JP2016188154A - Method for purifying ammonia - Google Patents

Method for purifying ammonia Download PDF

Info

Publication number
JP2016188154A
JP2016188154A JP2015068516A JP2015068516A JP2016188154A JP 2016188154 A JP2016188154 A JP 2016188154A JP 2015068516 A JP2015068516 A JP 2015068516A JP 2015068516 A JP2015068516 A JP 2015068516A JP 2016188154 A JP2016188154 A JP 2016188154A
Authority
JP
Japan
Prior art keywords
ammonia
gas
oil
liquid
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015068516A
Other languages
Japanese (ja)
Inventor
剛吾 松村
Gogo Matsumura
剛吾 松村
和信 渋谷
Kazunobu Shibuya
和信 渋谷
和浩 宮澤
Kazuhiro Miyazawa
和浩 宮澤
信昭 渡邊
Nobuaki Watanabe
信昭 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2015068516A priority Critical patent/JP2016188154A/en
Publication of JP2016188154A publication Critical patent/JP2016188154A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying ammonia, in which high-purity ammonia can be obtained by using a minimum number of impurity removal means while suppressing an equipment cost or a running cost.SOLUTION: The method for purifying ammonia comprises: a liquid sampling step of sampling crude ammonia as liquid ammonia; a first oil content removing step of introducing the sampled liquid ammonia into a liquid-phase filter to remove the oil content thereof; a vaporizing step of vaporizing the liquid ammonia, the oil content of which is removed at the first oil content removing step, in a vaporizer; a pressure adjusting step of adjusting the pressure of the vaporized ammonia gas to a preset pressure; a second oil content removing step of removing the oil content, which is not removed at the first oil content removing step and remains in the vaporized ammonia gas, by using a gas-phase filter; and a water content removing step of removing the water content in the ammonia gas by using an adsorbent.SELECTED DRAWING: Figure 1

Description

本発明は、アンモニアの精製方法に関し、詳しくは、無水アンモニアや工業用アンモニアを、窒化ガリウム膜などの半導体素子の製造原料として使用するのに適した高純度のアンモニアを得るためのアンモニアの精製方法に関する。   The present invention relates to a method for purifying ammonia, and in particular, a method for purifying ammonia to obtain high-purity ammonia suitable for using anhydrous ammonia or industrial ammonia as a raw material for producing semiconductor elements such as gallium nitride films. About.

各種不純物を含む無水アンモニアや工業用アンモニアなどの粗アンモニアを精製して不純物を除去し、半導体素子の製造原料として使用可能な高純度アンモニアを得る方法として、酸化マンガンと他の特定の金属酸化物との混合物を使用する方法や、特定の第1の金属酸化物と第2の金属酸化物との混合物を多孔質担体上に分散させたものを使用する方法など、様々な精製方法が提案されている(例えば、特許文献1,2参照。)。   Manganese oxide and other specific metal oxides can be used to purify crude ammonia such as anhydrous ammonia and industrial ammonia containing various impurities to remove impurities and obtain high-purity ammonia that can be used as a raw material for manufacturing semiconductor devices. Various purification methods have been proposed, such as a method using a mixture of the first metal oxide and a mixture of a specific first metal oxide and a second metal oxide dispersed on a porous support. (For example, refer to Patent Documents 1 and 2.)

特開2004−142987号公報JP 2004-142987 A 特開2005−169392号公報JP 2005-169392 A

しかし、従来の精製方法は、アンモニアを一定の高純度に精製することはできるものの、いずれも設備費やランニングコストが高いという問題があった。   However, although the conventional purification methods can purify ammonia to a certain high purity, they all have a problem of high equipment costs and running costs.

そこで本発明は、最小限の不純物除去手段で、設備費やランニングコストを抑えながら高純度のアンモニアを得ることができるアンモニアの精製方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for purifying ammonia that can obtain high-purity ammonia while minimizing facility costs and running costs with minimal impurity removal means.

上記目的を達成するため、本発明のアンモニアの精製方法は、原料となる粗アンモニア中の不純物を除去して高純度アンモニアを得るアンモニアの精製方法において、前記粗アンモニアを液体アンモニアとして採取する液採取工程と、採取した液体アンモニアを液相フィルターに導入して油分を除去する第1油分除去工程と、第1油分除去工程後の液体アンモニアを蒸発器で気化させる気化工程と、気化したアンモニアガスの圧力をあらかじめ設定された圧力に調整する圧力調整工程と、前記第1油分除去工程で除去されずに気化したアンモニアガス中に残留した油分を気相フィルターにより除去する第2油分除去工程と、吸着剤によってアンモニアガス中の水分を除去する水分除去工程とを含むことを特徴としている。   In order to achieve the above-mentioned object, the ammonia purification method of the present invention is a liquid sampling method in which the crude ammonia is collected as liquid ammonia in the ammonia purification method for obtaining high purity ammonia by removing impurities in the raw crude ammonia. A first oil component removing step for removing the oil component by introducing the collected liquid ammonia into the liquid phase filter, a vaporizing step for vaporizing the liquid ammonia after the first oil component removing step with an evaporator, A pressure adjusting step for adjusting the pressure to a preset pressure, a second oil removing step for removing oil remaining in the ammonia gas that has not been removed in the first oil removing step by a gas phase filter, and an adsorption And a moisture removal step of removing moisture in the ammonia gas by the agent.

さらに、本発明のアンモニアの精製方法は、前記吸着剤が、吸着工程と再生操作とを切り替えて運転される複数の吸着筒内に充填された合成ゼオライトのMS3A、MS4A又はMS5Aであり、水分を吸着した吸着剤を再生する再生操作は、前記水分除去工程の運転圧力を維持した状態で吸着剤を加熱しながら吸着筒内にパージガスを流通させて水分をパージする第1パージ段階と、第1パージ段階終了後に高純度アンモニアガスを吸着筒内に導入して筒内を高純度アンモニアを流通させる第2パージ段階と、第2パージ段階終了後に高純度アンモニアの流通を継続しながら加熱を停止して冷却する冷却段階と、冷却段階終了後に圧力を前記運転圧力に維持した状態で吸着筒を封止する封止段階とを含むことを特徴としている。   Further, in the ammonia purification method of the present invention, the adsorbent is MS3A, MS4A or MS5A of synthetic zeolite filled in a plurality of adsorption cylinders operated by switching between an adsorption step and a regeneration operation, The regeneration operation for regenerating the adsorbed adsorbent includes a first purge stage in which purge gas is circulated in the adsorption cylinder while purging moisture while heating the adsorbent while maintaining the operating pressure of the water removal step, After the purge stage is finished, the high purity ammonia gas is introduced into the adsorption cylinder, the second purge stage in which the high purity ammonia is circulated in the cylinder, and the heating is stopped while continuing the circulation of the high purity ammonia after the completion of the second purge stage. And a cooling step for cooling the adsorption cylinder in a state in which the pressure is maintained at the operating pressure after the cooling step is completed.

また、前記第1油分除去工程における油分除去管理を前記液相フィルターに設けたドレントラップの貯留油量で行い、前記第2油分除去工程における油分除去管理を前記気相フィルターのガス流入側とガス流出側との差圧で行うことを特徴としている。   In addition, the oil removal management in the first oil removal step is performed with the amount of oil stored in the drain trap provided in the liquid phase filter, and the oil removal management in the second oil removal step is performed on the gas inflow side and the gas of the gas phase filter. It is characterized by the fact that it is performed with a differential pressure from the outflow side.

さらに、前記水分除去工程の後段で、触媒と吸着剤とによって水分、酸素、一酸化炭素及び二酸化炭素を除去する最終精製工程を行うことを特徴とし、該最終精製工程の吸着剤を還元性ガスで再生することを特徴としている。   Furthermore, a final purification step for removing water, oxygen, carbon monoxide, and carbon dioxide by a catalyst and an adsorbent is performed after the water removal step, and the adsorbent in the final purification step is used as a reducing gas. It is characterized by playing in.

本発明のアンモニアの精製方法によれば、簡単な機器構成で粗アンモニアを精製して高純度アンモニアを得ることができる。   According to the method for purifying ammonia of the present invention, high purity ammonia can be obtained by purifying crude ammonia with a simple equipment configuration.

本発明のアンモニアの精製方法を実施可能なアンモニア精製装置の一例を示す説明図である。It is explanatory drawing which shows an example of the ammonia purification apparatus which can implement the purification method of ammonia of this invention. 活性炭フィルターの有無による水分濃度の違いを示す図である。It is a figure which shows the difference in the water concentration by the presence or absence of an activated carbon filter. 再生操作時の出口ガス中の水分濃度の変化を示す図である。It is a figure which shows the change of the moisture concentration in the exit gas at the time of regeneration operation. 最終精製工程を組み込んだアンモニア精製装置の説明図である。It is explanatory drawing of the ammonia purification apparatus incorporating the final purification process.

まず、本発明を開発するにあたり、一般に入手可能な各種アンモニア容器中や供給中のアンモニアガス中の不純物を調査した。表1は、A社、B社、C社の三社から入手した50kg入りアンモニア容器中の気相及び液相に含まれる不純物成分をそれぞれ測定した結果と、市販されている高純度アンモニアの製品規格値を示している。   First, in developing the present invention, impurities in various generally available ammonia containers and ammonia gas being supplied were investigated. Table 1 shows the results of measuring impurity components contained in the gas phase and liquid phase in a 50 kg ammonia container obtained from three companies, Company A, Company B, and Company C, and products of high-purity ammonia that are commercially available. The standard value is shown.

Figure 2016188154
Figure 2016188154

その結果、主な不純物は、水素、メタン、二酸化炭素、一酸化炭素、酸素及び水分であり、これらの各不純物は、容器内で貯蔵中の状態によって変動するが、水素、メタン、二酸化炭素、一酸化炭素及び酸素は、アンモニアより低沸点成分であるから気相側に濃縮しやすい。このため、容器内の気相を採取すると、流量変動に伴う貯蔵液温の変化とも相まって、不純物の濃度は大きく変化するとともに、その濃度も高くなる。これに対し、容器内の液相を採取したときは、供給ガス中におけるこれらの不純物は極微量となり、必要とされる不純物濃度以下であるため、除去対象成分としては、水分のみを考慮すればよいことになる。   As a result, the main impurities are hydrogen, methane, carbon dioxide, carbon monoxide, oxygen and moisture, and each of these impurities varies depending on the storage state in the container, but hydrogen, methane, carbon dioxide, Since carbon monoxide and oxygen are components having a lower boiling point than ammonia, they are easily concentrated on the gas phase side. For this reason, when the gas phase in the container is collected, the impurity concentration changes greatly and the concentration also increases in conjunction with the change in the storage liquid temperature accompanying the flow rate fluctuation. On the other hand, when the liquid phase in the container is collected, these impurities in the supply gas are extremely small and are below the required impurity concentration. It will be good.

一方、アンモニアの製造工程において、原料を圧縮する圧縮機や冷却に使用する冷凍機の圧縮機などの摺動部の摩耗を防止するための潤滑油が、製品のアンモニアガスに混入する可能性がある。このため、アンモニアを精製する際には、アンモニア中に含まれる油分を除去する必要があり、前記各不純物に対しては、容器内の液相を採取することによって水分以外は極微量となるので、水分を除去すればよいことになる。   On the other hand, in the ammonia production process, there is a possibility that lubricating oil for preventing wear of sliding parts such as compressors for compressing raw materials and compressors for refrigerators used for cooling may be mixed into the product ammonia gas. is there. For this reason, when refining ammonia, it is necessary to remove the oil contained in the ammonia, and for each of the impurities, since the liquid phase in the container is collected, the amount other than moisture is extremely small. It is only necessary to remove moisture.

図1は、本発明のアンモニアの精製方法を実施可能なアンモニア精製装置の一例を示している。このアンモニア精製装置は、原料の粗アンモニアとなる無水アンモニアや工業用アンモニアを貯留した貯槽又は容器11と、該貯槽又は容器11から液相のアンモニアを液体アンモニアとして採取する液採取工程を行うための液採取管12と、液採取管12で採取した液体アンモニア中の油分を除去する第1油分除去工程を行う液相フィルター13と、第1油分除去工程後の液体アンモニアを気化させる気化工程を行う蒸発器14と、気化したアンモニアガスの圧力をあらかじめ設定された圧力に調整する圧力調整工程を行う圧力調整器15と、前記液相フィルター13での第1油分除去工程で除去されずに気化したアンモニアガス中に残存する油分を除去する第2油分除去工程を行う気相フィルター16と、油分除去後のアンモニアガス中の水分を吸着剤によって除去する水分除去工程を行う水分吸着筒17とを備えている。   FIG. 1 shows an example of an ammonia purification apparatus that can carry out the ammonia purification method of the present invention. This ammonia refining apparatus is for performing a storage tank or container 11 storing anhydrous ammonia or industrial ammonia as raw raw crude ammonia, and a liquid sampling process for collecting liquid phase ammonia as liquid ammonia from the storage tank or container 11. A liquid sampling tube 12, a liquid phase filter 13 for performing a first oil component removal step for removing oil in the liquid ammonia collected by the liquid sampling tube 12, and a vaporization step for vaporizing the liquid ammonia after the first oil component removal step are performed. Vaporized without being removed in the evaporator 14, the pressure regulator 15 that performs a pressure adjustment step of adjusting the pressure of the vaporized ammonia gas to a preset pressure, and the first oil component removal step in the liquid phase filter 13. A gas phase filter 16 for performing a second oil removal step for removing oil remaining in the ammonia gas, and in the ammonia gas after oil removal Moisture and a moisture adsorbing column 17 for water removal step of removing the adsorbent.

すなわち、容器11から取り出した液体アンモニア中に含まれる油を液相フィルター13により除去した後、蒸発器14に導入してガス化させる。ガス化したアンモニアガスは、圧力調整器15で供給圧力を調整後、気相フィルター16に導入してガス中の微粒子やオイルミストを除去し、最後に、水分除去のための吸着剤を充填した水分吸着筒17に通気してから高純度アンモニアを使用する各工程へ供給するように構成している。   That is, the oil contained in the liquid ammonia taken out from the container 11 is removed by the liquid phase filter 13 and then introduced into the evaporator 14 to be gasified. After adjusting the supply pressure with the pressure regulator 15, the gasified ammonia gas is introduced into the gas-phase filter 16 to remove fine particles and oil mist in the gas, and finally filled with an adsorbent for moisture removal. The gas is supplied to each process using high-purity ammonia after passing through the moisture adsorption cylinder 17.

前記液相フィルター13は、前述のように、アンモニアの製造工程でアンモニア中に混入した潤滑油などの油分を除去するためのものである。本発明のように、原料として液体アンモニアを使用した場合、使用先に供給する前にアンモニアをガス化させるための蒸発器が必要になるが、液体アンモニア中に油分が混入していると、アンモニアと相溶性のない油分は、液体アンモニアより重く、気化しにくいため、蒸発器の底部に滞留し、熱交換の効率を低下させるだけでなく汚染を引き起こし、下流側における不純物の除去性能にも悪影響を及ぼすことになる。このため、気化工程を行う蒸発器14の前段で液体アンモニア中の油分のほとんどを除去することにより、装置の長期連続運転が可能となる。   As described above, the liquid phase filter 13 is for removing oil such as lubricating oil mixed in ammonia in the ammonia production process. When liquid ammonia is used as a raw material as in the present invention, an evaporator for gasifying ammonia is required before being supplied to the user. However, if oil is mixed in liquid ammonia, Oil, which is not compatible with liquid ammonia, is heavier than liquid ammonia and hard to vaporize, so it stays at the bottom of the evaporator, causing heat exchange efficiency and causing contamination, and also has a negative effect on downstream impurity removal performance Will be affected. For this reason, long-term continuous operation of the apparatus becomes possible by removing most of the oil component in the liquid ammonia in the previous stage of the evaporator 14 that performs the vaporization step.

液相フィルター13としては、油水分離など、液−液分離に使用されているコアレッサー方式のものが適している。このコアレッサー方式は、混合液中の微小な対象成分を比較的大きい孔を有するメデイアなどの粗粒化フィルターを使用することによって微小な液滴を粗大化して分離するものであり、必要に応じて遮り効果のあるフィルターと組み合わせることより高効率な油分捕集率を得ることができる。この液相フィルター13における油分除去管理は、液相フィルター13の下部に設けたドレントラップ13aの貯留油量で行うことができる。   As the liquid phase filter 13, a coalescer type used for liquid-liquid separation such as oil-water separation is suitable. In this coalescer method, minute droplets are coarsened and separated by using a coarse filter such as media having relatively large pores for minute target components in the mixed solution. In combination with a filter having a shielding effect, a highly efficient oil collecting rate can be obtained. The oil removal management in the liquid phase filter 13 can be performed by the amount of oil stored in the drain trap 13 a provided in the lower part of the liquid phase filter 13.

一方、油分を吸着する活性炭をフィルターに用いることも考えられるが、活性炭は、水分を吸脱着するため、液相フィルター13としては不適当である。図2は、工業用アンモニアを供給する際に、活性炭を充填した筒を油分捕集用のフィルターとして用いた場合と、フィルターを用いない場合とにおける水分量の変化を測定した例を示している。   On the other hand, although it is conceivable to use activated carbon that adsorbs oil as a filter, activated carbon adsorbs and desorbs moisture, and thus is not suitable as the liquid phase filter 13. FIG. 2 shows an example of measuring changes in the amount of water when supplying a cylinder filled with activated carbon as a filter for collecting oil and when not using a filter when supplying industrial ammonia. .

図2(A)に示すように、アンモニアの供給を一時停止させた後に供給を再開すると、前段階のアンモニア供給中に活性炭に吸着した水分が、供給再開とともに活性炭から脱着して供給ガス中に同伴され、水分を高濃度で含むアンモニアが供給されてしまう。これに対し、図2(B)に示すように、活性炭フィルターを使用していない場合は、供給再開と同時に僅かに水分濃度が上昇するのみである。これは、アンモニアの流量が変化したときも同様の傾向を示すことから、高純度アンモニアを供給する場合は、活性炭を用いることは好ましくないといえる。   As shown in FIG. 2A, when the supply is resumed after the supply of ammonia is temporarily stopped, the moisture adsorbed on the activated carbon during the previous stage of ammonia supply is desorbed from the activated carbon and resumed in the supply gas. Along with this, ammonia containing a high concentration of water is supplied. On the other hand, as shown in FIG. 2 (B), when the activated carbon filter is not used, the water concentration only slightly increases at the same time when the supply is resumed. Since this shows the same tendency when the flow rate of ammonia changes, it can be said that it is not preferable to use activated carbon when supplying high-purity ammonia.

前記蒸発器14は、液体アンモニアを気化できれば任意の構造のものを使用できるが、加熱媒体を導入するシェル14a内にアンモニアが流通するコイル14bを配置したシェル&コイル式が好ましい。コイル式の蒸発器は、構造が簡単であることと、シェル14a内に加熱媒体の貯蔵容量があるため、熱容量を大きくすることができ、アンモニアガス供給量の変動による負荷変動の温度変化を防止することができるという利点を有している。但し、液相フィルター13での油分除去が不十分な場合は、コイル14bの内部に油分が滞留するおそれがあるため、ドレン抜きを設けておくことが好ましい。   The evaporator 14 can be of any structure as long as it can vaporize liquid ammonia, but a shell and coil type in which a coil 14b through which ammonia flows is disposed in a shell 14a into which a heating medium is introduced is preferable. The coil-type evaporator has a simple structure and a storage capacity of the heating medium in the shell 14a, so that the heat capacity can be increased and the temperature change of the load fluctuation due to the fluctuation of the ammonia gas supply amount is prevented. Has the advantage of being able to. However, when the oil removal by the liquid phase filter 13 is insufficient, there is a possibility that the oil will stay inside the coil 14b. Therefore, it is preferable to provide drainage.

前記圧力調整器15は、アンモニアガスの使用先における必要圧力に応じた圧力に調整するもので、所定の圧力に調整できるものならば、市販の圧力調整器、膨張弁や二次側の圧力を検知してコントロール弁により制御するものなど、任意の形式のものを使用することができる。この圧力調整器15は、吸着筒17の後段などにも設けることが可能であるが、断熱膨張によってガス温度が低下するため、再液化防止や設備上の制約を考慮すると、蒸発器14の出口で必要圧力に降圧して調整することが好ましい。また、アンモニアガス中に含まれる油分や水分が溜まるおそれがあるため、複数の圧力調整器15を並列に配置して切替可能にしておくことが好ましい。   The pressure regulator 15 adjusts the pressure according to the required pressure at the place where the ammonia gas is used. If the pressure regulator 15 can be adjusted to a predetermined pressure, a commercially available pressure regulator, expansion valve or secondary side pressure can be adjusted. Arbitrary types can be used, such as those that are detected and controlled by a control valve. The pressure regulator 15 can be provided at the rear stage of the adsorption cylinder 17 or the like. However, since the gas temperature is lowered by adiabatic expansion, in consideration of prevention of reliquefaction and restrictions on equipment, the outlet of the evaporator 14 is provided. It is preferable to adjust the pressure to the required pressure. Moreover, since there exists a possibility that the oil component and water | moisture content contained in ammonia gas may accumulate, it is preferable to arrange | position the several pressure regulator 15 in parallel, and to be able to switch.

前記気相フィルター16は、前記液相フィルター13で除去されずにアンモニアガス中に残留した微量の油分を除去することにより、最終工程の水分吸着筒17が汚染されることを防ぐためのもので、気相におけるオイルミストや固形物などを拡散衝突やブラウン運動を利用した捕集機構を有するガス中の微粒子除去フィルターを用いることができる。この気相フィルター16においても、前記同様の理由から、活性炭などの吸着剤を使用したフィルターは用いることができない。また、この気相フィルター16は、液相フィルター13の不具合によってアンモニアガスに油分が同伴された場合にも機能する。この気相フィルター16における油分除去管理は、気相フィルター16のガス流入側とガス流出側との差圧で行うことができる。   The gas phase filter 16 is used to prevent the moisture adsorption cylinder 17 in the final process from being contaminated by removing a small amount of oil remaining in the ammonia gas without being removed by the liquid phase filter 13. In addition, it is possible to use a fine particle removal filter in gas having a collection mechanism using diffusion collision and Brownian motion for oil mist, solids, and the like in the gas phase. Also in the gas phase filter 16, a filter using an adsorbent such as activated carbon cannot be used for the same reason as described above. The gas phase filter 16 also functions when the ammonia gas is accompanied by oil due to a malfunction of the liquid phase filter 13. The oil removal management in the gas phase filter 16 can be performed by the differential pressure between the gas inflow side and the gas outflow side of the gas phase filter 16.

前記水分吸着筒17は、水分吸着能を有する吸着剤を充填した筒内にアンモニアガスを流通させて水分を除去するもので、吸着剤には、MS3A、MS4A、MS5Aといった合成ゼオライトを用いることができる。水分吸着筒17は、複数の水分吸着筒17を配置し、吸着操作と再生操作とを交互に繰り返して連続的に水分の除去を行えるようにすることが好ましい。また、アンモニア(NH)は、水分(HO)の有効分子径に近く、ゼオライトの極性効果もあって、アンモニア自体も吸着するため、再生時にアンモニアを吸脱着するときの吸熱や発熱によって精製システムの性能や設備上の問題が生じないように再生操作を行う。 The moisture adsorbing cylinder 17 removes moisture by circulating ammonia gas in a cylinder filled with an adsorbent having moisture adsorbing ability, and synthetic zeolite such as MS3A, MS4A, MS5A is used as the adsorbent. it can. It is preferable that the moisture adsorption cylinder 17 includes a plurality of moisture adsorption cylinders 17 so that moisture can be continuously removed by alternately repeating the adsorption operation and the regeneration operation. In addition, ammonia (NH 3 ) is close to the effective molecular diameter of moisture (H 2 O), and also has the polar effect of zeolite, so that ammonia itself is also adsorbed. Regeneration operation is performed so as not to cause problems in the performance and equipment of the purification system.

最適な再生操作は、まず、水分の吸着量が破過した水分吸着筒17の入口弁17a及び出口弁17bを閉じて運転圧力の状態で水分吸着筒17を一旦停止する。図示しないパージガス導入経路から水分吸着筒17内に、不活性ガスからなるパージガス、通常は、窒素ガスを所定流量で流通させるとともに、ヒーター17cを作動させて吸着剤を加熱する第1パージ段階を行う。あらかじめ設定した再生温度まで吸着剤を昇温し、水分吸着筒17からパージガス導出経路に導出した出口ガス(窒素ガス)中の水分濃度が所定値以下になるまで、運転圧力及び加熱状態を継続しながら第1パージ段階を継続する。   In the optimum regeneration operation, first, the inlet valve 17a and the outlet valve 17b of the moisture adsorption cylinder 17 that has passed through the moisture adsorption amount are closed, and the moisture adsorption cylinder 17 is temporarily stopped in the operating pressure state. A purge gas made of an inert gas, usually nitrogen gas, is circulated at a predetermined flow rate from the purge gas introduction path (not shown) into the moisture adsorption cylinder 17 and the heater 17c is activated to heat the adsorbent. . The adsorbent is heated to a preset regeneration temperature, and the operating pressure and the heating state are continued until the moisture concentration in the outlet gas (nitrogen gas) led out from the moisture adsorption cylinder 17 to the purge gas lead-out path becomes a predetermined value or less. While continuing the first purge stage.

水分濃度が所定値まで低下した後、加熱状態を継続しながらパージガスをアンモニアに切り替えて第2パージ段階に進む。そして、出口ガス(アンモニアガス)中の水分濃度が所定値以下になった時点で加熱を停止し、パージガスを所定時間継続して流通させ、所定の温度まで冷却する冷却段階を行った後、水分吸着筒17を封止してパージガスの導入・導出を停止する封止段階を行うことにより、再生操作が終了する。   After the water concentration has decreased to a predetermined value, the purge gas is switched to ammonia while continuing the heating state, and the process proceeds to the second purge stage. Then, when the moisture concentration in the outlet gas (ammonia gas) becomes equal to or lower than the predetermined value, the heating is stopped, the purge gas is continuously circulated for a predetermined time, and the cooling step is performed to cool the water to the predetermined temperature. The regeneration operation is completed by performing a sealing step in which the adsorption cylinder 17 is sealed to stop introduction / extraction of the purge gas.

この再生操作を、加熱温度を200℃、窒素ガス流通を10時間、アンモニアガス流通加熱を10時間、アンモニアガス流通冷却を4時間行ったときの出口ガス中の水分濃度の変化を図3に示す。また、再生操作における加熱温度は、200℃以下、好ましくは200℃に設定することにより、吸着剤を十分に再生することが可能である。一方、200℃を超える高温に設定すると、例えば250℃では200℃の場合に比べて吸着容量が半分程度に低下し、300℃では更に吸着容量が低下する傾向がある。   FIG. 3 shows the change in the moisture concentration in the outlet gas when this regeneration operation was performed at a heating temperature of 200 ° C., nitrogen gas circulation for 10 hours, ammonia gas circulation heating for 10 hours, and ammonia gas circulation cooling for 4 hours. . In addition, the adsorbent can be sufficiently regenerated by setting the heating temperature in the regenerating operation to 200 ° C. or less, preferably 200 ° C. On the other hand, when the temperature is set higher than 200 ° C., for example, at 250 ° C., the adsorption capacity is reduced to about half compared to 200 ° C., and at 300 ° C., the adsorption capacity tends to further decrease.

このように、水分吸着筒17の再生操作では、運転圧力、例えば0.3MPaを維持しながら所定温度、好ましくは200℃に加熱した状態で、第1段階で窒素ガスのような不活性ガスでパージを行い、雰囲気中にアンモニアが存在しない状態で水分を脱着させた後、第2段階で精製アンモニア(高純度アンモニアガス)でパージ及び筒内のガス置換を行うことにより、水分吸着筒17に充填したMS3A、MS4A、MS5Aといった合成ゼオライトを十分に再生することができ、次の吸着操作において十分な水分除去能力を発揮することができる。   As described above, in the regeneration operation of the moisture adsorption cylinder 17, an inert gas such as nitrogen gas is used in the first stage while heating to a predetermined temperature, preferably 200 ° C., while maintaining the operating pressure, for example, 0.3 MPa. After purging and desorbing moisture in the absence of ammonia in the atmosphere, purging with the purified ammonia (high purity ammonia gas) and gas replacement in the cylinder in the second stage, the moisture adsorption cylinder 17 The filled synthetic zeolite such as MS3A, MS4A, and MS5A can be sufficiently regenerated, and sufficient water removing ability can be exhibited in the next adsorption operation.

図4は、前記アンモニア精製装置の水分吸着筒17の後段に、水分、酸素、一酸化炭素及び二酸化炭素を除去する最終精製工程を行う最終精製筒18を組み込んだ例を示している。なお、以下の説明において、前記図1に示したアンモニア精製装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 4 shows an example in which a final purification cylinder 18 for performing a final purification step for removing moisture, oxygen, carbon monoxide and carbon dioxide is incorporated in the subsequent stage of the moisture adsorption cylinder 17 of the ammonia purification apparatus. In the following description, the same components as those of the ammonia purifying apparatus shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

最終精製筒18は、筒内ガス流れ方向上流側に、ニッケル及び酸化ニッケルを含む触媒18aを充填するとともに、下流側にMS3Aからなる吸着剤18bを充填したもので、このような最終精製筒18を最終精製工程として組み込むことにより、高純度アンモニアガス中の不純物濃度を更に低減できるとともに、配管途中での漏れ込みによる不純物を除去することができる。この最終精製筒18の再生操作は、還元性ガスを用いて行うことが好ましく、特に再生操作の最終段階では、高純度アンモニアガスを使用することが望ましい。   The final purification cylinder 18 is filled with a catalyst 18a containing nickel and nickel oxide on the upstream side in the in-cylinder gas flow direction, and with an adsorbent 18b made of MS3A on the downstream side. As a final purification step, the impurity concentration in the high-purity ammonia gas can be further reduced, and impurities due to leakage in the middle of the piping can be removed. The regeneration operation of the final purification cylinder 18 is preferably performed using a reducing gas, and it is desirable to use high-purity ammonia gas particularly in the final stage of the regeneration operation.

11…容器、12…液採取管、13…液相フィルター、13a…ドレントラップ、14…蒸発器、14a…シェル、14b…コイル、15…圧力調節器、16…気相フィルター、17…水分吸着筒、17a…入口弁、17b…出口弁、17c…ヒーター、18…最終精製筒、18a…触媒、18b…吸着剤 DESCRIPTION OF SYMBOLS 11 ... Container, 12 ... Liquid collection tube, 13 ... Liquid phase filter, 13a ... Drain trap, 14 ... Evaporator, 14a ... Shell, 14b ... Coil, 15 ... Pressure regulator, 16 ... Gas phase filter, 17 ... Water adsorption Tube, 17a ... Inlet valve, 17b ... Outlet valve, 17c ... Heater, 18 ... Final refined tube, 18a ... Catalyst, 18b ... Adsorbent

Claims (5)

原料となる粗アンモニア中の不純物を除去して高純度アンモニアを得るアンモニアの精製方法において、前記粗アンモニアを液体アンモニアとして採取する液採取工程と、採取した液体アンモニアを液相フィルターに導入して油分を除去する第1油分除去工程と、第1油分除去工程後の液体アンモニアを蒸発器で気化させる気化工程と、気化したアンモニアガスの圧力をあらかじめ設定された圧力に調整する圧力調整工程と、前記第1油分除去工程で除去されずに気化したアンモニアガス中に残留した油分を気相フィルターにより除去する第2油分除去工程と、吸着剤によってアンモニアガス中の水分を除去する水分除去工程とを含むことを特徴とするアンモニアの精製方法。   In a method for purifying ammonia, which removes impurities in crude ammonia as a raw material to obtain high purity ammonia, a liquid collection step for collecting the crude ammonia as liquid ammonia, and introducing the collected liquid ammonia into a liquid phase filter for oil content A first oil removing step for removing water, a vaporizing step for vaporizing the liquid ammonia after the first oil removing step with an evaporator, a pressure adjusting step for adjusting the pressure of the vaporized ammonia gas to a preset pressure, A second oil removing step for removing oil remaining in the vaporized ammonia gas without being removed in the first oil removing step by a gas phase filter; and a moisture removing step for removing moisture in the ammonia gas by the adsorbent. A method for purifying ammonia. 前記吸着剤が、吸着工程と再生操作とを切り替えて運転される複数の吸着筒内に充填された合成ゼオライトのMS3A、MS4A又はMS5Aであり、水分を吸着した吸着剤を再生する再生操作は、前記水分除去工程の運転圧力を維持した状態で吸着剤を加熱しながら吸着筒内にパージガスを流通させて水分をパージする第1パージ段階と、第1パージ段階終了後に高純度アンモニアガスを吸着筒内に導入して筒内を高純度アンモニアを流通させる第2パージ段階と、第2パージ段階終了後に高純度アンモニアの流通を継続しながら加熱を停止して冷却する冷却段階と、冷却段階終了後に圧力を前記運転圧力に維持した状態で吸着筒を封止する封止段階とを含むことを特徴とする請求項1記載のアンモニアの精製方法。   The adsorbent is a synthetic zeolite MS3A, MS4A or MS5A filled in a plurality of adsorption cylinders operated by switching between an adsorption step and a regeneration operation, and the regeneration operation for regenerating the adsorbent adsorbing moisture is: A first purge stage for purging moisture by circulating a purge gas through the adsorption cylinder while heating the adsorbent while maintaining the operating pressure in the moisture removal step, and a high purity ammonia gas adsorbing cylinder after completion of the first purge stage A second purge stage for introducing high-purity ammonia into the cylinder after introduction into the cylinder, a cooling stage for stopping heating and cooling while continuing the circulation of the high-purity ammonia after completion of the second purge stage, and after completion of the cooling stage The method for purifying ammonia according to claim 1, further comprising a sealing step of sealing the adsorption cylinder while maintaining a pressure at the operating pressure. 前記第1油分除去工程における油分除去管理を前記液相フィルターに設けたドレントラップの貯留油量で行い、前記第2油分除去工程における油分除去管理を前記気相フィルターのガス流入側とガス流出側との差圧で行うことを特徴とする請求項1又は2記載のアンモニアの精製方法。   Oil removal management in the first oil removal step is performed with the amount of oil stored in the drain trap provided in the liquid phase filter, and oil removal management in the second oil removal step is performed on the gas inflow side and gas outflow side of the gas phase filter. The method for purifying ammonia according to claim 1 or 2, wherein the method is carried out at a pressure difference between 前記水分除去工程の後段で、触媒と吸着剤とによって水分、酸素、一酸化炭素及び二酸化炭素を除去する最終精製工程を行うことを特徴とする請求項1乃至3のいずれか1項記載のアンモニアの精製方法。   The ammonia according to any one of claims 1 to 3, wherein a final purification step of removing water, oxygen, carbon monoxide, and carbon dioxide by a catalyst and an adsorbent is performed after the water removal step. Purification method. 前記最終精製工程の吸着剤を、還元性ガスで再生することを特徴とする請求項4記載のアンモニアの精製方法。   The method for purifying ammonia according to claim 4, wherein the adsorbent in the final purification step is regenerated with a reducing gas.
JP2015068516A 2015-03-30 2015-03-30 Method for purifying ammonia Pending JP2016188154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068516A JP2016188154A (en) 2015-03-30 2015-03-30 Method for purifying ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068516A JP2016188154A (en) 2015-03-30 2015-03-30 Method for purifying ammonia

Publications (1)

Publication Number Publication Date
JP2016188154A true JP2016188154A (en) 2016-11-04

Family

ID=57239381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068516A Pending JP2016188154A (en) 2015-03-30 2015-03-30 Method for purifying ammonia

Country Status (1)

Country Link
JP (1) JP2016188154A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358218A (en) * 2018-01-23 2018-08-03 荆门市格林美新材料有限公司 A kind of ammonium hydroxide oil removing purification system and method
CN110015668A (en) * 2019-04-02 2019-07-16 巫协森 Primary liquefied ammonia purifying is the method and its system of high purity liquid ammonia
JP7492553B2 (en) 2022-06-03 2024-05-29 大陽日酸株式会社 Deuterated ammonia production equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169138A (en) * 1998-11-30 2000-06-20 Japan Pionics Co Ltd Purification of ammonia
JP2004142987A (en) * 2002-10-24 2004-05-20 Japan Pionics Co Ltd Method for purifying ammonia
JP2004521055A (en) * 2000-12-27 2004-07-15 アシュランド インコーポレイテッド Ammonia production method with ultra-low metal content
JP2004344694A (en) * 2003-05-20 2004-12-09 Nippon Sanso Corp Method for purifying original air in air liquefying/separating apparatus
JP2005162546A (en) * 2003-12-03 2005-06-23 Taiyo Nippon Sanso Corp Method and apparatus for refining ammonia
JP2010528856A (en) * 2007-06-14 2010-08-26 メリケム カンパニー Improved separation method
WO2012101925A1 (en) * 2011-01-25 2012-08-02 住友精化株式会社 Ammonia purification system and method for purifying ammonia
JP2014037333A (en) * 2012-08-16 2014-02-27 Japan Pionics Co Ltd Ammonia purification method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169138A (en) * 1998-11-30 2000-06-20 Japan Pionics Co Ltd Purification of ammonia
JP2004521055A (en) * 2000-12-27 2004-07-15 アシュランド インコーポレイテッド Ammonia production method with ultra-low metal content
JP2004142987A (en) * 2002-10-24 2004-05-20 Japan Pionics Co Ltd Method for purifying ammonia
JP2004344694A (en) * 2003-05-20 2004-12-09 Nippon Sanso Corp Method for purifying original air in air liquefying/separating apparatus
JP2005162546A (en) * 2003-12-03 2005-06-23 Taiyo Nippon Sanso Corp Method and apparatus for refining ammonia
JP2010528856A (en) * 2007-06-14 2010-08-26 メリケム カンパニー Improved separation method
WO2012101925A1 (en) * 2011-01-25 2012-08-02 住友精化株式会社 Ammonia purification system and method for purifying ammonia
JP2014037333A (en) * 2012-08-16 2014-02-27 Japan Pionics Co Ltd Ammonia purification method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358218A (en) * 2018-01-23 2018-08-03 荆门市格林美新材料有限公司 A kind of ammonium hydroxide oil removing purification system and method
CN110015668A (en) * 2019-04-02 2019-07-16 巫协森 Primary liquefied ammonia purifying is the method and its system of high purity liquid ammonia
JP7492553B2 (en) 2022-06-03 2024-05-29 大陽日酸株式会社 Deuterated ammonia production equipment

Similar Documents

Publication Publication Date Title
US4338101A (en) Process and apparatus for recovering hydrocarbons from inert gas-hydrocarbon vapor mixtures
RU2525126C1 (en) Method of natural gas cleaning and recovery of one or more adsorbers
JP4605705B2 (en) Ammonia purification system and purification method
JP2008505830A (en) Ammonia purification and transfer filling
KR101928606B1 (en) Method for purifying propane, and purification system
EA025315B1 (en) Swing adsorption processes utilizing controlled adsorption fronts
WO2016024456A1 (en) Hydrogen gas purification method and purification device for same
US10399007B2 (en) Temperature swing adsorption process and apparatus with closed loop regeneration
JP5738900B2 (en) Ammonia purification system and ammonia purification method
KR102382274B1 (en) Hydrogen or helium purification method and hydrogen or helium purification apparatus
JP2016188154A (en) Method for purifying ammonia
KR100397077B1 (en) Cryogenic adsorption process for producing ultra-high purity nitrogen
JP6979023B2 (en) Hydrogen or helium purification method, and hydrogen or helium purification equipment
WO2013190731A1 (en) Ammonia purification system
JP5729765B2 (en) Helium gas purification method and purification apparatus
TW565468B (en) Method and device for recovering hydrocarbon vapor
JP2012153545A (en) Ammonia purification system and ammonia purification method
US9422496B2 (en) Oxygen and sulfur tolerant adsorbent system
CN113660992A (en) Two-step recovery of halogenated hydrocarbons
JP6067368B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
JP2019177315A (en) Gas refining apparatus and gas refining method
JPH04310509A (en) Removal of impurity in nitrogen gas
JP6349478B1 (en) Removal system and removal method for removing moisture from moisture-containing organic solvent
CA3222327A1 (en) Method of purifying hydrogen supplied from a storage cavern
SU1231344A1 (en) Method of clearing argon of oxygen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327