JP2016188347A - Molten salt type heat transfer medium - Google Patents

Molten salt type heat transfer medium Download PDF

Info

Publication number
JP2016188347A
JP2016188347A JP2015069896A JP2015069896A JP2016188347A JP 2016188347 A JP2016188347 A JP 2016188347A JP 2015069896 A JP2015069896 A JP 2015069896A JP 2015069896 A JP2015069896 A JP 2015069896A JP 2016188347 A JP2016188347 A JP 2016188347A
Authority
JP
Japan
Prior art keywords
mol
carbonate
molten salt
type heat
salt type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015069896A
Other languages
Japanese (ja)
Other versions
JP6493793B2 (en
Inventor
戸田 健司
Kenji Toda
健司 戸田
峰夫 佐藤
Mineo Sato
峰夫 佐藤
和義 上松
Kazuyoshi Uematsu
和義 上松
善旭 金
Sun-Uk Kim
善旭 金
善太郎 椿
Zentaro Tsubaki
善太郎 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOKEN TECHNICS KK
Original Assignee
SOKEN TECHNICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOKEN TECHNICS KK filed Critical SOKEN TECHNICS KK
Priority to JP2015069896A priority Critical patent/JP6493793B2/en
Publication of JP2016188347A publication Critical patent/JP2016188347A/en
Application granted granted Critical
Publication of JP6493793B2 publication Critical patent/JP6493793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molten salt type heat transfer medium that can suppress the corrosion of metal and that has a low melting point and high heat durability.SOLUTION: A molten salt type heat transfer medium contains a mixture of carbonates comprising lithium carbonate by 45.0 to 65.0 mol%, sodium carbonate by 1.0 to 5.0 mol%, potassium carbonate by 10.0 to 20.0 mol%, strontium carbonate by 10.0 to 20.0 mol%, and cesium carbonate by 3.0 to 13.0 mol%.SELECTED DRAWING: None

Description

本発明は溶融塩型熱媒体、特に金属炭酸塩混合物を含む熱媒体に関するものである。   The present invention relates to a molten salt type heat medium, particularly a heat medium containing a metal carbonate mixture.

発電プラント等の大きな熱量を扱う設備における熱伝達には、一般に熱容量の大きな熱媒体が有利である。また、火力発電プラントや太陽熱発電プラントでは、高温熱源から高温かつ大量の熱を取り出す必要があるため、使用する熱媒体自体の耐熱性も要求される。   A heat medium having a large heat capacity is generally advantageous for heat transfer in facilities that handle a large amount of heat, such as a power plant. Further, in a thermal power plant or a solar thermal power plant, since it is necessary to extract a large amount of heat from a high temperature heat source, the heat resistance of the heat medium itself to be used is also required.

ところで、金属塩化合物の溶融塩は比較的大きな熱容量を有し、かつ耐熱性にも優れているため、上述の発電プラントにおいて使用する熱媒体としては好適なポテンシャルを備えたものであるといえる。   By the way, since the molten salt of a metal salt compound has a relatively large heat capacity and is excellent in heat resistance, it can be said that it has a suitable potential as a heat medium used in the above-mentioned power plant.

しかしながら、熱媒体には流動性が必須であるが、例えば特許文献1に記載されるような溶融塩であってもいまだ融点が高く、溶融相にするためには大きなエネルギーを要していた。   However, fluidity is indispensable for the heat medium, but even a molten salt as described in Patent Document 1, for example, still has a high melting point, and a large amount of energy is required to obtain a molten phase.

また、例えば金属塩化物系の溶融塩は比較的低融点のものもあるが、塩素を含むことで配管など金属部材の腐食を生じさせやすく、施設の耐久性の点から、このような塩素系の溶融塩は忌避されやすかった。   Also, for example, some metal chloride-based molten salts have a relatively low melting point, but the inclusion of chlorine tends to cause corrosion of metal parts such as piping, and from the point of durability of the facility, such chlorine-based molten salts. The molten salt was easy to avoid.

国際公開 第2012/130285号公報International Publication No. 2012/130285

本発明は上記課題を解決するためになされたものであり、本発明によれば、金属塩化物などの金属ハロゲン化物を使用しないことで金属の腐食を抑制でき、かつ低融点、高熱耐久性の溶融塩型熱媒体を提供することを課題とする。   The present invention has been made to solve the above-mentioned problems. According to the present invention, corrosion of a metal can be suppressed without using a metal halide such as a metal chloride, and a low melting point and high heat durability can be achieved. It is an object to provide a molten salt type heat medium.

上記課題を解決するために、本発明は、一実施形態として、45.0〜65.0モル%の炭酸リチウムと、1.0〜5.0モル%の炭酸ナトリウムと、10.0〜20.0モル%の炭酸カリウムと、10.0〜20.0モル%の炭酸ストロンチウムと、3.0〜13.0モル%の炭酸セシウムとからなる炭酸塩混合物を含む溶融塩型熱媒体を提供する。
また、本発明は、別の実施形態として、50.0〜62.0モル%の炭酸リチウムと、1.5〜4.5モル%の炭酸ナトリウムと、12.0〜18.0モル%の炭酸カリウムと、12.0〜18.0モル%の炭酸ストロンチウムと、5.0〜11.0モル%の炭酸セシウムとからなる炭酸塩混合物を含む溶融塩型熱媒体を提供する。
In order to solve the above problems, the present invention provides, as one embodiment, 45.0 to 65.0 mol% lithium carbonate, 1.0 to 5.0 mol% sodium carbonate, and 10.0 to 20 Provided is a molten salt heating medium comprising a carbonate mixture comprising 0.0 mol% potassium carbonate, 10.0-20.0 mol% strontium carbonate, and 3.0-13.0 mol% cesium carbonate. To do.
Moreover, this invention is 50.0-62.0 mol% lithium carbonate, 1.5-4.5 mol% sodium carbonate, and 12.0-18.0 mol% as another embodiment. Provided is a molten salt heat transfer medium comprising a carbonate mixture comprising potassium carbonate, 12.0 to 18.0 mol% strontium carbonate, and 5.0 to 11.0 mol% cesium carbonate.

本発明によれば、金属塩化物などの金属ハロゲン化物を使用しないことで配管等、金属部材の腐食を抑制でき、かつ低融点、高熱耐久性の溶融塩型熱媒体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, corrosion of metal members, such as piping, can be suppressed by not using metal halides, such as a metal chloride, and the low melting | fusing point and high heat durability molten salt type heat medium can be provided.

以下、本発明を詳細に説明する。なお、本発明において格別に断らない限り、「%」は「モル%」を意味し、「部」は「モル部」を意味する。   Hereinafter, the present invention will be described in detail. In the present invention, unless otherwise specified, “%” means “mol%” and “part” means “mol part”.

<炭酸塩混合物>
本発明の一実施形態に係る溶融塩型熱媒体は、45.0〜65.0モル%の炭酸リチウムと、1.0〜5.0モル%の炭酸ナトリウムと、10.0〜20.0モル%の炭酸カリウムと、10.0〜20.0モル%の炭酸ストロンチウムと、3.0〜13.0モル%の炭酸セシウムとからなる炭酸塩混合物を含んでなるものである。すなわち、本発明の一実施形態に係る溶融塩型熱媒体は、少なくとも上述した5成分からなる金属炭酸塩の混合物を含む。当該5成分が上記の範囲であると、低い融点と低い粘度が両立し、かつ耐熱性に優れた溶融塩型熱媒体を得ることができる。
<Carbonate mixture>
The molten salt type heat medium according to an embodiment of the present invention includes 45.0 to 65.0 mol% lithium carbonate, 1.0 to 5.0 mol% sodium carbonate, and 10.0 to 20.0. It comprises a carbonate mixture comprising mol% potassium carbonate, 10.0 to 20.0 mol% strontium carbonate, and 3.0 to 13.0 mol% cesium carbonate. That is, the molten salt type heat medium according to an embodiment of the present invention includes a mixture of metal carbonates composed of at least the five components described above. When the five components are in the above range, a molten salt type heat medium having both a low melting point and a low viscosity and excellent heat resistance can be obtained.

本発明の好ましい実施態様によれば、溶融塩型熱媒体は、50.0〜62.0モル%の炭酸リチウムと、1.5〜4.5モル%の炭酸ナトリウムと、12.0〜18.0モル%の炭酸カリウムと、12.0〜18.0モル%の炭酸ストロンチウムと、5.0〜11.0モル%の炭酸セシウムとからなる炭酸塩混合物を含む。   According to a preferred embodiment of the present invention, the molten salt heating medium comprises 50.0-62.0 mol% lithium carbonate, 1.5-4.5 mol% sodium carbonate, 12.0-18. A carbonate mixture consisting of 0.0 mol% potassium carbonate, 12.0-18.0 mol% strontium carbonate, and 5.0-11.0 mol% cesium carbonate.

より好ましい実施態様によれば、溶融塩型熱媒体は、53.0〜61.0モル%の炭酸リチウムと、2.0〜4.0モル%の炭酸ナトリウムと、13.0〜17.0モル%の炭酸カリウムと、13.0〜17.0モル%の炭酸ストロンチウムと、6.0〜10.0モル%の炭酸セシウムとからなる炭酸塩混合物を含む。   According to a more preferred embodiment, the molten salt heating medium comprises 53.0 to 61.0 mol% lithium carbonate, 2.0 to 4.0 mol% sodium carbonate, and 13.0 to 17.0. A carbonate mixture comprising mol% potassium carbonate, 13.0 to 17.0 mol% strontium carbonate, and 6.0 to 10.0 mol% cesium carbonate is included.

<その他の成分>
本発明の溶融塩型熱媒体は、上述した金属炭酸塩混合物以外の成分(その他の成分とも称する)を含んでもよく、当該その他の成分は、例えばアルカリ金属塩、アルカリ土類金属塩などが挙げられる。
<Other ingredients>
The molten salt type heat medium of the present invention may contain components other than the metal carbonate mixture described above (also referred to as other components), and examples of the other components include alkali metal salts and alkaline earth metal salts. It is done.

本発明の溶融塩型熱媒体は、例えば上述の5成分からなる金属炭酸塩化合物を構成する炭酸塩以外の金属炭酸塩を配合し、溶融塩型熱媒体全体として6成分以上からなる金属炭酸塩混合物とすることもできる。   The molten salt type heat medium of the present invention contains, for example, a metal carbonate other than the carbonate constituting the metal carbonate compound consisting of the five components described above, and the molten salt type heat medium as a whole consists of a metal carbonate consisting of six or more components. It can also be a mixture.

なお、本発明の溶融塩型熱媒体に、当該その他の成分を配合する場合には、高い耐熱性、比較的低い融点実現の観点から、当該その他の成分として、上述の5成分からなる金属塩化合物を構成する炭酸塩以外の金属炭酸塩を配合することとしてもよい。   In addition, when blending the other components in the molten salt type heat medium of the present invention, from the viewpoint of realizing high heat resistance and a relatively low melting point, the other component is a metal salt composed of the above five components. It is good also as compounding metal carbonates other than the carbonate which comprises a compound.

また、当該その他の成分の配合量は、本発明の金属塩混合物の全合計モル数100モルに対し、0〜20モル部、好ましくは0〜10モル部、より好ましくは0〜5モル部程度である。   Moreover, the compounding quantity of the said other component is 0-20 mol part with respect to 100 mol of the total total mole number of the metal salt mixture of this invention, Preferably it is 0-10 mol part, More preferably, it is about 0-5 mol part. It is.

なお、その他の成分として金属塩化物などの金属ハロゲン化物を配合する場合は、金属腐食性を抑える必要性から、溶融塩型熱媒体の全量100モル%中、0.1モル%以下の配合量とすることが好ましく、0.05モル%以下とすることがさらに好ましく、理想的には全く配合しないことが望ましい。   In addition, when compounding metal halides such as metal chlorides as other components, it is necessary to suppress metal corrosiveness, so the blending amount is 0.1 mol% or less in the total amount of molten salt type heat medium 100 mol%. Preferably, it is more preferably 0.05 mol% or less, and ideally it is desirable not to mix at all.

<本発明の利用例(用途)>
本発明によれば、配管等の金属腐食を抑制でき、かつ低融点、高熱耐久性の溶融塩型熱媒体が得られる。そして、当該溶融塩型熱媒体は火力発電プラントや太陽熱発電プラント、水素発生プラントなどの、高温熱源から高温かつ大量の熱を取り出す必要がある用途に好適に利用できる。
<Application example (use) of the present invention>
ADVANTAGE OF THE INVENTION According to this invention, the molten salt type heat medium which can suppress metal corrosion, such as piping, and has a low melting point and high heat durability is obtained. And the said molten salt type heat medium can be utilized suitably for the use which needs to take out high temperature and a large amount of heat from a high temperature heat source, such as a thermal power plant, a solar thermal power plant, and a hydrogen generation plant.

<溶融塩型熱媒体の調製手順>
94.19 mmol(≒6.960 g:58.09モル%)の炭酸リチウムと、5.66 mmol(≒0.600 g:3.49モル%)の炭酸ナトリウムと、23.66 mmol(≒3.270 g:14.59モル%)の炭酸カリウムと、25.30 mmol(≒3.735 g:15.60モル%)の炭酸ストロンチウムと、13.35 mmol(≒4.35 g:8.23モル%)の炭酸セシウムを混合し、アルミナ製るつぼに入れ,箱型電気炉を用いて、空気中にて600 ℃で2時間加熱した。加熱時間の途中で、溶融状態の試料を均一化するため、るつぼを揺さぶって撹拌した。昇温速度は8 ℃/分である。600 ℃で2時間加熱した溶融体を取り出し、ステンレス製の皿に流し出し、室温放冷させることで、溶融塩型熱媒体1を調製した。
<Procedure for preparing molten salt heat medium>
94.19 mmol (≈6.960 g: 58.09 mol%) lithium carbonate, 5.66 mmol (≈0.600 g: 3.49 mol%) sodium carbonate, 23.66 mmol (≈ 3.270 g: 14.59 mol%) potassium carbonate, 25.30 mmol (≈3.735 g: 15.60 mol%) strontium carbonate, and 13.35 mmol (≈4.35 g: 8 .23 mol%) cesium carbonate was mixed, placed in an alumina crucible, and heated in air at 600 ° C. for 2 hours using a box-type electric furnace. During the heating time, the crucible was shaken and stirred to homogenize the molten sample. The heating rate is 8 ° C./min. The melt heated at 600 ° C. for 2 hours was taken out, poured into a stainless steel dish, and allowed to cool to room temperature to prepare a molten salt heat medium 1.

<融点測定手順>
上記の手順で調整した溶融塩型熱媒体1をメノウ乳鉢で十分すりつぶしたのち、20〜30 mgをアルミニウム製試料皿に入れ、精秤した後、示差走査熱量計(DSC、リガク製Thermo plus EVO2)にセットした。室温から350 ℃までは10 ℃/分、350 ℃から420 ℃までは1 ℃/分の速度で昇温した。420 ℃に達した後は、350 ℃までは1 ℃/分、350 ℃から室温までは10 ℃/分で降温した。測定は空気中で行った。試料の融点と凝固点は、昇温時の吸熱ピークおよび降温時の発熱ピークのピーク温度をそれぞれの値とした。
結果、当該溶融塩型熱媒体1の融点は372.4
℃、凝固点374.2 ℃と算出した。
<Melting point measurement procedure>
After the molten salt type heat medium 1 prepared by the above procedure is sufficiently ground in an agate mortar, 20 to 30 mg is placed in an aluminum sample dish and precisely weighed, and then a differential scanning calorimeter (DSC, Thermoplus EVO2 manufactured by Rigaku). ). The temperature was raised from room temperature to 350 ° C. at a rate of 10 ° C./min, and from 350 ° C. to 420 ° C. at a rate of 1 ° C./min. After reaching 420 ° C., the temperature was lowered to 350 ° C. at 1 ° C./min, and from 350 ° C. to room temperature at 10 ° C./min. The measurement was performed in air. The melting point and freezing point of the sample were the endothermic peak at the time of temperature rise and the peak temperature of the exothermic peak at the time of temperature fall, respectively.
As a result, the melting point of the molten salt heat medium 1 is 372.4.
The temperature was calculated as 0 ° C. and freezing point 374.2 ° C.

<粘度測定手順>
上記の手順で調整した溶融塩型熱媒体1について、特殊高温ユニットを装着したAnton Paar社の高温レオメーターシステム(MCR 502)装置を用いて、550 ℃から750 ℃の温度範囲で粘度の測定を行った。測定は空気中で行った。調整した溶融塩型熱媒体粉末をアルミナ製の測定ユニットに入れ、750 ℃まで加熱させた後、温度が安定するまで放置した。その後、750、700、650、630、600、550 ℃の順で粘度の測定を行った。各温度で粘度を測定するに当たって、温度が安定するまで放置した後、温度が安定した時点で、36回の測定を行い、その平均値で溶融塩型熱媒体1の各測定温度における粘度を求めた。測定結果を下記表1に示す。

Figure 2016188347
<Viscosity measurement procedure>
Using the Anton Paar high temperature rheometer system (MCR 502) apparatus equipped with a special high temperature unit, the viscosity of the molten salt type heat medium 1 adjusted by the above procedure is measured in the temperature range of 550 ° C. to 750 ° C. went. The measurement was performed in air. The adjusted molten salt type heat medium powder was put into an alumina measurement unit, heated to 750 ° C., and allowed to stand until the temperature was stabilized. Thereafter, the viscosity was measured in the order of 750, 700, 650, 630, 600, and 550 ° C. In measuring the viscosity at each temperature, the sample is allowed to stand until the temperature is stabilized, and when the temperature is stabilized, measurement is performed 36 times, and the viscosity at each measurement temperature of the molten salt heating medium 1 is obtained by the average value. It was. The measurement results are shown in Table 1 below.
Figure 2016188347

Claims (2)

45.0〜65.0モル%の炭酸リチウムと、1.0〜5.0モル%の炭酸ナトリウムと、10.0〜20.0モル%の炭酸カリウムと、10.0〜20.0モル%の炭酸ストロンチウムと、3.0〜13.0モル%の炭酸セシウムと、からなる炭酸塩混合物を含む溶融塩型熱媒体。   45.0-65.0 mol% lithium carbonate, 1.0-5.0 mol% sodium carbonate, 10.0-20.0 mol% potassium carbonate, 10.0-20.0 mol A molten salt type heat medium comprising a carbonate mixture consisting of 1% strontium carbonate and 3.0 to 13.0 mol% cesium carbonate. 50.0〜62.0モル%の炭酸リチウムと、1.5〜4.5モル%の炭酸ナトリウムと、12.0〜18.0モル%の炭酸カリウムと、12.0〜18.0モル%の炭酸ストロンチウムと、5.0〜11.0モル%の炭酸セシウムと、からなる炭酸塩混合物を含む溶融塩型熱媒体。   50.0-62.0 mol% lithium carbonate, 1.5-4.5 mol% sodium carbonate, 12.0-18.0 mol% potassium carbonate, 12.0-18.0 mol A molten salt type heat medium comprising a carbonate mixture consisting of 1% strontium carbonate and 5.0 to 11.0 mol% cesium carbonate.
JP2015069896A 2015-03-30 2015-03-30 Molten salt heat medium Active JP6493793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069896A JP6493793B2 (en) 2015-03-30 2015-03-30 Molten salt heat medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069896A JP6493793B2 (en) 2015-03-30 2015-03-30 Molten salt heat medium

Publications (2)

Publication Number Publication Date
JP2016188347A true JP2016188347A (en) 2016-11-04
JP6493793B2 JP6493793B2 (en) 2019-04-03

Family

ID=57239513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069896A Active JP6493793B2 (en) 2015-03-30 2015-03-30 Molten salt heat medium

Country Status (1)

Country Link
JP (1) JP6493793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018093091A1 (en) * 2016-11-21 2018-05-24 한국기계연구원 Heat transfer medium melting composition, heat transfer system using same, and power generation device using heat transfer system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153136A (en) * 1984-12-24 1986-07-11 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン Production of chemical product utilizing solar heat
WO2012130285A1 (en) * 2011-03-29 2012-10-04 Siemens Aktiengesellschaft Thermal energy storage medium with carbonate salts and use of the thermal energy storage medium
US20130167832A1 (en) * 2012-01-03 2013-07-04 Stanley Kim Thermal Solar Capacitor System
JP2014173172A (en) * 2013-03-12 2014-09-22 National Institute Of Advanced Industrial & Technology Two-phase-separated molten salt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153136A (en) * 1984-12-24 1986-07-11 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン Production of chemical product utilizing solar heat
WO2012130285A1 (en) * 2011-03-29 2012-10-04 Siemens Aktiengesellschaft Thermal energy storage medium with carbonate salts and use of the thermal energy storage medium
US20130167832A1 (en) * 2012-01-03 2013-07-04 Stanley Kim Thermal Solar Capacitor System
JP2014173172A (en) * 2013-03-12 2014-09-22 National Institute Of Advanced Industrial & Technology Two-phase-separated molten salt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018093091A1 (en) * 2016-11-21 2018-05-24 한국기계연구원 Heat transfer medium melting composition, heat transfer system using same, and power generation device using heat transfer system

Also Published As

Publication number Publication date
JP6493793B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
Fernández et al. Development of new molten salts with LiNO3 and Ca (NO3) 2 for energy storage in CSP plants
AU2011354220B2 (en) Heat transfer medium for solar thermal systems
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
CN108467711A (en) A kind of inorganic composite phase-change material and preparation method thereof
JP6493793B2 (en) Molten salt heat medium
JPWO2016199454A1 (en) Molten salt heat medium, method of using molten salt heat medium, and solar heat utilization system
WO2012042075A1 (en) Electrolyte composition for obtaining metal aluminium
WO2012130285A1 (en) Thermal energy storage medium with carbonate salts and use of the thermal energy storage medium
ES2908578T3 (en) Use of a nitrate salt composition as a heat transfer medium or heat storage medium for the first commissioning of a device containing such media
JP6389891B2 (en) Strontium bromide phase change material
CN104561719B (en) Vanadium evanohm and preparation method thereof
JP2021172791A (en) Heat storage material composition and heat storage system for building cooling and heating
JP2015067670A (en) Molten salt, heat storage material, and heat medium
JP5923619B2 (en) Thermal storage system, power generation system
JP2018525448A (en) Method for preparing a homogeneous mixture for heat storage and heat transfer applications
JP6148943B2 (en) Lead-free glass for sealing stainless steel vacuum double containers
CN103484897B (en) A kind of electrolgtic aluminium electrolyte and use this electrolytical electrolysis process
CN103509956A (en) Foaming flame-retardant magnesium alloy covering agent and preparation method thereof
US20170240787A1 (en) Energy Store For A Power Plant On The Basis Of A Phase Change Material (PCM)
US20180230351A1 (en) New formulations of nitrate salts for use as fluid for the storage and transfer of heat
WO2007099798A1 (en) Heat-storage material composition
CN103849358B (en) Molten salt composition
CN107502923A (en) The preparation method of aluminium-scandium alloy
JP2013139370A (en) Glaze composition for glass lining
JP2000080358A (en) Heat storage material composition

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6493793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250