含有することを特徴とするものである。
後述する実施例からも分かるように、本発明の骨形成促進剤により、骨髄由来間葉系幹細胞の脂肪細胞分化が抑制される一方で、骨芽細胞分化や軟骨細胞分化が促進されており、また、骨欠損マウスにおける骨再生量及び海綿骨量が著しく増加していたことが本発明者らにより確認された。したがって、本発明の骨形成促進剤は、骨形成を促進する効果に優れていることが分かる。また、本発明の骨形成促進剤は、アミノ酸であるトリプトファン、その代謝産物である上記式(1)で示されるキヌレニン、又はそれらの薬学的に許容される塩を有効成分とするものであるため、安全性の高いものであることが分かる。したがって、ヒトを含む哺乳類動物に対して本発明の骨形成促進剤を大量に投与することも可能となる。
上記薬学的に許容される塩としては特に限定されないが、例えば、硫酸塩、塩酸塩、リン酸塩等の無機酸との塩;ギ酸塩、酢酸塩、マレイン酸塩、クエン酸塩、リンゴ酸塩等の有機酸との塩;ナトリウム、カリウム等のアルカリ金属との塩;カルシウム、マグネシウム等のアルカリ土類金属との塩;アンモニウム塩等が挙げられる。中でも、硫酸塩、塩酸塩、リン酸塩等の無機酸との塩が好適である。
本発明の骨形成促進剤は、医薬組成物として単独で投与する実施形態であってもよいし、薬理学的に許容される担体を含有する製剤とともに投与する実施態様であってもよい。投与方法としては、経口投与であってもよいし、腹腔内注射等の非経口投与であってもよい。前記担体としては、蒸留水、生理食塩水、ブドウ糖水溶液等の溶媒;デンプン、デキストリン、ゼラチン等の結合剤;殺菌剤;界面活性剤;pH調整剤;乳化剤;酸化防止剤;増粘剤等が挙げられ、これらを適宜組み合わせて使用することも好適な実施態様である。また、当該製剤としては、注射剤、懸濁剤、錠剤、顆粒剤、散剤、カプセル剤、フィルム剤、シロップ剤、外用剤、坐剤、徐放剤等が挙げられる。
本発明の骨形成促進剤の投与量としては特に限定されず、ヒトを含む哺乳類動物の年齢、症状等に応じて適宜決定することができる。ヒト以外の哺乳類動物としては、マウス、ラット、イヌ、ウマ等が挙げられる。中でも経口投与又は非経口投与の場合、1日あたり5〜1000mg/kg体重の量で投与されるように用いられる骨形成促進剤であることが本発明の好適な実施態様であり、1日あたり20〜800mg/kg体重の量で投与されるように用いられる骨形成促進剤であることが本発明のより好適な実施態様である。例えば、成人の場合には、1日あたり250mg〜50gの量で投与されるように用いられる骨形成促進剤であることが本発明の好適な実施態様であり、1日あたり1〜40gの量で投与されるように用いられる骨形成促進剤であることが本発明のより好適な実施態様である。
本発明の骨形成促進剤は、アミノ酸であるトリプトファン、その代謝産物である上記式(1)で示されるキヌレニン、又はそれらの薬学的に許容される塩を有効成分とするものである。トリプトファンとしては、L-トリプトファンであってもD-トリプトファンであってもよいが、骨芽細胞分化をより促進する観点から、L-トリプトファンであることが好ましい。また、キヌレニンとしては、L-キヌレニンであってもD-キヌレニンであってもよいが、生体を構成しているのがL体のアミノ酸であるという観点から、L-キヌレニンであることが好ましい。
後述する実施例からも分かるように、本発明の骨形成促進剤により、骨髄由来間葉系幹細胞の脂肪細胞分化が抑制される一方で、骨芽細胞分化や軟骨細胞分化が促進されていた。したがって、骨芽細胞分化促進剤であることが本発明の好適な実施態様であり、軟骨細胞分化促進剤であることも本発明の好適な実施態様である。また、本発明の骨形成促進剤により、骨欠損マウスにおける骨再生量及び海綿骨量が著しく増加していたことが本発明者らにより確認されている。したがって、本発明の骨形成促進剤は、高齢化に伴って発症する骨疾患の予防や治療に用いることができ、骨折治療又は骨粗鬆症治療に用いられる骨形成促進剤であることが本発明の好適な実施態様である。
以下、実施例を用いて本発明を更に具体的に説明する。
(A)ヒト骨髄由来間葉系幹細胞(hBMSCs)の培養
Lonza社から購入したヒト骨髄由来間葉系幹細胞(hBMSCs;PT-2501)を、15%ウシ胎児血清(FBS;Invitrogen,Carlsbad,CA,USA)、2mM L-グルタミン(Invitrogen)、100 units/ml ペニシリン(Sigma)及び100μg/ml ストレプトマイシン(Sigma)を含有するα-MEM(Gibco BRL)にて培養して本実施例で使用した。
(B)基礎培地
基礎培地として、20 %ウシ胎児血清(FBS;Invitrogen)、抗生物質(100 units/mlペニシリン、100μg/mlストレプトマイシン)、2mM グルタミン、0.1mM L-アスコルビン酸(Wako;013-12061)及び55μM 2-メルカプトエタノール(Gibco;12571-063)を含有するα-MEM培地(Invitrogen)を用いた。
(C)骨欠損マウスの作製と骨髄由来間葉系幹細胞(BMSCs)の採取
5週齢のマウスに1日あたり50 mg/kgの用量でトリプトファン又はキヌレニンを腹腔内注射により投与し、投与開始から1週間後に、直径1 mmの骨欠損を作製した。骨欠損を作製してから2週間後に組織を回収し、X線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)にて解析を行った。また、投与開始から3週間後に、マウスの大腿骨骨髄から骨髄由来間葉系幹細胞(BMSCs)を採取した。
(D)FACS解析
ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)を細胞剥離用溶液「Accutase」(Innovative Cell Technologies Inc.,San Diego,CA,USA)を用いて回収し、70μmのセルストレーナーを通して単一細胞にした。抗human/mouse SSEA-4抗体(Biosciences)に30分間反応させ、フローサイトメーター(AccuriTM C6, BD Biosciences)を用いてFACS解析を行った。
(E)定量性RT-PCR
ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)からTotal RNAを「RNA purification kit:PureLinkTM RNA Minit Kit」(Life Technologies,Gaithersburg,MD,USA)を用いて精製した。各遺伝子の発現量は、配列番号1〜26で示されるプライマーを用いて、定量性RT-PCRキット「KAPA SYBR FAST Universal qPCR kit (Kapa Biosystems)」により定量した。内部標準遺伝子として、Ribosomal protein S29遺伝子を用いた。
(1)Ribosomal protein S29遺伝子定量用プライマー
sense:ACACTGGCGCACATATTGAGG(配列番号1)
anti-sense:TCTCGCTCTTGTCGTGTCTGTTC(配列番号2)
(2)Oct-4遺伝子定量用プライマー
sense:CCGAGTGTGGTTCTGTAAC(配列番号3)
anti-sense:GAAAGGGACCGAGGAGTA(配列番号4)
(3)Nanog遺伝子定量用プライマー
sense:TCTCCAACATCCTGAACCT(配列番号5)
anti-sense:GCGTCACACCATTGCTAT(配列番号6)
(4)ALP(alkaline phosphatase)遺伝子定量用プライマー
sense:GCACCGCCACCGCCTACC(配列番号7)
anti-sense:CCACAGATTTCCCAGCGTCCTTG(配列番号8)
(5)DSPP(dentinsialophosphoprotein)遺伝子定量用プライマー
sense:TGGAGCCACAAACAGAAGCAACAC(配列番号9)
anti-sense:TGGACAACAGCGACATCCTCATTG(配列番号10)
(6)OPN(osteopontin)遺伝子定量用プライマー
sense:ATGTGATTGATAGTCAGGAACTT(配列番号11)
anti-sense:GTCTACAACCAGCATATCTTCA(配列番号12)
(7)OCN(osteocalcin)遺伝子定量用プライマー
sense:CAGAGTCCAGCAAAGGTG(配列番号13)
anti-sense:AGCCATTGATACAGGTAGC(配列番号14)
(8)LPL(Lipoprotein lipase)遺伝子定量用プライマー
sense:GAAATGACAGGTAGCCACGGACTC(配列番号15)
anti-sense:CCGCCGCCGACCAAAGAAG(配列番号16)
(9)PPAR-γ(Peroxisome proliferator-activated receptor gamma)遺伝子定量用プライマー
sense:GGAGGTCAGCGGACTCTGGATTC(配列番号17)
anti-sense:CTGTCGGTTTCAGAAATGCCTTGC(配列番号18)
(10)ADIPOQ(Adiponectin)遺伝子定量用プライマー
sense:TATACCGCTCAGCATTCA(配列番号19)
anti-sense:CCTTCACATCCTTCATATAGAC(配列番号20)
(11)Sox-9遺伝子定量用プライマー
sense:TGAAATCTGTTCTGGAATGTT(配列番号21)
anti-sense:ACTGCTGGTGTTCTGAGA(配列番号22)
(12)ACAN(Aggrecan)遺伝子定量用プライマー
sense:GGCATTTCAGCGGTTCCTTCTC(配列番号23)
anti-sense:CAGCAGTTGTCTCCTCTTCTAC(配列番号24)
(13)Col2(Collagen type2)遺伝子定量用プライマー
sense:TGGAGCAGCAAGAGCAAGGAGA(配列番号25)
anti-sense:CCGTGGACAGCAGGCGTAGG(配列番号26)
(F)免疫染色
ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)を96 wellプレートにて播種し、トリプトファン又はキヌレニンにて刺激した。刺激してから2日後に細胞をPFA(Paraformaldehyde)にて固定し、抗CD146抗体(Abcam)、抗Nanog抗体(Abcam)、又は抗Ki-67抗体(Abcam)にて1時間反応後、Alexa Fluor(登録商標)488コンジュゲート抗マウス抗体(Invitrogen)にて染色した。核染色には、4’,6-diamidino-2-phenylindole(DAPI;Invitrogen)を用いた。
(G)骨芽細胞分化
ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)を10-8M デキサメタゾン(dexamethasone;Sigma)、β-グリセロフォスフェート(β-glycerophosphate;Sigma)を含有する基礎培地にて7、14、21日間それぞれ培養し、各遺伝子の発現量を定量性RT-PCR法にて解析した。また、アリザリンレッドにてカルシウム沈着を染色した。
(H)軟骨細胞分化
ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)を10-7Mデキサメタゾン(dexamethasone;Sigma)、1% (100U/ml each)ペニシリン(Sigma)、1% (2mM)グルタミン(Sigma)、5 mg/ml リン酸L-アスコルビン酸(L-ascorbic acid phosphate)、1% ITS(ITS Premix Universal Culture Supplement,Corning)、100 μg/ml ピルビン酸ナトリウム(sodium pyruvate)、10 ng/ml TGF-b3 (R&D systems,Minneapolis,MN,USA)を含有するDMEM(high glucose, Invitrogen)培地にて、マイクロマス培養を行った。培養3週間後に細胞を回収して切片を作製し、サフラニンO染色を行った。また、各遺伝子の発現量を定量性RT-PCR法にて解析した。
(I)脂肪細胞分化
ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)を1 μg/mlインシュリン(Sigma)、0.5 mM 1-メチル-3-イソブチルキサンチン(1-methyl-3-isobutylxanthine;Sigma)、60 μMインドメタシン(indomethacin;Sigma)を含有する基礎培地にて培養し、各遺伝子の発現量を定量性RT-PCR法にて解析した。また、オイルレッドOにて細胞内の脂肪滴を染色した。
(J)ヒト骨髄液を用いたコロニー形成アッセイ
ヒト骨髄液から得られたヒト骨髄(hBM)細胞1x106個を6cm2培養皿に播種し、キヌレニンを用いて刺激し、基礎培地にて培養した。培養3週間後にトルイジンブルー染色を行い、50個以上細胞が存在するコロニーの数を計測した。
(K)細胞遊走アッセイ(Migration assay)
Boyden chamber法(8 μm microporous membrane、BD Falcon(登録商標) HTS FluoroBlokTM inserts,BD Biosciences)を用い、細胞遊走アッセイを実施した。細胞播種24時間後に遊走した細胞をAlexa Fluor(登録商標)546ファロイジン色素(Invitrogen)にて染色し、その細胞数を計測した。
(L)細胞生存率(Cell viability)
CellTiter 96(登録商標)AQueous One Solution Cell Proliferation Assay kit(Promega,Madison,WI,USA)を用いて細胞生存率を評価した。具体的には、ヒト骨髄由来間葉系幹細胞(hBMSCs)又は骨髄由来間葉系幹細胞(BMSCs)を96 wellプレートにて播種し、トリプトファン又はキヌレニンにて刺激し、15%ウシ胎児血清(FBS;Invitrogen,Carlsbad,CA,USA)、2mM L-グルタミン(Invitrogen)、100 units/ml ペニシリン(Sigma)及び100 μg/ml ストレプトマイシン(Sigma)を含有するα-MEM(Gibco BRL)培地にて5%CO2存在下37℃で培養した。1時間後に490nmの吸光度を測定することにより細胞生存率(Cell viability)を評価した。
(M)一次スクリーニング
20種類のアミノ酸(orphan ligand library,enzo life science)を用いて一次スクリーニングを実施した。具体的には、5x104 cells/well(24 well plates)の濃度にてヒト骨髄由来間葉系幹細胞(hBMSCs)を播種した。hBMSCsを播種した次の日に、20種類のアミノ酸(10μM)をそれぞれ用いて刺激し、刺激から2日後に幹細胞マーカー(SSEA-4)をフローサイトメトリー法により解析した(FACS解析)。その結果、トリプトファン、メチオニン、プロリン刺激により幹細胞マーカー(SSEA-4)の上昇が認められた。得られた結果を図1に示す。
(N)二次スクリーニング
一次スクリーニングにより選択されたトリプトファン、メチオニン、プロリンを用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激し、Nanog遺伝子、Oct-4遺伝子、Sox-2遺伝子の発現量を定量性RT-PCR法により測定した。その結果、トリプトファンがNanog遺伝子、Oct-4遺伝子、Sox-2遺伝子の発現を最も促進していた。得られた結果を図2に示す。
実施例1
[in vitroにおけるL-トリプトファンの効果]
(1)FACS解析、定量性RT-PCR及び免疫染色(CD146)
L-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(D)、(E)及び(F)に記載した方法により、FACS解析、定量性RT-PCR及び免疫染色(CD146)を行った。定量性RT-PCRにおいては、Nanog遺伝子、Sox-2遺伝子及びOct-4遺伝子の発現量を解析した。コントロールと比較して、L-トリプトファンにより発現量が著しく増加したことが確認された。得られた結果を図3に示す。
(2)細胞遊走アッセイ(Migration assay)及び細胞生存率(Cell viability)
L-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(K)及び(L)に記載した方法により、細胞遊走アッセイ及び細胞生存率の評価を行った。得られた結果を図4に示す。
(3)骨芽細胞分化、軟骨細胞分化及び脂肪細胞分化
L-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(G)、(H)及び(I)に記載した方法により、骨芽細胞分化、軟骨細胞分化及び脂肪細胞分化の確認を行った。骨芽細胞分化の確認では、OPN(osteopontin)遺伝子及びOCN(osteocalcin)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。軟骨細胞分化の確認では、Col2(Collagen type2)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。脂肪細胞分化の確認では、PPAR-γ(Peroxisome proliferator-activated receptor gamma)遺伝子、LPL(Lipoprotein lipase)遺伝子及びADIPOQ(Adiponectin)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。得られた結果を図5に示す。L-トリプトファンにより骨芽細胞分化及び軟骨細胞分化が促進され、一方で、脂肪細胞分化が抑制されていることが分かる。
実施例2
[in vitroにおけるD-トリプトファンの効果]
(1)FACS解析及び定量性RT-PCR
D-トリプトファン(Sigma-Aldrich,CAS number 153-94-6)を用いて(10,50,100μM)、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(D)及び(E)に記載した方法により、FACS解析及び定量性RT-PCRを行った。定量性RT-PCRにおいては、Nanog遺伝子及びOct-4遺伝子の発現量を解析した。コントロールと比較して、D-トリプトファンにより発現量が著しく増加したことが確認された。得られた結果を図6に示す。
実施例3
[in vitroにおけるD-トリプトファンとL-トリプトファンの効果の比較]
(1)FACS解析及び定量性RT-PCR
D-トリプトファン(Sigma-Aldrich,CAS number 153-94-6)及びL-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(D)及び(E)に記載した方法により、FACS解析及び定量性RT-PCRを行った。定量性RT-PCRにおいては、Nanog遺伝子及びOct-4遺伝子の発現量を解析した。得られた結果を図7に示す。
(2)細胞遊走アッセイ(Migration assay)
D-トリプトファン(Sigma-Aldrich,CAS number 153-94-6)及びL-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(K)に記載した方法により、細胞遊走アッセイを行った。得られた結果を図8に示す。
(3)骨芽細胞分化
D-トリプトファン(Sigma-Aldrich,CAS number 153-94-6)及びL-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(G)に記載した方法により、骨芽細胞分化の確認を行った。骨芽細胞分化の確認では、OPN(osteopontin)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。得られた結果を図8に示す。
実施例4
[in vivoにおけるL-トリプトファンの効果]
(1)骨欠損マウスの作製と骨髄由来間葉系幹細胞(BMSCs)の採取
5週齢のマウスに1日あたり50 mg/kgの用量でL-トリプトファン(Sigma-Aldrich,CAS number 73-22-3)を腹腔内注射により投与した。投与開始から1週間後に、直径1 mmの骨欠損を作製した。骨欠損を作製してから2週間後に組織を回収し、X線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)にて解析を行った。また、投与開始から3週間後に、マウスの大腿骨骨髄から骨髄由来間葉系幹細胞(BMSCs)を採取した。また、5週齢のマウスに1日あたり50 mg/kgの用量でL-トリプトファンを投与する代わりに、1日あたり10 mg/kgの用量でL-トリプトファンを投与した以外は、上記と同様にして、マウスの大腿骨骨髄から骨髄由来間葉系幹細胞(BMSCs)を採取した。
(2)コロニー形成アッセイ及びFACS解析
上記(1)で採取されたそれぞれの骨髄由来間葉系幹細胞(BMSCs)を基礎培地にて培養し、培養3週間後にトルイジンブルー染色を行い、50個以上細胞が存在するコロニーの数を計測した。また、上記(D)に記載した方法により、FACS解析を行った。得られた結果を図9に示す。
(3)定量性RT-PCR
上記(1)で採取された骨髄由来間葉系幹細胞(BMSCs;50 mg/kgの用量でL-トリプトファンを投与)を基礎培地にて培養し、培養2週間後、上記(E)に記載した方法により、定量性RT-PCRを行った。定量性RT-PCRにおいては、Nanog遺伝子、Oct-4遺伝子及びSox-2遺伝子の発現量を解析した。コントロール(PBS)と比較して、L-トリプトファンにより発現量が著しく増加したことが確認された。得られた結果を図10に示す。
(4)骨芽細胞分化及び脂肪細胞分化
上記(1)で採取された骨髄由来間葉系幹細胞(BMSCs;50 mg/kgの用量でL-トリプトファンを投与)を基礎培地にて培養し、培養2週間後、上記(G)及び(I)に記載した方法により、骨芽細胞分化及び脂肪細胞分化の確認を行った。骨芽細胞分化の確認では、ALP(alkaline phosphatase)遺伝子、OPN(osteopontin)遺伝子及びOCN(osteocalcin)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。脂肪細胞分化の確認では、PPAR-γ(Peroxisome proliferator-activated receptor gamma)遺伝子及びLPL(Lipoprotein lipase)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。得られた結果を図11に示す。L-トリプトファンにより骨芽細胞分化が促進され、一方で、脂肪細胞分化はコントロール(PBS)と同程度であった。
(5)骨再生量の評価
上記(1)の骨欠損マウス(50 mg/kgの用量でL-トリプトファンを投与)の大腿骨における骨再生量をX線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)を用いて解析した。骨欠損を作製した直後、及びコントロール(PBS)と比較して、L-トリプトファンにより骨再生量が著しく増加していた。得られた結果を図12に示す。
(6)海綿骨量の評価
上記(1)の骨欠損マウス(50 mg/kgの用量でL-トリプトファンを投与)において、骨欠損手術を行っていない方の大腿骨における海綿骨量をX線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)を用いて解析した。コントロール(PBS)と比較して、L-トリプトファンにより海綿骨量が著しく増加していた。得られた結果を図13に示す。
実施例5
[in vitroにおけるL-キヌレニンの効果]
(1)FACS解析、定量性RT-PCR及び免疫染色(NANOG)
L-キヌレニン硫酸塩(Sigma-Aldrich,CAS number 16055-80-4)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(D)、(E)及び(F)に記載した方法により、FACS解析、定量性RT-PCR及び免疫染色(NANOG)を行った。定量性RT-PCRにおいては、Nanog遺伝子、Sox-2遺伝子及びOct-4遺伝子の発現量を解析した。コントロールと比較して、L-キヌレニンにより発現量が著しく増加したことが確認された。得られた結果を図14に示す。
(2)コロニー形成アッセイ
L-キヌレニン硫酸塩(Sigma-Aldrich,CAS number 16055-80-4)を用いて、上記(J)に記載した方法により、コロニー形成アッセイを行った。得られた結果を図15に示す。
(3)免疫染色(Ki-67)及び細胞遊走アッセイ(Migration assay)
L-キヌレニン硫酸塩(Sigma-Aldrich,CAS number 16055-80-4)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(F)及び(K)に記載した方法により、免疫染色(Ki-67)及び細胞遊走アッセイを行った。得られた結果を図15に示す。
(4)骨芽細胞分化、軟骨細胞分化及び脂肪細胞分化
L-キヌレニン硫酸塩(Sigma-Aldrich,CAS number 16055-80-4)を用いて、2日間ヒト骨髄由来間葉系幹細胞(hBMSCs)を刺激した。上記(G)、(H)及び(I)に記載した方法により、骨芽細胞分化、軟骨細胞分化及び脂肪細胞分化の確認を行った。骨芽細胞分化の確認では、OPN(osteopontin)遺伝子及びOCN(osteocalcin)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。軟骨細胞分化の確認では、Col2(Collagen type2)遺伝子、Sox-9遺伝子及びACAN(Aggrecan)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。脂肪細胞分化の確認では、PPAR-γ(Peroxisome proliferator-activated receptor gamma)遺伝子、LPL(Lipoprotein lipase)遺伝子及びADIPOQ(Adiponectin)遺伝子の発現量を上記(E)に記載した定量性RT-PCR法にて解析した。得られた結果を図16に示す。L-キヌレニンにより骨芽細胞分化及び軟骨細胞分化が促進され、一方で、脂肪細胞分化が抑制されていることが分かる。
実施例6
[in vivoにおけるL-キヌレニンの効果]
(1)骨欠損マウスの作製
5週齢のマウスに1日あたり50 mg/kgの用量でL-キヌレニン硫酸塩(Sigma-Aldrich,CAS number 16055-80-4)を腹腔内注射により投与した。投与開始から1週間後に、直径1 mmの骨欠損を作製した。骨欠損を作製してから2週間後に組織を回収し、X線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)にて解析を行った。
(2)骨再生量の評価
上記(1)の骨欠損マウスの大腿骨における骨再生量をX線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)を用いて解析した。骨欠損を作製した直後、及びコントロール(PBS)と比較して、L-キヌレニンにより骨再生量が著しく増加していた。得られた結果を図17に示す。
(3)海綿骨量の評価
上記(1)の骨欠損マウスにおいて、骨欠損手術を行っていない方の大腿骨における海綿骨量をX線Micro-CT(SkyScan 1174 compact micro-CT,SkyScan,Aartselaar,Belgium)を用いて解析した。コントロール(PBS)と比較して、L-キヌレニンにより海綿骨量が著しく増加していた。得られた結果を図18に示す。
実施例7
[in vivoにおけるL-トリプトファンの効果]
実施例4において、5週齢のマウスに1日あたり50 mg/kgの用量でL-トリプトファンを腹腔内注射により投与する代わりに、経口投与により投与した以外は実施例4と同様にして骨欠損マウスを作製し、骨再生量の評価を行った。得られた結果を図19に示す。
実施例8
[in vivoにおけるL-キヌレニンの効果]
実施例6において、5週齢のマウスに1日あたり50 mg/kgの用量でL-キヌレニンを腹腔内注射により投与する代わりに、経口投与により投与した以外は実施例6と同様にして骨欠損マウスを作製し、骨再生量の評価を行った。得られた結果を図19に示す。

Claims (1)

  1. トリプトファン若しくはその代謝産物である下記式(1)で示されるキヌレニン又はそれらの薬学的に許容される塩を有効成分として含有する骨形成促進剤。
JP2016067077A 2015-03-30 2016-03-30 骨折治療剤 Active JP6853467B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069222 2015-03-30
JP2015069222 2015-03-30

Publications (2)

Publication Number Publication Date
JP2016190842A true JP2016190842A (ja) 2016-11-10
JP6853467B2 JP6853467B2 (ja) 2021-03-31

Family

ID=57246475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067077A Active JP6853467B2 (ja) 2015-03-30 2016-03-30 骨折治療剤

Country Status (1)

Country Link
JP (1) JP6853467B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181342A1 (ja) * 2017-03-28 2018-10-04 味の素株式会社 未分化維持培地添加剤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505500A (ja) * 2001-04-26 2005-02-24 ノバルテイス・ニユートリシヨン・アクチエンゲゼルシヤフト 無月経及び関連疾患を治療するためのタンパク質及び必須アミノ酸の使用
WO2012056997A1 (ja) * 2010-10-28 2012-05-03 国立大学法人熊本大学 多能性幹細胞の分化誘導効率を改善するための方法及び培地
WO2013036998A1 (en) * 2011-09-13 2013-03-21 The University Of Sydney Treatment of bone diseases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505500A (ja) * 2001-04-26 2005-02-24 ノバルテイス・ニユートリシヨン・アクチエンゲゼルシヤフト 無月経及び関連疾患を治療するためのタンパク質及び必須アミノ酸の使用
WO2012056997A1 (ja) * 2010-10-28 2012-05-03 国立大学法人熊本大学 多能性幹細胞の分化誘導効率を改善するための方法及び培地
WO2013036998A1 (en) * 2011-09-13 2013-03-21 The University Of Sydney Treatment of bone diseases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IL FARMACO, vol. 56, JPN6020002973, 2001, pages 755 - 761, ISSN: 0004317863 *
MOLECULAR AND CELLULAR ENDOCRINOLOGY, vol. 410, JPN6020002974, 28 January 2015 (2015-01-28), pages 87 - 96, ISSN: 0004317864 *
慶應保健研究, vol. 21, no. 1, JPN6020027903, 2003, pages 27 - 31, ISSN: 0004317865 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181342A1 (ja) * 2017-03-28 2018-10-04 味の素株式会社 未分化維持培地添加剤

Also Published As

Publication number Publication date
JP6853467B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
Ma et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging
Lin et al. Decreased osteogenesis in mesenchymal stem cells derived from the aged mouse is associated with enhanced NF‐κB activity
Seol et al. Chondrogenic progenitor cells respond to cartilage injury
US8299046B2 (en) Synthetic triterpenoids and tricyclic-bis-enones for use in stimulating bone and cartilage growth
Lin et al. Establishment of NF-κB sensing and interleukin-4 secreting mesenchymal stromal cells as an “on-demand” drug delivery system to modulate inflammation
Boer et al. Inhibition of histone acetylation as a tool in bone tissue engineering
JP7236114B2 (ja) 体細胞を製造する方法、体細胞、及び組成物
Cao et al. Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway
Sonoda et al. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells
Sidney et al. Comparison of osteogenic differentiation of embryonic stem cells and primary osteoblasts revealed by responses to IL-1β, TNF-α, and IFN-γ
Lu et al. GDF11 inhibits bone formation by activating Smad2/3 in bone marrow mesenchymal stem cells
Lin et al. NFκB sensing IL‐4 secreting mesenchymal stem cells mitigate the proinflammatory response of macrophages exposed to polyethylene wear particles
Du et al. PTH/SDF‐1α cotherapy promotes proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells
US11471492B2 (en) Compositions for treatment of osteochondral disorders
Guang et al. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro
Gao et al. Liraglutide promotes the osteogenic differentiation in MC3T3-E1 cells via regulating the expression of Smad2/3 through PI3K/Akt and Wnt/β-catenin pathways
Liu et al. In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats
JP2015508654A (ja) 褐色脂肪様細胞に関する方法と組成物
Feng et al. The role of oncostatin M regulates osteoblastic differentiation of dental pulp stem cells through STAT3 pathway
Hsu et al. The effect of exogenous histone H1 on rat adipose‐derived stem cell proliferation, migration, and osteogenic differentiation in vitro
Jiang et al. Lentiviral‑mediated Shh reverses the adverse effects of high glucose on osteoblast function and promotes bone formation via Sonic hedgehog signaling
Suematsu et al. Scientific basis for the efficacy of combined use of antirheumatic drugs against bone destruction in rheumatoid arthritis
KR101819827B1 (ko) Stat3 억제제가 처리된 간엽줄기세포를 유효성분으로 포함하는 골관절염의 예방 또는 치료용 세포치료제 조성물
Gazzerro et al. The danger signal extracellular ATP is involved in the immunomediated damage of α-sarcoglycan–deficient muscular dystrophy
JP6853467B2 (ja) 骨折治療剤

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210218

R150 Certificate of patent or registration of utility model

Ref document number: 6853467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250