JP2016184569A - Positive electrode active material for secondary battery and manufacturing method of the same - Google Patents

Positive electrode active material for secondary battery and manufacturing method of the same Download PDF

Info

Publication number
JP2016184569A
JP2016184569A JP2015177532A JP2015177532A JP2016184569A JP 2016184569 A JP2016184569 A JP 2016184569A JP 2015177532 A JP2015177532 A JP 2015177532A JP 2015177532 A JP2015177532 A JP 2015177532A JP 2016184569 A JP2016184569 A JP 2016184569A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrode active
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015177532A
Other languages
Japanese (ja)
Other versions
JP6023295B2 (en
Inventor
弘樹 山下
Hiroki Yamashita
弘樹 山下
大神 剛章
Takeaki Ogami
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to TW104130842A priority Critical patent/TWI670894B/en
Priority to CN201580077600.0A priority patent/CN107408693B/en
Priority to PCT/JP2015/076384 priority patent/WO2016143171A1/en
Priority to US15/556,936 priority patent/US11646405B2/en
Priority to KR1020217007063A priority patent/KR102289992B1/en
Priority to KR1020177023595A priority patent/KR20170127422A/en
Priority to EP15884656.8A priority patent/EP3270447B1/en
Publication of JP2016184569A publication Critical patent/JP2016184569A/en
Application granted granted Critical
Publication of JP6023295B2 publication Critical patent/JP6023295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a secondary battery capable of effectively suppressing moisture adsorption to realize a high performance lithium ion secondary battery or a sodium ion secondary battery and a manufacturing method of the same.SOLUTION: The positive electrode active material for a secondary battery is made of a compound material containing an oxide, containing at least iron or manganese, represented by a formula (A): LiFeMnMPO, a formula (B): LiFeMnNSiO, or a formula (C): NaFeMnQPOand carbon derived from cellulose nanofiber, to which carbon derived from water-soluble carbon material of 0.1 to 4 mass% is carried.SELECTED DRAWING: None

Description

本発明は、酸化物とセルロースナノファイバー由来の炭素とを含む複合体に、水溶性炭素材料由来の炭素が担持してなる二次電池用正極活物質及びその製造方法に関する。   The present invention relates to a positive electrode active material for a secondary battery in which carbon derived from a water-soluble carbon material is supported on a composite containing an oxide and carbon derived from cellulose nanofibers, and a method for producing the same.

携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池は、室温付近で動作する最も優れた二次電池として広く知られている。こうしたなか、Li(Fe,Mn)PO4やLi2(Fe,Mn)SiO4等のリチウム含有オリビン型リン酸金属塩は、LiCoO等のリチウム遷移金属酸化物に比べて、資源的な制約に大きく左右されることがなく、しかも高い安全性を発揮することができるため、高出力で大容量のリチウムイオン二次電池を得るのには最適な正極材料となる。しかしながら、これらの化合物は、結晶構造に由来して導電性を十分に高めるのが困難な性質を有しており、またリチウムイオンの拡散性にも改善の余地があるため、従来より種々の開発がなされている。 Secondary batteries used in portable electronic devices, hybrid cars, electric cars, and the like have been developed. In particular, lithium ion secondary batteries are widely known as the most excellent secondary batteries that operate near room temperature. Under these circumstances, lithium-containing olivine-type phosphate metal salts such as Li (Fe, Mn) PO 4 and Li 2 (Fe, Mn) SiO 4 are more resource-constrained than lithium transition metal oxides such as LiCoO 2. Therefore, it is possible to exhibit high safety, and therefore, it is an optimum positive electrode material for obtaining a high-output and large-capacity lithium ion secondary battery. However, these compounds have the property that it is difficult to sufficiently increase the conductivity due to the crystal structure, and there is room for improvement in the diffusibility of lithium ions. Has been made.

さらに、普及が進んでいるリチウムイオン二次電池では、充電後長時間放置すると内部抵抗が徐々に上昇し、電池性能の劣化が生じる現象が知られている。これは、製造時に電池材料が含有していた水分が、電池の充放電が繰り返される中で材料から脱離し、かかる水分と電池に充満している非水電解液LiPF6との化学反応によって、フッ化水素が発生するためである。こうした電池性能の劣化を有効に抑制するには、二次電池に用いる正極活物質の水分含有量を低減することが有効であることも知られている(特許文献1参照)。 Furthermore, in lithium ion secondary batteries, which are spreading, it is known that the internal resistance gradually increases when the battery is left for a long time after charging, and the battery performance is deteriorated. This is because the moisture contained in the battery material at the time of manufacture is desorbed from the material during repeated charging and discharging of the battery, and by the chemical reaction between the moisture and the nonaqueous electrolyte LiPF 6 filling the battery, This is because hydrogen fluoride is generated. It is also known that reducing the water content of the positive electrode active material used in the secondary battery is effective for effectively suppressing such deterioration in battery performance (see Patent Document 1).

こうしたなか、例えば、特許文献2には、炭素質物質前駆体を含む原料混合物の焼成処理後、粉砕処理や分級処理を乾燥雰囲気下で行うことにより、かかる水分含有量を一定値以下に低減する技術が開示されている。また、特許文献3には、所定のリン酸リチウム化合物やケイ酸リチウム化合物等と導電性炭素材料を湿式ボールミルにより混合した後、メカノケミカル処理を行うことにより、表面に均一に導電性炭素材料が沈着されてなる複合酸化物を得る技術が開示されている。   Under these circumstances, for example, Patent Document 2 discloses that after the firing treatment of the raw material mixture containing the carbonaceous material precursor, the water content is reduced to a certain value or less by performing pulverization treatment and classification treatment in a dry atmosphere. Technology is disclosed. In Patent Document 3, a predetermined lithium phosphate compound, lithium silicate compound, and the like and a conductive carbon material are mixed by a wet ball mill, and then a mechanochemical treatment is performed so that the conductive carbon material is uniformly applied to the surface. A technique for obtaining a composite oxide deposited is disclosed.

一方、リチウムは希少有価物質であることから、リチウムイオン二次電池に代えてナトリウムを用いたナトリウムイオン二次電池等も種々検討されはじめている。
例えば、特許文献4には、マリサイト型NaMnPO4を用いたナトリウム二次電池用活物質が開示されており、また特許文献5には、オリビン型構造を有するリン酸遷移金属ナトリウムを含む正極活物質が開示されており、いずれの文献においても高性能なナトリウムイオン二次電池が得られることを示している。
On the other hand, since lithium is a rare valuable material, various studies have been made on sodium ion secondary batteries using sodium instead of lithium ion secondary batteries.
For example, Patent Document 4 discloses a sodium secondary battery active material using marisite-type NaMnPO 4 , and Patent Document 5 discloses a positive electrode active material containing transition metal sodium phosphate having an olivine structure. Substances are disclosed, and any literature shows that a high-performance sodium ion secondary battery can be obtained.

特開2013−152911号公報JP2013-152911A 特開2003−292309号公報JP 2003-292309 A 米国特許出願公開第2004/0140458号明細書US Patent Application Publication No. 2004/0140458 特開2008−260666号公報JP 2008-260666 A 特開2011−34963号公報JP 2011-34963 A

しかしながら、上記いずれの文献に記載の技術においても、二次電池用正極活物質の表面が、炭素源によって充分に被覆されずに一部の表面が露出しているため、水分の吸着を抑制できずに水分含有量が高まり、サイクル特性等の電池物性が充分に高い二次電池用正極活物質を得るのは困難であることが判明した。   However, in any of the techniques described in any of the above documents, the surface of the positive electrode active material for secondary batteries is not sufficiently covered with the carbon source, and a part of the surface is exposed, so that moisture adsorption can be suppressed. Therefore, it has been found that it is difficult to obtain a positive electrode active material for a secondary battery having a sufficiently high moisture content and sufficiently high battery properties such as cycle characteristics.

したがって、本発明の課題は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用正極活物質及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a positive electrode active material for a secondary battery that can effectively suppress moisture adsorption and a method for manufacturing the same, in order to obtain a high-performance lithium ion secondary battery or a sodium ion secondary battery. It is to provide.

そこで本発明者らは、種々検討したところ、特定の酸化物とセルロースナノファイバー由来の炭素とを含む複合体に、特定量の水溶性炭素材料由来の炭素が担持してなる二次電池用正極活物質であれば、セルロースナノファイバーと水溶性炭素材料が共に炭素源として酸化物表面を効率的に被覆して水分の吸着を有効に抑制できるため、リチウムイオン又はナトリウムイオンが有効に電気伝導を担うことのできる二次電池用正極活物質として、極めて有用であることを見出し、本発明を完成させるに至った。   Accordingly, the present inventors have made various studies and found that a positive electrode for a secondary battery in which a specific amount of carbon derived from a water-soluble carbon material is supported on a composite containing a specific oxide and carbon derived from cellulose nanofibers. If it is an active material, both cellulose nanofibers and water-soluble carbon materials can effectively coat the oxide surface as a carbon source and effectively suppress moisture adsorption, so lithium ions or sodium ions effectively conduct electricity. As a positive electrode active material for a secondary battery that can be carried, the present invention has been found to be extremely useful, and the present invention has been completed.

すなわち、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
Li2FeMnSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
NaFeMnPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバー由来の炭素とを含む複合体に、0.1〜4質量%の水溶性炭素材料由来の炭素が担持してなる二次電池用正極活物質を提供するものである。
That is, the present invention includes at least the following formula (A), (B) or (C) containing iron or manganese:
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 ··· (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
Provided is a positive electrode active material for a secondary battery in which 0.1 to 4% by mass of carbon derived from a water-soluble carbon material is supported on a composite comprising an oxide represented by formula (II) and carbon derived from cellulose nanofibers. To do.

また、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
Li2FeMnSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
NaFeMnPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバー由来の炭素とを含む複合体に、0.1〜4質量%の水溶性炭素材料由来の炭素が担持してなる二次電池用正極活物質の製造方法であって、
リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程(I)、
得られた複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して複合体Yを得る工程(II)、並びに
得られた複合体Yに、複合体100質量部に対して0.1〜16質量部の水溶性炭素材料を添加して湿式混合し、焼成する工程(III)
を備える、上記二次電池用正極活物質の製造方法を提供するものである。
Further, the present invention provides the following formula (A), (B) or (C) containing at least iron or manganese:
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 ··· (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
Production of a positive electrode active material for a secondary battery in which 0.1 to 4% by mass of carbon derived from a water-soluble carbon material is supported on a composite comprising an oxide represented by formula (II) and carbon derived from cellulose nanofibers. A method,
Step (I) of obtaining a composite X by mixing a phosphoric acid compound or a silicic acid compound with a mixture X containing a lithium compound or a sodium compound and cellulose nanofibers,
Step (II) of obtaining the complex Y by subjecting the obtained complex X and slurry water Y containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction, and the obtained complex Y Step (III) of adding 0.1 to 16 parts by mass of water-soluble carbon material to 100 parts by mass of the composite, wet-mixing, and firing
The manufacturing method of the said positive electrode active material for secondary batteries provided with these is provided.

本発明によれば、所定の酸化物とセルロースナノファイバー由来の炭素とを含む複合体に、特定量の水溶性炭素材料由来の炭素が担持されてなることにより、複合体表面の一部において、セルロースナノファイバー由来の炭素が存在せずに酸化物が露出しているような部位にも水溶性炭素材料由来の炭素が有効に担持されてなることとなり、酸化物表面における露出部が効果的に低減された二次電池用正極活物質を得ることができる。そのため、かかる正極活物質は水分の吸着を効果的に抑制できるため、これを用いたリチウムイオン二次電池又はナトリウムイオン二次電池において、リチウムイオン又はナトリウムイオンが有効に電気伝導を担いつつ、様々な使用環境下でもサイクル特性等の優れた電池特性を安定して発現することができる。   According to the present invention, a composite containing a predetermined oxide and carbon derived from cellulose nanofibers is loaded with a specific amount of carbon derived from a water-soluble carbon material. The carbon derived from the water-soluble carbon material is effectively supported on the part where the oxide is exposed without the carbon derived from the cellulose nanofiber, and the exposed part on the oxide surface is effective. A reduced positive electrode active material for a secondary battery can be obtained. Therefore, since such a positive electrode active material can effectively suppress the adsorption of moisture, in a lithium ion secondary battery or a sodium ion secondary battery using the positive electrode active material, lithium ions or sodium ions effectively carry electric conduction, and various Excellent battery characteristics such as cycle characteristics can be stably exhibited even in a different use environment.

以下、本発明について詳細に説明する。
本発明で用いる酸化物は、少なくとも鉄又はマンガンを含み、かつ下記式(A)、(B)又は(C):
LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
Li2FeMnSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
NaFeMnPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
のいずれかの式で表される。
これらの酸化物は、いずれもオリビン型構造を有しており、少なくとも鉄又はマンガンを含む。上記式(A)又は式(B)で表される酸化物を用いた場合には、リチウムイオン電池用正極活物質が得られ、上記式(C)で表される酸化物を用いた場合には、ナトリウムイオン電池用正極活物質が得られる。
Hereinafter, the present invention will be described in detail.
The oxide used in the present invention contains at least iron or manganese and has the following formula (A), (B) or (C):
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 ··· (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, 0 ≦ f <1, and 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
It is expressed by one of the following formulas.
These oxides all have an olivine structure and contain at least iron or manganese. When the oxide represented by the above formula (A) or (B) is used, a positive electrode active material for a lithium ion battery is obtained, and when the oxide represented by the above formula (C) is used. Provides a positive electrode active material for a sodium ion battery.

上記式(A)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属リチウム化合物である。式(A)中、Mは、Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。aは、0≦a≦1であって、好ましくは0.01≦a≦0.99であり、より好ましくは0.1≦a≦0.9である。bは、0≦b≦1であって、好ましくは0.01≦b≦0.99であり、より好ましくは0.1≦b≦0.9である。cは、0≦c≦0.2をであって、好ましくは0≦c≦0.1である。そして、これらa、b及びcは、2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数である。上記式(A)で表されるオリビン型リン酸遷移金属リチウム化合物としては、具体的には、例えばLiFe0.2Mn0.8PO、LiFe0.9Mn0.1PO、LiFe0.15Mn0.75Mg0.1PO、LiFe0.19Mn0.75Zr0.03PO等が挙げられ、なかでもLiFe0.2Mn0.8POが好ましい。 The oxide represented by the above formula (A) is an olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as so-called transition metals. In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co. a is 0 ≦ a ≦ 1, preferably 0.01 ≦ a ≦ 0.99, and more preferably 0.1 ≦ a ≦ 0.9. b is 0 ≦ b ≦ 1, preferably 0.01 ≦ b ≦ 0.99, and more preferably 0.1 ≦ b ≦ 0.9. c satisfies 0 ≦ c ≦ 0.2, and preferably 0 ≦ c ≦ 0.1. These a, b and c are numbers satisfying 2a + 2b + (valence of M) × c = 2 and satisfying a + b ≠ 0. Specific examples of the olivine-type transition metal lithium compound represented by the above formula (A) include LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , and LiFe. Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , and LiFe 0.2 Mn 0.8 PO 4 is particularly preferable.

上記式(B)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型ケイ酸遷移金属リチウム化合物である。式(B)中、Nは、Ni、Co、Al、Zn、V又はZrを示し、好ましくはCo、Al、Zn、V又はZrである。dは、0≦d≦1であって、好ましくは0≦d<1であり、より好ましくは0.1≦d≦0.6である。eは、0≦d≦1であって、好ましくは0≦e<1であり、より好ましくは0.1≦e≦0.6である。fは、0≦f<1であって、好ましくは0<f<1であり、より好ましくは0.05≦f≦0.4である。そして、これらd、e及びfは、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数である。上記式(B)で表されるオリビン型ケイ酸遷移金属リチウム化合物としては、具体的には、例えばLiFe0.45Mn0.45Co0.1SiO4、LiFe0.36Mn0.54Al0.066SiO4、LiFe0.45Mn0.45Zn0.1SiO4、LiFe0.36Mn0.540.066SiO4、LiFe0.282Mn0.658Zr0.02SiO4等が挙げられ、なかでもLiFe0.282Mn0.658Zr0.02SiO4が好ましい。 The oxide represented by the above formula (B) is a so-called olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as transition metals. In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr, and is preferably Co, Al, Zn, V, or Zr. d is 0 ≦ d ≦ 1, preferably 0 ≦ d <1, and more preferably 0.1 ≦ d ≦ 0.6. e is 0 ≦ d ≦ 1, preferably 0 ≦ e <1, and more preferably 0.1 ≦ e ≦ 0.6. f is 0 ≦ f <1, preferably 0 <f <1, and more preferably 0.05 ≦ f ≦ 0.4. These d, e, and f are numbers satisfying 2d + 2e + (N valence) × f = 2 and d + e ≠ 0. Specific examples of the olivine-type transition metal lithium compound represented by the above formula (B) include Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 and the like can be mentioned, among which Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 is preferable.

上記式(C)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属ナトリウム化合物である。式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。gは、0≦g≦1であって、好ましくは0<g≦1である。hは、0≦h≦1であって、好ましくは0.5≦h<1である。iは、0≦i<1であって、好ましくは0≦i≦0.5であり、より好ましくは0≦i≦0.3である。そして、これらg、h及びiは、0≦g≦1、0≦h≦1、及び0≦i<1、2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数である。上記式(C)で表されるオリビン型リン酸遷移金属ナトリウム化合物としては、具体的には、例えばNaFe0.2Mn0.8PO、NaFe0.9Mn0.1PO、NaFe0.15Mn0.7Mg0.15PO4、NaFe0.19Mn0.75Zr0.03PO4、NaFe0.19Mn0.75Mo0.03PO4、NaFe0.15Mn0.7Co0.15PO4等が挙げられ、なかでもNaFe0.2Mn0.8PO4が好ましい。 The oxide represented by the formula (C) is an olivine-type transition metal sodium phosphate compound containing iron (Fe) and manganese (Mn) as at least transition metals. In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co. g is 0 ≦ g ≦ 1, and preferably 0 <g ≦ 1. h is 0 ≦ h ≦ 1, and preferably 0.5 ≦ h <1. i is 0 ≦ i <1, preferably 0 ≦ i ≦ 0.5, and more preferably 0 ≦ i ≦ 0.3. These g, h, and i are numbers satisfying 0 ≦ g ≦ 1, 0 ≦ h ≦ 1, and 0 ≦ i <1, 2 + g + 2h + (Q valence) × i = 2 and satisfying g + h ≠ 0. It is. Specific examples of the olivine-type transition metal sodium phosphate compound represented by the formula (C) include, for example, NaFe 0.2 Mn 0.8 PO 4 , NaFe 0.9 Mn 0.1 PO 4 , NaFe 0.15 Mn 0.7 Mg 0.15 PO 4 , NaFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , NaFe 0.19 Mn 0.75 Mo 0.03 PO 4 , NaFe 0.15 Mn 0.7 Co 0.15 PO 4 , and NaFe 0.2 Mn 0.8 PO 4 is preferred.

本発明の二次電池用正極活物質は、上記式(A)、(B)又は(C)で表される酸化物と、セルロースナノファイバー由来の炭素とを含む複合体(一次粒子)に、0.1〜4質量%の水溶性炭素材料由来の炭素が担持してなるものである。すなわち、炭素源としてセルロースナノファイバー及び特定量の水溶性炭素材料を用いることにより得られるものであって、セルロースナノファイバーが炭化された炭素となって酸化物表面を被覆してなる複合体において、セルロースナノファイバーが存在することなく酸化物表面が露出した部位に、炭化した水溶性炭素材料が炭素となって有効に担持されてなる。したがって、これらセルロースナノファイバーと水溶性炭素材料が、共に炭化されたのち、上記酸化物表面の露出を効果的に抑制しながら、酸化物の全表面にわたり堅固に担持されてなるため、本発明の二次電池用正極活物質における水分吸着を有効に防止することができる。セルロースナノファイバーとは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されて上記酸化物に堅固に担持されることにより、水溶性炭素材料とも相まって、得られる電池における性能を有効に高めることができる有用な正極活物質を得ることができる。   The positive electrode active material for a secondary battery of the present invention is a composite (primary particle) containing an oxide represented by the above formula (A), (B) or (C) and carbon derived from cellulose nanofibers. It is formed by supporting 0.1 to 4% by mass of carbon derived from a water-soluble carbon material. That is, in a composite obtained by using cellulose nanofibers and a specific amount of a water-soluble carbon material as a carbon source, and cellulose nanofibers are carbonized carbon to cover the oxide surface, The carbonized water-soluble carbon material is effectively supported as carbon at a portion where the oxide surface is exposed without the presence of cellulose nanofibers. Therefore, since the cellulose nanofibers and the water-soluble carbon material are both carbonized and are firmly supported over the entire surface of the oxide while effectively suppressing the exposure of the oxide surface, It is possible to effectively prevent moisture adsorption in the positive electrode active material for secondary batteries. Cellulose nanofiber is a skeletal component that occupies about 50% of all plant cell walls, and is a lightweight high-strength fiber that can be obtained by defibrating plant fibers constituting such cell walls to nano size, It also has good dispersibility in water. In addition, since the cellulose molecular chains constituting the cellulose nanofibers have a periodic structure formed of carbon, they are carbonized and firmly supported on the oxide, which is combined with the water-soluble carbon material. It is possible to obtain a useful positive electrode active material that can effectively enhance the performance of the battery.

用い得るセルロースナノファイバーとしては、植物細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得られたものであれば、特に制限されず、例えば、セリッシュKY−100S(ダイセルファインケム製)等の市販品を用いることができる。セルロースナノファイバーの繊維径は、上記酸化物に堅固に担持させる観点から、好ましくは4〜500nmであり、より好ましくは5〜400nmであり、さらに好ましくは10〜300nmである。   The cellulose nanofiber that can be used is not particularly limited as long as it is obtained by defibrating the plant fiber constituting the plant cell wall to nano size, for example, serish KY-100S (manufactured by Daicel Finechem), etc. Commercial products can be used. The fiber diameter of the cellulose nanofiber is preferably 4 to 500 nm, more preferably 5 to 400 nm, and still more preferably 10 to 300 nm from the viewpoint of firmly supporting the oxide on the oxide.

セルロースナノファイバーは、その後炭化されて、上記酸化物にセルロースナノファイバー由来の担持された炭素として、本発明の二次電池用正極活物質中に存在することとなる。かかるセルロースナノファイバー由来の炭素の原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.5〜15質量%であり、より好ましくは0.7〜10質量%である。より具体的には、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、二次電池用正極活物質中に、好ましくは0.5〜5質量%であり、より好ましくは0.7〜3.5質量%であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは0.5〜15質量%であり、より好ましくは1〜10質量%である。二次電池用正極活物質中に存在するセルロースナノファイバー由来の炭素の原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量から、水溶性炭素材料由来の炭素の原子換算量である、後に担持される水溶性炭素材料の炭素量を差し引くことにより、確認することができる。   The cellulose nanofibers are then carbonized and exist in the positive electrode active material for secondary batteries of the present invention as carbon supported on the oxides derived from cellulose nanofibers. The amount of carbon derived from cellulose nanofibers is preferably 0.5 to 15% by mass, more preferably 0.7 to 10% by mass in the positive electrode active material for secondary battery of the present invention. . More specifically, in the positive electrode active material for secondary batteries in which the oxide is represented by the above formula (A) or (C), preferably 0.5 to 5% by mass in the positive electrode active material for secondary batteries. More preferably, it is 0.7 to 3.5% by mass, and in the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B), it is preferably 0.5 to 15% by mass. More preferably, it is 1-10 mass%. The atomic equivalent amount of carbon derived from cellulose nanofibers present in the positive electrode active material for secondary batteries is the atomic equivalent amount of carbon derived from a water-soluble carbon material from the amount of carbon measured using a carbon / sulfur analyzer. This can be confirmed by subtracting the carbon content of the water-soluble carbon material to be supported later.

上記酸化物とセルロースナノファイバー由来の炭素とを含む複合体は、具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水を水熱反応に付すことにより得られるものであるのが好ましい。すなわち、上記複合体は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水の、水熱反応物であるのが好ましい。   Specifically, the composite containing the oxide and carbon derived from cellulose nanofibers includes a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound, and cellulose nanofibers It is preferable that it is obtained by subjecting the slurry water containing to hydrothermal reaction. That is, the composite is preferably a hydrothermal reaction product of slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and at least an iron compound or a manganese compound and containing cellulose nanofibers. .

上記複合体に炭化された炭素として担持される水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、上記式(A)〜(C)で表される酸化物に担持される炭素源として機能する。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。   The water-soluble carbon material supported as carbon carbonized in the composite is carbon that is dissolved in 100 g of water at 25 ° C. in an amount of 0.4 g or more, preferably 1.0 g or more in terms of carbon atom of the water-soluble carbon material. It means a material and functions as a carbon source supported by the oxides represented by the above formulas (A) to (C). Examples of the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose and mannose; disaccharides such as maltose, sucrose and cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol and butane Examples include polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin; and organic acids such as citric acid, tartaric acid, and ascorbic acid. Among these, glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable from the viewpoint of improving the solubility and dispersibility in a solvent and effectively functioning as a carbon material.

かかる水溶性炭素材料は、上記複合体において、セルロースナノファイバー由来の炭素が存在することなく酸化物表面が露出した部位に、0.1〜4質量%の水溶性炭素材料由来の炭素として有効に担持させる観点から、上記複合体と湿式混合され、炭化された炭素として複合体に担持されてなるものであるのが好ましく、すなわち、本発明の二次電池用正極活物質は、酸化物とセルロースナノファイバー由来の炭素とを含む複合体に、水溶性炭素材料由来の炭素が担持してなるものが好ましい。かかる水溶性炭素材料由来の炭素の担持量は、セルロースナノファイバーが存在しない酸化物の表面に水溶性炭素材料を有効に担持させる観点から、本発明の二次電池用正極活物質中に、好ましくは0.1〜4質量%であり、より好ましくは0.2〜3.5質量%であり、さらに好ましくは0.3〜3質量%である。   Such a water-soluble carbon material is effective as a carbon derived from 0.1 to 4% by mass of the water-soluble carbon material in a portion where the surface of the oxide is exposed without the carbon derived from cellulose nanofibers in the above composite. From the viewpoint of supporting, it is preferable that the composite is wet-mixed with the composite and supported on the composite as carbonized carbon. That is, the positive electrode active material for a secondary battery of the present invention includes an oxide and cellulose. It is preferable that a carbon fiber derived from a water-soluble carbon material is supported on a composite containing carbon derived from nanofibers. The amount of the carbon derived from the water-soluble carbon material is preferably included in the positive electrode active material for the secondary battery of the present invention from the viewpoint of effectively supporting the water-soluble carbon material on the surface of the oxide in which cellulose nanofibers are not present. Is 0.1 to 4% by mass, more preferably 0.2 to 3.5% by mass, and still more preferably 0.3 to 3% by mass.

本発明の二次電池用正極活物質は、より具体的には、リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程(I)、
得られた複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して複合体Yを得る工程(II)、並びに
得られた複合体Yに、複合体100質量部に対して0.1〜16質量部の水溶性炭素材料を添加して湿式混合し、焼成する工程(III)
を備える製造方法により得られるものであるのが好ましい。
More specifically, the positive electrode active material for a secondary battery of the present invention is obtained by mixing a phosphoric acid compound or a silicic acid compound with a mixture X containing a lithium compound or a sodium compound and cellulose nanofibers to obtain a composite X. Step (I),
Step (II) of obtaining the complex Y by subjecting the obtained complex X and slurry water Y containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction, and the obtained complex Y Step (III) of adding 0.1 to 16 parts by mass of water-soluble carbon material to 100 parts by mass of the composite, wet-mixing, and firing
It is preferable that it is obtained by a manufacturing method provided with.

工程(I)は、リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程である。
用い得るリチウム化合物又はナトリウム化合物としては、水酸化物(例えばLiOH・H2O、NaOH)、炭酸化物、硫酸化物、酢酸化物が挙げられる。なかでも、水酸化物が好ましい。
混合物Xにおけるリチウム化合物又はケイ酸化合物の含有量は、水100質量部に対し、好ましくは5〜50質量部であり、より好ましくは7〜45質量部である。より具体的には、工程(I)においてリン酸化合物を用いた場合、混合物Xにおけるリチウム化合物又はナトリウム化合物の含有量は、水100質量部に対し、好ましくは5〜50質量部であり、より好ましくは10〜45質量部である。また、ケイ酸化合物を用いた場合、混合物Xにおけるケイ酸化合物の含有量は、水100質量部に対し、好ましくは5〜40質量部であり、より好ましくは7〜35質量部である。
Step (I) is a step of obtaining a composite X by mixing a phosphoric acid compound or a silicic acid compound with a mixture X containing a lithium compound or a sodium compound and cellulose nanofibers.
Examples of the lithium compound or sodium compound that can be used include hydroxides (for example, LiOH.H 2 O, NaOH), carbonates, sulfates, and acetates. Of these, hydroxide is preferable.
The content of the lithium compound or silicate compound in the mixture X is preferably 5 to 50 parts by mass, more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water. More specifically, when a phosphoric acid compound is used in step (I), the content of the lithium compound or sodium compound in the mixture X is preferably 5 to 50 parts by mass with respect to 100 parts by mass of water. Preferably it is 10-45 mass parts. Moreover, when a silicic acid compound is used, content of the silicic acid compound in the mixture X becomes like this. Preferably it is 5-40 mass parts with respect to 100 mass parts of water, More preferably, it is 7-35 mass parts.

混合物Xにおけるセルロースナノファイバーの含有量は、例えば混合物X中の水100質量部に対し、好ましくは0.5〜60質量部であり、より好ましくは0.8〜40質量部である。より具体的には、工程(I)においてリン酸化合物を用いた場合、混合物Xにおけるセルロースナノファイバーの含有量は、好ましくは0.5〜20質量部であり、より好ましくは0.8〜15質量部である。また、ケイ酸化合物を用いた場合、混合物Xにおけるセルロースナノファイバーの含有量は、好ましくは0.5〜60質量部であり、より好ましくは1〜40質量部である。   The content of cellulose nanofibers in the mixture X is preferably 0.5 to 60 parts by mass, and more preferably 0.8 to 40 parts by mass with respect to 100 parts by mass of water in the mixture X, for example. More specifically, when a phosphoric acid compound is used in step (I), the content of cellulose nanofibers in the mixture X is preferably 0.5 to 20 parts by mass, more preferably 0.8 to 15 parts. Part by mass. Moreover, when a silicic acid compound is used, content of the cellulose nanofiber in the mixture X becomes like this. Preferably it is 0.5-60 mass parts, More preferably, it is 1-40 mass parts.

混合物Xにリン酸化合物又はケイ酸化合物を混合する前に、予め混合物Xを撹拌しておくのが好ましい。かかる混合物Xの撹拌時間は、好ましくは1〜15分であり、より好ましくは3〜10分である。また、混合物Xの温度は、好ましくは20〜90℃であり、より好ましくは20〜70℃である。   Before mixing the phosphoric acid compound or the silicic acid compound with the mixture X, it is preferable to stir the mixture X in advance. The stirring time of the mixture X is preferably 1 to 15 minutes, more preferably 3 to 10 minutes. Moreover, the temperature of the mixture X becomes like this. Preferably it is 20-90 degreeC, More preferably, it is 20-70 degreeC.

工程(I)で用いるリン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70〜90質量%濃度の水溶液として用いるのが好ましい。かかる工程(I)では、混合物Xにリン酸を混合するにあたり、混合物Xを撹拌しながらリン酸を滴下するのが好ましい。混合物Xにリン酸を滴下して少量ずつ加えることで、混合物X中において良好に反応が進行して、複合体Xがスラリー中で均一に分散しつつ生成され、かかる複合体Xが不要に凝集するのをも効果的に抑制することができる。 Examples of the phosphoric acid compound used in the step (I) include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate. . Of these, phosphoric acid is preferably used, and is preferably used as an aqueous solution having a concentration of 70 to 90% by mass. In the step (I), when phosphoric acid is mixed with the mixture X, it is preferable to add phosphoric acid dropwise while stirring the mixture X. By adding phosphoric acid dropwise to the mixture X and adding it little by little, the reaction proceeds well in the mixture X, and the complex X is generated while being uniformly dispersed in the slurry. It can also be effectively suppressed.

リン酸の上記混合物Xへの滴下速度は、好ましくは15〜50mL/分であり、より好ましくは20〜45mL/分であり、さらに好ましくは28〜40mL/分である。また、リン酸を滴下しながらの混合物Xの撹拌時間は、好ましくは0.5〜24時間であり、より好ましくは3〜12時間である。さらに、リン酸を滴下しながらの混合物Xの撹拌速度は、好ましくは200〜700rpmであり、より好ましくは250〜600rpmであり、さらに好ましくは300〜500rpmである。
なお、混合物Xを撹拌する際、さらに混合物Xの沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20〜60℃に冷却するのがより好ましい。
The dropping rate of phosphoric acid into the mixture X is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min. Moreover, the stirring time of the mixture X while dropping phosphoric acid is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours. Furthermore, the stirring speed of the mixture X while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm.
In addition, when stirring the mixture X, it is preferable to further cool below the boiling point temperature of the mixture X. Specifically, cooling to 80 ° C. or lower is preferable, and cooling to 20 to 60 ° C. is more preferable.

工程(I)で用いるケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)等が挙げられる。 The silicic acid compound used in the step (I) is not particularly limited as long as it is a reactive silica compound, and examples thereof include amorphous silica, Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O), and the like. .

リン酸化合物又はケイ酸化合物を混合した後の混合物Xは、リン酸又はケイ酸1モルに対し、リチウム又はナトリウムを2.0〜4.0モル含有するのが好ましく、2.0〜3.1モル含有するのがより好ましく、このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。より具体的には、工程(I)においてリン酸化合物を用いた場合、リン酸化合物を混合した後の混合物Xは、リン酸1モルに対し、リチウム又はナトリウムを2.7〜3.3モル含有するのが好ましく、2.8〜3.1モル含有するのがより好ましく、工程(I)においてケイ酸化合物を用いた場合、ケイ酸化合物を混合した後の混合物Xは、ケイ酸1モルに対し、リチウムを2.0〜4.0モル含有するのが好ましく、2.0〜3.0含有するのがより好ましい。
このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。
It is preferable that the mixture X after mixing a phosphoric acid compound or a silicic acid compound contains 2.0-4.0 mol of lithium or sodium with respect to 1 mol of phosphoric acid or silicic acid, and is 2.0-3. It is more preferable to contain 1 mol, and the lithium compound or sodium compound and the phosphoric acid compound or silicic acid compound may be used so as to obtain such an amount. More specifically, when a phosphoric acid compound is used in step (I), the mixture X after mixing the phosphoric acid compound is 2.7 to 3.3 mol of lithium or sodium with respect to 1 mol of phosphoric acid. It is preferable to contain 2.8-3.1 mol, and when a silicate compound is used in step (I), the mixture X after mixing the silicate compound is 1 mol of silicate. On the other hand, it is preferable to contain 2.0-4.0 mol of lithium, and it is more preferable to contain 2.0-3.0 mol of lithium.
What is necessary is just to use the said lithium compound or sodium compound, and a phosphoric acid compound or a silicic acid compound so that it may become such quantity.

リン酸化合物又はケイ酸化合物を混合した後の混合物Xに対して窒素をパージすることにより、かかる混合物中での反応を完了させて、上記(A)〜(C)で表される酸化物の前駆体である複合体Xを混合物中に生成させる。窒素がパージされると、混合物X中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる複合体Xを含有する混合物中の溶存酸素濃度も効果的に低減されるため、次の工程で添加する鉄化合物やマンガン化合物等の酸化を抑制することができる。かかる複合体Xを含有する混合物中において、上記(A)〜(C)で表される酸化物の前駆体は、微細な分散粒子として存在する。かかる複合体Xは、例えば上記式(A)で表される酸化物の場合、リン酸三リチウム(Li3PO4)とセルロースナノファイバーの複合体として得られる。 By purging nitrogen with respect to the mixture X after mixing the phosphoric acid compound or the silicic acid compound, the reaction in the mixture is completed, and the oxides represented by the above (A) to (C) The precursor complex X is formed in the mixture. When nitrogen is purged, the reaction can proceed while the dissolved oxygen concentration in the mixture X is reduced, and the dissolved oxygen concentration in the resulting mixture containing the complex X is also effectively reduced. Therefore, oxidation of the iron compound or manganese compound added in the next step can be suppressed. In the mixture containing the composite X, the precursors of the oxides represented by the above (A) to (C) are present as fine dispersed particles. For example, in the case of the oxide represented by the above formula (A), the composite X is obtained as a composite of trilithium phosphate (Li 3 PO 4 ) and cellulose nanofiber.

窒素をパージする際における圧力は、好ましくは0.1〜0.2MPaであり、より好ましくは0.1〜0.15MPaである。また、リン酸化合物又はケイ酸化合物を混合した後の混合物Xの温度は、好ましくは20〜80℃であり、より好ましくは20〜60℃である。例えば上記式(A)で表される酸化物の場合、反応時間は、好ましくは5〜60分であり、より好ましくは15〜45分である。
また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物Xを撹拌するのが好ましい。このときの撹拌速度は、好ましくは200〜700rpmであり、より好ましくは250〜600rpmである。
The pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa. Moreover, the temperature of the mixture X after mixing a phosphoric acid compound or a silicic acid compound becomes like this. Preferably it is 20-80 degreeC, More preferably, it is 20-60 degreeC. For example, in the case of the oxide represented by the above formula (A), the reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
Moreover, when purging nitrogen, it is preferable to stir the mixture X after mixing a phosphoric acid compound or a silicic acid compound from a viewpoint of making reaction progress favorable. The stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.

また、より効果的に複合体Xの分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物X中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。   Further, from the viewpoint of more effectively suppressing the oxidation on the surface of the dispersed particles of the complex X and miniaturizing the dispersed particles, the dissolved oxygen concentration in the mixture X after mixing the phosphoric acid compound or the silicate compound is reduced to 0. 0.5 mg / L or less is preferable, and 0.2 mg / L or less is more preferable.

工程(II)では、工程(I)で得られた複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して、複合体Yを得る工程である。上記工程(I)により得られた複合体Xを、混合物のまま、上記(A)〜(C)で表される酸化物の前駆体として用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加して、スラリー水Yとして用いるのが好ましい。これにより、工程を簡略化させつつ、上記(A)〜(C)で表される酸化物が極めて微細な粒子になるとともに、後工程において効率的にセルロースナノファイバー由来の炭素を担持させることが可能となり、非常に有用な二次電池用正極活物質を得ることができる。   In the step (II), the composite X obtained in the step (I) and the slurry water Y containing a metal salt containing at least an iron compound or a manganese compound are subjected to a hydrothermal reaction to obtain the composite Y. It is. The composite X obtained by the step (I) is used as a precursor of the oxide represented by the above (A) to (C) as a mixture, and contains at least an iron compound or a manganese compound. Is preferably used as slurry water Y. Thereby, while simplifying a process, while the oxide represented by said (A)-(C) becomes very fine particle | grains, it can carry | support carbon derived from a cellulose nanofiber efficiently in a post process. This makes it possible to obtain a very useful positive electrode active material for a secondary battery.

用い得る鉄化合物としては、酢酸鉄、硝酸鉄、硫酸鉄等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸鉄が好ましい。   Examples of iron compounds that can be used include iron acetate, iron nitrate, and iron sulfate. These may be used alone or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of improving battery characteristics.

用い得るマンガン化合物としては、酢酸マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸マンガンが好ましい。   Examples of manganese compounds that can be used include manganese acetate, manganese nitrate, and manganese sulfate. These may be used alone or in combination of two or more. Among these, manganese sulfate is preferable from the viewpoint of improving battery characteristics.

金属塩として、鉄化合物とマンガン化合物の双方を用いる場合、これらマンガン化合物及び鉄化合物の使用モル比(マンガン化合物:鉄化合物)は、好ましくは99:1〜1:99であり、より好ましくは90:10〜10:90である。また、これら鉄化合物及びマンガン化合物の合計添加量は、スラリー水Y中に含有されるLi3PO41モルに対し、好ましくは0.99〜1.01モルであり、より好ましくは0.995〜1.005モルである。 When both an iron compound and a manganese compound are used as the metal salt, the use molar ratio of these manganese compound and iron compound (manganese compound: iron compound) is preferably 99: 1 to 1:99, more preferably 90. : 10 to 10:90. The total amount of these iron compounds and manganese compounds is preferably 0.99 to 1.01 moles, more preferably 0.995, with respect to 1 mole of Li 3 PO 4 contained in the slurry water Y. ~ 1.005 mol.

さらに、必要に応じて、金属塩として、鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩を用いてもよい。金属(M、N又はQ)塩におけるM、N及びQは、上記式(A)〜(C)中のM、N及びQと同義であり、かかる金属塩として、硫酸塩、ハロゲン化合物、有機酸塩、及びこれらの水和物等を用いることができる。これらは1種単独で用いてもよく、2種以上用いてもよい。なかでも、電池物性を高める観点から、硫酸塩を用いるのがより好ましい。
これら金属(M、N又はQ)塩を用いる場合、鉄化合物、マンガン化合物、及び金属(M、N又はQ)塩の合計添加量は、上記工程(I)において得られた混合物中のリン酸又はケイ酸1モルに対し、好ましくは0.99〜1.01モルであり、より好ましくは0.995〜1.005モルである。
Furthermore, you may use metal (M, N, or Q) salts other than an iron compound and a manganese compound as a metal salt as needed. M, N, and Q in the metal (M, N, or Q) salt have the same meanings as M, N, and Q in the above formulas (A) to (C), and as the metal salt, sulfate, halogen compound, organic Acid salts and hydrates thereof can be used. These may be used alone or in combination of two or more. Among them, it is more preferable to use a sulfate from the viewpoint of improving battery physical properties.
When these metal (M, N, or Q) salts are used, the total amount of iron compound, manganese compound, and metal (M, N, or Q) salt added is phosphoric acid in the mixture obtained in the above step (I). Or it is preferably 0.99 to 1.01 mole, and more preferably 0.995 to 1.005 mole relative to 1 mole of silicic acid.

水熱反応に付する際に用いる水の使用量は、用いる金属塩の溶解性、撹拌の容易性、及び合成の効率等の観点から、スラリー水Y中に含有されるリン酸又はケイ酸イオン1モルに対し、好ましくは10〜50モルであり、より好ましくは12.5〜45モルである。より具体的には、水熱反応に付する際に用いる水の使用量は、スラリー水Y中に含有されるイオンがリン酸イオンの場合、好ましくは10〜30モルであり、より好ましくは12.5〜25モルである。また、スラリー水Y中に含有されるイオンがケイ酸イオンの場合、好ましくは10〜50モルであり、より好ましくは12.5〜45モルである。   The amount of water used for the hydrothermal reaction is phosphoric acid or silicate ions contained in the slurry water Y from the viewpoint of the solubility of the metal salt used, the ease of stirring, the efficiency of synthesis, etc. Preferably it is 10-50 mol with respect to 1 mol, More preferably, it is 12.5-45 mol. More specifically, the amount of water used for the hydrothermal reaction is preferably 10 to 30 mol, more preferably 12 when the ions contained in the slurry water Y are phosphate ions. .5 to 25 moles. Moreover, when the ion contained in the slurry water Y is a silicate ion, Preferably it is 10-50 mol, More preferably, it is 12.5-45 mol.

工程(II)において、鉄化合物、マンガン化合物及び金属(M、N又はQ)塩の添加順序は特に制限されない。また、これらの金属塩を添加するとともに、必要に応じて酸化防止剤を添加してもよい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na224)、アンモニア水等を使用することができる。酸化防止剤の添加量は、過剰に添加されることで、上記式(A)〜(C)で表される酸化物の生成が抑制されるのを防止する観点から、鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩の合計1モルに対し、好ましくは0.01〜1モルであり、より好ましくは0.03〜0.5モルである。 In step (II), the order of addition of the iron compound, manganese compound and metal (M, N or Q) salt is not particularly limited. Moreover, while adding these metal salts, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used. From the viewpoint of preventing the generation of oxides represented by the above formulas (A) to (C) from being added in excess, the addition amount of the antioxidant is an iron compound, a manganese compound, and Preferably it is 0.01-1 mol with respect to the total of 1 mol of metal (M, N, or Q) salt used as needed, More preferably, it is 0.03-0.5 mol.

鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩や酸化防止剤を添加することにより得られるスラリーY中における複合体Yの含有量は、好ましくは10〜50質量%であり、より好ましくは15〜45質量%であり、さらに好ましくは20〜40質量%である。   The content of the complex Y in the slurry Y obtained by adding an iron compound, a manganese compound, and a metal (M, N or Q) salt or an antioxidant used as necessary is preferably 10 to 50% by mass. More preferably, it is 15-45 mass%, More preferably, it is 20-40 mass%.

工程(II)における水熱反応は、100℃以上であればよく、130〜180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合、この時の圧力は0.3〜0.9MPaであるのが好ましく、140〜160℃で反応を行う場合の圧力は0.3〜0.6MPaであるのが好ましい。水熱反応時間は0.1〜48時間が好ましく、さらに0.2〜24時間が好ましい。
得られた複合体Yは、上記式(A)〜(C)で表される酸化物及びセルロースナノファイバーを含む複合体であり、ろ過後、水で洗浄し、乾燥することにより、これをセルロースナノファイバーを含む複合体粒子として単離できる。なお、乾燥手段は、凍結乾燥、真空乾燥が用いられる。
The hydrothermal reaction in process (II) should just be 100 degreeC or more, and 130-180 degreeC is preferable. The hydrothermal reaction is preferably carried out in a pressure vessel, and when the reaction is carried out at 130 to 180 ° C, the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C. The pressure is preferably 0.3 to 0.6 MPa. The hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.
The obtained composite Y is a composite containing the oxides represented by the above formulas (A) to (C) and cellulose nanofibers. After filtration, the composite Y is washed with water and dried to obtain cellulose. It can be isolated as composite particles containing nanofibers. As the drying means, freeze drying or vacuum drying is used.

得られる複合体YのBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5〜40m/gであり、より好ましくは5〜20m/gである。複合体YのBET比表面積が5m/g未満であると、二次電池用正極活物質の一次粒子が大きくなりすぎ、電池特性が低下してしまうおそれがある。また、BET比表面積が40m/gを超えると、二次電池用正極活物質の吸着水分量が増大して電池特性に影響を与えるおそれがある。 The BET specific surface area of the obtained composite Y is preferably 5 to 40 m 2 / g, more preferably 5 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. If the BET specific surface area of the composite Y is less than 5 m 2 / g, the primary particles of the positive electrode active material for the secondary battery become too large, and the battery characteristics may be deteriorated. On the other hand, if the BET specific surface area exceeds 40 m 2 / g, the amount of adsorbed moisture of the positive electrode active material for secondary batteries may increase and affect battery characteristics.

工程(III)では、工程(II)で得られた複合体Yに、複合体100質量部に対して0.1〜16質量部の水溶性炭素材料を添加して湿式混合し、焼成する工程である。これにより、上記(A)〜(C)で表される酸化物表面が露出するのを有効に抑制しつつ、かかる酸化物に炭素源であるセルロースナノファイバーと水溶性炭素材料を、共に炭化してなる炭素として堅固に担持させることができる。   In step (III), 0.1 to 16 parts by mass of a water-soluble carbon material is added to 100 parts by mass of the composite Y obtained in step (II), wet-mixed, and then fired. It is. Thereby, while effectively suppressing the exposure of the oxide surface represented by the above (A) to (C), the cellulose nanofiber as the carbon source and the water-soluble carbon material are both carbonized in the oxide. Can be firmly supported as carbon.

水溶性炭素材料の添加量は、上記のとおり、炭化されてなる炭素としての水溶性炭素材料の担持量が炭素原子換算量で上記範囲内になるような量であればよく、例えば、セルロースナノファイバー由来の炭素が存在しない酸化物の表面に水溶性炭素材料由来の炭素を0.1〜4質量%の量で有効に担持させる観点から、複合体Y100質量部に対し、0.1〜16質量部であり、好ましくは0.2〜14質量部であり、より好ましくは0.3〜12質量部である。また、水溶性炭素材料とともに、水を添加するのが好ましい。水の添加量は、複合体Y100質量部に対し、好ましくは30〜300質量部であり、より好ましくは50〜250質量部であり、さらに好ましくは75〜200質量部である。   The addition amount of the water-soluble carbon material may be an amount such that the supported amount of the water-soluble carbon material as carbon obtained by carbonization falls within the above range in terms of carbon atom as described above. From the viewpoint of effectively supporting the carbon derived from the water-soluble carbon material in an amount of 0.1 to 4% by mass on the surface of the oxide in which carbon derived from the fiber is not present, It is a mass part, Preferably it is 0.2-14 mass part, More preferably, it is 0.3-12 mass part. Moreover, it is preferable to add water with a water-soluble carbon material. The amount of water added is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, and even more preferably 75 to 200 parts by mass with respect to 100 parts by mass of the composite Y.

工程(III)における湿式混合手段としては、特に制限されず、常法により行うことができる。複合体Yに上記量で水溶性炭素材料を添加した後、混合する際の温度は、好ましくは5〜80℃であり、より好ましくは10〜60℃である。得られる混合物は、焼成するまでの間に乾燥するのが好ましい。乾燥手段としては、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。   The wet mixing means in step (III) is not particularly limited, and can be performed by a conventional method. After adding the water-soluble carbon material in the above amount to the composite Y, the temperature at the time of mixing is preferably 5 to 80 ° C, more preferably 10 to 60 ° C. The resulting mixture is preferably dried before firing. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.

工程(III)において、上記湿式混合に得られた混合物を焼成する。焼成は、還元雰囲気又は不活性雰囲気中で行うのが好ましい。焼成温度は、セルロースナノファイバーを有効に炭化させる観点から、好ましくは500〜800℃であり、より好ましくは600〜770℃であり、さらに好ましくは650〜750℃である。また、焼成時間は、好ましくは10分〜3時間、より好ましくは30分〜1.5時間とするのがよい。   In step (III), the mixture obtained by the wet mixing is fired. Firing is preferably performed in a reducing atmosphere or an inert atmosphere. The firing temperature is preferably 500 to 800 ° C, more preferably 600 to 770 ° C, and further preferably 650 to 750 ° C, from the viewpoint of effectively carbonizing the cellulose nanofibers. The firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.

本発明の二次電池用正極活物質は、上記セルロースナノファイバー由来の炭素及び水溶性炭素材料由来の炭素が、共に炭素源として上記酸化物に担持されて相乗的に作用し、二次電池用正極活物質における吸着水分量を有効に低減することができる。具体的には、本発明の二次電池用正極活物質の吸着水分量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、二次電池用正極活物質中に、好ましくは1200ppm以下であり、より好ましくは1000ppm以下であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは2500ppm以下であり、より好ましくは2000ppm以下である。なお、かかる吸着水分量は、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量として測定される値であって、二次電池用正極活物質の吸着水分量と、上記始点から終点までの間に揮発した水分量とが、同量であるとみなし、かかる揮発する水分量の測定値を二次電池用正極活物質の吸着水分量とするものである。
このように、本発明の二次電池用正極活物質は、水分を吸着しにくいため、製造環境として強い乾燥条件を必要とすることなく吸着水分量を有効に低減することができ、得られるリチウム二次電池及びナトリウム二次電池の双方において、様々な使用環境下でも優れた電池特性を安定して発現することが可能となる。
なお、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量は、例えばカールフィッシャー水分計を用いて測定することができる。
The positive electrode active material for a secondary battery according to the present invention has a synergistic effect in which the carbon derived from the cellulose nanofibers and the carbon derived from the water-soluble carbon material are both supported on the oxide as a carbon source and act synergistically. The amount of adsorbed moisture in the positive electrode active material can be effectively reduced. Specifically, the amount of adsorbed moisture of the positive electrode active material for secondary battery of the present invention is the same for the secondary battery in the case of the positive electrode active material for secondary battery in which the oxide is represented by the above formula (A) or (C). In the positive electrode active material, preferably it is 1200 ppm or less, more preferably 1000 ppm or less, and in the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B), preferably 2500 ppm or less, and more Preferably it is 2000 ppm or less. The amount of adsorbed moisture is such that moisture is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. Measured as the amount of water volatilized from the start point to the end point, starting from when the temperature rise is resumed from 150 ° C. when held for 20 minutes and ending at the constant temperature state at 250 ° C. It is assumed that the amount of adsorbed moisture of the positive electrode active material for a secondary battery and the amount of moisture volatilized from the start point to the end point are the same, and the measured value of the volatilized moisture amount is This is the amount of moisture adsorbed on the positive electrode active material for the secondary battery.
Thus, since the positive electrode active material for a secondary battery of the present invention hardly adsorbs moisture, the amount of adsorbed moisture can be effectively reduced without requiring strong drying conditions as a production environment, and the resulting lithium In both the secondary battery and the sodium secondary battery, it is possible to stably exhibit excellent battery characteristics even under various usage environments.
When water is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. and held for 20 minutes. The amount of water volatilized between the start point and the end point, starting from when the temperature rise is resumed from 150 ° C. and the end point when the constant temperature state at 250 ° C. is completed, is measured using a Karl Fischer moisture meter, for example. Can be measured.

また、本発明の二次電池用正極活物質のタップ密度は、吸着水分量を効果的に低減する観点から、好ましくは0.5〜1.6g/cm3であり、より好ましくは0.8〜1.6g/cm3である。 Moreover, the tap density of the positive electrode active material for a secondary battery of the present invention is preferably 0.5 to 1.6 g / cm 3 , more preferably 0.8, from the viewpoint of effectively reducing the amount of adsorbed moisture. ˜1.6 g / cm 3 .

さらに、本発明の二次電池用正極活物質のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5〜21m2/gであり、より好ましくは7〜20m2/gである。 Furthermore, the BET specific surface area of the positive electrode active material for secondary batteries of the present invention is preferably 5 to 21 m 2 / g, more preferably 7 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. It is.

本発明の二次電池用正極活物質を含む二次電池用正極を適用できる二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The secondary battery to which the positive electrode for a secondary battery including the positive electrode active material for a secondary battery of the present invention can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオン又はナトリウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、ナトリウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムイオン又はナトリウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as for the negative electrode, as long as lithium ions or sodium ions can be occluded at the time of charging and can be released at the time of discharging, the material configuration is not particularly limited, and those having a known material configuration can be used. . For example, a carbon material such as lithium metal, sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium ions or sodium ions, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池やナトリウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery or a sodium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones Nitriles, lactones, oxolane compounds and the like can be used.

支持塩は、その種類が特に限定されるものではないが、リチウムイオン二次電池の場合、LiPF、LiBF、LiClO、LiAsFから選ばれる無機塩、該無機塩の誘導体、LiSOCF、LiC(SOCF、LiN(SOCF、LiN(SO及びLiN(SOCF)(SO)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。また、ナトリウムイオン二次電池の場合、NaPF、NaBF、NaClO及びNaAsFから選ばれる無機塩、該無機塩の誘導体、NaSOCF、NaC(SOCF及びNaN(SOCF、NaN(SO及びNaN(SOCF)(SO)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt. In the case of a sodium ion secondary battery, an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 , a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2 and NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and at least one of derivatives of the organic salt It is preferable.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1−1]
LiOH・H2O 12.72g、水 90mL、及びセルロースナノファイバー(セリッシュKY−100G、ダイセルファインケム製、繊維径4〜100nm、略称CNF)6.8g(活物質中における炭素原子換算量で2.0質量%に相当)を混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて窒素ガスパージ下で12時間、400rpmの速度で撹拌することにより、複合体Xを含有する混合物X(スラリー水X1、溶存酸素濃度0.5mg/L)を得た。かかるスラリー水X1は、リン1モルに対し、2.97モルのリチウムを含有していた。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
[Example 1-1]
LiOH.H 2 O 12.72 g, water 90 mL, and cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter 4 to 100 nm, abbreviated CNF) 6.8 g (2. (Corresponding to 0% by mass) was mixed to obtain slurry water. Next, 11.53 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water at a temperature of 25 ° C. for 5 minutes, followed by 12 hours under a nitrogen gas purge at 400 rpm. By stirring at a speed, a mixture X containing the complex X (slurry water X 1 , dissolved oxygen concentration 0.5 mg / L) was obtained. The slurry water X 1 contained 2.97 mol of lithium with respect to 1 mol of phosphorus.

次に、得られたスラリー水X1 121.0gに対し、FeSO4・7H2O 5.56g及びMnSO4・5H2O 19.29gを添加し、混合してスラリー水Y1を得た。次いで、得られたスラリー水Y1をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体Y1(式(A)で表される酸化物の化学組成:LiMn0.8Fe0.2PO4、BET比表面積21m2/g、平均粒径60nm)を得た。
得られた複合体Y1を10g分取し、これにグルコース0.25g(活物質中における炭素原子換算量で1.0質量%に相当)及び水10mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で700℃で1時間焼成して、リチウム二次電池用正極活物質(LiFe0.2Mn0.8PO、炭素の量=3.0質量%)を得た。
Next, 5.56 g of FeSO 4 .7H 2 O and 19.29 g of MnSO 4 .5H 2 O were added to 121.0 g of the obtained slurry water X 1 and mixed to obtain slurry water Y 1 . Next, the obtained slurry water Y 1 was charged into an autoclave and subjected to a hydrothermal reaction at 170 ° C. for 1 hour. The pressure in the autoclave was 0.8 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystal was freeze-dried at −50 ° C. for 12 hours to give a composite Y 1 (chemical composition of the oxide represented by the formula (A): LiMn 0.8 Fe 0.2 PO 4 , BET specific surface area 21 m 2 / g, average grain 60 nm in diameter) was obtained.
10 g of the obtained complex Y 1 was taken, and 0.25 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 10 mL of water were added and mixed at 80 ° C. It performed 12 hours drying, and then calcined 1 hour at 700 ° C. under a reducing atmosphere to obtain a positive electrode active material for a lithium secondary battery (LiFe 0.2 Mn 0.8 PO 4, weight = 3.0 wt% carbon).

[実施例1−2]
複合体Y1に添加するグルコースを0.5g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例1−1と同様の方法でリチウム二次電池用正極活物質(LiFe0.2Mn0.8PO、炭素の量=4.0質量%)を得た。
[Example 1-2]
A positive electrode for a lithium secondary battery in the same manner as in Example 1-1, except that 0.5 g of glucose added to the complex Y 1 (corresponding to 2.0% by mass in terms of carbon atom in the active material) was used. An active material (LiFe 0.2 Mn 0.8 PO 4 , amount of carbon = 4.0% by mass) was obtained.

[実施例1−3]
複合体Y1に添加するグルコースを0.75g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例1−1と同様の方法でリチウム二次電池用正極活物質(LiFe0.2Mn0.8PO、炭素の量=4.9質量%)を得た。
[Example 1-3]
A positive electrode for a lithium secondary battery in the same manner as in Example 1-1 except that 0.75 g of glucose added to the complex Y 1 (corresponding to 2.9% by mass in terms of carbon atom in the active material) was used. An active material (LiFe 0.2 Mn 0.8 PO 4 , amount of carbon = 4.9% by mass) was obtained.

[比較例1−1]
グルコースを添加しなかった以外、実施例1−1と同様の方法でリチウム二次電池用正極活物質(LiFe0.2Mn0.8PO、炭素の量=2.0質量%)を得た。
[Comparative Example 1-1]
A positive electrode active material for a lithium secondary battery (LiFe 0.2 Mn 0.8 PO 4 , amount of carbon = 2.0 mass%) was obtained in the same manner as in Example 1-1 except that glucose was not added.

[実施例2−1]
LiOH・H2O 4.28g、Na4SiO4・nH2O 13.97gに超純水37.5mLを混合してスラリー水を得た。このスラリー水に、セルロースナノファイバー(セリッシュKY−100G、ダイセルファインケム製、繊維径4〜100nm、略称CNF)14.9g(活物質中における炭素原子換算量で8.0質量%に相当)、FeSO4・7H2O 3.92g、MnSO4・5H2O 7.93g、及びZr(SO4・4H2O 0.53gを添加し、25℃の温度に保持しながら速度400rpmにて30分間撹拌して、スラリー水Yを得た。
次いで、得られたスラリー水Yを蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、150℃で12時間攪拌しながら加熱した。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体Y(式(B)で表される酸化物の化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4、BET比表面積35m2/g、平均粒径50nm)を得た。
[Example 2-1]
LiOH · H 2 O 4.28g, a mixture of ultra-pure water 37.5mL to Na 4 SiO 4 · nH 2 O 13.97g obtain a slurry water. In this slurry water, 14.9 g of cellulose nanofiber (Cerish KY-100G, manufactured by Daicel Finechem, fiber diameter 4 to 100 nm, abbreviation CNF) (corresponding to 8.0% by mass in terms of carbon atom in the active material), FeSO 4 · 7H 2 O 3.92g, was added MnSO 4 · 5H 2 O 7.93g, and Zr a (SO 4) 2 · 4H 2 O 0.53g, at a speed 400rpm while maintaining the temperature of 25 ° C. 30 stirred to minutes to obtain a slurry water Y 2.
Then, the resulting slurry water Y 2 was charged into the synthesis vessel installed in a steam-heated autoclave. After the addition, the mixture was heated with stirring at 150 ° C. for 12 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 0.4 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystal was freeze-dried at −50 ° C. for 12 hours, and the composite Y 2 (the chemical composition of the oxide represented by the formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , BET specific surface area 35 m 2 / g, average particle size 50 nm).

得られた複合体Yを5.0g分取し、これにグルコース0.125g(活物質中における炭素原子換算量で1.0質量%に相当)及び水5mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で650℃で1時間焼成して、リチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=9.0質量%)を得た。 The resulting complex Y 2 was collected 5.0g fraction, which (corresponding to 1.0 wt% in terms of carbon atoms content in the active material in) glucose 0.125g and 5mL water was added and mixed 80 Dry at 12 ° C. for 12 hours, and calcined in a reducing atmosphere at 650 ° C. for 1 hour to obtain a positive electrode active material for a lithium secondary battery (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 9.0% by mass) )

[実施例2−2]
複合体Yに添加するグルコースを0.25g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例2−1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%)を得た。
[Example 2-2]
Except that the glucose to be added to the complex Y 2 was 0.25 g (corresponding to 2.0 wt% in terms of carbon atoms content in the active material), a positive electrode for a lithium secondary battery in the same manner as in Example 2-1 An active material (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 10.0 mass%) was obtained.

[実施例2−3]
複合体Yに添加するグルコースを0.375g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例2−1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.9質量%)を得た。
[Example 2-3]
Except that the glucose to be added to the complex Y 2 0.375 g (corresponding to 2.9 wt% in terms of carbon atoms content in the active material), a positive electrode for a lithium secondary battery in the same manner as in Example 2-1 An active material (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 10.9% by mass) was obtained.

[比較例2−1]
複合体Yに添加するグルコースを0.75g(活物質中における炭素原子換算量で5.7質量%に相当)とした以外、実施例2−1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=13.7質量%)を得た。
[Comparative Example 2-1]
Except that the glucose to be added to the complex Y 2 was 0.75 g (corresponding to 5.7 wt% in terms of carbon atoms content in the active material), a positive electrode for a lithium secondary battery in the same manner as in Example 2-1 An active material (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 13.7% by mass) was obtained.

[比較例2−2]
グルコースを添加しなかった以外、実施例2−1と同様の方法でリチウム二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=8.0質量%)を得た。
[Comparative Example 2-2]
A positive electrode active material for lithium secondary battery (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 8.0 mass%) was obtained in the same manner as in Example 2-1, except that glucose was not added. It was.

[実施例3−1]
NaOH 6.00g、水 90mL、及びセルロースナノファイバー5.10g(活物質中における炭素原子換算量で1.3質量%に相当)を混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 5.77gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、複合体Xを含有するスラリーXを得た。かかるスラリーXは、リン1モルに対し、3.00モルのナトリウムを含有していた。得られたスラリーに対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 1.39g、MnSO4・5H2O 9.64g、MgSO・7HO 1.24gを添加してスラリー水Yを得た。次いで、得られたスラリー水Yを蒸気加熱式オートクレーブ内に設置した、窒素ガスでパージした合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、200℃で3時間攪拌しながら加熱した。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体Y3(式(C)で表される酸化物の化学組成:NaFe0.1Mn0.8Mg0.1PO、BET比表面積15m2/g、平均粒径100nm)を得た。
[Example 3-1]
A slurry water was obtained by mixing 6.00 g of NaOH, 90 mL of water, and 5.10 g of cellulose nanofiber (corresponding to 1.3% by mass in terms of carbon atom in the active material). Next, 5.77 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting slurry water for 5 minutes while maintaining the temperature at 25 ° C., followed by stirring at a speed of 400 rpm for 12 hours. by obtain a slurry X 3 containing complex X 3. Such slurry X 3, compared per mole of phosphorus and contained sodium 3.00 mol. The obtained slurry was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 1.39 g of FeSO 4 .7H 2 O, 9.64 g of MnSO 4 .5H 2 O, MgSO 4. 7.24 g of 7H 2 O was added to obtain slurry water Y 3 . Then, the slurry water Y 3 obtained was placed in a steam-heated autoclave was charged in the synthesis vessel was purged with nitrogen gas. After the addition, the mixture was heated with stirring at 200 ° C. for 3 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 1.4 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystals were freeze-dried at −50 ° C. for 12 hours to give composite Y 3 (chemical composition of oxide represented by formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , BET specific surface area 15 m 2 / g, An average particle size of 100 nm) was obtained.

得られた複合体Y3を5.0g分取し、これにグルコース0.125g(活物質中における炭素原子換算量で1.0質量%に相当)及び水5mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で700℃で1時間焼成して、ナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO、炭素の量=2.3質量%)を得た。 5.0 g of the obtained complex Y 3 was taken, and 0.125 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 5 mL of water were added to this and mixed to obtain 80 Drying was performed at a temperature of 12 ° C. for 12 hours, and baking was performed at 700 ° C. for 1 hour in a reducing atmosphere to obtain a positive electrode active material for sodium secondary battery (NaFe 0.2 Mn 0.8 PO 4 , amount of carbon = 2.3 mass%). .

[実施例3−2]
複合体Y3に添加するグルコースを0.25g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例3−1と同様の方法でナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO、炭素の量=3.3質量%)を得た。
[Example 3-2]
A positive electrode for a sodium secondary battery in the same manner as in Example 3-1, except that the amount of glucose added to the complex Y 3 was 0.25 g (corresponding to 2.0% by mass in terms of carbon atoms in the active material). An active material (NaFe 0.2 Mn 0.8 PO 4 , amount of carbon = 3.3 mass%) was obtained.

[実施例3−3]
複合体Y3に添加するグルコースを0.375g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例3−1と同様の方法でナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO、炭素の量=4.2質量%)を得た。
[Example 3-3]
A positive electrode for a sodium secondary battery in the same manner as in Example 3-1, except that 0.375 g of glucose added to the complex Y 3 (corresponding to 2.9% by mass in terms of carbon atom in the active material) was used. An active material (NaFe 0.2 Mn 0.8 PO 4 , amount of carbon = 4.2 mass%) was obtained.

[比較例3−1]
グルコースを添加しなかった以外、実施例3−1と同様の方法でナトリウム二次電池用正極活物質(NaFe0.2Mn0.8PO、炭素の量=1.3質量%)を得た。
[Comparative Example 3-1]
A positive electrode active material for sodium secondary battery (NaFe 0.2 Mn 0.8 PO 4 , amount of carbon = 1.3 mass%) was obtained in the same manner as in Example 3-1, except that glucose was not added.

《吸着水分量の測定》
実施例1−1〜3−3及び比較例1−1〜3−1で得られた各正極活物質の吸着水分量は、下記方法にしたがって測定した。
正極活物質(複合体粒子)について、温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とし、始点から終点までの間に揮発した水分量を、カールフィッシャー水分計(MKC−610、京都電子工業(株)製)で測定し、正極活物質における吸着水分量として求めた。
結果を表1に示す。
<Measurement of adsorbed water content>
The adsorbed water content of each positive electrode active material obtained in Examples 1-1 to 3-3 and Comparative Examples 1-1 to 1-3-1 was measured according to the following method.
About the positive electrode active material (composite particle), after allowing it to stand for 1 day in an environment of a temperature of 20 ° C. and a relative humidity of 50% and adsorbing moisture until reaching equilibrium, raising the temperature to 150 ° C. and holding for 20 minutes, Furthermore, when the temperature is raised to 250 ° C. and held for 20 minutes, the start point is when the temperature rise is resumed from 150 ° C., and the end point is when the constant temperature state at 250 ° C. is finished. The amount of water that volatilized was measured with a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.) and determined as the amount of moisture adsorbed in the positive electrode active material.
The results are shown in Table 1.

Figure 2016184569
Figure 2016184569

《二次電池を用いた充放電特性の評価》
実施例1−1〜3−3及び比較例1−1〜3−1で得られた正極活物質を用い、リチウムイオン二次電池又はナトリウムイオン二次電池の正極を作製した。具体的には、得られた正極活物質、ケッチェンブラック、ポリフッ化ビニリデンを質量比75:20:5の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。
その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF(リチウムイオン二次電池の場合)又はNaPF(ナトリウムイオン二次電池の場合)を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR−2032)を製造した。
<< Evaluation of charge / discharge characteristics using secondary battery >>
Using the positive electrode active materials obtained in Examples 1-1 to 3-3 and Comparative Examples 1-1 to 1-3-1, positive electrodes of lithium ion secondary batteries or sodium ion secondary batteries were produced. Specifically, the obtained positive electrode active material, ketjen black and polyvinylidene fluoride were mixed at a mass ratio of 75: 20: 5, and N-methyl-2-pyrrolidone was added thereto and kneaded sufficiently. A positive electrode slurry was prepared. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours.
Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. For the electrolyte, LiPF 6 (in the case of a lithium ion secondary battery) or NaPF 6 (in the case of a sodium ion secondary battery) is mixed in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 1. Those dissolved at a concentration of 1 mol / L were used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type secondary battery (CR-2032).

製造した二次電池を用い、充放電試験を行った。リチウムイオン電池の場合には、充電条件を電流1CA(330mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(330mA/g)、終止電圧1.5Vの定電流放電として、1CAにおける放電容量を求めた。ナトリウムイオン電池の場合には、充電条件を電流1CA(154mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(154mA/g)、終止電圧2.0Vの定電流放電として、1CAにおける放電容量を求めた。さらに、同様の充放電条件において、50サイクル繰り返し試験を行い、下記式(1)により容量保持率(%)を求めた。なお、充放電試験は全て30℃で行った。
容量保持率(%)=(50サイクル後の放電容量)/(1サイクル後の放
電容量)×100 ・・・(1)
結果を表2に示す。
A charge / discharge test was performed using the manufactured secondary battery. In the case of a lithium ion battery, the charging condition is a constant current and constant voltage charge with a current of 1 CA (330 mA / g) and a voltage of 4.5 V, the discharge condition is 1 CA (330 mA / g), and a constant current discharge with a final voltage of 1.5 V. As a result, the discharge capacity at 1 CA was obtained. In the case of a sodium ion battery, the charging conditions are a constant current and constant voltage charging with a current of 1 CA (154 mA / g) and a voltage of 4.5 V, the discharging conditions are a constant current discharge of 1 CA (154 mA / g) and a final voltage of 2.0 V. As a result, the discharge capacity at 1 CA was obtained. Furthermore, 50 cycles were repeatedly tested under the same charge / discharge conditions, and the capacity retention rate (%) was determined by the following formula (1). All charge / discharge tests were performed at 30 ° C.
Capacity retention rate (%) = (discharge capacity after 50 cycles) / (discharge capacity after 1 cycle) × 100 (1)
The results are shown in Table 2.

Figure 2016184569
Figure 2016184569

上記結果より、実施例の正極活物質は、比較例の正極活物質に比して、確実に吸着水分量を低減することができるとともに、得られる電池においても優れた性能を発揮できることがわかる。   From the above results, it can be seen that the positive electrode active material of the example can surely reduce the amount of adsorbed moisture as compared with the positive electrode active material of the comparative example, and can also exhibit excellent performance in the obtained battery.

Claims (7)

少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
Li2FeMnSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
NaFeMnPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバー由来の炭素とを含む複合体に、0.1〜4質量%の水溶性炭素材料由来の炭素が担持してなる二次電池用正極活物質。
The following formula (A), (B) or (C) containing at least iron or manganese:
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 ··· (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
A positive electrode active material for a secondary battery in which 0.1 to 4% by mass of carbon derived from a water-soluble carbon material is supported on a composite containing an oxide represented by the formula (1) and carbon derived from cellulose nanofibers.
酸化物と、セルロースナノファイバー由来の炭素とを含む複合体と水溶性炭素材料との湿式混合物の焼成物である請求項1に記載の二次電池用正極活物質。   The positive electrode active material for a secondary battery according to claim 1, which is a fired product of a wet mixture of an oxide, a composite containing cellulose nanofiber-derived carbon, and a water-soluble carbon material. セルロースナノファイバー由来の炭素の原子換算量が、0.5〜15質量%である請求項1又は2に記載の二次電池用正極活物質。   The positive electrode active material for a secondary battery according to claim 1 or 2, wherein the amount of carbon derived from cellulose nanofibers is 0.5 to 15% by mass. 水溶性炭素材料が、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上である請求項1〜3のいずれか1項に記載の二次電池用正極活物質。   The positive electrode active material for a secondary battery according to any one of claims 1 to 3, wherein the water-soluble carbon material is one or more selected from saccharides, polyols, polyethers, and organic acids. 酸化物とセルロースナノファイバー由来の炭素とを含む複合体が、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつセルロースナノファイバーを含むスラリー水の、水熱反応物である請求項1〜4のいずれか1項に記載の二次電池用正極活物質。   A composite containing an oxide and carbon derived from cellulose nanofibers includes a lithium compound or sodium compound, a phosphoric acid compound or silicic acid compound, and at least an iron compound or a manganese compound, and slurry water containing cellulose nanofibers, It is a hydrothermal reaction material, The positive electrode active material for secondary batteries of any one of Claims 1-4. 少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
Li2FeMnSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
NaFeMnPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物と、セルロースナノファイバー由来の炭素とを含む複合体に、0.1〜4質量%の水溶性炭素材料由来の炭素が担持してなる二次電池用正極活物質の製造方法であって、
リチウム化合物又はナトリウム化合物と、セルロースナノファイバーを含む混合物Xに、リン酸化合物又はケイ酸化合物を混合して複合体Xを得る工程(I)、
得られた複合体Xと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水Yを水熱反応に付して複合体Yを得る工程(II)、並びに
得られた複合体Yに、複合体100質量部に対して0.1〜16質量部の水溶性炭素材料を添加して湿式混合し、焼成する工程(III)
を備える二次電池用正極活物質の製造方法。
The following formula (A), (B) or (C) containing at least iron or manganese:
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 ··· (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
Production of a positive electrode active material for a secondary battery in which 0.1 to 4% by mass of carbon derived from a water-soluble carbon material is supported on a composite comprising an oxide represented by formula (II) and carbon derived from cellulose nanofibers. A method,
Step (I) of obtaining a composite X by mixing a phosphoric acid compound or a silicic acid compound with a mixture X containing a lithium compound or a sodium compound and cellulose nanofibers,
Step (II) of obtaining the complex Y by subjecting the obtained complex X and slurry water Y containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction, and the obtained complex Y Step (III) of adding 0.1 to 16 parts by mass of water-soluble carbon material to 100 parts by mass of the composite, wet-mixing, and firing
A method for producing a positive electrode active material for a secondary battery.
水溶性炭素材料が、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上である請求項6に記載の二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a secondary battery according to claim 6, wherein the water-soluble carbon material is one or more selected from saccharides, polyols, polyethers, and organic acids.
JP2015177532A 2015-03-09 2015-09-09 Positive electrode active material for secondary battery and method for producing the same Active JP6023295B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580077600.0A CN107408693B (en) 2015-03-09 2015-09-17 Positive electrode active material for secondary battery and method for producing same
PCT/JP2015/076384 WO2016143171A1 (en) 2015-03-09 2015-09-17 Positive electrode active substance for secondary cell and method for producing same
US15/556,936 US11646405B2 (en) 2015-03-09 2015-09-17 Positive electrode active substance for secondary cell and method for producing same
KR1020217007063A KR102289992B1 (en) 2015-03-09 2015-09-17 Positive electrode active substance for secondary cell and method for producing same
TW104130842A TWI670894B (en) 2015-03-09 2015-09-17 Positive electrode active material for secondary battery and method for producing same
KR1020177023595A KR20170127422A (en) 2015-03-09 2015-09-17 Cathode active material for secondary battery and manufacturing method thereof
EP15884656.8A EP3270447B1 (en) 2015-03-09 2015-09-17 Positive electrode active substance for secondary cell and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015064391 2015-03-26
JP2015064391 2015-03-26

Publications (2)

Publication Number Publication Date
JP2016184569A true JP2016184569A (en) 2016-10-20
JP6023295B2 JP6023295B2 (en) 2016-11-09

Family

ID=57243059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177532A Active JP6023295B2 (en) 2015-03-09 2015-09-09 Positive electrode active material for secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6023295B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322730B1 (en) * 2017-01-06 2018-05-09 太平洋セメント株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same
JP6322729B1 (en) * 2017-01-06 2018-05-09 太平洋セメント株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2018147854A (en) * 2017-03-09 2018-09-20 太平洋セメント株式会社 Positive electrode active material for nano-array-like lithium ion secondary battery and manufacturing method of the same
JP2018156941A (en) * 2017-03-16 2018-10-04 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
WO2018221263A1 (en) * 2017-05-29 2018-12-06 太平洋セメント株式会社 Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery
CN115394998A (en) * 2022-09-29 2022-11-25 大连工业大学 Application of molybdenum-doped nano cellulose-based manganese lithium silicate as positive electrode active material in lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225471A (en) * 2012-03-23 2013-10-31 Taiheiyo Cement Corp Cathode active material for secondary battery and method for producing the same
JP2014093171A (en) * 2012-11-02 2014-05-19 Hitachi Metals Ltd Method of producing positive electrode active material for lithium secondary battery and lithium secondary battery, positive electrode for lithium secondary battery and positive electrode active material for lithium secondary battery
JP2014241229A (en) * 2013-06-11 2014-12-25 電気化学工業株式会社 Conductive composite particle, secondary battery positive electrode arranged by use thereof, and secondary battery
WO2015030401A1 (en) * 2013-08-28 2015-03-05 주식회사 엘지화학 Anode active material containing lithium transition metal phosphate particles, preparation method therefor, and lithium secondary battery containing same
WO2016047491A1 (en) * 2014-09-26 2016-03-31 太平洋セメント株式会社 Positive-electrode active material for secondary cell, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225471A (en) * 2012-03-23 2013-10-31 Taiheiyo Cement Corp Cathode active material for secondary battery and method for producing the same
JP2014093171A (en) * 2012-11-02 2014-05-19 Hitachi Metals Ltd Method of producing positive electrode active material for lithium secondary battery and lithium secondary battery, positive electrode for lithium secondary battery and positive electrode active material for lithium secondary battery
JP2014241229A (en) * 2013-06-11 2014-12-25 電気化学工業株式会社 Conductive composite particle, secondary battery positive electrode arranged by use thereof, and secondary battery
WO2015030401A1 (en) * 2013-08-28 2015-03-05 주식회사 엘지화학 Anode active material containing lithium transition metal phosphate particles, preparation method therefor, and lithium secondary battery containing same
WO2016047491A1 (en) * 2014-09-26 2016-03-31 太平洋セメント株式会社 Positive-electrode active material for secondary cell, and method for manufacturing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322729B1 (en) * 2017-01-06 2018-05-09 太平洋セメント株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2018113101A (en) * 2017-01-06 2018-07-19 太平洋セメント株式会社 Positive electrode active material for lithium ion secondary battery and production method thereof
JP2018113102A (en) * 2017-01-06 2018-07-19 太平洋セメント株式会社 Positive electrode active material for lithium ion secondary battery and production method thereof
JP6322730B1 (en) * 2017-01-06 2018-05-09 太平洋セメント株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2021052007A (en) * 2017-03-09 2021-04-01 太平洋セメント株式会社 Positive electrode active material for nanoarray lithium-ion secondary battery
JP2018147854A (en) * 2017-03-09 2018-09-20 太平洋セメント株式会社 Positive electrode active material for nano-array-like lithium ion secondary battery and manufacturing method of the same
JP2018156941A (en) * 2017-03-16 2018-10-04 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP2018156940A (en) * 2017-03-16 2018-10-04 太平洋セメント株式会社 Solid electrolyte for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP7061101B2 (en) 2017-03-16 2022-04-27 太平洋セメント株式会社 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery
JP7061100B2 (en) 2017-03-16 2022-04-27 太平洋セメント株式会社 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP2019204800A (en) * 2017-03-16 2019-11-28 太平洋セメント株式会社 Solid electrolyte for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP2019212637A (en) * 2017-03-16 2019-12-12 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
WO2018220972A1 (en) * 2017-05-29 2018-12-06 太平洋セメント株式会社 Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery
US10868295B2 (en) 2017-05-29 2020-12-15 Taiheiyo Cement Corporation Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery
JPWO2018221263A1 (en) * 2017-05-29 2019-06-27 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery, secondary battery using the same, and method for manufacturing positive electrode active material composite for lithium ion secondary battery
WO2018221263A1 (en) * 2017-05-29 2018-12-06 太平洋セメント株式会社 Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery
CN115394998A (en) * 2022-09-29 2022-11-25 大连工业大学 Application of molybdenum-doped nano cellulose-based manganese lithium silicate as positive electrode active material in lithium ion battery

Also Published As

Publication number Publication date
JP6023295B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6023295B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6042515B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6042511B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6357193B2 (en) Polyanionic positive electrode active material and method for producing the same
JP2013246936A (en) Positive-electrode active material for nonaqueous secondary batteries
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP6042514B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6163578B1 (en) Method for producing polyanion positive electrode active material
US11646405B2 (en) Positive electrode active substance for secondary cell and method for producing same
TWI676592B (en) Positive electrode active material for secondary battery and method for producing same
WO2016143171A1 (en) Positive electrode active substance for secondary cell and method for producing same
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP2016081865A (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR102385969B1 (en) Cathode active material for secondary battery and manufacturing method thereof
JP6307133B2 (en) Polyanionic positive electrode active material and method for producing the same
JP6273327B1 (en) Polyanionic positive electrode active material granule and method for producing the same
JP2013077517A (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
JP6322730B1 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP5798606B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP6042513B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR102336781B1 (en) Cathode active material for secondary battery and manufacturing method thereof
JP6322729B1 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6023295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250