JP2016186058A - Water-soluble polymer - Google Patents

Water-soluble polymer Download PDF

Info

Publication number
JP2016186058A
JP2016186058A JP2015067642A JP2015067642A JP2016186058A JP 2016186058 A JP2016186058 A JP 2016186058A JP 2015067642 A JP2015067642 A JP 2015067642A JP 2015067642 A JP2015067642 A JP 2015067642A JP 2016186058 A JP2016186058 A JP 2016186058A
Authority
JP
Japan
Prior art keywords
structural unit
unit represented
mol
polymer
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015067642A
Other languages
Japanese (ja)
Inventor
有光 竹本
Arimitsu Takemoto
有光 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015067642A priority Critical patent/JP2016186058A/en
Publication of JP2016186058A publication Critical patent/JP2016186058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-soluble polymer having excellent flocculation performance.SOLUTION: Provided is a water-soluble polymer obtained by a heat treatment of a copolymer, which is composed of acrylamide and acrylonitrile, and a hypervalent iodine compound under an acidic condition, comprising: a structural unit represented by a heterocycle containing nitrogen and having an ammonium salt as a substituent; a structural unit represented by acrylamide; a structural unit represented by acrylonitrile; a structural unit represented by an ammonium salt; and a structural unit represented by a metal carboxylate, wherein a content of the structural unit represented by a heterocycle containing nitrogen and having an ammonium salt as a substituent is 20 mol% or more.SELECTED DRAWING: None

Description

本発明は、凝集性能に優れるポリアミジン系の水溶性高分子に関するものである。   The present invention relates to a polyamidine-based water-soluble polymer having excellent aggregation performance.

アミジン型水溶性高分子は、その高いカチオン密度によって有機汚泥に対して効率的に吸着し、脱水性に優れた強固なフロックを形成することができ、腐敗が進行した難脱水性の汚泥に対する凝集剤として特に有効であることが知られている。   Amidine-type water-soluble polymers can be efficiently adsorbed to organic sludge by their high cation density, and can form strong flocs with excellent dewatering properties. It is known to be particularly effective as an agent.

従来、アミジン型水溶性高分子の製造は、ビニルホルムアミドとアクリロニトリルとの共重合体を酸性処理することによりホルムアミド基をアミノ基へ化学変性し、その後、加熱処理することにより隣接するニトリル基と分子内環化させて、高分子鎖にアミジン環を形成させていた。この方法は、アミノ基を効率的に形成させることができることから高アミジン化が容易であり、副生物も少なく優れた製造方法であると言える(例えば、特許文献1参照)。しかしながら、原料モノマーの一つであるビニルホルムアミドが極めて高価であることから、その製造コストを低減することは難しいとされてきた。   Conventionally, amidine-type water-soluble polymers have been produced by chemically modifying a formamide group into an amino group by acid treatment of a copolymer of vinylformamide and acrylonitrile, and then heat-treating the adjacent nitrile group and molecule. It was cyclized internally to form an amidine ring in the polymer chain. Since this method can efficiently form an amino group, it can be easily produced as a high amidine, and it can be said to be an excellent production method with few by-products (see, for example, Patent Document 1). However, since vinylformamide, which is one of the raw material monomers, is extremely expensive, it has been difficult to reduce its production cost.

一方、低コストのアミジン型水溶性高分子の製造方法として、特許文献2に記載の方法が提案されている。この方法は、安価なアクリルアミドとアクリロニトリルを原料としてベースとなるポリマーを重合し、これを次亜塩素酸ナトリウム等の酸化剤と苛性ソーダ等のアルカリを用いるホフマン反応によってアミド基をアミノ基へ変性した後、上記の方法と同様に酸性処理、加熱処理によってアミジン環を形成させる方法である。   On the other hand, a method described in Patent Document 2 has been proposed as a method for producing a low-cost amidine-type water-soluble polymer. This method involves polymerizing a base polymer using inexpensive acrylamide and acrylonitrile as raw materials, and then modifying the amide group to an amino group by a Hofmann reaction using an oxidizing agent such as sodium hypochlorite and an alkali such as caustic soda. In the same manner as described above, an amidine ring is formed by acid treatment and heat treatment.

特許第2624089号公報Japanese Patent No. 2624089 特許第5057773号公報Japanese Patent No. 5057773

しかしながら、特許文献2で提案された方法では、過酷な塩基性条件下で酸化剤を用いてホフマン反応によりアミド基からアミノ基へと変性しているため、酸化剤による分子切断が生じ、得られる水溶性高分子の分子量が低くなり、凝集性能が低下するといった問題や、塩基性条件下でホフマン反応した後に中和、酸性化してアミジン化しているため、多量のアルカリや酸が必要となる上、多量の塩が副生するという問題が生じる。   However, in the method proposed in Patent Document 2, since the amide group is denatured from the amide group to the amino group by the Hofmann reaction using an oxidizing agent under severe basic conditions, molecular cleavage by the oxidizing agent occurs and is obtained. Problems such as low molecular weight of water-soluble polymers and degradation of aggregation performance, and neutralization, acidification and amidineization after the Hoffman reaction under basic conditions require a large amount of alkali and acid. This causes a problem that a large amount of salt is produced as a by-product.

そのため、水溶性高分子の凝集性能が必ずしも十分ではないといった課題や生産性が悪いといった課題があった。   For this reason, there is a problem that the aggregation performance of the water-soluble polymer is not always sufficient and a problem that productivity is poor.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定のポリアミジン系の水溶性高分子が凝集性能に優れることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a specific polyamidine-based water-soluble polymer is excellent in aggregation performance, and have completed the present invention.

すなわち、本発明は、アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素化合物とを酸性条件下で加熱処理して得られる、下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、および下記式(5)で示される構造単位を含み、且つ下記式(1)で示される構造単位が20モル%以上であることを特徴とする水溶性高分子に関するものである。   That is, the present invention is a structural unit represented by the following formula (1), which is obtained by heat-treating a copolymer of acrylamide and acrylonitrile and a hypervalent iodine compound under acidic conditions: A structural unit represented by the following formula (3), a structural unit represented by the following formula (4), and a structural unit represented by the following formula (5), and represented by the following formula (1): The present invention relates to a water-soluble polymer having a structural unit of 20 mol% or more.

Figure 2016186058
(ここで、上記式中、Mは陽イオンを表し、Xは陰イオンを表す。)
以下、本発明を詳細に説明する。
Figure 2016186058
(Here, in the above formula, M + represents a cation and X represents an anion.)
Hereinafter, the present invention will be described in detail.

本発明の水溶性高分子は、アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素化合物とを酸性条件下で加熱処理して得られる、下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、および下記式(5)で示される構造単位を含み、且つ下記式(1)で示される構造単位が20モル%以上であることを特徴とするものである。   The water-soluble polymer of the present invention is a structural unit represented by the following formula (1) obtained by heat-treating a copolymer of acrylamide and acrylonitrile and a hypervalent iodine compound under acidic conditions, 2), a structural unit represented by the following formula (3), a structural unit represented by the following formula (4), and a structural unit represented by the following formula (5), and the following formula (1) The structural unit is represented by 20 mol% or more.

本発明の水溶性高分子は、下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、および下記式(5)で示される構造単位を含み、優れた凝集性能が得られることから、下記式(1)で示される構造単位を20モル%以上含むものであり、25モル%以上含むことが好ましい。   The water-soluble polymer of the present invention is represented by the structural unit represented by the following formula (1), the structural unit represented by the following formula (2), the structural unit represented by the following formula (3), and the following formula (4). Since the structural unit and the structural unit represented by the following formula (5) are included and excellent aggregation performance is obtained, the structural unit represented by the following formula (1) is contained in an amount of 20 mol% or more, and 25 mol%. It is preferable to include the above.

本発明の水溶性高分子の製造に用いるアクリルアミドとアクリロニトリルからなる共重合物は、アクリルアミドとアクリロニトリルからなる共重合物であれば如何なるものでも使用することができるが、凝集性能と生産性の観点より、アクリルアミドを40モル%以上80モル%未満含み、残部がアクリロニトリルである共重合物が好ましく、アクリルアミドを50モル%以上70モル%未満含み、残部がアクリロニトリルである共重合物がさらに好ましい。   Any copolymer consisting of acrylamide and acrylonitrile used for the production of the water-soluble polymer of the present invention can be used as long as it is a copolymer consisting of acrylamide and acrylonitrile, but from the viewpoint of aggregation performance and productivity. A copolymer containing 40 mol% or more and less than 80 mol% of acrylamide and the balance being acrylonitrile is preferred, and a copolymer containing acrylamide or less and less than 70 mol% and the remainder being acrylonitrile is more preferred.

アクリルアミドとアクリロニトリルとの共重合は、従来知られている溶液重合、乳化重合、懸濁重合、分散重合等の方法を用いることができる。その際、重合温度は、特に限定するものではないが、例えば、0〜70℃の範囲から選択することができる。また、モノマー濃度は、特に限定するものではないが、例えば、1〜60重量%の範囲から選択することができる。   For copolymerization of acrylamide and acrylonitrile, conventionally known methods such as solution polymerization, emulsion polymerization, suspension polymerization, and dispersion polymerization can be used. In that case, although superposition | polymerization temperature is not specifically limited, For example, it can select from the range of 0-70 degreeC. The monomer concentration is not particularly limited, but can be selected from a range of 1 to 60% by weight, for example.

共重合反応を行うためのラジカル重合開始剤としては、油溶性開始剤、水溶性開始剤ともに使用することができるが、モノマーの親水性が比較的高いので、水溶性開始剤を使用する方がより好ましい。水溶性開始剤としては、アゾ系として2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物、2,2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、4,4’−アゾビス(4−シアノ吉草酸)等を挙げることができる。また、過酸化物系としてはペルオクソ二硫酸アンモニウム、ペルオクソ二硫酸カリウム、過酸化水素等を挙げることができ、それぞれを単独または組み合わせて使用することができる。過酸化物系に対しては、より低温で重合を進めるため、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の還元剤との組合せによるレドックス開始剤系の構築も適用できる。   As the radical polymerization initiator for carrying out the copolymerization reaction, both an oil-soluble initiator and a water-soluble initiator can be used. However, since the hydrophilicity of the monomer is relatively high, it is preferable to use a water-soluble initiator. More preferred. Examples of water-soluble initiators include 2,2′-azobis (2-amidinopropane) dichloride as an azo group, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane And dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of peroxides include ammonium peroxodisulfate, potassium peroxodisulfate, and hydrogen peroxide. These can be used alone or in combination. For peroxide systems, it is also possible to apply a redox initiator system in combination with a reducing agent such as sodium sulfite or sodium bisulfite in order to proceed the polymerization at a lower temperature.

得られた共重合物は、超原子価ヨウ素化合物とともに酸性条件下で加熱処理することにより、アミド基をアミノ基に変性し、生じたアミノ基は隣接するニトリル基と環化してアミジン環を形成することができる。   The resulting copolymer is heat-treated with a hypervalent iodine compound under acidic conditions to modify the amide group into an amino group, and the resulting amino group cyclizes with the adjacent nitrile group to form an amidine ring. can do.

本発明の水溶性高分子に用いる超原子価ヨウ素化合物は、分子内に3配位、5配位、7配位または8配位の超原子価のヨウ素を含むものならば如何なるものでも使用することができ、例えば、[ビス(トリフルオロアセトキシ)ヨード]ベンゼン、[ビス(トリフルオロアセトキシ)ヨード]ペンタフルオロベンゼン、ビス(2,4,6−トリメチルピリジン)ヨードニウムヘキサフルオロホスファート、ヨードベンゼンジアセタート、デス−マーチンペルヨージナン等を挙げることができ、反応性や生産性の観点より、[ビス(トリフルオロアセトキシ)ヨード]ベンゼン、[ビス(トリフルオロアセトキシ)ヨード]ペンタフルオロベンゼン、ビス(2,4,6−トリメチルピリジン)ヨードニウムヘキサフルオロホスファートが好ましい。   Any hypervalent iodine compound used for the water-soluble polymer of the present invention may be used as long as it contains tri-coordinate, 5-coordinate, 7-coordinate or 8-coordinate hypervalent iodine in the molecule. For example, [bis (trifluoroacetoxy) iodo] benzene, [bis (trifluoroacetoxy) iodo] pentafluorobenzene, bis (2,4,6-trimethylpyridine) iodonium hexafluorophosphate, iodobenzenedia Cetate, Dess-Martin periodinane, and the like. From the viewpoint of reactivity and productivity, [bis (trifluoroacetoxy) iodo] benzene, [bis (trifluoroacetoxy) iodo] pentafluorobenzene, bis (2,4,6-trimethylpyridine) iodonium hexafluorophosphate is preferred .

本発明の水溶性高分子に用いる超原子価ヨウ素化合物の配合量は、特に限定されるものではないが、凝集性能に優れることから、共重合体中のアクリルアミド単位に対して0.4〜1.5重量部が好ましく、0.6〜1.2重量部がさらに好ましい。   The blending amount of the hypervalent iodine compound used in the water-soluble polymer of the present invention is not particularly limited, but is 0.4 to 1 with respect to the acrylamide unit in the copolymer because of excellent aggregation performance. 0.5 parts by weight is preferable, and 0.6 to 1.2 parts by weight is more preferable.

アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素化合物を反応させる際の条件は、如何なるものでも用いることができ、特に制限されるものではないが、例えば、重合して得られたアクリルアミドとアクリロニトリルからなる共重合物のポリマー懸濁液に超原子価ヨウ素化合物を加えて酸性下で加熱する方法や、重合して得られたアクリルアミドとアクリロニトリルからなる共重合物を単離した後、溶媒中に投入し、超原子価ヨウ素化合物を加えて酸性下で加熱する方法等が挙げられる。   Any conditions can be used for the reaction between the copolymer of acrylamide and acrylonitrile and the hypervalent iodine compound, and there is no particular limitation. For example, acrylamide and acrylonitrile obtained by polymerization are used. A method of adding a hypervalent iodine compound to a polymer suspension of a copolymer and heating under acidic conditions, or isolating a copolymer of acrylamide and acrylonitrile obtained by polymerization, and then in a solvent And a method of adding a hypervalent iodine compound and heating under acidic conditions.

アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素を反応させる際の温度は、特に限定されるものではないが、反応速度や熱安定性の観点より、25〜100℃が好ましく、40〜90℃がさらに好ましい。   The temperature at which the copolymer of acrylamide and acrylonitrile and the hypervalent iodine are reacted is not particularly limited, but is preferably 25 to 100 ° C from the viewpoint of reaction rate and thermal stability, and 40 to 90 More preferably.

アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素化合物とを反応させる際、酸性条件下であることが好ましく、使用する酸としては、塩酸、硫酸、リン酸、硝酸、ギ酸、酢酸、クエン酸等を挙げることができるが、塩酸が特に好ましい。   When reacting the copolymer of acrylamide and acrylonitrile with the hypervalent iodine compound, it is preferably under acidic conditions, and the acid used is hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, formic acid, acetic acid, citric acid. Hydrochloric acid is particularly preferable.

アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素化合物とを反応させる際の溶媒は、一般に溶剤として使用されるものならば如何なるものでも使用することができ、特に限定されるものではないが、溶解性や経済性の観点より水が好ましい。   As the solvent for reacting the copolymer of acrylamide and acrylonitrile with the hypervalent iodine compound, any solvent can be used as long as it is generally used as a solvent, but it is not particularly limited. Water is preferable from the viewpoint of solubility and economy.

以下に実施例に基づき本発明をさらに詳しく説明する。尚、用いた試薬等は断りのない限り市販品を用いた。   Hereinafter, the present invention will be described in more detail based on examples. Commercially available products were used unless otherwise specified.

<酸化剤(A)>
酸化剤(A−1):[ビス(トリフルオロアセトキシ)ヨード]ベンゼン(一般試薬)東京化成工業株式会社製。
<Oxidizing agent (A)>
Oxidizing agent (A-1): [Bis (trifluoroacetoxy) iodo] benzene (general reagent) manufactured by Tokyo Chemical Industry Co., Ltd.

酸化剤(A−2):[ビス(トリフルオロアセトキシ)ヨード]ペンタフルオロベンゼン(一般試薬)東京化成工業株式会社製。   Oxidizing agent (A-2): [Bis (trifluoroacetoxy) iodo] pentafluorobenzene (general reagent) manufactured by Tokyo Chemical Industry Co., Ltd.

酸化剤(A−3):ビス(2,4,6−トリメチルピリジン)ヨードニウムヘキサフルオロホスファート(一般試薬)東京化成工業株式会社製。   Oxidizing agent (A-3): bis (2,4,6-trimethylpyridine) iodonium hexafluorophosphate (general reagent) manufactured by Tokyo Chemical Industry Co., Ltd.

酸化剤(A−4):次亜臭素酸ナトリウム水溶液(一般試薬)濃度5%、キシダ化学株式会社製。   Oxidizing agent (A-4): Sodium hypobromite aqueous solution (general reagent) concentration 5%, manufactured by Kishida Chemical Co., Ltd.

<構造単位比率>
試料中の構造単位比率は、13C−NMRのスペクトルから対応する各構造単位のピーク面積の比より含有量を算出した。
<Structural unit ratio>
The content of the structural unit ratio in the sample was calculated from the ratio of the peak area of each corresponding structural unit from the 13 C-NMR spectrum.

<水溶液粘度>
試料0.4gを精秤し、イオン交換水を加えて0.2重量%の水溶液200gを調製した。この水溶液の25℃でのB型粘度計50rpmにおける粘度を測定した。
<Aqueous solution viscosity>
0.4 g of a sample was precisely weighed, and ion exchange water was added to prepare 200 g of a 0.2 wt% aqueous solution. The viscosity of the aqueous solution at 25 ° C. and B type viscometer at 50 rpm was measured.

<カチオン度>
200mlビーカーにイオン交換水90mlをとり、500ppmの試料水溶液を加えた後、塩酸水溶液でpHを4.0とし、約1分間撹拌した。このようにして調製した測定試料に、トルイジンブルー指示薬を3〜5滴加え、N/400ポリビニル硫酸カリウム試薬(N/400PVSK)で滴定し、カチオン度を算出した。
<Cation degree>
In a 200 ml beaker, 90 ml of ion-exchanged water was added, 500 ppm of an aqueous sample solution was added, the pH was adjusted to 4.0 with an aqueous hydrochloric acid solution, and the mixture was stirred for about 1 minute. 3-5 drops of toluidine blue indicator was added to the measurement sample thus prepared, and titration was performed with N / 400 polyvinyl potassium sulfate reagent (N / 400 PVSK) to calculate the cation degree.

<凝集試験>
活性汚泥処理した工業排水(固形分0.24%、pH8.1)100gを200mlビーカーに計量し、0.2重量%の水溶性高分子水溶液10gを添加した。長さ3cmの回転子を入れ、マグネティックスターラーにより1000rpmで10秒間撹拌し、30秒静置した後、直径7cmの300メッシュのろ布でろ過した。ろ布上に回収された凝集物の凝集状態を目視評価し、凝集性の指標とした。
<Aggregation test>
100 g of industrial sludge treated with activated sludge (solid content 0.24%, pH 8.1) was weighed into a 200 ml beaker, and 10 g of a 0.2 wt% aqueous water-soluble polymer solution was added. A rotor having a length of 3 cm was placed, stirred for 10 seconds at 1000 rpm with a magnetic stirrer, allowed to stand for 30 seconds, and then filtered through a 300-mesh filter cloth having a diameter of 7 cm. The aggregation state of the aggregate collected on the filter cloth was visually evaluated and used as an index of aggregation.

(判定基準)
○:大きな凝集塊が、ろ布上に数個分散。
(Criteria)
○: Several large aggregates are dispersed on the filter cloth.

×:懸濁粒子がろ布を通過し、ろ布上に凝集粒子をほとんど観察できない状態。       X: Suspended particles pass through the filter cloth, and almost no aggregated particles can be observed on the filter cloth.

実施例1
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド30.05g(423mmol)とアクリロニトリル14.95g(282mmol)とイオン交換水180.0gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は19.6重量%、転化率は98%であった。
Example 1
A 300 ml four-necked flask equipped with a stirrer and a condenser is charged with 30.05 g (423 mmol) of acrylamide, 14.95 g (282 mmol) of acrylonitrile and 180.0 g of ion-exchanged water, and stirred for 1 hour under a nitrogen stream. 4.5 g of a 2 wt% aqueous solution of 2,2'-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The obtained polymer suspension had a solid content concentration of 19.6% by weight and a conversion rate of 98%.

得られたポリマー懸濁液15.0g(固形分2.94g、アクリルアミド含有量60モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−1)をポリマー中のアクリルアミドに対して1.2当量部(13.3g)と7.2重量%の塩酸22.7gを加えて酸性化し、60℃で6時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.8g)を得た。   15.0 g of the obtained polymer suspension (solid content 2.94 g, acrylamide content 60 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser and diluted with 100 g of ion-exchanged water. . The polymer suspension was acidified by adding 1.2 equivalent parts (13.3 g) of oxidizing agent (A-1) to acrylamide in the polymer and 22.7 g of 7.2% by weight hydrochloric acid. Heat at 6 ° C. for 6 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.8 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が45モル%、上記式(2)で示される構造単位が10モル%、上記式(3)で示される構造単位が17モル%、上記式(4)で示される構造単位が26モル%、および上記式(5)で示される構造単位が2モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度およびカチオン度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 45 mol%, and the structural unit represented by the above formula (2) was 10 mol. %, The structural unit represented by the formula (3) is 17 mol%, the structural unit represented by the formula (4) is 26 mol%, and the structural unit represented by the formula (5) is 2 mol%. It was. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had high aqueous solution viscosity and high cation degree, and showed excellent aggregation performance.

Figure 2016186058
実施例2
実施例1で得られたポリマー懸濁液15.0g(固形分2.94g、アクリルアミド含有量60モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−1)をポリマー中のアクリルアミドに対して0.6当量部(6.63g)と7.2重量%の塩酸22.7g)を加えて酸性化し、60℃で4時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.6g)を得た。
Figure 2016186058
Example 2
15.0 g of the polymer suspension obtained in Example 1 (solid content 2.94 g, acrylamide content 60 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser, and ion-exchanged water. Dilute with 100 g. To this polymer suspension, an oxidizing agent (A-1) was acidified by adding 0.6 equivalent part (6.63 g) and 7.2 wt% hydrochloric acid (22.7 g) with respect to acrylamide in the polymer, Heated at 60 ° C. for 4 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.6 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が30モル%、上記式(2)で示される構造単位が24モル%、上記式(3)で示される構造単位が25モル%、上記式(4)で示される構造単位が20モル%、および上記式(5)で示される構造単位が1モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度およびカチオン度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 30 mol%, and the structural unit represented by the above formula (2) was 24 mol. %, The structural unit represented by the formula (3) is 25 mol%, the structural unit represented by the formula (4) is 20 mol%, and the structural unit represented by the formula (5) is 1 mol%. It was. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had high aqueous solution viscosity and high cation degree, and showed excellent aggregation performance.

実施例3
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド37.92g(533mmol)とアクリロニトリル7.08g(133mmol)とイオン交換水180.0gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は19.0重量%、転化率は95%であった。
Example 3
A 300 ml four-necked flask equipped with a stirrer and a condenser is charged with 37.92 g (533 mmol) of acrylamide, 7.08 g (133 mmol) of acrylonitrile and 180.0 g of ion-exchanged water, and stirred for 1 hour under a nitrogen stream. 4.5 g of a 2 wt% aqueous solution of 2,2'-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The obtained polymer suspension had a solid content concentration of 19.0% by weight and a conversion rate of 95%.

得られたポリマー懸濁液15.0g(固形分2.85g、アクリルアミド含有量80モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−2)をポリマー中のアクリルアミドに対して1.4当量部(18.1g)と7.2重量%の塩酸22.1gを加えて酸性化し、60℃で8時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.8g)を得た。   15.0 g of the obtained polymer suspension (solid content 2.85 g, acrylamide content 80 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser and diluted with 100 g of ion-exchanged water. . To this polymer suspension, 1.4 parts by weight (18.1 g) of the oxidizing agent (A-2) with respect to acrylamide in the polymer and 22.1 g of 7.2% by weight hydrochloric acid were added to acidify the suspension. Heated at 0 ° C. for 8 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.8 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が32モル%、上記式(2)で示される構造単位が20モル%、上記式(3)で示される構造単位が6モル%、上記式(4)で示される構造単位が38モル%、および上記式(5)で示される構造単位が4モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度およびカチオン度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit to the obtained polymer using 13 C-NMR, the structural unit represented by the above formula (1) was 32 mol%, and the structural unit represented by the above formula (2) was 20 mol. %, The structural unit represented by the formula (3) is 6 mol%, the structural unit represented by the formula (4) is 38 mol%, and the structural unit represented by the formula (5) is 4 mol%. It was. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had high aqueous solution viscosity and high cation degree, and showed excellent aggregation performance.

実施例4
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド21.23g(299mmol)とアクリロニトリル23.77g(448mmol)とイオン交換水180.0gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は19.2重量%、転化率は96%であった。
Example 4
A 300 ml four-necked flask equipped with a stirrer and a condenser is charged with 21.23 g (299 mmol) of acrylamide, 23.77 g (448 mmol) of acrylonitrile and 180.0 g of ion-exchanged water, and stirred for 1 hour under a nitrogen stream. 4.5 g of a 2 wt% aqueous solution of 2,2'-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The resulting polymer suspension had a solid content concentration of 19.2% by weight and a conversion rate of 96%.

得られたポリマー懸濁液15.0g(固形分2.88g、アクリルアミド含有量40モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−3)をポリマー中のアクリルアミドに対して1.2当量部(15.5g)と7.2重量%の塩酸22.3gを加えて酸性化し、40℃で10時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.7g)を得た。   15.0 g of the obtained polymer suspension (solid content 2.88 g, acrylamide content 40 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser and diluted with 100 g of ion-exchanged water. . The polymer suspension was acidified by adding 1.2 equivalent parts (15.5 g) of oxidizing agent (A-3) to acrylamide in the polymer and 22.3 g of 7.2% by weight hydrochloric acid. Heat at 10 ° C. for 10 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.7 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が23モル%、上記式(2)で示される構造単位が5モル%、上記式(3)で示される構造単位が37モル%、上記式(4)で示される構造単位が34モル%、および上記式(5)で示される構造単位が1モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度およびカチオン度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 23 mol%, and the structural unit represented by the above formula (2) was 5 mol. %, The structural unit represented by the above formula (3) is 37 mol%, the structural unit represented by the above formula (4) is 34 mol%, and the structural unit represented by the above formula (5) is 1 mol%. It was. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had high aqueous solution viscosity and high cation degree, and showed excellent aggregation performance.

比較例1
実施例1で得られたポリマー懸濁液15.0g(固形分2.94g、アクリルアミド含有量60モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−4)をポリマー中のアクリルアミドに対して1.5当量部(96.5g)と7.2重量%の塩酸22.7gを加えて酸性化し、60℃で6時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより濃赤色のポリマー(3.0g)を得た。
Comparative Example 1
15.0 g of the polymer suspension obtained in Example 1 (solid content 2.94 g, acrylamide content 60 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser, and ion-exchanged water. Dilute with 100 g. The polymer suspension was acidified by adding 1.5 equivalent parts (96.5 g) of oxidizing agent (A-4) to acrylamide in the polymer and 22.7 g of 7.2% by weight hydrochloric acid. Heat at 6 ° C. for 6 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain a deep red polymer (3.0 g).

得られたポリマーは水に不溶であり、13C−NMRによる構造解析、水溶液粘度、カチオン度および凝集性能を評価することができなかった。 The obtained polymer was insoluble in water, and structural analysis by 13 C-NMR, aqueous solution viscosity, cation degree and aggregation performance could not be evaluated.

比較例2
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド41.55g(584mmol)とアクリロニトリル3.45g(65mmol)とイオン交換水180.0gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は17.0重量%、転化率は85%であった。
Comparative Example 2
A 300 ml four-necked flask equipped with a stirrer and a condenser is charged with 41.55 g (584 mmol) of acrylamide, 3.45 g (65 mmol) of acrylonitrile and 180.0 g of ion-exchanged water, and stirred for 1 hour under a nitrogen stream. 4.5 g of a 2 wt% aqueous solution of 2,2'-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The obtained polymer suspension had a solid content concentration of 17.0% by weight and a conversion rate of 85%.

得られたポリマー懸濁液15.0g(固形分2.55g、アクリルアミド含有量90モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−1)をポリマー中のアクリルアミドに対して1.2当量部(17.1g)と7.2重量%の塩酸19.7gを加えて酸性化し、60℃で6時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.2g)を得た。   15.0 g of the obtained polymer suspension (solid content: 2.55 g, acrylamide content: 90 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser and diluted with 100 g of ion-exchanged water. . The polymer suspension was acidified by adding 1.2 equivalent parts (17.1 g) of oxidizing agent (A-1) to acrylamide in the polymer and 19.7 g of 7.2 wt% hydrochloric acid, Heat at 6 ° C. for 6 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.2 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が11モル%、上記式(2)で示される構造単位が19モル%、上記式(3)で示される構造単位が6モル%、上記式(4)で示される構造単位が54モル%、および上記式(5)で示される構造単位が10モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度およびカチオン度が低く、凝集性能に劣った。 As a result of calculating the ratio of each repeating unit of the obtained polymer using 13 C-NMR, the structural unit represented by the above formula (1) was 11 mol%, and the structural unit represented by the above formula (2) was 19 mol. %, The structural unit represented by the formula (3) is 6 mol%, the structural unit represented by the formula (4) is 54 mol%, and the structural unit represented by the formula (5) is 10 mol%. It was. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had low aqueous solution viscosity and cation degree and was inferior in agglomeration performance.

比較例3
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド16.41g(231mmol)とアクリロニトリル28.59g(539mmol)とイオン交換水180.0gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は19.5重量%、転化率は98%であった。
Comparative Example 3
A 300 ml four-necked flask equipped with a stirrer and a condenser is charged with 16.41 g (231 mmol) of acrylamide, 28.59 g (539 mmol) of acrylonitrile and 180.0 g of ion-exchanged water, and stirred for 1 hour under a nitrogen stream. 4.5 g of a 2 wt% aqueous solution of 2,2'-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The obtained polymer suspension had a solid content concentration of 19.5% by weight and a conversion rate of 98%.

得られたポリマー懸濁液15.0g(固形分2.92g、アクリルアミド含有量30モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−2)をポリマー中のアクリルアミドに対して1.0当量部(15.9g)と7.2重量%の塩酸22.6gを加えて酸性化し、60℃で6時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.4g)を得た。   15.0 g of the obtained polymer suspension (solid content: 2.92 g, acrylamide content: 30 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser and diluted with 100 g of ion-exchanged water. . To this polymer suspension, an oxidizing agent (A-2) was acidified by adding 1.0 equivalent part (15.9 g) and 22.6 g of 7.2% by weight hydrochloric acid with respect to acrylamide in the polymer. Heat at 6 ° C. for 6 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.4 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が14モル%、上記式(2)で示される構造単位が6モル%、上記式(3)で示される構造単位が67モル%、上記式(4)で示される構造単位が12モル%、および上記式(5)で示される構造単位が1モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度およびカチオン度が低く、凝集性能に劣った。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 14 mol%, and the structural unit represented by the above formula (2) was 6 mol. %, The structural unit represented by the above formula (3) is 67 mol%, the structural unit represented by the above formula (4) is 12 mol%, and the structural unit represented by the above formula (5) is 1 mol%. It was. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had low aqueous solution viscosity and cation degree and was inferior in agglomeration performance.

比較例4
実施例1で得られたポリマー懸濁液15.0g(固形分2.94g、アクリルアミド含有量60モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、7.2重量%の塩酸7.5gを加えて酸性化し、60℃で6時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより白色のポリマー(2.4g)を得た。
Comparative Example 4
15.0 g of the polymer suspension obtained in Example 1 (solid content 2.94 g, acrylamide content 60 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser, and ion-exchanged water. Dilute with 100 g. The polymer suspension was acidified by adding 7.5 g of 7.2% by weight hydrochloric acid and heated at 60 ° C. for 6 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain a white polymer (2.4 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が0モル%、上記式(2)で示される構造単位が60モル%、上記式(3)で示される構造単位が40モル%、上記式(4)で示される構造単位が0モル%、および上記式(5)で示される構造単位が0モル%と解析された。得られたポリマーは水に不溶であり、水溶液粘度、カチオン度および凝集性能を評価することができなかった。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 0 mol%, and the structural unit represented by the above formula (2) was 60 mol. %, The structural unit represented by the formula (3) is 40 mol%, the structural unit represented by the formula (4) is 0 mol%, and the structural unit represented by the formula (5) is 0 mol%. It was. The obtained polymer was insoluble in water, and the aqueous solution viscosity, cation degree and aggregation performance could not be evaluated.

比較例5
実施例1で得られたポリマー懸濁液15.0g(固形分2.94g、アクリルアミド含有量60モル%)を撹拌機と冷却管を備えた200mlの四つ口フラスコに計り取り、イオン交換水100gで希釈した。このポリマー懸濁液に、酸化剤(A−1)をポリマー中のアクリルアミドに対して0.3当量部(28.9g)と7.2重量%の塩酸22.7gを加えて酸性化し、60℃で6時間加熱した。その後、85℃に昇温し、さらに4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより濃赤色のポリマー(2.8g)を得た。
Comparative Example 5
15.0 g of the polymer suspension obtained in Example 1 (solid content 2.94 g, acrylamide content 60 mol%) was weighed into a 200 ml four-necked flask equipped with a stirrer and a condenser, and ion-exchanged water. Dilute with 100 g. The polymer suspension was acidified by adding 0.3 equivalent part (28.9 g) of oxidizing agent (A-1) to acrylamide in the polymer and 22.7 g of 7.2% by weight hydrochloric acid. Heat at 6 ° C. for 6 hours. Thereafter, the temperature was raised to 85 ° C. and further heated for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain a deep red polymer (2.8 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が4モル%、上記式(2)で示される構造単位が52モル%、上記式(3)で示される構造単位が36モル%、上記式(4)で示される構造単位が7モル%、および上記式(5)で示される構造単位が1モル%と解析された。得られたポリマーは水に不溶であり、水溶液粘度、カチオン度および凝集性能を評価することができなかった。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 4 mol%, and the structural unit represented by the above formula (2) was 52 mol. %, The structural unit represented by the formula (3) is 36 mol%, the structural unit represented by the formula (4) is 7 mol%, and the structural unit represented by the formula (5) is 1 mol%. It was. The obtained polymer was insoluble in water, and the aqueous solution viscosity, cation degree and aggregation performance could not be evaluated.

本発明の水溶性高分子は、水溶液粘度およびカチオン度が高く、剛直なアミジン骨格を主鎖中に有して凝集性能に優れるため、各種産業排水や汚泥処理および下水汚泥処理に用いる高分子凝集剤として有用である。   The water-soluble polymer of the present invention has high aqueous solution viscosity and cation degree, and has a rigid amidine skeleton in the main chain and excellent coagulation performance. Useful as an agent.

Claims (3)

アクリルアミドとアクリロニトリルからなる共重合物と超原子価ヨウ素化合物とを酸性条件下で加熱処理して得られる、下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、および下記式(5)で示される構造単位を含み、且つ下記式(1)で示される構造単位が20モル%以上であることを特徴とする水溶性高分子。
Figure 2016186058
(ここで、上記式中、Mは陽イオンを表し、Xは陰イオンを表す。)
A structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (2), which are obtained by heat-treating a copolymer of acrylamide and acrylonitrile and a hypervalent iodine compound under acidic conditions. The structural unit represented by the formula (3), the structural unit represented by the following formula (4), and the structural unit represented by the following formula (5), and the structural unit represented by the following formula (1) is 20 mol%. A water-soluble polymer characterized by the above.
Figure 2016186058
(Here, in the above formula, M + represents a cation and X represents an anion.)
アクリルアミドとアクリロニトリルからなる共重合物が、アクリルアミドを40モル%以上80モル%未満含み、残部がアクリロニトリルであることを特徴とする請求項1に記載の水溶性高分子。 The water-soluble polymer according to claim 1, wherein the copolymer comprising acrylamide and acrylonitrile contains acrylamide in an amount of 40 mol% to less than 80 mol%, and the balance is acrylonitrile. 超原子価ヨウ素化合物が、[ビス(トリフルオロアセトキシ)ヨード]ベンゼン、[ビス(トリフルオロアセトキシ)ヨード]ペンタフルオロベンゼン、およびビス(2,4,6−トリメチルピリジン)ヨードニウムヘキサフルオロホスファートの群から選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の水溶性高分子。 The hypervalent iodine compound is a group of [bis (trifluoroacetoxy) iodo] benzene, [bis (trifluoroacetoxy) iodo] pentafluorobenzene, and bis (2,4,6-trimethylpyridine) iodonium hexafluorophosphate The water-soluble polymer according to claim 1, wherein the water-soluble polymer is at least one selected from the group consisting of:
JP2015067642A 2015-03-27 2015-03-27 Water-soluble polymer Pending JP2016186058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015067642A JP2016186058A (en) 2015-03-27 2015-03-27 Water-soluble polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067642A JP2016186058A (en) 2015-03-27 2015-03-27 Water-soluble polymer

Publications (1)

Publication Number Publication Date
JP2016186058A true JP2016186058A (en) 2016-10-27

Family

ID=57203067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067642A Pending JP2016186058A (en) 2015-03-27 2015-03-27 Water-soluble polymer

Country Status (1)

Country Link
JP (1) JP2016186058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026827A (en) * 2017-07-27 2019-02-21 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and manufacturing method of carbon material using the same
CN111087507A (en) * 2019-12-18 2020-05-01 常州大学 Free radical polymerization of acrylamide initiated by redox of high valence iodide reagent
US11001660B2 (en) 2017-07-27 2021-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026827A (en) * 2017-07-27 2019-02-21 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and manufacturing method of carbon material using the same
US11001660B2 (en) 2017-07-27 2021-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
CN111087507A (en) * 2019-12-18 2020-05-01 常州大学 Free radical polymerization of acrylamide initiated by redox of high valence iodide reagent
CN111087507B (en) * 2019-12-18 2021-07-27 常州大学 Free radical polymerization of acrylamide initiated by redox of high valence iodide reagent

Similar Documents

Publication Publication Date Title
JP2016186058A (en) Water-soluble polymer
JP4933244B2 (en) Method for producing water-soluble polymer
US5464908A (en) Process for preparing water-soluble polymers
JPS6213361B2 (en)
JP5137080B2 (en) Process for producing water-soluble polymer of polyamidine
JP2016186057A (en) Water-soluble polymer and method for producing the same
JP2001149703A (en) Amphoteric polymeric flocculant for pulp or paper manufacturing industry sludge and dehydrating method for pulp or paper manufacturing industry sludge
JP6546188B2 (en) Structured block copolymer
JP3147440B2 (en) Method for producing water-soluble polymer
JP3156342B2 (en) Powdered cationic water-soluble polymer composition and method for producing the same
JPS5950684B2 (en) Method for producing ethylene-maleic anhydride interpolymer
JP3651669B2 (en) Amphoteric water-soluble polymer dispersion
JP3697700B2 (en) Sludge dewatering agent
JP2921295B2 (en) Water treatment agent containing allylamine-fumaric acid copolymer
JPH0768313B2 (en) Flocculant made of vinylamine copolymer
JP2015110692A (en) Water-soluble polymer
JP5057773B2 (en) Water-soluble polymer
CN107746446B (en) Preparation method of ternary copolymerization amphoteric polyacrylamide
JP3697701B2 (en) Sludge dewatering agent
JP3945067B2 (en) Aqueous dispersion and method for producing the same
JP5238268B2 (en) Dye wastewater treatment agent
JP4168551B2 (en) Method for producing amphoteric copolymer
JP3525507B2 (en) Decolorizing agent for dyeing wastewater and decolorizing method using the same
WO2011132558A1 (en) Method for producing diallylamine acetate polymer
JP3550763B2 (en) Lactam ring-containing polymer