JP2016186249A - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP2016186249A
JP2016186249A JP2015066589A JP2015066589A JP2016186249A JP 2016186249 A JP2016186249 A JP 2016186249A JP 2015066589 A JP2015066589 A JP 2015066589A JP 2015066589 A JP2015066589 A JP 2015066589A JP 2016186249 A JP2016186249 A JP 2016186249A
Authority
JP
Japan
Prior art keywords
voltage
air
fuel ratio
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015066589A
Other languages
Japanese (ja)
Other versions
JP6503210B2 (en
Inventor
考生 齋藤
Takao Saito
考生 齋藤
木戸 啓介
Keisuke Kido
啓介 木戸
知治 森崎
Chiharu Morisaki
知治 森崎
小松 和弘
Kazuhiro Komatsu
和弘 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2015066589A priority Critical patent/JP6503210B2/en
Publication of JP2016186249A publication Critical patent/JP2016186249A/en
Application granted granted Critical
Publication of JP6503210B2 publication Critical patent/JP6503210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To control an air-fuel ratio sensor provided in an exhaust pipe of an internal combustion engine.SOLUTION: The value of a pump current Ip is limited so as not to exceed a prescribed range current value. Thus, a pump current Ip derived based on an excess current cannot control an air-fuel ratio sensor 2. Therefore, even after the excess current is ceased, the air-fuel ratio sensor 2 can be stably controlled rapidly. Since after the excess current is ceased, the period of transition from the excess current state to a normal condition can be reduced through feedback control, so that an erroneous abnormality detection due to an abnormal value during the transition period can be prevented.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関の排気管に備えられた空燃比センサを制御する技術に関する。   The present invention relates to a technique for controlling an air-fuel ratio sensor provided in an exhaust pipe of an internal combustion engine.

今日の内燃機関では、排気ガス浄化のために三元触媒が用いられている。触媒による浄化率を向上させるため、内燃機関で燃焼させる燃料と空気の比率を理論空燃比の近傍となるよう制御している。   In today's internal combustion engines, a three-way catalyst is used for exhaust gas purification. In order to improve the purification rate by the catalyst, the ratio of fuel and air burned in the internal combustion engine is controlled to be close to the theoretical air-fuel ratio.

そのため、空燃比センサにより排気ガス中の酸素濃度を検出し、内燃機関への燃料供給量をフィードバック制御するものが知られている。例えば特許文献1は、空燃比センサの検出した空燃比に基づき、内燃機関への燃料供給量をフィードバック制御する技術を開示する。   For this reason, there is known a method in which an oxygen concentration in exhaust gas is detected by an air-fuel ratio sensor, and a fuel supply amount to an internal combustion engine is feedback controlled. For example, Patent Document 1 discloses a technique for performing feedback control of the fuel supply amount to the internal combustion engine based on the air-fuel ratio detected by the air-fuel ratio sensor.

特開2001−318074号公報JP 2001-318074 A

しかし、空燃比センサや空燃比の制御装置に、地絡や始動時の突入電流等による過電流が生じると、過電流に基づいたフィードバック制御が行われ、適切な燃料供給量の導出が困難となる。例えば、過電流に基づき燃料供給量を導出すると、過大な又は過小な燃料供給量が導出され、排気ガスの浄化効率を著しく低下させる恐れがある。また、過電流に基づいたフィードバック制御が行われると、フィードバック制御で使用される値が過当な数値に演算され、正常状態の数値に戻るまでの間、過電流が終息しているにもかかわらず空燃比センサや制御装置に異常が発生したと誤って判定される恐れがある。   However, if an overcurrent occurs in the air-fuel ratio sensor or the air-fuel ratio control device due to a ground fault or an inrush current at start-up, feedback control based on the overcurrent is performed, and it is difficult to derive an appropriate fuel supply amount. Become. For example, when the fuel supply amount is derived based on the overcurrent, an excessive or excessive fuel supply amount is derived, which may significantly reduce the exhaust gas purification efficiency. In addition, when feedback control based on overcurrent is performed, the value used in feedback control is calculated to an appropriate value, and the overcurrent ends until it returns to the normal value. There is a possibility that it is erroneously determined that an abnormality has occurred in the air-fuel ratio sensor or the control device.

本発明は、上記課題に鑑み、内燃機関への燃料供給量を空燃比に基づき適切にフィードバック制御する技術を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a technique for appropriately feedback controlling the amount of fuel supplied to an internal combustion engine based on an air-fuel ratio.

上記課題を解決するため、請求項1の発明は、空燃比に応じた空燃比電圧を発生する検出セル部と、該検出セル部と接続部で接続されて通電された電流量に応じた酸素を吸排出するポンプセル部とを備える、内燃機関の排気部に備えられた空燃比センサを制御する制御装置であって、前記空燃比電圧に基づき出力電圧を出力する出力手段と、前記出力電圧に基づき、前記空燃比が所定比率となるように前記ポンプセル部にポンプ電流を通電する通電手段と、前記接続部に発生する接続部電圧が一定の規定電圧値となるように制御する定電圧手段と、前記ポンプ電流の値が所定電流値を超えないように制限する制限手段と、を備える。   In order to solve the above-described problems, the invention of claim 1 is directed to a detection cell unit that generates an air-fuel ratio voltage according to an air-fuel ratio, and an oxygen according to an amount of current that is connected to the detection cell unit and connected to the detection cell unit. A control device for controlling an air-fuel ratio sensor provided in an exhaust part of an internal combustion engine, and an output means for outputting an output voltage based on the air-fuel ratio voltage; and And a constant voltage means for controlling the connection portion voltage generated at the connection portion to have a constant specified voltage value, so that the pump cell portion is supplied with a pump current so that the air-fuel ratio becomes a predetermined ratio. Limiting means for limiting the value of the pump current so as not to exceed a predetermined current value.

また、請求項2の発明は、請求項1に記載の制御装置において、前記制限手段は、前記出力電圧の値が所定電圧値を越えないように制限することにより、前記ポンプ電流の値が所定電流値を超えないように制限する。   In the control device according to claim 1, in the control device according to claim 1, the limiting means limits the output voltage value so as not to exceed a predetermined voltage value, whereby the pump current value is predetermined. Limit so that the current value is not exceeded.

また、請求項3の発明は、請求項1に記載の制御装置において、前記接続部電圧を検出する第1検出手段、をさらに備え、前記制限手段は、前記接続部電圧の値に応じて前記通電手段を制御することで、前記ポンプ電流の値が所定電流値を超えないように制限する。   The invention according to claim 3 is the control device according to claim 1, further comprising first detection means for detecting the connection portion voltage, wherein the limiting means is based on a value of the connection portion voltage. By controlling the energization means, the pump current value is limited so as not to exceed a predetermined current value.

また、請求項4の発明は、請求項1に記載の制御装置において、前記接続部と前記定電圧手段との間に接続された抵抗器と、前記抵抗器と前記定電圧手段との接続点に発生する接続点電圧を検出する第2検出手段と、をさらに備え、前記制限手段は、前記接続点電圧の値に応じて前記通電手段を制御することで、前記ポンプ電流の値が所定電流値を超えないように制限する。   According to a fourth aspect of the present invention, in the control device according to the first aspect, a resistor connected between the connection portion and the constant voltage means, and a connection point between the resistor and the constant voltage means. And a second detecting means for detecting a connection point voltage generated at the connection point, and the limiting means controls the energization means in accordance with the value of the connection point voltage so that the value of the pump current is a predetermined current. Limit the value not to exceed.

また、請求項5の発明は、請求項1ないし4のいずれかに記載の制御装置において、前記所定電流値は、前記定電圧手段の出力の限界となる限界電圧値と、前記規定電圧値との差分によって規定される。   According to a fifth aspect of the present invention, in the control device according to any one of the first to fourth aspects, the predetermined current value is a limit voltage value that is a limit of an output of the constant voltage means, and the specified voltage value. It is defined by the difference between

また、請求項6の発明は、請求項1ないし5のいずれかに記載の制御装置において、前記内燃機関に燃料を噴射する燃料噴射弁を制御する制御手段、をさらに備え、前記制御手段は、前記ポンプ電流の値を受信する受信手段と、前記ポンプ電流の値から空燃比を導出する第1導出手段と、前記空燃比に基づき前記燃料の噴射量を導出する第2導出手段と、を備える。   The invention of claim 6 is the control device according to any one of claims 1 to 5, further comprising a control means for controlling a fuel injection valve for injecting fuel to the internal combustion engine, wherein the control means comprises: Receiving means for receiving the value of the pump current; first derivation means for deriving an air-fuel ratio from the value of the pump current; and second derivation means for deriving the fuel injection amount based on the air-fuel ratio. .

また、請求項7の発明は、空燃比に応じた空燃比電圧を発生する検出セル部と、該検出セル部と接続部で接続されて通電された電流量に応じた酸素を吸排出するポンプセル部とを備える、内燃機関の排気部に備えられた空燃比センサを制御する制御装置であって、前記空燃比電圧に基づき出力電圧を出力する出力手段と、前記出力電圧に基づき、前記空燃比が所定比率となるように前記ポンプセル部にポンプ電流を通電する通電手段と、前記接続部に発生する接続部電圧が一定の規定電圧値となるように制御する定電圧手段と、を備え、前記通電手段が前記ポンプ電流を通電する能力よりも、前記定電圧手段が前記接続部電圧を一定の規定電圧値にするために電流を通電する能力の方が高い。   Further, the invention of claim 7 is a detection cell unit that generates an air-fuel ratio voltage according to the air-fuel ratio, and a pump cell that is connected to the detection cell unit and connected to the connection unit and absorbs and discharges oxygen according to the amount of current that is energized. A control device for controlling an air-fuel ratio sensor provided in an exhaust part of an internal combustion engine, comprising: an output means for outputting an output voltage based on the air-fuel ratio voltage; and the air-fuel ratio based on the output voltage Energizing means for supplying a pump current to the pump cell portion so that the ratio is a predetermined ratio, and a constant voltage means for controlling the connection portion voltage generated at the connection portion to be a constant specified voltage value, The ability of the constant voltage means to energize the connection voltage to make the connecting portion voltage constant is higher than the ability of the energization means to energize the pump current.

請求項1ないし6の発明によれば、制限手段がポンプ電流の値が所定電流値を超えないように制限するので、異常が発生したと誤って判定されることを防止できる。   According to the first to sixth aspects of the present invention, since the limiting means limits the pump current value so as not to exceed the predetermined current value, it is possible to prevent erroneous determination that an abnormality has occurred.

また、特に請求項2の発明によれば、制限手段は、前記出力電圧の値が所定電圧値を越えないように制限するので、制限手段は適切な方法でポンプ電流の値を制限できる。   In particular, according to the invention of claim 2, the limiting means limits the value of the output voltage so as not to exceed the predetermined voltage value, so that the limiting means can limit the value of the pump current by an appropriate method.

また、特に請求項3の発明によれば、制限手段は、接続部電圧の値に応じて通電手段を制御するので、制限手段は精度の良い電圧値に基づいてポンプ電流の値を制限できる。   In particular, according to the invention of claim 3, since the limiting means controls the energizing means in accordance with the value of the connecting portion voltage, the limiting means can limit the value of the pump current based on the accurate voltage value.

また、特に請求項4の発明によれば、制限手段は、接続点電圧の値に応じて通電手段を制御するので、制限手段は適切な箇所の電圧値に基づいてポンプ電流の値を制限できる。   In particular, according to the invention of claim 4, the limiting means controls the energizing means in accordance with the value of the connection point voltage, so that the limiting means can limit the value of the pump current based on the voltage value at an appropriate location. .

また、特に請求項5の発明によれば、定電圧手段の出力の限界となる限界電圧値と、規定電圧値との差分によって所定電流値を規定するので、所定電流値を適切な値に制限することができる。   In particular, according to the invention of claim 5, the predetermined current value is defined by the difference between the limit voltage value that is the limit of the output of the constant voltage means and the specified voltage value, so the predetermined current value is limited to an appropriate value. can do.

また、特に請求項6の発明によれば、制限手段がポンプ電流の値が所定電流値を超えないように制限するので、制御手段は適切な燃料噴射量を導出して燃料噴射弁から噴射できる。   Further, particularly according to the invention of claim 6, the limiting means limits the value of the pump current so as not to exceed the predetermined current value, so that the control means can derive an appropriate fuel injection amount and inject it from the fuel injection valve. .

また、請求項7の発明によれば、通電手段がポンプ電流を通電する能力よりも、定電圧手段が接続部電圧を一定の規定電圧値にするために電流を通電する能力の方を高くしているので、ポンプ電流が増減しても接続部電圧を一定の規定電圧値に制御できる。   Further, according to the invention of claim 7, the ability of the constant voltage means to pass the current to make the connection voltage constant at a predetermined specified voltage value is higher than the ability of the conduction means to pass the pump current. Therefore, even if the pump current increases or decreases, the connection voltage can be controlled to a constant specified voltage value.

図1は、燃料噴射システムの概要を示す図である。FIG. 1 is a diagram showing an outline of a fuel injection system. 図2は、従来の空燃比の制御装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of a conventional air-fuel ratio control device. 図3は、過大なポンプ電流とCOM電圧との相関の一例を示す図である。FIG. 3 is a diagram illustrating an example of a correlation between an excessive pump current and a COM voltage. 図4は、第1の実施の形態に係る空燃比の制御装置の構成を示す図である。FIG. 4 is a diagram showing the configuration of the air-fuel ratio control apparatus according to the first embodiment. 図5は、制限回路の構成を示す図である。FIG. 5 is a diagram illustrating the configuration of the limiting circuit. 図6は、第2の実施の形態に係る空燃比の制御装置の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an air-fuel ratio control apparatus according to the second embodiment. 図7は、電圧モニタ部の構成を示す図である。FIG. 7 is a diagram illustrating a configuration of the voltage monitor unit.

以下、図面を参照しつつ本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<1.第1の実施の形態>
<1−1.概要>
図1は、内燃機関10aへ供給する燃料の空燃比を制御する空燃比制御システム10の概要を示す。空燃比制御システム10は、空燃比センサ2、空燃比の制御装置1を備える燃料噴射装置3、及び、燃料噴射弁4を制御し、内燃機関10aで燃焼される燃料が理論空燃比近傍となるよう制御する。なお、燃費に有利な燃料の希薄(リーン)な空燃比と、発進時や加速時に使用される燃料の過濃(リッチ)な空燃比も使用され、負荷状況により空燃比は使い分けられる。このため、内燃機関10aの駆動中は空燃比のフィードバック制御が常時行われる。
<1. First Embodiment>
<1-1. Overview>
FIG. 1 shows an outline of an air-fuel ratio control system 10 that controls the air-fuel ratio of fuel supplied to the internal combustion engine 10a. The air-fuel ratio control system 10 controls the air-fuel ratio sensor 2, the fuel injection device 3 including the air-fuel ratio control device 1, and the fuel injection valve 4, and the fuel burned in the internal combustion engine 10a becomes close to the stoichiometric air-fuel ratio. Control as follows. Note that a lean air-fuel ratio of fuel that is advantageous for fuel efficiency and a rich air-fuel ratio of fuel used at start-up or acceleration are also used, and the air-fuel ratio is properly used depending on the load situation. For this reason, air-fuel ratio feedback control is always performed while the internal combustion engine 10a is being driven.

まず、燃料噴射装置3が、吸気管10bに配置された吸気センサ10cで検出される吸入空気量、排気管10d内に配置した空燃比センサ2からの信号に基づく排気管10d内の空燃比、及び、目標空燃比等から燃料噴射量を算出する。燃料噴射装置3は、この燃料噴射量に対応するパルス幅の燃料噴射パルスを、燃料噴射弁4に出力し、燃料噴射弁4から燃料が噴射され、内燃機関10a内で燃焼される。この際、排気管10d内の空燃比を制御装置1へフィードバックし、燃料噴射装置3は燃料噴射量の演算を繰り返し行う。   First, the fuel injection device 3 detects the intake air amount detected by the intake sensor 10c disposed in the intake pipe 10b, the air-fuel ratio in the exhaust pipe 10d based on the signal from the air-fuel ratio sensor 2 disposed in the exhaust pipe 10d, And the fuel injection amount is calculated from the target air-fuel ratio or the like. The fuel injection device 3 outputs a fuel injection pulse having a pulse width corresponding to the fuel injection amount to the fuel injection valve 4, and fuel is injected from the fuel injection valve 4 and burned in the internal combustion engine 10a. At this time, the air-fuel ratio in the exhaust pipe 10d is fed back to the control device 1, and the fuel injection device 3 repeatedly calculates the fuel injection amount.

空燃比の制御装置1は、空燃比センサ2からの信号に基づき、内燃機関10aに供給される混合気の空燃比を検出し、内燃機関10a内で燃焼される燃料の空燃比が理論空燃比となるようにフィードバック制御を行う。   The air-fuel ratio control device 1 detects the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 10a based on the signal from the air-fuel ratio sensor 2, and the air-fuel ratio of the fuel burned in the internal combustion engine 10a is the stoichiometric air-fuel ratio. Feedback control is performed so that

このようなフィードバック制御において、空燃比センサ2は、排気管10dに配置されて、排気ガス中の酸素濃度に応じた信号を出力する。この空燃比センサ2は、空燃比をリニアに検出可能な検出セル部2aと、酸素を吸排出、いわゆるポンピングするポンプセル部2bとを備える。ポンプセル部2bをポンピングさせて検出セル部2aが検出する空燃比を理論空燃比に一致させることで、検出セル部2aが検出した空燃比と理論空燃比との差異を検出できる。このような差異を検出することで、排気管10d内の排気ガスの空燃比を検出できる。   In such feedback control, the air-fuel ratio sensor 2 is disposed in the exhaust pipe 10d and outputs a signal corresponding to the oxygen concentration in the exhaust gas. The air-fuel ratio sensor 2 includes a detection cell portion 2a capable of linearly detecting the air-fuel ratio, and a pump cell portion 2b that absorbs and discharges oxygen, that is, pumps. By pumping the pump cell unit 2b and making the air-fuel ratio detected by the detection cell unit 2a coincide with the stoichiometric air-fuel ratio, a difference between the air-fuel ratio detected by the detection cell unit 2a and the stoichiometric air-fuel ratio can be detected. By detecting such a difference, the air-fuel ratio of the exhaust gas in the exhaust pipe 10d can be detected.

また、制御装置1及び空燃比センサ2は図示しない異常検出回路と接続される。異常検出回路は、制御装置1及び空燃比センサ2に印加される電圧値及び通電される電流値を監視する。異常検出回路は、電圧値及び電流値が既定の値より過大及び過小となった場合、異常の発生を判定したり、制御装置1の駆動を停止したりする。   The control device 1 and the air-fuel ratio sensor 2 are connected to an abnormality detection circuit (not shown). The abnormality detection circuit monitors the voltage value applied to the control device 1 and the air-fuel ratio sensor 2 and the current value supplied. The abnormality detection circuit determines the occurrence of an abnormality or stops the driving of the control device 1 when the voltage value and the current value are larger and smaller than predetermined values.

図2は、従来の空燃比の制御装置100の構成を示す。従来の空燃比の制御装置100では、以下のような空燃比のフィードバック制御が行われる。   FIG. 2 shows a configuration of a conventional air-fuel ratio control apparatus 100. In the conventional air-fuel ratio control apparatus 100, the following air-fuel ratio feedback control is performed.

まず、空燃比センサ2の検出セル部2aのVS端子(検出セル部2aがポンプセル部2bと接続される側と反対側に備わる端子)に排気管内の空燃比に相当する電圧が発生する。なお、理論空燃比に相当する電圧の場合は、VS端子には0.45[V]が発生する。このため、排気管内が理論空燃比である場合は、VS端子の電圧は、検出セル部2aとポンプセル部2bとの接続部の電圧が加わり、3.75[V]となる。   First, a voltage corresponding to the air-fuel ratio in the exhaust pipe is generated at the VS terminal of the detection cell unit 2a of the air-fuel ratio sensor 2 (terminal provided on the side opposite to the side where the detection cell unit 2a is connected to the pump cell unit 2b). In the case of a voltage corresponding to the theoretical air-fuel ratio, 0.45 [V] is generated at the VS terminal. For this reason, when the inside of the exhaust pipe has a stoichiometric air-fuel ratio, the voltage at the VS terminal is 3.75 [V] due to the addition of the voltage at the connection between the detection cell unit 2a and the pump cell unit 2b.

A/F検知回路110は、VS端子に発生した電圧を検知し、VI変換回路120へ検知した電圧に相当する電圧を出力する。   The A / F detection circuit 110 detects a voltage generated at the VS terminal and outputs a voltage corresponding to the detected voltage to the VI conversion circuit 120.

VI変換回路120は、A/F検知回路110が出力した電圧値に基づき、ポンプセル部2bが酸素をポンピングして検出セル部2aが理論空燃比を検出するよう、ポンプセル部2bへポンプ電流Ipを通電する。すなわち、VI変換回路120は、検知された空燃比と理論空燃比との差異を埋めるようにポンプセル部2bが酸素をポンピングすべき値のポンプ電流Ipをポンプセル部2bに通電する。   Based on the voltage value output from the A / F detection circuit 110, the VI conversion circuit 120 supplies the pump current Ip to the pump cell unit 2b so that the pump cell unit 2b pumps oxygen and the detection cell unit 2a detects the theoretical air-fuel ratio. Energize. That is, the VI conversion circuit 120 supplies the pump cell unit 2b with a pump current Ip having a value at which the pump cell unit 2b should pump oxygen so as to fill the difference between the detected air-fuel ratio and the stoichiometric air-fuel ratio.

この際、空燃比センサ2の検出セル部2aのVS端子が、安定的に排気管内の空燃比に相当する電圧を発生するには、ポンプセル部2bとの接続部である接続端子comが一定の電圧値を保持する必要がある。例えば、3.3[V]である。   At this time, in order for the VS terminal of the detection cell portion 2a of the air-fuel ratio sensor 2 to stably generate a voltage corresponding to the air-fuel ratio in the exhaust pipe, the connection terminal com which is a connection portion with the pump cell portion 2b is constant. It is necessary to hold the voltage value. For example, 3.3 [V].

定電圧制御部130は、COM電流Icomを抵抗器であるセンス抵抗Rsに通電し、センス抵抗Rsに電圧降下を発生させることで、接続端子comが一定の電圧値となるよう制御する。すなわち、定電圧制御部14は、検出セル部2aとポンプセル部2bとの接続部となる接続端子comに発生する電圧(COM端子電圧Vcom;接続部電圧)が一定の規定電圧値となるよう制御する。なお、定電圧制御部14がCOM電流Icomを通電させて、接続端子comを一定の電圧値に制御できる電流能力は、下記演算式により定まる。なお、電流能力とは、電流を通電する能力、すなわち起電力である。   The constant voltage control unit 130 controls the connection terminal com to have a constant voltage value by passing the COM current Icom through the sense resistor Rs, which is a resistor, and causing a voltage drop in the sense resistor Rs. That is, the constant voltage control unit 14 performs control so that the voltage (COM terminal voltage Vcom; connection unit voltage) generated at the connection terminal com serving as the connection unit between the detection cell unit 2a and the pump cell unit 2b becomes a constant specified voltage value. To do. Note that the current capability by which the constant voltage control unit 14 supplies the COM current Icom and controls the connection terminal com to a constant voltage value is determined by the following arithmetic expression. The current capability is the capability of energizing current, that is, electromotive force.

定電圧制御部14の電流能力=(COM端子電圧Vcom−定電圧源出力電圧限界)/センス抵抗Rs・・・・・(1)
ここで、「定電圧源出力電圧限界」とは、定電圧制御部14と接続端子com間に接続されたセンス抵抗Rsの両端電圧である。すなわち、電流能力は、定電圧制御部14の出力の限界となる限界電圧値と、COM端子電圧Vcomとの差分によって規定される。
Current capability of constant voltage control unit 14 = (COM terminal voltage Vcom−constant voltage source output voltage limit) / sense resistor Rs (1)
Here, the “constant voltage source output voltage limit” is the voltage across the sense resistor Rs connected between the constant voltage control unit 14 and the connection terminal com. That is, the current capability is defined by the difference between the limit voltage value that is the limit of the output of the constant voltage control unit 14 and the COM terminal voltage Vcom.

センス抵抗Rsに通電される電流量を検知することで、図示しない制御部が空燃比を導出し、かかる空燃比に基づき、燃料噴射量を決定する。内燃機関に燃料が噴射されて燃焼すると、排気管内に排気ガスが排出され、空燃比センサ2が空燃比を再度検出し、空燃比のフィードバック制御が繰り返される。   By detecting the amount of current supplied to the sense resistor Rs, a control unit (not shown) derives the air-fuel ratio and determines the fuel injection amount based on the air-fuel ratio. When fuel is injected into the internal combustion engine and combusted, exhaust gas is discharged into the exhaust pipe, the air-fuel ratio sensor 2 detects the air-fuel ratio again, and air-fuel ratio feedback control is repeated.

ここで、このような空燃比の制御装置100において、地絡や始動時の突入電流等による過電流Isが、空燃比センサ2等に発生すると、下記のような問題を生じる。   Here, in such an air-fuel ratio control apparatus 100, when an overcurrent Is caused by a ground fault or an inrush current at start-up occurs in the air-fuel ratio sensor 2 or the like, the following problems occur.

まず、過電流Isが接続端子com(接続部)へ流入すると、接続端子comの電圧が上昇する。上述の通り、VS端子に発生する電圧はCOM端子電圧Vcomと、空燃比に相当する電圧値との合計である。したがって、COM端子電圧Vcomが上昇すると、VS端子に発生する電圧も上昇する。この場合、A/F検知回路110には、実際の空燃比とは異なる過大な電圧が入力されることとなる。   First, when the overcurrent Is flows into the connection terminal com (connection part), the voltage of the connection terminal com rises. As described above, the voltage generated at the VS terminal is the sum of the COM terminal voltage Vcom and the voltage value corresponding to the air-fuel ratio. Therefore, when the COM terminal voltage Vcom increases, the voltage generated at the VS terminal also increases. In this case, an excessive voltage different from the actual air-fuel ratio is input to the A / F detection circuit 110.

A/F検知回路110に過大な電圧が入力されると、A/F検知回路110の出力を受けたVI変換回路120は、過大な電圧値に基づきポンプ電流Ipを導出するので、ポンプ電流Ipも過大に導出されることとなる。   When an excessive voltage is input to the A / F detection circuit 110, the VI conversion circuit 120 receiving the output of the A / F detection circuit 110 derives the pump current Ip based on the excessive voltage value. Will be derived too much.

過電流Isの発生が継続する場合や、さらに増大する場合には、空燃比のフィードバック制御が繰り返されることで、ポンプ電流Ipはさらに過大となる。   When the generation of the overcurrent Is continues or further increases, the pump current Ip becomes further excessive by repeating the air-fuel ratio feedback control.

ポンプ電流Ipの値が定電圧制御部140の電流能力が許容する範囲内では、定電圧制御部140は、COM端子電圧Vcomを一定電圧に保持できる。しかし、過電圧に基づくフィードバック制御が繰り返されることにより、ポンプ電流Ipがさらに上昇すると、定電圧制御部140は、もはやCOM端子電圧Vcomを一定電圧に保持できなくなる。   As long as the value of the pump current Ip is within the range allowed by the current capability of the constant voltage control unit 140, the constant voltage control unit 140 can hold the COM terminal voltage Vcom at a constant voltage. However, if the pump current Ip is further increased by repeating the feedback control based on the overvoltage, the constant voltage control unit 140 can no longer hold the COM terminal voltage Vcom at a constant voltage.

やがて過電流が終息した後、フィードバック制御を行うと、過電流が終息しているにもかかわらず、ポンプセル部2bへ過大なポンプ電流Ipを通電する状態となっている。正常な状態において、ポンプセル部2bへ過大な電流を通電すると、空燃比センサ2の異常状態と誤って判定し、制御に支障を来す恐れがある。   When the feedback control is performed after the overcurrent has ended, an excessive pump current Ip is applied to the pump cell portion 2b even though the overcurrent has ended. If an excessive current is supplied to the pump cell unit 2b in a normal state, the air-fuel ratio sensor 2 may be erroneously determined to be in an abnormal state, and control may be hindered.

図3は、過大なポンプ電流IpとCOM端子電圧Vcomとの相関を示す。ポンプ電流Ipが、例えば30[mA]程度までは、定電圧制御部140により、COM端子電圧Vcomは3.3[V]に制御される。しかし、ポンプ電流Ipが30[mA]を超えると、COM端子電圧Vcomは3.3[V]から上昇する。定電圧制御部140の出力能力を超え、定電圧制御部140がCOM端子電圧Vcomを3.3[V]に制御できなくなるためである。すなわち、定電圧制御部140がCOM電流Icomをセンス抵抗Rsに通電し、接続端子comに通電されるポンプ電流Ipを含めた電流量の合計を30[mA]以下に収めることができないためである。その結果、接続端子comに通電される電流量が増大し、COM端子電圧Vcomが上昇する。COM端子電圧Vcomが、例えば10[V]程度まで上昇すると、フィードバック制御により3.3[V]に戻すまでには、複数回の演算を来り返す必要がある。   FIG. 3 shows the correlation between the excessive pump current Ip and the COM terminal voltage Vcom. For example, until the pump current Ip is about 30 [mA], the constant voltage control unit 140 controls the COM terminal voltage Vcom to 3.3 [V]. However, when the pump current Ip exceeds 30 [mA], the COM terminal voltage Vcom increases from 3.3 [V]. This is because the output capability of the constant voltage control unit 140 is exceeded and the constant voltage control unit 140 cannot control the COM terminal voltage Vcom to 3.3 [V]. That is, the constant voltage control unit 140 supplies the COM current Icom to the sense resistor Rs, and the total amount of current including the pump current Ip supplied to the connection terminal com cannot be kept below 30 [mA]. . As a result, the amount of current supplied to the connection terminal com increases, and the COM terminal voltage Vcom rises. When the COM terminal voltage Vcom rises to, for example, about 10 [V], it is necessary to repeat a plurality of operations before returning to 3.3 [V] by feedback control.

空燃比センサ2等に発生した過電流が終息した後であっても、異常状態と誤って判定せず、安定して空燃比のフィードバック制御を行う必要がある。以下、このような空燃比のフィードバック制御を行う空燃比の制御装置1を説明する。   Even after the overcurrent generated in the air-fuel ratio sensor 2 or the like has ended, it is necessary to stably perform the air-fuel ratio feedback control without erroneously determining an abnormal state. The air-fuel ratio control apparatus 1 that performs such air-fuel ratio feedback control will be described below.

<1−2.構成>
図4は、第1の実施の形態に係る空燃比の制御装置1の構成を示す。制御装置1は、電子制御装置又は集積回路であり、空燃比センサ2と接続される。制御装置1は、空燃比センサ2が出力する空燃比に相当する電圧値を検出し、空燃比センサ2が理論空燃比を示すようフィードバック制御を行う。
<1-2. Configuration>
FIG. 4 shows the configuration of the air-fuel ratio control apparatus 1 according to the first embodiment. The control device 1 is an electronic control device or an integrated circuit, and is connected to the air-fuel ratio sensor 2. The control device 1 detects a voltage value corresponding to the air-fuel ratio output from the air-fuel ratio sensor 2, and performs feedback control so that the air-fuel ratio sensor 2 indicates the stoichiometric air-fuel ratio.

制御装置1は、燃料噴射弁4を制御する制御部31と共に燃料噴射装置3に備えられる。制御部31は、受信部31a、空燃比導出部31b、及び燃料導出部31cを備え、燃料噴射弁4を制御する。   The control device 1 is provided in the fuel injection device 3 together with a control unit 31 that controls the fuel injection valve 4. The control unit 31 includes a receiving unit 31a, an air-fuel ratio deriving unit 31b, and a fuel deriving unit 31c, and controls the fuel injection valve 4.

受信部31aは、制御装置1から空燃比に相当する信号を受信する。   The receiver 31a receives a signal corresponding to the air-fuel ratio from the control device 1.

空燃比センサ2は、排気管内の排気ガスの空燃比をリニアに検出可能な、いわゆる広域型空燃比センサである。空燃比センサ2は、酸素イオン導電性を有するジルコニア等の固体電解質材料で多孔質層に形成され、排気管内に配置される。空燃比センサ2はヒータ、大気室、及びガス拡散室を備える(いずれも図示せず)。さらに空燃比センサ2は、酸素イオン導電性を有するジルコニア等の固体電解質材料で構成された、検出セル部2a及びポンプセル部2bを備える。   The air-fuel ratio sensor 2 is a so-called wide-range air-fuel ratio sensor that can linearly detect the air-fuel ratio of the exhaust gas in the exhaust pipe. The air-fuel ratio sensor 2 is formed in a porous layer with a solid electrolyte material such as zirconia having oxygen ion conductivity, and is disposed in the exhaust pipe. The air-fuel ratio sensor 2 includes a heater, an atmospheric chamber, and a gas diffusion chamber (all not shown). The air-fuel ratio sensor 2 further includes a detection cell unit 2a and a pump cell unit 2b made of a solid electrolyte material such as zirconia having oxygen ion conductivity.

ヒータは、電流が通電されてセンサ素子を加熱する。空燃比センサ2を活性化させるためである。大気室は、排気管外の大気と連通して形成され、空燃比センサ2内に基準ガスとなる大気を取り込む。ガス拡散室は、空燃比センサ2に形成した排気導入孔により、排気ガスと連通して形成され、空燃比センサ2内に排気ガスを取り込む。   The heater is energized with current to heat the sensor element. This is because the air-fuel ratio sensor 2 is activated. The atmosphere chamber is formed in communication with the atmosphere outside the exhaust pipe, and takes in the atmosphere as a reference gas into the air-fuel ratio sensor 2. The gas diffusion chamber is formed in communication with the exhaust gas through an exhaust introduction hole formed in the air-fuel ratio sensor 2, and takes in the exhaust gas into the air-fuel ratio sensor 2.

検出セル部2aは、ネルンストセルともいわれ、排気管内の排気ガスの空燃比に応じた電圧(空燃比電圧)を発生する。検出セル部2aは、ガス拡散室内の酸素イオン濃度に応じた電圧を端子VSに発生する。検出セル部2aに発生する電圧を検出することで、排気ガスの空燃比と理論空燃比との差異(乖離)を検出できる。   The detection cell unit 2a is also called a Nernst cell and generates a voltage (air-fuel ratio voltage) corresponding to the air-fuel ratio of the exhaust gas in the exhaust pipe. The detection cell unit 2a generates a voltage corresponding to the oxygen ion concentration in the gas diffusion chamber at the terminal VS. By detecting the voltage generated in the detection cell unit 2a, the difference (deviation) between the air-fuel ratio of the exhaust gas and the stoichiometric air-fuel ratio can be detected.

ポンプセル部2bは、通電された電流(ポンプ電流Ip)に応じた酸素を吸排出する。ポンプセル部2bは、検出セル部2aが理論空燃比を検出するように酸素を吸排出する。したがって、この電流を検出すれば、排気ガスの空燃比からの乖離を検出できるので、かかる乖離の大きさから排気管内の空燃比を検出できる。なお、ポンプセル部2bは、検出セル部2aと接続される反対側に端子IPを備える。端子IPにはポンプ電流Ipが通電される。   The pump cell unit 2b absorbs and discharges oxygen corresponding to the energized current (pump current Ip). The pump cell unit 2b absorbs and discharges oxygen so that the detection cell unit 2a detects the stoichiometric air-fuel ratio. Therefore, if this current is detected, the deviation from the air-fuel ratio of the exhaust gas can be detected, and therefore the air-fuel ratio in the exhaust pipe can be detected from the magnitude of the deviation. The pump cell unit 2b includes a terminal IP on the side opposite to the detection cell unit 2a. A pump current Ip is applied to the terminal IP.

なお、検出セル部2aでのリーン・リッチの出力に基づき、ポンプセル部2bに対する電圧の印加方向を反転させることで、リーン領域及びリッチ領域の両領域において、ポンプセル部2bを流れる電流に基づき広範な空燃比の検出が可能となる。   Note that, by reversing the direction of voltage application to the pump cell unit 2b on the basis of the lean / rich output from the detection cell unit 2a, a wide range is obtained based on the current flowing through the pump cell unit 2b in both the lean region and the rich region. The air-fuel ratio can be detected.

検出セル部2aとポンプセル部2bとは、接続端子comで接続される。   The detection cell unit 2a and the pump cell unit 2b are connected by a connection terminal com.

制御装置1は、センス抵抗Rs、A/F検知回路11、制限回路12、VI変換回路13、定電圧制御部14、及び、電流モニタ部15を備える。   The control device 1 includes a sense resistor Rs, an A / F detection circuit 11, a limiting circuit 12, a VI conversion circuit 13, a constant voltage control unit 14, and a current monitor unit 15.

センス抵抗Rsは、ポンプ電流Ipを検出するための抵抗であり、例えば、100[Ω]である。センス抵抗Rsは、一端が接続端子comに接続され、他端が制御装置1内の後述の定電圧制御部14に接続される。   The sense resistor Rs is a resistor for detecting the pump current Ip and is, for example, 100 [Ω]. One end of the sense resistor Rs is connected to the connection terminal com, and the other end is connected to a constant voltage control unit 14 described later in the control device 1.

A/F検知回路11は、検出セル部2aの端子VSに発生する空燃比に基づく電圧値を検知する。検出セル部2aは、検知した電圧値を増幅し、後述の制限回路12を介してVI変換回路13へ出力する。A/F検知回路11は、空燃比電圧に基づき出力電圧を出力する出力手段として機能する。   The A / F detection circuit 11 detects a voltage value based on the air-fuel ratio generated at the terminal VS of the detection cell unit 2a. The detection cell unit 2a amplifies the detected voltage value and outputs the amplified voltage value to the VI conversion circuit 13 via the limit circuit 12 described later. The A / F detection circuit 11 functions as an output unit that outputs an output voltage based on the air-fuel ratio voltage.

制限回路12は、A/F検知回路11から出力される空燃比に基づく電圧値が所定値より高く又は低くならないように制限する回路である。例えば、6.5[V]から1.0[V]の所定値の範囲内に制限する。すなわち、制限回路12は、出力電圧の値を所定電圧値(6.5[V])以下に制限することにより、ポンプ電流Ipの値が所定電流値を超えないように制限する制限手段として機能する。なお、制限回路12の詳細な機能及び構成は後述する。   The limiting circuit 12 is a circuit that limits the voltage value based on the air-fuel ratio output from the A / F detection circuit 11 so as not to be higher or lower than a predetermined value. For example, it is limited within a predetermined value range of 6.5 [V] to 1.0 [V]. That is, the limiting circuit 12 functions as a limiting unit that limits the value of the pump current Ip so as not to exceed the predetermined current value by limiting the value of the output voltage to a predetermined voltage value (6.5 [V]) or less. To do. The detailed function and configuration of the limiting circuit 12 will be described later.

VI変換回路13は、A/F検知回路11から出力された空燃比に相当する電圧が理論空燃比を示す電圧値となるように、ポンプ電流Ipをポンプセル部2bに通電する。すなわち、排気ガスの空燃比と理論空燃比との乖離を埋めるようにポンプセル部2bが酸素を排出又は吸収するよう、ポンプ電流Ipをポンプセル部2bに通電する。なお、ポンプ電流Ipは、空燃比の状態、すなわちリッチ・リーンに基づき通電されるため、端子IP側から接続端子com側へ通電される場合、及び、接続端子com側から端子IP側へ通電される場合がある。VI変換回路13は、空燃比が所定比率となるようにポンプセル部2bにポンプ電流Ipを通電する通電手段として機能する。   The VI conversion circuit 13 supplies the pump current Ip to the pump cell unit 2b so that the voltage corresponding to the air-fuel ratio output from the A / F detection circuit 11 becomes a voltage value indicating the stoichiometric air-fuel ratio. That is, the pump current Ip is supplied to the pump cell portion 2b so that the pump cell portion 2b discharges or absorbs oxygen so as to fill the gap between the air-fuel ratio of the exhaust gas and the stoichiometric air-fuel ratio. The pump current Ip is energized based on the air-fuel ratio state, that is, rich / lean, and therefore energized from the terminal IP side to the connection terminal com side and from the connection terminal com side to the terminal IP side. There is a case. The VI conversion circuit 13 functions as energization means for energizing the pump current Ip to the pump cell unit 2b so that the air-fuel ratio becomes a predetermined ratio.

定電圧制御部14は、センス抵抗Rsに電流を通電して電圧を発生させることで、接続端子comが一定の規定電圧値(例えば、3.3[V])で一定するよう制御する。検出セル部2aが端子VSにおいて空燃比に基づく電圧を発生するために、接続端子comを一定電圧に制御する必要があるからである。以下、定電圧制御部14がセンス抵抗Rsに通電する電流をCOM電流Icomという。なお、COM電流Icomは、接続端子comの電圧(接続部電圧)に基づき通電されるため、定電圧制御部14側から接続端子com側へ通電される場合、及び、接続端子com側から定電圧制御部14側へ通電される場合がある。定電圧制御部14は、接続端子comに発生する接続部電圧が一定の規定電圧値となるように制御する定電圧手段として機能する。   The constant voltage control unit 14 applies a current to the sense resistor Rs to generate a voltage, thereby controlling the connection terminal com to be constant at a constant specified voltage value (for example, 3.3 [V]). This is because it is necessary to control the connection terminal com to a constant voltage in order for the detection cell unit 2a to generate a voltage based on the air-fuel ratio at the terminal VS. Hereinafter, the current that the constant voltage control unit 14 supplies to the sense resistor Rs is referred to as a COM current Icom. Since the COM current Icom is energized based on the voltage (connection voltage) of the connection terminal com, when the current is supplied from the constant voltage control unit 14 side to the connection terminal com side, and the constant voltage from the connection terminal com side. In some cases, power is supplied to the control unit 14 side. The constant voltage control unit 14 functions as a constant voltage unit that controls the connection voltage generated at the connection terminal com to be a constant voltage value.

A/F検知回路11から制限回路12へ入力された空燃比に相当する電圧は、制限回路12により所定の上限値及び下限値の範囲内に制限されてVI変換回路13へ出力される。かかる上限値及び下限値は、VI変換回路13がポンプセル部2bに通電するポンプ電流Ipが、定電圧制御部14がセンス抵抗Rsに通電するCOM電流Icom未満となる値である。すなわち、制限回路12は、COM電流Icom>ポンプ電流Ipとなるよう、A/F検知回路11からVI変換回路13へ出力される電圧値を制限する。これにより、過電流に基づきフィードバック制御を行ってポンプ電流Ipが増加した場合でも、ポンプ電流IpをCOM電流Icom未満に制限できる。そして過電流の終息後、定電圧制御部14は速やかに接続端子comを所定の電圧(例えば、前述の通り3.3[V])に制御できる。   The voltage corresponding to the air-fuel ratio input from the A / F detection circuit 11 to the limiting circuit 12 is limited by the limiting circuit 12 within a predetermined upper limit value and lower limit value range and is output to the VI conversion circuit 13. The upper limit value and the lower limit value are values at which the pump current Ip that the VI conversion circuit 13 supplies to the pump cell unit 2b is less than the COM current Icom that the constant voltage control unit 14 supplies to the sense resistor Rs. That is, the limiting circuit 12 limits the voltage value output from the A / F detection circuit 11 to the VI conversion circuit 13 so that the COM current Icom> the pump current Ip. Thereby, even when the feedback control is performed based on the overcurrent and the pump current Ip increases, the pump current Ip can be limited to less than the COM current Icom. After the overcurrent ends, the constant voltage control unit 14 can quickly control the connection terminal com to a predetermined voltage (for example, 3.3 [V] as described above).

これにより、制御装置1又は空燃比センサ2に過電流が発生し、接続端子comの電圧が高まったとしても、VI変換回路13へ入力される電圧は制限回路12の上限に抑えられるため、VI変換回路13はポンプ電流Ipを過剰に減少させることがない。この結果、定電圧制御部14の出力する電圧を適正な範囲に収めることができるため、過電流が収まった後も安定的に空燃比のフィードバック制御を行うことができる。   As a result, even if an overcurrent is generated in the control device 1 or the air-fuel ratio sensor 2 and the voltage at the connection terminal com increases, the voltage input to the VI conversion circuit 13 is suppressed to the upper limit of the limit circuit 12. The conversion circuit 13 does not excessively reduce the pump current Ip. As a result, the voltage output from the constant voltage control unit 14 can be kept within an appropriate range, so that the air-fuel ratio feedback control can be stably performed even after the overcurrent is settled.

電流モニタ部15は、センス抵抗Rsに発生する電圧値に基づきポンプ電流Ipを検出する。電流モニタ部15の検出したポンプ電流Ipの値は、後述の制御部31に伝送され、制御部31により空燃比及び燃料噴射量が算出される。   The current monitor unit 15 detects the pump current Ip based on the voltage value generated in the sense resistor Rs. The value of the pump current Ip detected by the current monitor unit 15 is transmitted to the control unit 31 described later, and the control unit 31 calculates the air-fuel ratio and the fuel injection amount.

制御部31は、電流モニタ部15からポンプ電流Ipの値を取得し、空燃比及び燃料噴射量を算出して、燃料噴射弁4を制御する。すなわち、制御部31は燃料噴射弁4を制御する制御手段として機能する。   The control unit 31 acquires the value of the pump current Ip from the current monitor unit 15, calculates the air-fuel ratio and the fuel injection amount, and controls the fuel injection valve 4. That is, the control unit 31 functions as a control unit that controls the fuel injection valve 4.

制御部31は、ポンプ電流Ipの値を受信する受信部31a、ポンプ電流Ipの値から空燃比を導出する空燃比導出部31b、空燃比に基づき前記燃料の噴射量を導出する燃料導出部31cを備える。なお、受信部31aは「受信手段」として、空燃比導出部31bは「第1導出手段」として、燃料導出部31cは「第2導出手段」として機能する。   The control unit 31 includes a receiving unit 31a that receives the value of the pump current Ip, an air-fuel ratio deriving unit 31b that derives the air-fuel ratio from the value of the pump current Ip, and a fuel deriving unit 31c that derives the fuel injection amount based on the air-fuel ratio. Is provided. The receiving unit 31a functions as “receiving unit”, the air-fuel ratio deriving unit 31b functions as “first deriving unit”, and the fuel deriving unit 31c functions as “second deriving unit”.

図5は、制限回路12の詳細な構成を示す。制限回路12は、3つの演算増幅器OP1、OP2、及びOP3を備える。演算増幅器(OP1、OP2、OP3)は、非反転入力端子に入力された電圧と反転入力端子に入力された電圧との差となる電圧を出力端子から出力するオペアンプである。   FIG. 5 shows a detailed configuration of the limiting circuit 12. The limiting circuit 12 includes three operational amplifiers OP1, OP2, and OP3. The operational amplifiers (OP1, OP2, OP3) are operational amplifiers that output from the output terminal a voltage that is the difference between the voltage input to the non-inverting input terminal and the voltage input to the inverting input terminal.

演算増幅器OP1は、非反転入力端子NI1がA/F検知回路11に接続され、反転入力端子II1が基準電源Vref1に接続され、出力端子OUT1がVI変換回路13に接続される。基準電源Vref1の出力する電圧は、例えば3.75[V]である。したがって、演算増幅器OP1は、A/F検知回路11から出力される電圧と3.75[V]との差となる電圧値を出力する。なお、A/F検知回路11は、VS端子に理想空燃比に相当する電圧が発生した場合に、3.75[V]を出力する。   In the operational amplifier OP1, the non-inverting input terminal NI1 is connected to the A / F detection circuit 11, the inverting input terminal II1 is connected to the reference power supply Vref1, and the output terminal OUT1 is connected to the VI conversion circuit 13. The voltage output from the reference power supply Vref1 is, for example, 3.75 [V]. Therefore, the operational amplifier OP1 outputs a voltage value that is the difference between the voltage output from the A / F detection circuit 11 and 3.75 [V]. The A / F detection circuit 11 outputs 3.75 [V] when a voltage corresponding to the ideal air-fuel ratio is generated at the VS terminal.

演算増幅器OP2は、反転入力端子II2が演算増幅器OP1の出力端子OUT1に接続され、非反転入力端子NI2が基準電源Vref2に接続され、出力端子OUT2が演算増幅器OP1に接続される。基準電源Vref2の出力する電圧は、例えば1.0[V]である。演算増幅器OP2は、演算増幅器OP1から出力される電圧の下限を1.0[V]に制限するよう機能する。   The operational amplifier OP2 has an inverting input terminal II2 connected to the output terminal OUT1 of the operational amplifier OP1, a non-inverting input terminal NI2 connected to the reference power supply Vref2, and an output terminal OUT2 connected to the operational amplifier OP1. The voltage output from the reference power supply Vref2 is, for example, 1.0 [V]. The operational amplifier OP2 functions to limit the lower limit of the voltage output from the operational amplifier OP1 to 1.0 [V].

演算増幅器OP3は、反転入力端子II3が基準電源Vref3に接続され、非反転入力端子NI3が演算増幅器OP1の出力端子OUT1に接続され、出力端子OUT3が演算増幅器OP1に接続される。基準電源Vref3の出力する電圧は、例えば6.5[V]である。演算増幅器OP2は、演算増幅器OP1から出力される電圧の上限を6.5[V]に制限するよう機能する。   The operational amplifier OP3 has an inverting input terminal II3 connected to the reference power supply Vref3, a non-inverting input terminal NI3 connected to the output terminal OUT1 of the operational amplifier OP1, and an output terminal OUT3 connected to the operational amplifier OP1. The voltage output from the reference power supply Vref3 is, for example, 6.5 [V]. The operational amplifier OP2 functions to limit the upper limit of the voltage output from the operational amplifier OP1 to 6.5 [V].

このように、A/F検知回路11から演算増幅器OP1の非反転入力端子NI1へ入力された電圧は、制限回路12により上限及び下限が制限されてVI変換回路13へ出力される。これにより、制御装置1又は空燃比センサ2に過電流が発生してCOM端子電圧Vcomが増大し、それにより増大した端子VSの電圧がA/F検知回路11に入力されても、A/F検知回路11からVI変換回路13へ出力される電圧が過大となることはない。したがって、VI変換回路13が出力するポンプ電流Ipは過大となることはなく、過電流の終息後もポンプ電流Ipを用いて安定的な空燃比のフィードバック制御を速やかに行うことができる。   In this way, the voltage input from the A / F detection circuit 11 to the non-inverting input terminal NI1 of the operational amplifier OP1 is output to the VI conversion circuit 13 with the upper limit and lower limit being limited by the limit circuit 12. As a result, even if an overcurrent is generated in the control device 1 or the air-fuel ratio sensor 2 and the COM terminal voltage Vcom is increased, the voltage of the terminal VS thus increased is input to the A / F detection circuit 11. The voltage output from the detection circuit 11 to the VI conversion circuit 13 does not become excessive. Therefore, the pump current Ip output from the VI conversion circuit 13 does not become excessive, and stable air-fuel ratio feedback control can be quickly performed using the pump current Ip even after the end of the overcurrent.

従来のように制限回路12を用いずに、ポンプ電流Ipが過大となった場合には、ポンプ電流Ipを正常な値に低下させるまでに複数回のフィードバック制御を繰り返す必要がある。この場合、速やかフィードバック制御を行うことができない。また、ポンプ電流Ipを正常な値に低下させるまでの間に、過電流が終息した正常な状態にもかかわらず、過大なポンプ電流Ipを誤って異常と判定する恐れがある。   When the pump current Ip becomes excessive without using the limiting circuit 12 as in the prior art, it is necessary to repeat the feedback control a plurality of times before the pump current Ip is reduced to a normal value. In this case, the feedback control cannot be performed promptly. Further, there is a possibility that the excessive pump current Ip is erroneously determined to be abnormal in spite of the normal state in which the overcurrent has ended before the pump current Ip is reduced to a normal value.

以上の通り、第1の実施の形態に係る制御装置1は、ポンプ電流Ipの値が所定範囲の電流値を超えないように制限する。このため、ポンプ電流Ipが過大又は過小となることがないので、空燃比センサ2及び制御装置1を異常と誤って判定することがない。また、過電流の終息後、フィードバック制御により正常状態へ移行する期間を短縮できるので、移行期間における異常値による誤った異常検知を防止できる。また、制御装置1や空燃比センサ2に発生した過電流が終息した後も、ポンプ電流Ipの値に基づいて安定して空燃比センサ2を速やかに制御できる。   As described above, the control device 1 according to the first embodiment limits the value of the pump current Ip so that it does not exceed a current value within a predetermined range. For this reason, since the pump current Ip does not become excessively large or small, the air-fuel ratio sensor 2 and the control device 1 are not erroneously determined as abnormal. Moreover, since the period for shifting to the normal state can be shortened by feedback control after the end of the overcurrent, erroneous abnormality detection due to an abnormal value in the transition period can be prevented. In addition, even after the overcurrent generated in the control device 1 or the air-fuel ratio sensor 2 ends, the air-fuel ratio sensor 2 can be controlled quickly and stably based on the value of the pump current Ip.

<2.第2の実施の形態>
次に、第2の実施の形態を説明する。第2の実施の形態は第1の実施の形態と同様の構成を含む。このため、第1の実施の形態との相違点を主に説明する。
<2. Second Embodiment>
Next, a second embodiment will be described. The second embodiment includes a configuration similar to that of the first embodiment. For this reason, the difference from the first embodiment will be mainly described.

図6は、第2の実施の形態に係る空燃比の制御装置1の構成を示す。前述の第1の実施の形態に係る制御装置1は、A/F検知回路11とVI変換回路13との間に制限回路12を備えた。これに対し、第2の実施の形態に係る制御装置1は、A/F検知回路11とVI変換回路13との間に制限回路12を備えず、接続端子comとVI変換回路13との間に電圧モニタ部16を備える。また、VI変換回路13は、制限回路13aを備える。制限回路13aの構成は、前述の制限回路12と同様である。すなわち、制限回路13aは入力された電圧を所定の範囲に収めて出力する。   FIG. 6 shows the configuration of the air-fuel ratio control apparatus 1 according to the second embodiment. The control device 1 according to the first embodiment described above includes the limiting circuit 12 between the A / F detection circuit 11 and the VI conversion circuit 13. On the other hand, the control device 1 according to the second embodiment does not include the limiting circuit 12 between the A / F detection circuit 11 and the VI conversion circuit 13, and is between the connection terminal com and the VI conversion circuit 13. Includes a voltage monitoring unit 16. The VI conversion circuit 13 includes a limiting circuit 13a. The configuration of the limiting circuit 13a is the same as that of the limiting circuit 12 described above. That is, the limiting circuit 13a outputs the input voltage within a predetermined range.

電圧モニタ部16は、接続端子comに発生する電圧であるCOM電圧Vcomを監視し、COM電圧Vcomが所定電圧の範囲(例えば、3.3[V]前後)を外れたか否か判定する。電圧モニタ部16は、COM電圧Vcomが所定電圧の範囲を外れたと判定すると、制限信号LsをVI変換回路13に出力する。なお、電圧モニタ部16は、接続端子com(接続部)の電圧を検出する第1検出手段として機能する。   The voltage monitor unit 16 monitors the COM voltage Vcom, which is a voltage generated at the connection terminal com, and determines whether or not the COM voltage Vcom is out of a predetermined voltage range (for example, around 3.3 [V]). If the voltage monitor unit 16 determines that the COM voltage Vcom is out of the predetermined voltage range, the voltage monitor unit 16 outputs the limit signal Ls to the VI conversion circuit 13. The voltage monitoring unit 16 functions as a first detection unit that detects the voltage of the connection terminal com (connection unit).

制限信号Lsが電圧モニタ部16からVI変換回路13へ入力されると、VI変換回路13は、A/F検知回路11から入力された電圧値に制限回路13aを介してVI変換を行う。すなわち、VI変換回路13は、A/F検知回路11から入力された電圧値でなく、制限回路13aにより上限及び下限が制限された電圧値に基づいて変換したポンプ電流を空燃比センサ2へ通電する。これにより、ポンプ電流が過大又は過小とならず、一定の範囲の値に収めることができる。換言すれば、制限回路13aは、接続端子comとVI変換回路13との接続部の電圧の値が所定電圧値を超えた場合に、A/F検知回路11への入力電圧を制御することで、ポンプ電流の値が所定電流値を超えないように制限する。   When the limit signal Ls is input from the voltage monitor unit 16 to the VI conversion circuit 13, the VI conversion circuit 13 performs VI conversion on the voltage value input from the A / F detection circuit 11 via the limit circuit 13a. That is, the VI conversion circuit 13 energizes the air-fuel ratio sensor 2 with the pump current converted based on the voltage value whose upper limit and lower limit are limited by the limit circuit 13a, not the voltage value input from the A / F detection circuit 11. To do. As a result, the pump current does not become too large or too small, and can be kept within a certain range. In other words, the limiting circuit 13a controls the input voltage to the A / F detection circuit 11 when the voltage value at the connection portion between the connection terminal com and the VI conversion circuit 13 exceeds a predetermined voltage value. The pump current value is limited so as not to exceed a predetermined current value.

図7は、電圧モニタ部16の詳細な構成を示す。電圧モニタ部16は、2つの演算増幅器OP4及びOP5を備える。   FIG. 7 shows a detailed configuration of the voltage monitor unit 16. The voltage monitor unit 16 includes two operational amplifiers OP4 and OP5.

演算増幅器OP4は、非反転入力端子NI4が接続端子comに接続され、反転入力端子II4が基準電源Vref4に接続され、出力端子OUT4がVI変換回路13に接続される。   In the operational amplifier OP4, the non-inverting input terminal NI4 is connected to the connection terminal com, the inverting input terminal II4 is connected to the reference power supply Vref4, and the output terminal OUT4 is connected to the VI conversion circuit 13.

基準電源Vref4は、例えば、3.6[V]を出力する。したがって、演算増幅器OP5は、反転入力端子II5に入力される電圧が上昇して3.6[V]を上回ると、その差分となる電圧を出力する。この出力される電圧が制限信号Lsとなる。   The reference power source Vref4 outputs, for example, 3.6 [V]. Therefore, when the voltage input to the inverting input terminal II5 rises and exceeds 3.6 [V], the operational amplifier OP5 outputs a voltage that is the difference between them. This output voltage is the limit signal Ls.

演算増幅器OP5は、反転入力端子II5がセンス抵抗RsとVI変換回路13とが接続される接続点Cに接続され、非反転入力端子NI5が基準電源Vref5に接続され、出力端子OUT5がVI変換回路13に接続される。基準電源Vref5は、例えば、3.0[V]を出力する。したがって、演算増幅器OP5は、反転入力端子II5に入力される電圧が下降して3.0[V]を下回ると、その差分となる電圧を出力する。この出力される電圧が制限信号Lsとなる。   In the operational amplifier OP5, the inverting input terminal II5 is connected to the connection point C where the sense resistor Rs and the VI conversion circuit 13 are connected, the non-inverting input terminal NI5 is connected to the reference power supply Vref5, and the output terminal OUT5 is the VI conversion circuit. 13 is connected. The reference power supply Vref5 outputs, for example, 3.0 [V]. Accordingly, when the voltage input to the inverting input terminal II5 drops and falls below 3.0 [V], the operational amplifier OP5 outputs a voltage that is the difference between them. This output voltage is the limit signal Ls.

したがって、電圧モニタ部16は、正常状態で3.3[V]に制御されるCOM端子電圧Vcomの電圧値を監視するので、制限する範囲は、上限が3.6[V]、下限が3.0[V]となる。   Accordingly, since the voltage monitor unit 16 monitors the voltage value of the COM terminal voltage Vcom controlled to 3.3 [V] in a normal state, the upper limit is 3.6 [V] and the lower limit is 3 0 [V].

これにより、ポンプ電流Ipを一定の範囲内に収めることができる。過電流が発生してもポンプ電流Ipを一定の範囲内に収めて過大又は過小となることがないので、過電流の発生が終息した後であっても、ポンプ電流Ipに基づくフィードバック制御を速やかに行うことができる。また、ポンプ電流Ipを一定の範囲内に収めることができるので、ポンプ電流Ipを過電流が終息した後に誤って異常と判定することを防止できる。   As a result, the pump current Ip can be kept within a certain range. Even if an overcurrent occurs, the pump current Ip is kept within a certain range so as not to become too large or too small. Therefore, even after the occurrence of the overcurrent ceases, feedback control based on the pump current Ip is quickly performed. Can be done. In addition, since the pump current Ip can be kept within a certain range, it is possible to prevent the pump current Ip from being erroneously determined as abnormal after the overcurrent ends.

なお、電圧モニタ部16は、図6に示す接続端子comの電圧値ではなく、センス抵抗Rsと定電圧制御部14とが接続される接続点Cの電圧値を監視してもよい。センス抵抗Rsでの電圧降下を介してCOM端子電圧Vcomの電圧値を監視できるので、過電流の発生を適切な箇所で監視できる。この場合、電圧モニタ部16は、センス抵抗Rsと定電圧制御部14とが接続される接続点Cの電圧を検出する第2検出手段として機能する。   The voltage monitor unit 16 may monitor the voltage value at the connection point C where the sense resistor Rs and the constant voltage control unit 14 are connected, instead of the voltage value at the connection terminal com shown in FIG. Since the voltage value of the COM terminal voltage Vcom can be monitored via the voltage drop at the sense resistor Rs, the occurrence of overcurrent can be monitored at an appropriate location. In this case, the voltage monitor unit 16 functions as a second detection unit that detects the voltage at the connection point C where the sense resistor Rs and the constant voltage control unit 14 are connected.

電圧モニタ部16が接続点Cの電圧値を監視する場合、基準電源Vref4は、センス抵抗Rsでの電圧降下を考慮して、例えば7.0[V]を出力する。接続端子comは過電流等の発生のない正常状態で3.3[V]に制御されるので、非反転入力端子NI4に入力される電圧は3.3[V]である。したがって、演算増幅器OP4は、非反転入力端子NI4に入力される電圧が上昇して7.0[V]を上回ると、その差分となる電圧を出力する。この出力される電圧が制限信号Lsとなる。   When the voltage monitor unit 16 monitors the voltage value at the connection point C, the reference power supply Vref4 outputs 7.0 [V], for example, in consideration of the voltage drop at the sense resistor Rs. Since the connection terminal com is controlled to 3.3 [V] in a normal state without occurrence of overcurrent or the like, the voltage input to the non-inverting input terminal NI4 is 3.3 [V]. Accordingly, when the voltage input to the non-inverting input terminal NI4 rises and exceeds 7.0 [V], the operational amplifier OP4 outputs a voltage that is the difference between them. This output voltage is the limit signal Ls.

演算増幅器OP5は、反転入力端子II5がセンス抵抗RsとVI変換回路13とが接続される接続点Cに接続され、非反転入力端子NI5が基準電源Vref5に接続され、出力端子OUT5がVI変換回路13に接続される。基準電源Vref5は、センス抵抗Rsでの電圧降下を考慮して、例えば0.7[V]を出力する。したがって、演算増幅器OP5は、反転入力端子II5に入力される電圧が下降して0.7[V]を下回ると、その差分となる電圧を出力する。この出力される電圧が制限信号Lsとなる。   In the operational amplifier OP5, the inverting input terminal II5 is connected to the connection point C where the sense resistor Rs and the VI conversion circuit 13 are connected, the non-inverting input terminal NI5 is connected to the reference power supply Vref5, and the output terminal OUT5 is the VI conversion circuit. 13 is connected. The reference power supply Vref5 outputs, for example, 0.7 [V] in consideration of the voltage drop at the sense resistor Rs. Accordingly, when the voltage input to the inverting input terminal II5 falls and falls below 0.7 [V], the operational amplifier OP5 outputs a voltage that is the difference between them. This output voltage is the limit signal Ls.

このように、電圧モニタ部16は、接続点Cの電圧が上昇して7.0[V]を上回った場合、及び、同様に低下して0.7[V]を下回った場合に制限信号LsをVI変換回路13へ出力する。VI変換回路13は、制限信号Lsが入力されると、A/F検知回路11からの電圧値を制限回路13aを介してポンプ電流Ipに変換する。   As described above, the voltage monitor unit 16 detects the limit signal when the voltage at the connection point C increases and exceeds 7.0 [V], and when the voltage decreases to 0.7 [V] similarly. Ls is output to the VI conversion circuit 13. When the limit signal Ls is input, the VI conversion circuit 13 converts the voltage value from the A / F detection circuit 11 into the pump current Ip via the limit circuit 13a.

以上の通り、第2の実施の形態に係る制御装置1は、ポンプ電流Ipの値が所定電流値を上回ること及び下回ることがないように制限する。このため、ポンプ電流Ipが過大又は過小となることがないので、空燃比センサ2及び制御装置1の異常と誤って判定することがない。また、過電流の終息後、フィードバック制御により正常状態へ移行する期間を短縮できるので、移行期間における異常値による誤った異常検知を防止できる。また、制御装置1や空燃比センサ2に発生した過電流が終息した後も、ポンプ電流の値に基づいて安定して空燃比センサ2を速やかに制御できる。   As described above, the control device 1 according to the second embodiment limits the value of the pump current Ip so as not to exceed or fall below the predetermined current value. For this reason, since the pump current Ip does not become excessively large or small, it is not erroneously determined that the air-fuel ratio sensor 2 and the control device 1 are abnormal. Moreover, since the period for shifting to the normal state can be shortened by feedback control after the end of the overcurrent, erroneous abnormality detection due to an abnormal value in the transition period can be prevented. In addition, even after the overcurrent generated in the control device 1 or the air-fuel ratio sensor 2 ends, the air-fuel ratio sensor 2 can be controlled quickly and stably based on the value of the pump current.

<3.第3の実施の形態>
次に、第3の実施の形態を説明する。第3の実施の形態は第1の実施の形態と同様の構成を含む。このため、第1の実施の形態との相違点を主に説明する。
<3. Third Embodiment>
Next, a third embodiment will be described. The third embodiment includes a configuration similar to that of the first embodiment. For this reason, the difference from the first embodiment will be mainly described.

ポンプ電流IpがCOM電流Icomに対して過大となると、過大となったポンプ電流Ipを定電圧制御部14が吸収又は補充できずに、COM端子電圧Vcomを一定の電圧値に保持することが困難となる。   When the pump current Ip is excessive with respect to the COM current Icom, the constant voltage control unit 14 cannot absorb or supplement the excessive pump current Ip, and it is difficult to maintain the COM terminal voltage Vcom at a constant voltage value. It becomes.

そこで、第3の実施の形態に係る制御装置1は、VI変換回路13がポンプ電流Ipを通電する能力よりも、定電圧制御部14がCOM端子電圧Vcomを一定の電圧値(規定電圧値)にするために電流を通電する能力の方を高く設定する。すなわち、COM電流Icom>ポンプ電流Ipとなるように、VI変換回路13の電流能力よりも定電圧制御部14の電流能力を高く設定する。なお、定電圧制御部14がCOM端子電圧Vcomを一定の電圧値にするための電流能力は、前述の演算式(1)により算出される。   Therefore, in the control device 1 according to the third embodiment, the constant voltage control unit 14 sets the COM terminal voltage Vcom to a constant voltage value (specified voltage value), rather than the ability of the VI conversion circuit 13 to pass the pump current Ip. Therefore, the ability to energize the current is set higher. That is, the current capability of the constant voltage control unit 14 is set higher than the current capability of the VI conversion circuit 13 so that the COM current Icom> the pump current Ip. In addition, the current capability for the constant voltage control unit 14 to set the COM terminal voltage Vcom to a constant voltage value is calculated by the above-described arithmetic expression (1).

これにより、定電圧制御部14が電流を通電できる能力以上のポンプ電流Ipが、接続端子comに通電されることにより、定電圧制御部14が、接続端子comを一定電圧に制御できなくなることを防止する。したがって、定電圧制御部14が、接続端子comに通電されるポンプ電流Ipに対し、常に電流を吸収又は補充するように通電することができ、接続端子comを一定電圧に保持することができる。   As a result, when the pump current Ip exceeding the capability of the constant voltage control unit 14 to pass current is supplied to the connection terminal com, the constant voltage control unit 14 cannot control the connection terminal com to a constant voltage. To prevent. Therefore, the constant voltage control unit 14 can be energized so as to always absorb or supplement the pump current Ip energized to the connection terminal com, and the connection terminal com can be held at a constant voltage.

<4.変形例>
本発明は上記実施の形態に限定されることはない。本発明は変形可能である。以下、本発明の変形例を説明する。なお、上記及び以下に説明する実施の形態は、適宜組み合わせ可能である。
<4. Modification>
The present invention is not limited to the above embodiment. The present invention can be modified. Hereinafter, modifications of the present invention will be described. The embodiments described above and below can be combined as appropriate.

上記実施の形態では、空燃比の制御装置1は、制限回路12及び電圧モニタ部16のいずれかを備えた。しかし、制御装置1は、制限回路12及び電圧モニタ部16の両者を備えてもよい。この場合、VI変換回路13は制限回路13aを備えればよい。   In the above embodiment, the air-fuel ratio control device 1 includes either the limiting circuit 12 or the voltage monitoring unit 16. However, the control device 1 may include both the limiting circuit 12 and the voltage monitor unit 16. In this case, the VI conversion circuit 13 may be provided with a limiting circuit 13a.

また、上記実施の形態では、制限回路12は、A/F検知回路11の出力電圧の上限と下限とを制限した。しかし、制限回路12は、上限と下限とのうち、いずれか一方のみを制限してもよい。   In the above embodiment, the limit circuit 12 limits the upper limit and the lower limit of the output voltage of the A / F detection circuit 11. However, the limiting circuit 12 may limit only one of the upper limit and the lower limit.

また、ハードウェアとして説明した構成をソフトウェアで実現してもよい。一方、ソフトウェアとして説明した機能をハードウェアで実現してもよい。また、ハードウェア又はソフトウェアをハードウェアとソフトウェアとの組み合わせで実現してもよい。   Further, the configuration described as hardware may be realized by software. On the other hand, the function described as software may be realized by hardware. Further, hardware or software may be realized by a combination of hardware and software.

1 空燃比の制御装置
2 空燃比センサ
2a 検出セル部
2b ポンプセル部
3 燃料噴射装置
4 燃料噴射弁
DESCRIPTION OF SYMBOLS 1 Control apparatus of air fuel ratio 2 Air fuel ratio sensor 2a Detection cell part 2b Pump cell part 3 Fuel injection apparatus 4 Fuel injection valve

Claims (7)

空燃比に応じた空燃比電圧を発生する検出セル部と、該検出セル部と接続部で接続されて通電された電流量に応じた酸素を吸排出するポンプセル部とを備える、内燃機関の排気部に備えられた空燃比センサを制御する制御装置であって、
前記空燃比電圧に基づき出力電圧を出力する出力手段と、
前記出力電圧に基づき、前記空燃比が所定比率となるように前記ポンプセル部にポンプ電流を通電する通電手段と、
前記接続部に発生する接続部電圧が一定の規定電圧値となるように制御する定電圧手段と、
前記ポンプ電流の値が所定電流値を超えないように制限する制限手段と、
を備えることを特徴とする制御装置。
An exhaust of an internal combustion engine, comprising: a detection cell unit that generates an air-fuel ratio voltage corresponding to the air-fuel ratio; and a pump cell unit that is connected to the detection cell unit and connected to the detection cell unit and absorbs and discharges oxygen according to the amount of current A control device for controlling an air-fuel ratio sensor provided in the unit,
An output means for outputting an output voltage based on the air-fuel ratio voltage;
Energization means for energizing the pump cell with a pump current so that the air-fuel ratio becomes a predetermined ratio based on the output voltage;
Constant voltage means for controlling the connection portion voltage generated in the connection portion to have a constant specified voltage value;
Limiting means for limiting the value of the pump current so as not to exceed a predetermined current value;
A control device comprising:
請求項1に記載の制御装置において、
前記制限手段は、前記出力電圧の値が所定電圧値を越えないように制限することにより、前記ポンプ電流の値が所定電流値を超えないように制限することを特徴とする制御装置。
The control device according to claim 1,
The control device restricts the value of the pump current so as not to exceed a predetermined current value by limiting the value of the output voltage so as not to exceed a predetermined voltage value.
請求項1に記載の制御装置において、
前記接続部電圧を検出する第1検出手段、
をさらに備え、
前記制限手段は、前記接続部電圧の値に応じて前記通電手段を制御することで、前記ポンプ電流の値が所定電流値を超えないように制限することを特徴とする制御装置。
The control device according to claim 1,
First detecting means for detecting the connection voltage;
Further comprising
The control device limits the pump current value so as not to exceed a predetermined current value by controlling the energization device in accordance with the value of the connection portion voltage.
請求項1に記載の制御装置において、
前記接続部と前記定電圧手段との間に接続された抵抗器と、
前記抵抗器と前記定電圧手段との接続点に発生する接続点電圧を検出する第2検出手段と、
をさらに備え、
前記制限手段は、前記接続点電圧の値に応じて前記通電手段を制御することで、前記ポンプ電流の値が所定電流値を超えないように制限することを特徴とする制御装置。
The control device according to claim 1,
A resistor connected between the connection and the constant voltage means;
Second detection means for detecting a connection point voltage generated at a connection point between the resistor and the constant voltage means;
Further comprising
The control device limits the pump current value so as not to exceed a predetermined current value by controlling the energization device according to the value of the connection point voltage.
請求項1ないし4のいずれかに記載の制御装置において、
前記所定電流値は、前記定電圧手段の出力の限界となる限界電圧値と、前記規定電圧値との差分によって規定される。
The control device according to any one of claims 1 to 4,
The predetermined current value is defined by a difference between a limit voltage value that is a limit of the output of the constant voltage means and the specified voltage value.
請求項1ないし5のいずれかに記載の制御装置において、
前記内燃機関に燃料を噴射する燃料噴射弁を制御する制御手段、
をさらに備え、
前記制御手段は、
前記ポンプ電流の値を受信する受信手段と、
前記ポンプ電流の値から空燃比を導出する第1導出手段と、
前記空燃比に基づき前記燃料の噴射量を導出する第2導出手段と、
を備えることを特徴とする制御装置。
The control device according to any one of claims 1 to 5,
Control means for controlling a fuel injection valve for injecting fuel into the internal combustion engine;
Further comprising
The control means includes
Receiving means for receiving the value of the pump current;
First deriving means for deriving an air-fuel ratio from the value of the pump current;
Second deriving means for deriving the fuel injection amount based on the air-fuel ratio;
A control device comprising:
空燃比に応じた空燃比電圧を発生する検出セル部と、該検出セル部と接続部で接続されて通電された電流量に応じた酸素を吸排出するポンプセル部とを備える、内燃機関の排気部に備えられた空燃比センサを制御する制御装置であって、
前記空燃比電圧に基づき出力電圧を出力する出力手段と、
前記出力電圧に基づき、前記空燃比が所定比率となるように前記ポンプセル部にポンプ電流を通電する通電手段と、
前記接続部に発生する接続部電圧が一定の規定電圧値となるように制御する定電圧手段と、
を備え、
前記通電手段が前記ポンプ電流を通電する能力よりも、前記定電圧手段が前記接続部電圧を一定の規定電圧値にするために電流を通電する能力の方が高いことを特徴とする制御装置。
An exhaust of an internal combustion engine, comprising: a detection cell unit that generates an air-fuel ratio voltage corresponding to the air-fuel ratio; and a pump cell unit that is connected to the detection cell unit and connected to the detection cell unit and absorbs and discharges oxygen according to the amount of current A control device for controlling an air-fuel ratio sensor provided in the unit,
An output means for outputting an output voltage based on the air-fuel ratio voltage;
Energization means for energizing the pump cell with a pump current so that the air-fuel ratio becomes a predetermined ratio based on the output voltage;
Constant voltage means for controlling the connection portion voltage generated in the connection portion to have a constant specified voltage value;
With
2. A control apparatus according to claim 1, wherein the constant voltage means has a higher ability to pass a current in order to set the connection voltage to a predetermined specified voltage value than the ability of the current supply means to pass the pump current.
JP2015066589A 2015-03-27 2015-03-27 Control device Active JP6503210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015066589A JP6503210B2 (en) 2015-03-27 2015-03-27 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066589A JP6503210B2 (en) 2015-03-27 2015-03-27 Control device

Publications (2)

Publication Number Publication Date
JP2016186249A true JP2016186249A (en) 2016-10-27
JP6503210B2 JP6503210B2 (en) 2019-04-17

Family

ID=57203176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066589A Active JP6503210B2 (en) 2015-03-27 2015-03-27 Control device

Country Status (1)

Country Link
JP (1) JP6503210B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198901A (en) * 2006-01-26 2007-08-09 Ngk Spark Plug Co Ltd Sensor control device and sensor unit
JP2008070194A (en) * 2006-09-13 2008-03-27 Ngk Spark Plug Co Ltd Device and method for controlling sensor
JP2009299545A (en) * 2008-06-11 2009-12-24 Fujitsu Ten Ltd Electronic control system and control method
JP2013250165A (en) * 2012-05-31 2013-12-12 Ngk Spark Plug Co Ltd Gas sensor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198901A (en) * 2006-01-26 2007-08-09 Ngk Spark Plug Co Ltd Sensor control device and sensor unit
JP2008070194A (en) * 2006-09-13 2008-03-27 Ngk Spark Plug Co Ltd Device and method for controlling sensor
JP2009299545A (en) * 2008-06-11 2009-12-24 Fujitsu Ten Ltd Electronic control system and control method
JP2013250165A (en) * 2012-05-31 2013-12-12 Ngk Spark Plug Co Ltd Gas sensor control device

Also Published As

Publication number Publication date
JP6503210B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP5140005B2 (en) Gas sensor control device and gas sensor control method
CN107632054B (en) Controller of air-fuel ratio sensor and abnormality detection method
US9810731B2 (en) Load drive apparatus
WO2015170449A1 (en) Exhaust gas purification device for internal combustion engine
US20180306136A1 (en) Anomaly determination apparatus and control system
US9769877B2 (en) Heater control apparatus for gas sensor
JP2003097342A (en) Abnormality detecting system for air-fuel ratio system
JP6503210B2 (en) Control device
US9933389B2 (en) Sensor control apparatus and gas detection system
EP3273041A1 (en) Controller and abnormality detecting method of air-fuel-ratio sensor
JPS5979847A (en) Control apparatus of oxygen concentration sensor
US20200088665A1 (en) Gas sensor diagnosis device
JP5213132B2 (en) Gas sensor control device and gas sensor control method
JP6943722B2 (en) Gas sensor controller
JP6594741B2 (en) Air-fuel ratio sensor abnormality detection device, air-fuel ratio sensor control device, and abnormality detection method
US20190107505A1 (en) Sensor control device and sensor unit
JP4699658B2 (en) Abnormality detection system for air-fuel ratio system
US10139359B2 (en) Sensor control apparatus and gas detection system
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
JP4569701B2 (en) Gas concentration detector
JP2020169587A (en) Sensor control device
JP2018128354A (en) Sensor controller
JP6809927B2 (en) Gas sensor controller
CN106468683B (en) Circuit and method for controlling single-cell linear oxygen sensor
JP6587906B2 (en) Air-fuel ratio sensor abnormality detection device, air-fuel ratio sensor control device, and abnormality detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6503210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250