JP2016186057A - Water-soluble polymer and method for producing the same - Google Patents

Water-soluble polymer and method for producing the same Download PDF

Info

Publication number
JP2016186057A
JP2016186057A JP2015067641A JP2015067641A JP2016186057A JP 2016186057 A JP2016186057 A JP 2016186057A JP 2015067641 A JP2015067641 A JP 2015067641A JP 2015067641 A JP2015067641 A JP 2015067641A JP 2016186057 A JP2016186057 A JP 2016186057A
Authority
JP
Japan
Prior art keywords
structural unit
unit represented
water
mol
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015067641A
Other languages
Japanese (ja)
Inventor
有光 竹本
Arimitsu Takemoto
有光 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015067641A priority Critical patent/JP2016186057A/en
Publication of JP2016186057A publication Critical patent/JP2016186057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-soluble polymer that is high in molecular weight and has excellent coagulation performance.SOLUTION: A water-soluble polymer (A) 100 pts.wt. is crosslinked with an epoxy crosslinking agent (B) 1-10 pts.wt., where the water-soluble polymer has a specific structure obtained by subjecting a copolymer comprising acrylamide and acrylonitrile to Hofmann reaction, and thereafter, subjecting the reactant to neutralization and heating.SELECTED DRAWING: None

Description

本発明は、凝集性能に優れるポリアミジン系の水溶性高分子およびその製造方法に関するものである。   The present invention relates to a polyamidine-based water-soluble polymer having excellent aggregation performance and a method for producing the same.

アミジン型水溶性高分子は、その高いカチオン密度によって有機汚泥に対して効率的に吸着し、脱水性に優れた強固なフロックを形成することができ、腐敗が進行した難脱水性の汚泥に対する凝集剤として特に有効であることが知られている。   Amidine-type water-soluble polymers can be efficiently adsorbed to organic sludge by their high cation density, and can form strong flocs with excellent dewatering properties. It is known to be particularly effective as an agent.

従来、アミジン型水溶性高分子の製造は、ビニルホルムアミドとアクリロニトリルとの共重合体を酸性処理することによりホルムアミド基をアミノ基へ化学変性し、その後、加熱処理することにより隣接するニトリル基と分子内環化させて、高分子鎖にアミジン環を形成させていた。この方法は、アミノ基を効率的に形成させることができることから高アミジン化が容易であり、副生物も少なく優れた製造方法であると言える(例えば、特許文献1参照)。しかしながら、原料モノマーの一つであるビニルホルムアミドが極めて高価であることから、その製造コストを低減することは難しいとされてきた。   Conventionally, amidine-type water-soluble polymers have been produced by chemically modifying a formamide group into an amino group by acid treatment of a copolymer of vinylformamide and acrylonitrile, and then heat-treating the adjacent nitrile group and molecule. It was cyclized internally to form an amidine ring in the polymer chain. Since this method can efficiently form an amino group, it can be easily produced as a high amidine, and it can be said to be an excellent production method with few by-products (see, for example, Patent Document 1). However, since vinylformamide, which is one of the raw material monomers, is extremely expensive, it has been difficult to reduce its production cost.

一方、低コストのアミジン型水溶性高分子の製造方法として、特許文献2に記載の方法が提案されている。この方法は、安価なアクリルアミドとアクリロニトリルを原料としてベースとなるポリマーを重合し、これを次亜塩素酸ナトリウム等の酸化剤と苛性ソーダ等のアルカリを用いるホフマン反応によってアミド基をアミノ基へ変性した後、上記の方法と同様に酸性処理、加熱処理によってアミジン環を形成させる方法である。   On the other hand, a method described in Patent Document 2 has been proposed as a method for producing a low-cost amidine-type water-soluble polymer. This method involves polymerizing a base polymer using inexpensive acrylamide and acrylonitrile as raw materials, and then modifying the amide group to an amino group by a Hofmann reaction using an oxidizing agent such as sodium hypochlorite and an alkali such as caustic soda. In the same manner as described above, an amidine ring is formed by acid treatment and heat treatment.

特許第2624089号公報Japanese Patent No. 2624089 特許第5057773号公報Japanese Patent No. 5057773

しかしながら、特許文献2で提案された方法では、過酷な塩基性条件下で酸化剤を用いてホフマン反応によりアミド基からアミノ基へと変性しているため、酸化剤による分子切断が生じ、得られる水溶性高分子の分子量が低くなり、凝集性能が低下しやすく、水溶性高分子の凝集性能は必ずしも十分ではないなどの課題があった。   However, in the method proposed in Patent Document 2, since the amide group is denatured from the amide group to the amino group by the Hofmann reaction using an oxidizing agent under severe basic conditions, molecular cleavage by the oxidizing agent occurs and is obtained. There have been problems such that the molecular weight of the water-soluble polymer is lowered, the aggregation performance tends to be lowered, and the aggregation performance of the water-soluble polymer is not always sufficient.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定のポリアミジン系の水溶性高分子が凝集性能に優れることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a specific polyamidine-based water-soluble polymer is excellent in aggregation performance, and have completed the present invention.

すなわち、本発明は、下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、下記式(5)で示される構造単位、および下記式(6)で示される構造単位を含み、且つ下記式(1)で示される構造単位が3モル%以上15モル%以下であり、0.2重量%水溶液における粘度が20〜80mPa・sであることを特徴とする水溶性高分子およびその製造方法に関するものである。   That is, the present invention includes a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), a structural unit represented by the following formula (4), A structural unit represented by the following formula (5) and a structural unit represented by the following formula (6), and the structural unit represented by the following formula (1) is 3 mol% or more and 15 mol% or less; The present invention relates to a water-soluble polymer having a viscosity of 20 to 80 mPa · s in a 2% by weight aqueous solution and a method for producing the same.

Figure 2016186057
(ここで、Rは炭素数2〜4の炭化水素鎖を示し、nは1〜10の数である。)
Figure 2016186057
(Here, R 1 represents a hydrocarbon chain having 2 to 4 carbon atoms, and n is a number of 1 to 10.)

Figure 2016186057
(ここで、上記式中、Mは陽イオンを表し、Xは陰イオンを表す。)
以下、本発明を詳細に説明する。
Figure 2016186057
(Here, in the above formula, M + represents a cation and X represents an anion.)
Hereinafter, the present invention will be described in detail.

本発明の水溶性高分子は、下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、下記式(5)で示される構造単位、および下記式(6)で示される構造単位を含み、且つ下記式(1)で示される構造単位が3モル%以上15モル%以下であり、0.2重量%水溶液における粘度が20〜80mPa・sであることを特徴とするものである。   The water-soluble polymer of the present invention is represented by the structural unit represented by the following formula (1), the structural unit represented by the following formula (2), the structural unit represented by the following formula (3), and the following formula (4). The structural unit includes a structural unit represented by the following formula (5) and a structural unit represented by the following formula (6), and the structural unit represented by the following formula (1) is 3 mol% or more and 15 mol% or less. The viscosity in a 0.2 wt% aqueous solution is 20 to 80 mPa · s.

Figure 2016186057
(ここで、Rは炭素数2〜4の炭化水素鎖を示し、nは1〜10の数である。)
Figure 2016186057
(Here, R 1 represents a hydrocarbon chain having 2 to 4 carbon atoms, and n is a number of 1 to 10.)

Figure 2016186057
(ここで、上記式中、Mは陽イオンを表し、Xは陰イオンを表す。)
本発明の水溶性高分子中の上記式(1)で示される構造単位は、凝集性能と水溶性のバランスより、3モル%以上15モル%以下の範囲であることが好ましく、3モル%以上12モル%以下の範囲がさらに好ましい。上記式(1)で示される構造単位が3モル%未満では、架橋が不十分なため十分な凝集性能が得られず、15モル%を上回ると水溶性が低下するといった問題がある。
Figure 2016186057
(Here, in the above formula, M + represents a cation and X represents an anion.)
The structural unit represented by the above formula (1) in the water-soluble polymer of the present invention is preferably in the range of 3 mol% or more and 15 mol% or less, preferably 3 mol% or more, from the balance of aggregation performance and water solubility. The range of 12 mol% or less is more preferable. When the structural unit represented by the above formula (1) is less than 3 mol%, there is a problem that sufficient aggregation performance cannot be obtained due to insufficient crosslinking, and when it exceeds 15 mol%, the water solubility decreases.

本発明の水溶性高分子の0.2重量%水溶液における粘度は、凝集性能と取扱いのバランスより、20〜80mPa・sの範囲であることが好ましく、30〜70mPa・sの範囲であることがさらに好ましい。ここで、水溶性高分子の0.2重量%水溶液における粘度とは、水溶性高分子の0.2重量%水溶液をB型粘度計により25℃で測定した粘度を意味する。粘度が20mPa・s未満では、十分な凝集性能が得られにくく、80mPa・sを上回ると粘度が高すぎるため取扱いにくいといった問題がある。   The viscosity of the water-soluble polymer of the present invention in a 0.2% by weight aqueous solution is preferably in the range of 20 to 80 mPa · s, more preferably in the range of 30 to 70 mPa · s, from the balance of aggregation performance and handling. Further preferred. Here, the viscosity in a 0.2% by weight aqueous solution of a water-soluble polymer means the viscosity of a 0.2% by weight aqueous solution of the water-soluble polymer measured at 25 ° C. with a B-type viscometer. When the viscosity is less than 20 mPa · s, it is difficult to obtain sufficient agglomeration performance, and when it exceeds 80 mPa · s, the viscosity is too high and it is difficult to handle.

上記の水溶性高分子は、上記式(2)で示される構造単位、上記式(3)で示される構造単位、上記式(4)で示される構造単位、上記式(5)で示される構造単位、および上記式(6)で示される構造単位を含む水溶性高分子(A)100重量部に対して、エポキシ系架橋剤(B)を1〜10重量部用いて架橋させることにより製造することができる。   The water-soluble polymer includes a structural unit represented by the above formula (2), a structural unit represented by the above formula (3), a structural unit represented by the above formula (4), and a structure represented by the above formula (5). Manufactured by crosslinking 1 to 10 parts by weight of the epoxy-based crosslinking agent (B) with respect to 100 parts by weight of the water-soluble polymer (A) containing the unit and the structural unit represented by the above formula (6). be able to.

本発明の水溶性高分子の製造に用いられるエポキシ系架橋剤(B)は、反応性と水溶性に優れることからグリシジルエーテル型のエポキシ化合物が好ましい。グリシジルエーテル型としては、特に限定されるものではないが、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等を挙げることができる。   The epoxy-based crosslinking agent (B) used in the production of the water-soluble polymer of the present invention is preferably a glycidyl ether type epoxy compound because of its excellent reactivity and water solubility. The glycidyl ether type is not particularly limited, and examples thereof include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether. Can do.

本発明の水溶性高分子の製造に用いられるエポキシ系架橋剤(B)は、水溶性高分子(A)100重量部に対して、1〜10重量部の範囲で用いられる。1重量部未満では十分な架橋構造が得られず、10重量部を上回ると水溶性が低下するといった課題がある。   The epoxy-based crosslinking agent (B) used in the production of the water-soluble polymer of the present invention is used in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble polymer (A). If the amount is less than 1 part by weight, a sufficient cross-linked structure cannot be obtained.

本発明の水溶性高分子は、アクリルアミドとアクリロニトリルからなる共重合物を、ホフマン反応後、反応物を中和するとともに加熱処理して得られた水溶性高分子(A)を、エポキシ系架橋剤(B)で架橋する方法でも製造することができる。   The water-soluble polymer of the present invention is an epoxy-based crosslinking agent obtained by subjecting a copolymer comprising acrylamide and acrylonitrile to a water-soluble polymer (A) obtained by neutralizing the reaction product and subjecting it to heat treatment after the Hoffman reaction. It can also be produced by the method of crosslinking in (B).

前記水溶性高分子(A)は、例えば、アクリルアミドを40モル%以上60モル%未満含み、残部がアクリロニトリルである共重合物を、ホフマン反応した後、酸性化して加熱処理することで製造することができる。   The water-soluble polymer (A) is produced, for example, by subjecting a copolymer containing 40 mol% or more and less than 60 mol% of acrylamide, and the balance being acrylonitrile, to acidification and heat treatment after Hoffman reaction. Can do.

ホフマン反応に用いる共重合物は、アクリルアミドを40モル%以上60モル%未満含み、残部がアクリロニトリルである共重合物である。アクリルアミドが40モル%未満である場合、共重合物の親水性が低下するため、水性媒体中でのホフマン反応やアミジン環化が十分に進行せず、多量の不溶成分が発生しやすい。一方、アクリルアミドが60モル%以上である場合、ホフマン反応やアミジン環化は支障なく進行し、溶解性に優れた水溶性高分子を得ることができるが、アクリルアミドが過剰に多いモノマー組成では、アミド基とニトリル基の数に釣り合いがとれず、結果として形成可能なアミジン環量が制限されることとなる。アクリルアミドとアクリロニトリルとの共重合は、従来知られている溶液重合、乳化重合、懸濁重合、分散重合等の方法で行うことができる。その際、重合温度は、特に限定するものではないが、例えば、0〜70℃の範囲から選択することができる。また、モノマー濃度は、特に限定するものではないが、例えば、1〜60重量%の範囲から選択することができる。   The copolymer used for the Hoffman reaction is a copolymer containing acrylamide in an amount of 40 mol% or more and less than 60 mol%, with the balance being acrylonitrile. When acrylamide is less than 40 mol%, the hydrophilicity of the copolymer is lowered, so that the Hoffman reaction and amidine cyclization in an aqueous medium do not proceed sufficiently, and a large amount of insoluble components are likely to be generated. On the other hand, when acrylamide is 60 mol% or more, the Hoffman reaction and amidine cyclization proceed without any trouble, and a water-soluble polymer having excellent solubility can be obtained. The number of groups and nitrile groups is not balanced, and as a result, the amount of amidine ring that can be formed is limited. Copolymerization of acrylamide and acrylonitrile can be performed by a conventionally known method such as solution polymerization, emulsion polymerization, suspension polymerization, or dispersion polymerization. In that case, although superposition | polymerization temperature is not specifically limited, For example, it can select from the range of 0-70 degreeC. The monomer concentration is not particularly limited, but can be selected from a range of 1 to 60% by weight, for example.

共重合反応を行うためのラジカル重合開始剤としては、油溶性開始剤、水溶性開始剤ともに使用することができるが、モノマーの親水性が比較的高いので、水溶性開始剤を使用する方がより好ましい。水溶性開始剤としては、アゾ系として2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物、2,2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、4,4’−アゾビス(4−シアノ吉草酸)等を挙げることができる。また、過酸化物系としてはペルオクソ二硫酸アンモニウム、ペルオクソ二硫酸カリウム、過酸化水素等を挙げることができ、それぞれを単独または組み合わせて使用することができる。過酸化物系に対しては、より低温で重合を進めるため、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の還元剤との組合せによるレドックス開始剤系の構築も適用できる。   As the radical polymerization initiator for carrying out the copolymerization reaction, both an oil-soluble initiator and a water-soluble initiator can be used. However, since the hydrophilicity of the monomer is relatively high, it is preferable to use a water-soluble initiator. More preferred. Examples of water-soluble initiators include 2,2′-azobis (2-amidinopropane) dichloride as an azo group, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane And dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of peroxides include ammonium peroxodisulfate, potassium peroxodisulfate, and hydrogen peroxide. These can be used alone or in combination. For peroxide systems, it is also possible to apply a redox initiator system in combination with a reducing agent such as sodium sulfite or sodium bisulfite in order to proceed the polymerization at a lower temperature.

得られた共重合物は、次亜ハロゲン酸塩とアルカリによってホフマン反応を行い、アミド基をアミノ基に変性する。このとき、使用する次亜ハロゲン酸塩としては、例えば、次亜塩素酸塩が好ましく、具体的には次亜塩素酸ナトリウム、次亜塩素酸カリウム等が例示される。また、共存させるアルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム等が好適なものとして挙げられる。変性によって生成したアミノ基は、酸性条件下、加熱処理することにより隣接するニトリル基と環化してアミジン環を形成することができる。   The obtained copolymer undergoes Hoffman reaction with hypohalite and alkali to modify the amide group into an amino group. At this time, as the hypohalite used, for example, hypochlorite is preferable, and specific examples include sodium hypochlorite and potassium hypochlorite. Moreover, as an alkali to coexist, sodium hydroxide, potassium hydroxide, etc. are mentioned as a suitable thing, for example. The amino group produced by modification can be cyclized with an adjacent nitrile group by heat treatment under acidic conditions to form an amidine ring.

水溶性高分子(A)をエポキシ系架橋剤(B)を用いて架橋させる方法は、如何なる方法でも用いることができ、特に限定されるものではないが、例えば、水溶性高分子(A)を製造した水溶液中にエポキシ系架橋剤(B)を添加し、加熱して架橋する方法や、単離した水溶性高分子(A)を溶媒に溶解し、エポキシ系架橋剤(B)を添加し、加熱して架橋する方法等を挙げることができる。   The method for crosslinking the water-soluble polymer (A) with the epoxy-based crosslinking agent (B) can be any method and is not particularly limited. For example, the water-soluble polymer (A) Add the epoxy-based crosslinking agent (B) to the produced aqueous solution and heat to crosslink, or dissolve the isolated water-soluble polymer (A) in the solvent and add the epoxy-based crosslinking agent (B). And a method of crosslinking by heating.

水溶性高分子(A)をエポキシ系架橋剤(B)を用いて架橋させる際の温度は、特に限定されるものではないが、反応速度や経済性の観点より、25〜100℃が好ましく、40〜80℃が特に好ましい。   The temperature at which the water-soluble polymer (A) is crosslinked using the epoxy-based crosslinking agent (B) is not particularly limited, but is preferably 25 to 100 ° C. from the viewpoint of reaction rate and economy. 40-80 degreeC is especially preferable.

水溶性高分子(A)をエポキシ系架橋剤(B)を用いて架橋させる際の溶媒は、一般に溶剤として使用されるものならば如何なるものでも使用することができ、特に限定されるものではないが、溶解性や経済性の観点より水が好ましい。   The solvent for crosslinking the water-soluble polymer (A) with the epoxy-based crosslinking agent (B) can be any as long as it is generally used as a solvent, and is not particularly limited. However, water is preferable from the viewpoint of solubility and economy.

水溶性高分子(A)をエポキシ系架橋剤(B)を用いて架橋させる際、必要に応じて触媒を使用してもよい。触媒は、一般にエポキシの開環反応に用いられる触媒ならば如何なるものでも使用することができ、特に限定されるものではないが、硫酸や塩酸等の酸触媒や金属アルコキシド等の塩基性触媒を挙げることができる。   When the water-soluble polymer (A) is crosslinked using the epoxy-based crosslinking agent (B), a catalyst may be used as necessary. Any catalyst can be used as long as it is a catalyst generally used for the ring-opening reaction of epoxy, and is not particularly limited, but examples thereof include acid catalysts such as sulfuric acid and hydrochloric acid, and basic catalysts such as metal alkoxides. be able to.

以下に実施例に基づき本発明をさらに詳しく説明するが、これらは本発明の理解を助けるための例であって、本発明はこれらの実施例により何等の制限を受けるものではない。尚、用いた試薬等は断りのない限り市販品を用いた。   The present invention will be described in more detail below based on examples, but these are examples for helping understanding of the present invention, and the present invention is not limited to these examples. Commercially available products were used unless otherwise specified.

<エポキシ系架橋剤(B)>
エポキシ系架橋剤(B−1):エチレングリコールジグリシジルエーテル(一般試薬)和光純薬株式会社製。
<Epoxy-based crosslinking agent (B)>
Epoxy crosslinking agent (B-1): ethylene glycol diglycidyl ether (general reagent) manufactured by Wako Pure Chemical Industries, Ltd.

エポキシ系架橋剤(B−2):プロピレングリコールジグリシジルエーテル(一般試薬)和光純薬株式会社製。   Epoxy crosslinking agent (B-2): Propylene glycol diglycidyl ether (general reagent) manufactured by Wako Pure Chemical Industries, Ltd.

エポキシ系架橋剤(B−3):ポリエチレングリコールジグリシジルエーテル(共栄社化学株式会社製、商品名:エポライト400E)
<構造単位比率>
試料中の構造単位比率は、13C−NMRのスペクトルから対応する各構造単位のピーク面積の比より含有量を算出した。
Epoxy crosslinking agent (B-3): Polyethylene glycol diglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Epolite 400E)
<Structural unit ratio>
The content of the structural unit ratio in the sample was calculated from the ratio of the peak area of each corresponding structural unit from the 13 C-NMR spectrum.

<水溶液粘度>
試料0.4gを精秤し、イオン交換水を加えて0.2重量%の水溶液200gを調製した。この水溶液の25℃でのB型粘度計50rpmにおける粘度を測定した。
<Aqueous solution viscosity>
0.4 g of a sample was precisely weighed, and ion exchange water was added to prepare 200 g of a 0.2 wt% aqueous solution. The viscosity of the aqueous solution at 25 ° C. and B type viscometer at 50 rpm was measured.

<カチオン度>
200mlビーカーにイオン交換水90mlをとり、500ppmの試料水溶液を加えた後、塩酸水溶液でpHを4.0とし、約1分間撹拌した。このようにして調製した測定試料に、トルイジンブルー指示薬を3〜5滴加え、N/400ポリビニル硫酸カリウム試薬(N/400PVSK)で滴定し、カチオン度を算出した。
<Cation degree>
In a 200 ml beaker, 90 ml of ion-exchanged water was added, 500 ppm of an aqueous sample solution was added, the pH was adjusted to 4.0 with an aqueous hydrochloric acid solution, and the mixture was stirred for about 1 minute. 3-5 drops of toluidine blue indicator was added to the measurement sample thus prepared, and titration was performed with N / 400 polyvinyl potassium sulfate reagent (N / 400 PVSK) to calculate the cation degree.

<凝集試験>
活性汚泥処理した工業排水(固形分0.20%、pH7.8)100gを200mlビーカーに計量し、0.2重量%の水溶性高分子水溶液5.0gを添加した。長さ3cmの回転子を入れ、マグネティックスターラーにより1000rpmで10秒間撹拌し、30秒静置した後、直径7cmの300メッシュのろ布でろ過した。ろ布上に回収された凝集物の凝集状態を目視評価し、凝集性の指標とした。
<Aggregation test>
100 g of industrial sludge treated with activated sludge (solid content 0.20%, pH 7.8) was weighed into a 200 ml beaker, and 5.0 g of a 0.2 wt% aqueous water-soluble polymer solution was added. A rotor having a length of 3 cm was placed, stirred for 10 seconds at 1000 rpm with a magnetic stirrer, allowed to stand for 30 seconds, and then filtered through a 300-mesh filter cloth having a diameter of 7 cm. The aggregation state of the aggregate collected on the filter cloth was visually evaluated and used as an index of aggregation.

(判定基準)
○:大きな凝集塊が、ろ布上に数個分散。
(Criteria)
○: Several large aggregates are dispersed on the filter cloth.

×:懸濁粒子がろ布を通過し、ろ布上に凝集粒子をほとんど観察できない状態。       X: Suspended particles pass through the filter cloth, and almost no aggregated particles can be observed on the filter cloth.

実施例1
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド29.63g(416.8mmol)とアクリロニトリル15.37g(289.67mmol)とイオン交換水180.0gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は19.0重量%、転化率は95%であった。
Example 1
A 300 ml four-necked flask equipped with a stirrer and a condenser tube was charged with 29.63 g (416.8 mmol) of acrylamide, 15.37 g (289.67 mmol) of acrylonitrile, and 180.0 g of ion-exchanged water. The mixture was stirred for 4 hours, and 4.5 g of a 2% by weight aqueous solution of 2,2′-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C. for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The obtained polymer suspension had a solid content concentration of 19.0% by weight and a conversion rate of 95%.

得られたポリマー懸濁液15.0g(固形分2.85g、アクリルアミド含有量59モル%)をビーカーに計り取り、イオン交換水22.0gで希釈した。このポリマー懸濁液に、8.4重量%の次亜塩素酸ナトリウム水溶液21.1g(23.8mmol)と48重量%水酸化ナトリウム7.7g(92.4mmol)を30℃で加え、ホフマン反応を行った。15分後、反応溶液に、7.2重量%の塩酸56.2g(110.9mmol)を加えて酸性化し、85℃で4時間加熱した。その後、エポキシ系架橋剤(B−1)をポリマー懸濁液中の固形分に対して3重量部(0.087g)加え、40℃で4時間反応させた。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(3.0g)を得た。   15.0 g of the obtained polymer suspension (solid content 2.85 g, acrylamide content 59 mol%) was weighed into a beaker and diluted with 22.0 g of ion-exchanged water. To this polymer suspension, 21.1 g (23.8 mmol) of an 8.4 wt% sodium hypochlorite aqueous solution and 7.7 g (92.4 mmol) of 48 wt% sodium hydroxide were added at 30 ° C., and the Hoffman reaction was performed. Went. After 15 minutes, the reaction solution was acidified by adding 56.2 g (110.9 mmol) of 7.2% by weight hydrochloric acid and heated at 85 ° C. for 4 hours. Thereafter, 3 parts by weight (0.087 g) of the epoxy-based crosslinking agent (B-1) was added to the solid content in the polymer suspension and reacted at 40 ° C. for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (3.0 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が4モル%、上記式(2)で示される構造単位が48モル%、上記式(3)で示される構造単位が2モル%、上記式(4)で示される構造単位が13モル%、上記式(5)で示される構造単位が22モル%、上記式(6)で示される構造単位が11モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit of the obtained polymer using 13 C-NMR, the structural unit represented by the above formula (1) was 4 mol%, and the structural unit represented by the above formula (2) was 48 mol. %, 2 mol% of the structural unit represented by the formula (3), 13 mol% of the structural unit represented by the formula (4), 22 mol% of the structural unit represented by the formula (5), The structural unit represented by 6) was analyzed as 11 mol%. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The resulting polymer had a high aqueous solution viscosity and exhibited excellent agglomeration performance.

Figure 2016186057
実施例2
エポキシ系架橋剤(B−1)の配合量をポリマー懸濁液中の固形分に対して8重量部(0.23g)とした以外は実施例1と同様の方法でポリマーを得た。
Figure 2016186057
Example 2
A polymer was obtained in the same manner as in Example 1 except that the amount of the epoxy crosslinking agent (B-1) was 8 parts by weight (0.23 g) based on the solid content in the polymer suspension.

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が12モル%、上記式(2)で示される構造単位が47モル%、上記式(3)で示される構造単位が2モル%、上記式(4)で示される構造単位が15モル%、上記式(5)で示される構造単位が16モル%、上記式(6)で示される構造単位が8モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 12 mol%, and the structural unit represented by the above formula (2) was 47 mol. %, The structural unit represented by the above formula (3) is 2 mol%, the structural unit represented by the above formula (4) is 15 mol%, the structural unit represented by the above formula (5) is 16 mol%, the above formula ( The structural unit represented by 6) was analyzed as 8 mol%. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The resulting polymer had a high aqueous solution viscosity and exhibited excellent agglomeration performance.

実施例3
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド25.77g(362.5mmol)とアクリロニトリル19.23g(362.4mmol)とイオン交換水180gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は19.3重量%、転化率は97%であった。
Example 3
A 300 ml four-necked flask equipped with a stirrer and a condenser is charged with 25.77 g (362.5 mmol) of acrylamide, 19.23 g (362.4 mmol) of acrylonitrile and 180 g of ion-exchanged water and stirred for 1 hour under a nitrogen stream. Then, 4.5 g of a 2 wt% aqueous solution of 2,2′-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C. for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The obtained polymer suspension had a solid content concentration of 19.3% by weight and a conversion rate of 97%.

得られたポリマー懸濁液15.0g(固形分2.90g、アクリルアミド含有量50モル%)をビーカーに計り取り、イオン交換水26.0gで希釈した。このポリマー懸濁液に、8.4重量%の次亜塩素酸ナトリウム水溶液18.6g(21.0mmol)と48重量%水酸化ナトリウム6.8g(81.6mmol)を30℃で加え、ホフマン反応を行った。15分後、反応溶液に、7.2重量%の塩酸49.6g(98.0mmol)を加えて酸性化し、85℃で4時間加熱した。その後、エポキシ系架橋剤(B−2)をポリマー懸濁液中の固形分に対して5重量部(0.145g)加え、60℃で4時間反応させた。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(3.1g)を得た。   15.0 g of the obtained polymer suspension (solid content 2.90 g, acrylamide content 50 mol%) was weighed into a beaker and diluted with 26.0 g of ion-exchanged water. To this polymer suspension, 18.6 g (21.0 mmol) of an 8.4 wt% sodium hypochlorite aqueous solution and 6.8 g (81.6 mmol) of 48 wt% sodium hydroxide were added at 30 ° C., and the Hoffman reaction was performed. Went. After 15 minutes, 49.6 g (98.0 mmol) of 7.2 wt% hydrochloric acid was added to the reaction solution for acidification, and the mixture was heated at 85 ° C. for 4 hours. Thereafter, 5 parts by weight (0.145 g) of the epoxy-based crosslinking agent (B-2) was added to the solid content in the polymer suspension and reacted at 60 ° C. for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (3.1 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が6モル%、上記式(2)で示される構造単位が39モル%、上記式(3)で示される構造単位が4モル%、上記式(4)で示される構造単位が20モル%、上記式(5)で示される構造単位が15モル%、上記式(6)で示される構造単位が16モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 6 mol%, and the structural unit represented by the above formula (2) was 39 mol. %, The structural unit represented by the above formula (3) is 4 mol%, the structural unit represented by the above formula (4) is 20 mol%, the structural unit represented by the above formula (5) is 15 mol%, and the above formula ( The structural unit represented by 6) was analyzed as 16 mol%. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The resulting polymer had a high aqueous solution viscosity and exhibited excellent agglomeration performance.

実施例4
撹拌機と冷却管を備えた300mlの四つ口フラスコに、アクリルアミド21.23g(298.7mmol)とアクリロニトリル23.77g(447.9mmol)とイオン交換水180gを仕込み、窒素気流下で1時間撹拌し、2,2’−アゾビス(2−アミジノプロパン)二塩化水素化物の2重量%水溶液4.5gをフラスコ内に注入し、40℃で24時間重合させた。その後、55℃に昇温し、さらに6時間重合を継続し、ポリマー懸濁液を得た。得られたポリマー懸濁液の固形分濃度は18.8重量%、転化率は94%であった。
Example 4
A 300 ml four-necked flask equipped with a stirrer and a condenser was charged with 21.23 g (298.7 mmol) of acrylamide, 23.77 g (447.9 mmol) of acrylonitrile and 180 g of ion-exchanged water, and stirred for 1 hour under a nitrogen stream. Then, 4.5 g of a 2 wt% aqueous solution of 2,2′-azobis (2-amidinopropane) dichloride was poured into the flask and polymerized at 40 ° C. for 24 hours. Thereafter, the temperature was raised to 55 ° C., and the polymerization was further continued for 6 hours to obtain a polymer suspension. The resulting polymer suspension had a solid content concentration of 18.8% by weight and a conversion rate of 94%.

得られたポリマー懸濁液15.0g(固形分2.82g、アクリルアミド含有量40モル%)をビーカーに計り取り、イオン交換水30.0gで希釈した。このポリマー懸濁液に、8.4重量%の次亜塩素酸ナトリウム水溶液14.93g(16.8mmol)と48重量%水酸化ナトリウム5.5g(65.5mmol)を30℃で加え、ホフマン反応を行った。15分後、反応溶液に、7.2重量%の塩酸39.81g(78.6mmol)を加えて酸性化し、85℃で4時間加熱した。その後、エポキシ系架橋剤(B−3)をポリマー懸濁液中の固形分に対して10重量部(0.28g)加え、80℃で8時間反応させた。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(3.0g)を得た。   15.0 g of the obtained polymer suspension (solid content 2.82 g, acrylamide content 40 mol%) was weighed into a beaker and diluted with 30.0 g of ion-exchanged water. To this polymer suspension, 14.93 g (16.8 mmol) of an 8.4 wt% sodium hypochlorite aqueous solution and 5.5 g (65.5 mmol) of 48 wt% sodium hydroxide were added at 30 ° C., and the Hoffman reaction was performed. Went. After 15 minutes, the reaction solution was acidified by adding 39.81 g (78.6 mmol) of 7.2 wt% hydrochloric acid and heated at 85 ° C. for 4 hours. Thereafter, 10 parts by weight (0.28 g) of the epoxy-based cross-linking agent (B-3) was added to the solid content in the polymer suspension and reacted at 80 ° C. for 8 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (3.0 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が3モル%、上記式(2)で示される構造単位が32モル%、上記式(3)で示される構造単位が1モル%、上記式(4)で示される構造単位が23モル%、上記式(5)で示される構造単位が35モル%、上記式(6)で示される構造単位が6モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度が高く、優れた凝集性能を示した。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 3 mol%, and the structural unit represented by the above formula (2) was 32 mol. %, 1 mol% of the structural unit represented by the above formula (3), 23 mol% of the structural unit represented by the above formula (4), 35 mol% of the structural unit represented by the above formula (5), The structural unit represented by 6) was analyzed as 6 mol%. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The resulting polymer had a high aqueous solution viscosity and exhibited excellent agglomeration performance.

比較例1
実施例1で得られたポリマー懸濁液15.0g(固形分2.85g、アクリルアミド含有量59モル%)をビーカーに計り取り、イオン交換水22.0gで希釈した。このポリマー懸濁液に、8.4重量%の次亜塩素酸ナトリウム水溶液21.1g(23.8mmol)と48重量%水酸化ナトリウム7.7g(92.4mmol)を30℃で加え、ホフマン反応を行った。15分後、反応溶液に、7.2重量%の塩酸56.2g(110.9mmol)を加えて酸性化し、85℃で4時間加熱した。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(2.3g)を得た。
Comparative Example 1
15.0 g (solid content 2.85 g, acrylamide content 59 mol%) obtained in Example 1 was weighed into a beaker and diluted with 22.0 g of ion-exchanged water. To this polymer suspension, 21.1 g (23.8 mmol) of an 8.4 wt% sodium hypochlorite aqueous solution and 7.7 g (92.4 mmol) of 48 wt% sodium hydroxide were added at 30 ° C., and the Hoffman reaction was performed. Went. After 15 minutes, the reaction solution was acidified by adding 56.2 g (110.9 mmol) of 7.2% by weight hydrochloric acid and heated at 85 ° C. for 4 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (2.3 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が0モル%、上記式(2)で示される構造単位が47モル%、上記式(3)で示される構造単位が2モル%、上記式(4)で示される構造単位が14モル%、上記式(5)で示される構造単位が24モル%、上記式(6)で示される構造単位が13モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度が低く、凝集性能に劣る結果となった。 As a result of calculating the ratio of each repeating unit using 13 C-NMR for the obtained polymer, the structural unit represented by the above formula (1) was 0 mol%, and the structural unit represented by the above formula (2) was 47 mol. %, 2 mol% of the structural unit represented by the formula (3), 14 mol% of the structural unit represented by the formula (4), 24 mol% of the structural unit represented by the formula (5), The structural unit represented by 6) was analyzed as 13 mol%. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The resulting polymer had a low aqueous solution viscosity, resulting in poor agglomeration performance.

比較例2
実施例1で得られたポリマー懸濁液15.0g(固形分2.85g、アクリルアミド含有量59モル%)をビーカーに計り取り、イオン交換水22.0gで希釈した。このポリマー懸濁液に、8.4重量%の次亜塩素酸ナトリウム水溶液21.1g(23.8mmol)と48重量%水酸化ナトリウム7.7g(92.4mmol)を30℃で加え、ホフマン反応を行った。15分後、反応溶液に、7.2重量%の塩酸56.2g(110.9mmol)を加えて酸性化し、85℃で4時間加熱した。その後、エポキシ系架橋剤(B−1)をポリマー懸濁液中の固形分に対して20重量部(0.58g)加え、40℃で反応させた。
Comparative Example 2
15.0 g (solid content 2.85 g, acrylamide content 59 mol%) obtained in Example 1 was weighed into a beaker and diluted with 22.0 g of ion-exchanged water. To this polymer suspension, 21.1 g (23.8 mmol) of an 8.4 wt% sodium hypochlorite aqueous solution and 7.7 g (92.4 mmol) of 48 wt% sodium hydroxide were added at 30 ° C., and the Hoffman reaction was performed. Went. After 15 minutes, the reaction solution was acidified by adding 56.2 g (110.9 mmol) of 7.2% by weight hydrochloric acid and heated at 85 ° C. for 4 hours. Thereafter, 20 parts by weight (0.58 g) of the epoxy-based crosslinking agent (B-1) was added to the solid content in the polymer suspension and reacted at 40 ° C.

その結果、反応溶液全体がゲル化して水溶性のポリマーを得ることができず、13C−NMR測定、水溶液粘度、カチオン度および凝集性能を評価することができなかった。 As a result, the entire reaction solution was gelled and a water-soluble polymer could not be obtained, and 13 C-NMR measurement, aqueous solution viscosity, cation degree and aggregation performance could not be evaluated.

比較例3
実施例4で得られたポリマー懸濁液15.0g(固形分2.82g、アクリルアミド含有量40モル%)をビーカーに計り取り、イオン交換水30.0gで希釈した。このポリマー懸濁液に、8.4重量%の次亜塩素酸ナトリウム水溶液14.93g(16.8mmol)と48重量%水酸化ナトリウム5.5g(65.5mmol)を30℃で加え、ホフマン反応を行った。15分後、反応溶液に、7.2重量%の塩酸39.81g(78.6mmol)を加えて酸性化し、85℃で4時間加熱した。その後、エポキシ系架橋剤(B−2)をポリマー懸濁液中の固形分に対して15重量部(0.42g)加え、80℃で8時間反応させた。反応終了後、反応溶液にアセトンを加えてポリマーを沈殿させ、真空乾燥することにより黄土色のポリマー(3.0g)を得た。
Comparative Example 3
15.0 g of the polymer suspension obtained in Example 4 (solid content 2.82 g, acrylamide content 40 mol%) was weighed into a beaker and diluted with 30.0 g of ion-exchanged water. To this polymer suspension, 14.93 g (16.8 mmol) of an 8.4 wt% sodium hypochlorite aqueous solution and 5.5 g (65.5 mmol) of 48 wt% sodium hydroxide were added at 30 ° C., and the Hoffman reaction was performed. Went. After 15 minutes, the reaction solution was acidified by adding 39.81 g (78.6 mmol) of 7.2 wt% hydrochloric acid and heated at 85 ° C. for 4 hours. Thereafter, 15 parts by weight (0.42 g) of the epoxy-based cross-linking agent (B-2) was added to the solid content in the polymer suspension and reacted at 80 ° C. for 8 hours. After completion of the reaction, acetone was added to the reaction solution to precipitate the polymer, followed by vacuum drying to obtain an ocher polymer (3.0 g).

得られたポリマーを13C−NMRを用いて各繰り返し単位の比率を算出した結果、上記式(1)で示される構造単位が20モル%、上記式(2)で示される構造単位が39モル%、上記式(3)で示される構造単位が4モル%、上記式(4)で示される構造単位が19モル%、上記式(5)で示される構造単位が17モル%、上記式(6)で示される構造単位が1モル%と解析された。水溶液粘度、カチオン度および凝集試験の評価結果を表1に示す。得られたポリマーは水溶液粘度が高く、ろ布の目詰まりが生じ、凝集性能を評価することができなかった。 As a result of calculating the ratio of each repeating unit of the obtained polymer using 13 C-NMR, the structural unit represented by the above formula (1) was 20 mol%, and the structural unit represented by the above formula (2) was 39 mol. %, The structural unit represented by the above formula (3) is 4 mol%, the structural unit represented by the above formula (4) is 19 mol%, the structural unit represented by the above formula (5) is 17 mol%, the above formula ( The structural unit represented by 6) was analyzed as 1 mol%. Table 1 shows the evaluation results of the aqueous solution viscosity, the cation degree, and the aggregation test. The obtained polymer had a high aqueous solution viscosity, resulting in clogging of the filter cloth, and the aggregation performance could not be evaluated.

本発明の水溶性高分子は、水溶液粘度が高く、カチオン度が高く、剛直なアミジン骨格を主鎖中に有して凝集性能に優れるため、高分子凝集剤に適する。特に、各種産業排水や汚泥処理および下水汚泥処理に用いる高分子凝集剤として有用である。   The water-soluble polymer of the present invention is suitable as a polymer flocculant because it has a high aqueous solution viscosity, a high cationic degree, and has a rigid amidine skeleton in the main chain and excellent aggregation performance. In particular, it is useful as a polymer flocculant used in various industrial wastewater, sludge treatment and sewage sludge treatment.

Claims (2)

下記式(1)で示される構造単位、下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、下記式(5)で示される構造単位、および下記式(6)で示される構造単位を含み、且つ下記式(1)で示される構造単位が3モル%以上15モル%以下であり、0.2重量%水溶液における粘度が20〜80mPa・sであることを特徴とする水溶性高分子。
Figure 2016186057
(ここで、Rは炭素数2〜4の炭化水素鎖を示し、nは1〜10の数である。)
Figure 2016186057
(ここで、上記式中、Mは陽イオンを表し、Xは陰イオンを表す。)
In the structural unit represented by the following formula (1), the structural unit represented by the following formula (2), the structural unit represented by the following formula (3), the structural unit represented by the following formula (4), and the following formula (5) And a structural unit represented by the following formula (1), the structural unit represented by the following formula (1) is 3 mol% or more and 15 mol% or less, and the viscosity in a 0.2 wt% aqueous solution: Is 20 to 80 mPa · s, a water-soluble polymer.
Figure 2016186057
(Here, R 1 represents a hydrocarbon chain having 2 to 4 carbon atoms, and n is a number of 1 to 10.)
Figure 2016186057
(Here, in the above formula, M + represents a cation and X represents an anion.)
下記式(2)で示される構造単位、下記式(3)で示される構造単位、下記式(4)で示される構造単位、下記式(5)で示される構造単位、および下記式(6)で示される構造単位を含む水溶性高分子(A)100重量部に対して、エポキシ系架橋剤(B)を1〜10重量部用いて架橋させることを特徴とする請求項1に記載の水溶性高分子の製造方法。
Figure 2016186057
(ここで、上記式中、Mは陽イオンを表し、Xは陰イオンを表す。)
A structural unit represented by the following formula (2), a structural unit represented by the following formula (3), a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), and the following formula (6) The water-soluble polymer according to claim 1, wherein 1 to 10 parts by weight of the epoxy-based crosslinking agent (B) is crosslinked with respect to 100 parts by weight of the water-soluble polymer (A) containing the structural unit represented by formula (1). For producing a conductive polymer.
Figure 2016186057
(Here, in the above formula, M + represents a cation and X represents an anion.)
JP2015067641A 2015-03-27 2015-03-27 Water-soluble polymer and method for producing the same Pending JP2016186057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015067641A JP2016186057A (en) 2015-03-27 2015-03-27 Water-soluble polymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067641A JP2016186057A (en) 2015-03-27 2015-03-27 Water-soluble polymer and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016186057A true JP2016186057A (en) 2016-10-27

Family

ID=57203050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067641A Pending JP2016186057A (en) 2015-03-27 2015-03-27 Water-soluble polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016186057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026827A (en) * 2017-07-27 2019-02-21 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and manufacturing method of carbon material using the same
US11001660B2 (en) 2017-07-27 2021-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026827A (en) * 2017-07-27 2019-02-21 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and manufacturing method of carbon material using the same
US11001660B2 (en) 2017-07-27 2021-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same

Similar Documents

Publication Publication Date Title
JPH05192513A (en) Cationic polymeric flocculant
JP2016186057A (en) Water-soluble polymer and method for producing the same
JP4933244B2 (en) Method for producing water-soluble polymer
JP2016186058A (en) Water-soluble polymer
Pal et al. Synthesis of copolymer derived from tamarind kernel polysaccharide (TKP) and poly (methacrylic acid) via SI-ATRP with enhanced pH triggered dye removal
JP6465435B2 (en) Sludge dewatering method using water-in-oil type emulsion coagulant
KR101395270B1 (en) Preparation eco-frendly dry strength agent of paper making industry
JP5137080B2 (en) Process for producing water-soluble polymer of polyamidine
JP2010229362A (en) Water in oil type microgel emulsion
US3928448A (en) Dichlorobutene/dimethylamine ionene polymer
JP2017506693A (en) Structured block copolymer
JPS5950684B2 (en) Method for producing ethylene-maleic anhydride interpolymer
JP7405667B2 (en) Polyethyleneimine and method for producing polyethyleneimine
JP4753424B2 (en) Organic sludge treatment method
JP2013049050A (en) Polymer flocculant
JP6512591B2 (en) Method for producing purified polyvinylamine
JP5057773B2 (en) Water-soluble polymer
JP4579051B2 (en) Polymer flocculant and method for producing the same
JP2011178818A (en) Water-soluble polymeric crosslinking agent, water-soluble polymer produced using the same, and method for producing those
JP5846387B2 (en) Method for producing diallylamine acetate polymer
JP2013181130A (en) Amphiphilic cationic polymer composition having reactive group
JP5238268B2 (en) Dye wastewater treatment agent
JP2015110692A (en) Water-soluble polymer
KR101824325B1 (en) Preparation method of polyvinylamine
JP2004057927A (en) Using method of water-soluble polymer dispersion