JP2016183690A - safety valve - Google Patents

safety valve Download PDF

Info

Publication number
JP2016183690A
JP2016183690A JP2015063014A JP2015063014A JP2016183690A JP 2016183690 A JP2016183690 A JP 2016183690A JP 2015063014 A JP2015063014 A JP 2015063014A JP 2015063014 A JP2015063014 A JP 2015063014A JP 2016183690 A JP2016183690 A JP 2016183690A
Authority
JP
Japan
Prior art keywords
hole
safety valve
scattering
container
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063014A
Other languages
Japanese (ja)
Inventor
前田 晃
Akira Maeda
晃 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015063014A priority Critical patent/JP2016183690A/en
Publication of JP2016183690A publication Critical patent/JP2016183690A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a safety valve which inhibits high speed scattering of a massive closing material during operation.SOLUTION: A safety valve 1 includes: a body 100 including a through hole 110 which allows an interior part of a pipeline or container, in which a refrigerant is enclosed, and an exterior part to communicate with each other; a closing material 300 which is made of a material that gets soft at a predetermined temperature or higher, inserted into the through hole 110 of the body 100, and closes the through hole 110; and a scattering inhibition member 200 which is inserted into the through hole 110 of the body 100. The scattering inhibition member 200 includes: a shaft part 210 which is inserted into the through hole 110 and longer than the through hole 110; a head part 220 which is provided at the shaft part 210 located at an exterior part side of the pipeline or container and has an outer shape larger than a cross section of the shaft part 210 which is perpendicular to a longitudinal direction; and a tail part 230 which is provided at the shaft part 210 located at an interior part side of the pipeline or container and has an outer shape larger than an inner shape of the through hole 110.SELECTED DRAWING: Figure 1

Description

この発明は、安全弁に関するものである。   The present invention relates to a safety valve.

従来の安全弁においては、流路に接続され閉塞収容部(本体)及び金属製閉塞材を備え、閉塞材収容部(本体)が流路と流路の外部とを連通させる連通路を有し、金属製閉塞材が連通路内に収容され、連通路を閉塞するものが知られている(例えば、特許文献1参照)。   In the conventional safety valve, it is connected to the flow path and includes a blocking housing portion (main body) and a metal blocking material, and the blocking material storage portion (main body) has a communication path that allows the flow path and the outside of the flow path to communicate with each other. It is known that a metal blocking material is accommodated in a communication path and closes the communication path (see, for example, Patent Document 1).

特開2013−160355号公報JP 2013-160355 A

特許文献1に示された従来における安全弁は、作動する際に金属製閉塞材が溶融して連通路を開放するものである。このような従来の安全弁は、例えば図6に示すように、作動時に金属製の閉塞材300が部分溶融して軟化し、軟化した閉塞材300が冷媒等の圧力で塑性変形して安全弁の本体100から塊状で高速で飛び出す(飛散する)可能性がある。   The conventional safety valve shown in Patent Document 1 is one in which the metal blocking material is melted to open the communication passage when operated. In such a conventional safety valve, as shown in FIG. 6, for example, the metal closure member 300 is partially melted and softened during operation, and the softening closure member 300 is plastically deformed by the pressure of a refrigerant or the like to cause the body of the safety valve. There is a possibility of jumping out from 100 at high speed.

この発明は、このような課題を解決するためになされたもので、安全弁の作動時に塊状の閉塞材が高速で飛散することを抑制することができる安全弁を得るものである。   This invention was made in order to solve such a subject, and obtains the safety valve which can suppress that a block-like obstruction | occlusion material scatters at high speed at the time of the action | operation of a safety valve.

この発明に係る安全弁においては、内部に冷媒が封入された配管又は容器の内部と外部とを通じる貫通孔が形成された本体と、予め定められた温度以上で軟化する材料からなり、前記本体の前記貫通孔内に挿入されて前記貫通孔を閉塞する閉塞材と、前記本体の前記貫通孔内に通された飛散抑制部材と、を備え、前記飛散抑制部材は、前記貫通孔内に通され、前記貫通孔より長い軸部と、前記配管又は容器の外部側の前記軸部に設けられ、前記軸部の長手方向に垂直な断面より大きな外形を有する頭部と、前記配管又は容器の内部側の前記軸部に設けられ、前記貫通孔の内形より大きな外形を有する尾部と、を備えた構成とする。   In the safety valve according to the present invention, the safety valve according to the present invention is composed of a main body in which a through-hole that passes through the inside or outside of a pipe or container in which a refrigerant is sealed, and a material that softens at a predetermined temperature or more, A blocking material that is inserted into the through hole and closes the through hole; and a scattering suppression member that is passed through the through hole of the main body, and the scattering suppression member is passed through the through hole. A shaft portion longer than the through-hole, a head portion provided on the shaft portion on the outside of the pipe or the container, and having an outer shape larger than a cross section perpendicular to the longitudinal direction of the shaft portion, and the interior of the pipe or the container And a tail portion provided on the shaft portion on the side and having an outer shape larger than the inner shape of the through hole.

この発明に係る安全弁においては、安全弁の作動時に塊状の閉塞材が高速で飛散することを抑制することができるという効果を奏する。   In the safety valve according to the present invention, there is an effect that it is possible to suppress the massive blockage material from being scattered at a high speed when the safety valve is operated.

この発明の実施の形態1に係る安全弁の断面図である。It is sectional drawing of the safety valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る安全弁が備える飛散抑制部材の斜視図である。It is a perspective view of the scattering suppression member with which the safety valve concerning Embodiment 1 of this invention is provided. この発明の実施の形態1に係る安全弁の本体と飛散抑制部材の大きさの関係を模式的に説明する図である。It is a figure which illustrates typically the relationship between the magnitude | size of the main body of the safety valve which concerns on Embodiment 1 of this invention, and a scattering suppression member. この発明の実施の形態1に係る安全弁の作動実験に用いる装置を説明する図である。It is a figure explaining the apparatus used for the action | operation experiment of the safety valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る安全弁の作動時の様子を説明する図である。It is a figure explaining the mode at the time of the action | operation of the safety valve which concerns on Embodiment 1 of this invention. 従来の安全弁の作動時の様子を説明する図である。It is a figure explaining the mode at the time of the action | operation of the conventional safety valve.

この発明を添付の図面を参照しながら説明する。各図を通じて同符号は同一部分又は相当部分を示している。同符号の部分についての重複説明は適宜に簡略化あるいは省略する。   The present invention will be described with reference to the accompanying drawings. The same reference numerals denote the same or corresponding parts throughout the drawings. The overlapping description of the same reference numerals will be simplified or omitted as appropriate.

実施の形態1.
図1から図5は、この発明の実施の形態1に係るもので、図1は安全弁の断面図、図2は安全弁が備える飛散抑制部材の斜視図、図3は安全弁の本体と飛散抑制部材の大きさの関係を模式的に説明する図、図4は安全弁の作動実験に用いる装置を説明する図、図5は安全弁の作動時の様子を説明する図である。
Embodiment 1 FIG.
1 to 5 relate to Embodiment 1 of the present invention, FIG. 1 is a sectional view of a safety valve, FIG. 2 is a perspective view of a scattering suppression member provided in the safety valve, and FIG. 3 is a main body of the safety valve and a scattering suppression member. FIG. 4 is a diagram for explaining a device used for an operation experiment of a safety valve, and FIG. 5 is a diagram for explaining a state during operation of the safety valve.

図1に示すこの発明に係る安全弁1は、安全弁の一形式である液栓式安全弁、いわゆる可溶栓である。安全弁1は、内部に冷媒が封入された配管又は容器に取り付けられる。安全弁1の本体100には、貫通孔110が形成されている。貫通孔110は、本体100が取り付けられた配管又は容器の内部と外部とを通じている。ここでは、貫通孔110は、本体100の中央に設けられている。また、貫通孔110の長手方向に垂直な断面形状は、例えば円形であるとする。   A safety valve 1 according to the present invention shown in FIG. 1 is a so-called fusible stopper, which is a liquid stopper type safety valve that is a type of safety valve. The safety valve 1 is attached to a pipe or a container in which a refrigerant is sealed. A through hole 110 is formed in the main body 100 of the safety valve 1. The through hole 110 passes through the inside or outside of the pipe or container to which the main body 100 is attached. Here, the through hole 110 is provided in the center of the main body 100. The cross-sectional shape perpendicular to the longitudinal direction of the through hole 110 is, for example, a circle.

安全弁1は、飛散抑制部材200を備えている。飛散抑制部材200は、本体100の貫通孔110内に通されて設けられている。本体100の貫通孔110内には、閉塞材300も挿入されている。閉塞材300は貫通孔110を閉塞している。   The safety valve 1 includes a scattering suppression member 200. The scattering suppression member 200 is provided to pass through the through hole 110 of the main body 100. A blocking material 300 is also inserted into the through hole 110 of the main body 100. The closing material 300 closes the through hole 110.

貫通孔110内には飛散抑制部材200と閉塞材300とが入れられているため、より正確に言えば、閉塞材300は、飛散抑制部材200を除いた貫通孔110内に充填されている。別の言い方をすれば、貫通孔110内に挿入された閉塞材300内に飛散抑制部材200(の一部)が埋め入れられているとも言うことができる。   Since the scattering suppressing member 200 and the blocking material 300 are placed in the through hole 110, more precisely, the blocking material 300 is filled in the through hole 110 excluding the scattering suppressing member 200. In other words, it can also be said that the scattering suppressing member 200 (a part thereof) is embedded in the blocking material 300 inserted into the through hole 110.

閉塞材300は、予め定められた温度以上で軟化する材料からなる。閉塞材300を構成する材料として、例えば、融点の低い金属、あるいは、はんだ等の可溶合金等を用いることができる。閉塞材300は、予め定められた温度より低い温度環境下では固体であり、予め定められた温度以上となると溶融する。閉塞材300が軟化する温度は、具体的に例えば、65〜75℃程度に設定される。   The closing material 300 is made of a material that softens at a predetermined temperature or higher. As a material constituting the closing material 300, for example, a metal having a low melting point or a soluble alloy such as solder can be used. The plugging material 300 is solid under a temperature environment lower than a predetermined temperature, and melts when the temperature becomes equal to or higher than the predetermined temperature. Specifically, the temperature at which the closing material 300 is softened is set to about 65 to 75 ° C., for example.

閉塞材300の配管又は容器の内部側の面には、保護膜400が設けられている。前述したように配管又は容器の内部には冷媒が封入されている。閉塞材300として錫を含むはんだ合金を用いた場合、閉塞材300がフルオロカーボン等の冷媒と反応し腐食してしまう可能性がある。そこで、閉塞材300の冷媒と面する側に、保護膜400を形成しておくことで、冷媒と閉塞材300との接触及び反応を防ぐことができる。このような目的を達するため、保護膜400は、例えばフッ化樹脂等の、フルオロカーボン等の冷媒との反応性が低い(耐腐食性が高い)ものを用いる。   A protective film 400 is provided on the inner surface of the piping or container of the closing material 300. As described above, the refrigerant is sealed in the pipe or the container. When a solder alloy containing tin is used as the occluding material 300, the occluding material 300 may react with a refrigerant such as fluorocarbon and corrode. Therefore, by forming the protective film 400 on the side of the plugging material 300 facing the refrigerant, contact and reaction between the refrigerant and the plugging material 300 can be prevented. In order to achieve such an object, a protective film 400 having a low reactivity (high corrosion resistance) with a refrigerant such as a fluorocarbon such as a fluororesin is used.

次に、図2を参照しながら、飛散抑制部材200の構成について詳しく説明する。この図2に示すように、飛散抑制部材200は、軸部210、頭部220及び尾部230を備えている。軸部210は、細長い円柱状すなわち軸状の部材である。軸部210の一端には頭部220が設けられる。頭部220は、例えば、先端が切り取られた切頭円錐状(円錐台状)を呈する。ここでは、頭部220は、軸部210に近いほど幅広で、軸部210から遠ざかるほど幅が狭くなる向きに設けられている。   Next, the configuration of the scattering suppressing member 200 will be described in detail with reference to FIG. As shown in FIG. 2, the scattering suppression member 200 includes a shaft portion 210, a head portion 220, and a tail portion 230. The shaft part 210 is an elongated columnar member, that is, a shaft member. A head portion 220 is provided at one end of the shaft portion 210. The head 220 has, for example, a truncated cone shape (conical frustum shape) with the tip cut off. Here, the head 220 is provided in such a direction that it is wider as it is closer to the shaft portion 210 and is narrower as it is farther from the shaft portion 210.

軸部210の他端には尾部230が設けられる。尾部230は、薄い円板状を呈する。尾部230には、尾部貫通孔231が形成されている。尾部貫通孔231は1以上設けられ、ここでは、4つの尾部貫通孔231が設けられている。それぞれの尾部貫通孔231は、尾部230を軸部210の長手方向に貫通している。   A tail portion 230 is provided at the other end of the shaft portion 210. The tail 230 has a thin disk shape. A tail through hole 231 is formed in the tail 230. One or more tail through holes 231 are provided, and here, four tail through holes 231 are provided. Each tail portion through-hole 231 passes through the tail portion 230 in the longitudinal direction of the shaft portion 210.

次に、図3を参照しながら、本体100に取り付けられた状態の飛散抑制部材200と本体100との位置関係、及び、両者各部の大きさの関係について説明する。前述したように、本体100の中央には貫通孔110が形成されている。この貫通孔110は、安全弁1が取り付けられた配管又は容器の内部側(以下、単に内部側という)と前記配管又は容器の外部側(同じく、以下、単に外部側という)と貫通している。   Next, the positional relationship between the scattering suppressing member 200 and the main body 100 attached to the main body 100 and the relationship between the sizes of the respective parts will be described with reference to FIG. As described above, the through hole 110 is formed in the center of the main body 100. The through-hole 110 passes through the inner side of the pipe or container (hereinafter simply referred to as the inner side) to which the safety valve 1 is attached and the outer side of the pipe or container (hereinafter also referred to simply as the outer side).

貫通孔110の内部側及び外部側は、貫通孔110よりも孔の内径が広げられている。すなわち、貫通孔110の内部側の端部には内部側段差部111が形成されている。そして、貫通孔110の内部側には、入口部120が形成される。また、貫通孔110の外部側の端部には外部側段差部112が形成されている。そして、貫通孔110の外部側には、出口部130が形成される。   The inner diameter and the outer side of the through hole 110 are wider than the through hole 110. That is, the inner side stepped portion 111 is formed at the inner end of the through hole 110. An inlet 120 is formed inside the through hole 110. An external step 112 is formed at the outer end of the through hole 110. An outlet 130 is formed outside the through hole 110.

入口部120の内形は貫通孔110の内形よりも大きい。そして、出口部130の内形も貫通孔110の内形よりも大きい。また、ここでは、入口部120の内形は出口部130の内形よりも小さい。ここで、貫通孔110の貫通方向に直交する方向の出口部130の寸法をA、貫通孔110の貫通方向に直交する方向の寸法をB、貫通孔110の貫通方向に直交する方向の入口部120の寸法をCとする。そうすると、前述した貫通孔110、入口部120及び出口部130の内形の開係は、A>B、C>B、かつ、C>Aとなる。したがって、これらをまとめると、A、B及びCは、C>A>Bの関係にある。   The inner shape of the inlet portion 120 is larger than the inner shape of the through hole 110. The inner shape of the outlet portion 130 is also larger than the inner shape of the through hole 110. Here, the inner shape of the inlet portion 120 is smaller than the inner shape of the outlet portion 130. Here, the dimension of the outlet portion 130 in the direction orthogonal to the penetration direction of the through hole 110 is A, the dimension of the direction orthogonal to the penetration direction of the through hole 110 is B, and the inlet portion in the direction orthogonal to the penetration direction of the through hole 110. Let 120 be the dimension C. Then, the opening of the inner shape of the through hole 110, the inlet portion 120, and the outlet portion 130 described above is A> B, C> B, and C> A. Therefore, when these are put together, A, B, and C have a relationship of C> A> B.

前述したように、飛散抑制部材200は、本体100の貫通孔110内に通される。この際、飛散抑制部材200の軸部210が貫通孔110内に配置される。したがって、軸部210の外形は、貫通孔110の内形より小さい。すなわち、軸部210の長手方向に垂直な断面は、貫通孔110の貫通方向に垂直な断面より小さい。ここでは、軸部210の断面及び貫通孔110の断面のいずれも円形である。したがって、軸部210の長手方向に直交する方向の寸法をbとすると、b<Bである。また、軸部210は貫通孔110よりも長い。すなわち、軸部210の長手方向の長さ寸法をd、貫通孔110の貫通方向の長さ寸法をDとすると、d>Dである。   As described above, the scattering suppressing member 200 is passed through the through hole 110 of the main body 100. At this time, the shaft portion 210 of the scattering suppressing member 200 is disposed in the through hole 110. Therefore, the outer shape of the shaft portion 210 is smaller than the inner shape of the through hole 110. That is, the cross section perpendicular to the longitudinal direction of the shaft portion 210 is smaller than the cross section perpendicular to the through direction of the through hole 110. Here, both the cross section of the shaft portion 210 and the cross section of the through hole 110 are circular. Therefore, if the dimension in the direction orthogonal to the longitudinal direction of the shaft portion 210 is b, b <B. The shaft portion 210 is longer than the through hole 110. That is, d> D where d is the length dimension of the shaft portion 210 in the longitudinal direction and D is the length dimension of the through hole 110 in the penetration direction.

前述したように、軸部210の一端には頭部220が設けられ、軸部210の他端には尾部230が設けられている。そして、軸部210は、頭部220が外部側、尾部230が内部側となる向きに、貫通孔110を通されて配置される。したがって、頭部220は出口部130の空間内に配置され、尾部230は入口部120の空間内に配置される。このように、外部側の軸部210に頭部220が設けられ、内部側の軸部210に尾部230が設けられている。   As described above, the head portion 220 is provided at one end of the shaft portion 210, and the tail portion 230 is provided at the other end of the shaft portion 210. The shaft portion 210 is disposed through the through-hole 110 so that the head portion 220 is on the outer side and the tail portion 230 is on the inner side. Therefore, the head portion 220 is disposed in the space of the outlet portion 130, and the tail portion 230 is disposed in the space of the inlet portion 120. Thus, the head portion 220 is provided on the outer shaft portion 210, and the tail portion 230 is provided on the inner shaft portion 210.

そして、頭部220は、軸部210の長手方向に垂直な断面より大きな外形を有している。すなわち、軸部210の長手方向に直交する方向の頭部220の寸法をaとすると、a>bである。ここでは、さらに、頭部220は、貫通孔110の内形より大きな外形を有している。すなわち、a>Bでもある。なお、頭部220は出口部130内にあるため、a<Aである。   The head 220 has an outer shape larger than a cross section perpendicular to the longitudinal direction of the shaft portion 210. That is, if the dimension of the head 220 in the direction orthogonal to the longitudinal direction of the shaft portion 210 is a, a> b. Here, the head 220 further has an outer shape larger than the inner shape of the through hole 110. That is, a> B. In addition, since the head 220 is in the exit part 130, a <A.

また、尾部230は、貫通孔110の内形より大きな外形を有している。すなわち、軸部210の長手方向に直交する方向の尾部230の寸法をcとすると、c>Bである。なお、頭部220は入口部120内にあるため、c<Cも成立している。   Further, the tail 230 has an outer shape larger than the inner shape of the through hole 110. That is, if the dimension of the tail portion 230 in the direction orthogonal to the longitudinal direction of the shaft portion 210 is c, c> B. Since head 220 is in entrance 120, c <C is also established.

本体100及び飛散抑制部材200を以上のような位置及び大きさの関係にした上で、貫通孔110内に閉塞材300が挿入される。閉塞材300は、貫通孔110の内壁と飛散抑制部材200との間の隙間部分の全てと、入口部120の大部分とに充填され、図1に示す状態となる。   The closing material 300 is inserted into the through hole 110 after the main body 100 and the scattering suppressing member 200 are in the above-described position and size relationship. The closing member 300 is filled in all of the gaps between the inner wall of the through hole 110 and the scattering suppressing member 200 and most of the inlet 120, and is in the state shown in FIG.

このようにして構成された安全弁1の動作について次に説明する。まず、図4に示すのは、安全弁1の作動実験を行うための装置である。この図4に示すように、プール501内には、水502が入れられている。水502中には、ヒータ503が入れられている。ヒータ503はスライダック504に接続されている。スライダック504を操作してヒータ503に流れる電流を変化させ、ヒータ503の発熱量を調節することにより、水502の温度を調節することができる。   Next, the operation of the safety valve 1 configured as described above will be described. First, FIG. 4 shows an apparatus for performing an operation experiment of the safety valve 1. As shown in FIG. 4, water 502 is placed in the pool 501. A heater 503 is placed in the water 502. The heater 503 is connected to the slidac 504. The temperature of the water 502 can be adjusted by operating the slider 504 to change the current flowing through the heater 503 and adjusting the amount of heat generated by the heater 503.

ボンベ505内には、冷媒が封入されている。ボンベ505には減圧弁506を介して銅配管507の一端が接続されている。銅配管507の他端には実験対象である安全弁1が接続されている。そして、安全弁1は、プール501の水502中に沈められている。この際、安全弁1の向きは、本体100の外部側すなわち出口部130が下方となるようにすることが望ましい。なお、安全弁1を従来の可溶栓に交換すれば、従来の可溶栓についても作動実験を行うことができる。   A refrigerant is sealed in the cylinder 505. One end of a copper pipe 507 is connected to the cylinder 505 through a pressure reducing valve 506. The other end of the copper pipe 507 is connected to the safety valve 1 that is the subject of the experiment. The safety valve 1 is submerged in the water 502 of the pool 501. At this time, it is desirable that the direction of the safety valve 1 is such that the outer side of the main body 100, that is, the outlet 130 is downward. In addition, if the safety valve 1 is replaced with a conventional fusible stopper, an operation experiment can be performed for the conventional fusible stopper.

このように構成された装置においてプール501内の水502の温度が均一になるように適宜に攪拌しながらスライダック504を操作し、水502の温度を徐々に上昇させていく。そして、安全弁1の作動温度を少し上回った状態で維持する。すると、安全弁1が作動し、閉塞材300が安全弁1から噴出される状況を観察することができる。また、安全弁1から噴出される泡の様子から、安全弁1から放出される冷媒の状況を観察することもできる。   In the apparatus configured as described above, the temperature of the water 502 is gradually increased by operating the slidac 504 while stirring appropriately so that the temperature of the water 502 in the pool 501 becomes uniform. Then, the operating temperature of the safety valve 1 is maintained slightly higher. Then, the situation where the safety valve 1 operates and the blocking material 300 is ejected from the safety valve 1 can be observed. Further, the state of the refrigerant discharged from the safety valve 1 can also be observed from the state of bubbles ejected from the safety valve 1.

この装置を用いて観察した安全弁1の作動時の様子を図1及び図5を参照しながら説明する。まず、安全弁1の作動前の状態は、図1に示した通りである。ここで、前述したように、飛散抑制部材200の軸部210は貫通孔110より長く、かつ、頭部220の寸法a及び尾部230の寸法cは貫通孔110の寸法Bより大きい。このため、閉塞材300が貫通孔110に充填されていない状態では、飛散抑制部材200は貫通孔110の貫通方向に沿って一定量だけ前後に移動することが可能である。なお、飛散抑制部材200が移動可能な量は、軸部210と貫通孔110の長さの差分(d−D)である。   The state at the time of the action | operation of the safety valve 1 observed using this apparatus is demonstrated, referring FIG.1 and FIG.5. First, the state before the operation of the safety valve 1 is as shown in FIG. Here, as described above, the shaft portion 210 of the scattering suppressing member 200 is longer than the through hole 110, and the dimension “a” of the head portion 220 and the dimension “c” of the tail portion 230 are larger than the dimension “B” of the through hole 110. For this reason, in a state where the blocking material 300 is not filled in the through hole 110, the scattering suppression member 200 can move back and forth by a certain amount along the through direction of the through hole 110. Note that the amount by which the scattering suppressing member 200 can move is the difference (d−D) between the lengths of the shaft portion 210 and the through hole 110.

図1に示すように、安全弁1の作動前には、飛散抑制部材200は移動可能な範囲でなるべく内部側の位置に配置されている。そして、閉塞材300は入口部120にまで充填され、飛散抑制部材200の尾部230は閉塞材300内に埋め込まれている。   As shown in FIG. 1, before the safety valve 1 is actuated, the scattering suppression member 200 is arranged at a position on the inner side as much as possible within a movable range. Then, the closing material 300 is filled up to the inlet portion 120, and the tail portion 230 of the scattering suppressing member 200 is embedded in the closing material 300.

安全弁1の周囲の温度(図4の実験装置においては水502の温度)が安全弁1の作動温度以上となると、閉塞材300が軟化する。閉塞材300が軟化し、安全弁1の内部側の冷媒の圧力に抗することができなくなると、冷媒の圧力により保護膜400が破れて閉塞材300が貫通孔110内から外へと押し出される。   When the temperature around the safety valve 1 (the temperature of water 502 in the experimental apparatus of FIG. 4) becomes equal to or higher than the operating temperature of the safety valve 1, the closing material 300 is softened. When the blocking material 300 is softened and cannot resist the pressure of the refrigerant inside the safety valve 1, the protective film 400 is broken by the pressure of the refrigerant and the blocking material 300 is pushed out of the through hole 110.

ここで、前述したように軸部210の寸法aは軸部210の寸法bより大きい。したがって、貫通孔110内の閉塞材300は飛散抑制部材200の頭部220に当たりながら噴出されることになる。このため、噴出される閉塞材300は、飛散抑制部材200により塑性変形されて、あるいは分断されて塊状でなくなる。また、飛散抑制部材200に当たることで、噴出の勢いが減じられる。したがって、安全弁1の作動時に閉塞材300が塊状で高速飛散することを抑制することができる。   Here, as described above, the dimension a of the shaft part 210 is larger than the dimension b of the shaft part 210. Therefore, the blocking material 300 in the through hole 110 is ejected while hitting the head 220 of the scattering suppressing member 200. For this reason, the blocking material 300 to be ejected is plastically deformed by the scattering suppressing member 200 or is divided so that it does not become a lump. Moreover, the momentum of ejection is reduced by hitting the scattering suppression member 200. Therefore, it is possible to suppress the blocking material 300 from being massively scattered at high speed when the safety valve 1 is operated.

閉塞材300が外部へと噴出され、貫通孔110が開放されると、安全弁1の内部側の冷媒は、入口部120から貫通孔110に入る。そして、冷媒は出口部130を通って安全弁1の外部へと放出される。こうして、周囲の環境の温度が予め定められた温度以上に上昇した場合に、安全弁1が作動して配管又は容器内の冷媒の圧力を開放することができる。   When the blocking material 300 is ejected to the outside and the through hole 110 is opened, the refrigerant inside the safety valve 1 enters the through hole 110 from the inlet 120. Then, the refrigerant is discharged to the outside of the safety valve 1 through the outlet portion 130. In this way, when the temperature of the surrounding environment rises above a predetermined temperature, the safety valve 1 can be activated to release the pressure of the refrigerant in the pipe or container.

なお、前述したように、飛散抑制部材200は貫通孔110の貫通方向に沿って可動である。そして、安全弁1の作動前には飛散抑制部材200は可動範囲の内部側の位置において閉塞材300により固定されている。安全弁1の作動時には、閉塞材300が軟化し、飛散抑制部材200の位置の固定が解かれる。したがって、飛散抑制部材200は冷媒及び閉塞材300に押されて外部側へと移動する。すると、貫通孔110の出口部130側の端部と飛散抑制部材200の頭部220との間の隙間が広がる。このため、飛散抑制部材200は閉塞材300が塊のまま高速で放出されることを抑制しつつ、貫通孔110と飛散抑制部材200の頭部220との間に閉塞材300が詰まってしまうことを防止することができる。   As described above, the scattering suppressing member 200 is movable along the through direction of the through hole 110. Before the safety valve 1 is actuated, the scattering suppression member 200 is fixed by the closing material 300 at a position inside the movable range. When the safety valve 1 is operated, the closing member 300 is softened and the position of the scattering suppressing member 200 is released. Therefore, the scattering suppression member 200 is pushed by the refrigerant and the blocking material 300 and moves to the outside. Then, the clearance gap between the edge part by the side of the exit part 130 of the through-hole 110 and the head 220 of the scattering suppression member 200 spreads. For this reason, the scattering material 200 is blocked between the through-hole 110 and the head portion 220 of the scattering material 200 while suppressing the material 300 from being released at a high speed as a lump. Can be prevented.

また、尾部230には、尾部貫通孔231が形成されているため、冷媒の圧力は尾部貫通孔231を通じて貫通孔110内の閉塞材300にかかる。したがって、温度上昇時に円滑かつ確実に閉塞材300が貫通孔110から放出され、安全弁1が作動される。さらに、尾部貫通孔231が形成されていることで、尾部230が貫通孔110の入口部120側の端部に当たるまで飛散抑制部材200が移動しても、尾部230により貫通孔110が閉塞されることがなく、尾部貫通孔231を通じて円滑に冷媒を外部に放出することが可能である。   In addition, since the tail portion 230 is formed with the tail portion through-hole 231, the pressure of the refrigerant is applied to the blocking material 300 in the through-hole 110 through the tail portion through-hole 231. Therefore, the blocking material 300 is smoothly and reliably discharged from the through hole 110 when the temperature rises, and the safety valve 1 is operated. Further, since the tail through hole 231 is formed, the tail hole 230 closes the through hole 110 even if the scattering suppressing member 200 moves until the tail 230 hits the end of the through hole 110 on the inlet portion 120 side. Therefore, it is possible to smoothly discharge the refrigerant to the outside through the tail through hole 231.

なお、以上のように構成された安全弁1は、例えば、図6に示したような飛散抑制部材を備えていない従来の可溶栓の閉塞材を加熱し溶かして一旦取り除いた上で、図2及び図3に示したような形状及び大きさの飛散抑制部材を取り付けることで製造することができる。また、図2及び図3に示したような飛散抑制部材については、例えば、樹脂性のネジ及びナットを元にして、所望の形状及び大きさに加工すること等によって、容易に製造することが可能である。   Note that the safety valve 1 configured as described above, for example, heats and melts and removes the conventional fusible plug closure material that does not include the scattering suppression member as shown in FIG. And it can manufacture by attaching the scattering suppression member of a shape and a magnitude | size as shown in FIG. 2 and 3 can be easily manufactured, for example, by processing into a desired shape and size based on resin screws and nuts. Is possible.

以上のように構成された安全弁は、内部に冷媒が封入された配管又は容器の内部と外部とを通じる貫通孔110が形成された本体100と、予め定められた温度以上で軟化する材料からなり、本体100の貫通孔110内に挿入されて貫通孔110を閉塞する閉塞材300と、本体100の貫通孔110内に通された飛散抑制部材200と、を備えている。そして、飛散抑制部材200は、貫通孔110内に通され、貫通孔110より長い軸部210と、配管又は容器の外部側の軸部210に設けられ、軸部210の長手方向に垂直な断面より大きな外形を有する頭部220と、配管又は容器の内部側の軸部210に設けられ、貫通孔110の内形より大きな外形を有する尾部230と、を備えたものである。   The safety valve configured as described above is composed of a main body 100 in which a through-hole 110 is formed through a pipe or a container in which a refrigerant is enclosed, and the inside and outside of the container, and a material that softens at a predetermined temperature or more. The closing member 300 is inserted into the through hole 110 of the main body 100 to close the through hole 110, and the scattering suppressing member 200 is passed through the through hole 110 of the main body 100. The scattering suppressing member 200 is passed through the through hole 110 and is provided in the shaft part 210 longer than the through hole 110 and the shaft part 210 on the outside of the pipe or the container, and a cross section perpendicular to the longitudinal direction of the shaft part 210. A head portion 220 having a larger outer shape and a tail portion 230 provided in the shaft portion 210 on the inner side of the pipe or container and having a larger outer shape than the inner shape of the through-hole 110 are provided.

このため、安全弁1の作動時に軟化した閉塞材300と飛散抑制部材200とが干渉し、安全弁1の作動時に塊状の閉塞材300が高速で飛散することを抑制することができる。また、これは安全弁1の取り付け向きに左右されないため、安全弁1がどのような取り付け向きであっても、作動時における塊状の閉塞材300の高速飛散を抑制することができる。   For this reason, the blocking material 300 softened during the operation of the safety valve 1 interferes with the scattering suppressing member 200, and the massive blocking material 300 can be prevented from scattering at high speed when the safety valve 1 is operated. In addition, since this is not affected by the mounting direction of the safety valve 1, high-speed scattering of the blocky blocking material 300 during operation can be suppressed regardless of the mounting direction of the safety valve 1.

なお、頭部220の寸法aが少なくとも軸部210の寸法bよりも大きければ、閉塞材300の放出が頭部220により阻害されるため、安全弁1の作動時に塊状の閉塞材300が高速で飛散することを抑制するという前述の効果を得ることができる。ここで、原理的には頭部220の寸法aを大きくした方が閉塞材300の放出を阻害する作用が強まるため、塊状の閉塞材300の高速飛散をより抑制することが可能となる。しかしながら、閉塞材300の放出が阻害され過ぎると円滑な圧力開放に支障をきたすおそれがあるため、頭部220の寸法aはこれらの要素の兼ね合いにより決定することが好ましい。   If the dimension “a” of the head part 220 is at least larger than the dimension “b” of the shaft part 210, the release of the blocking material 300 is inhibited by the head part 220, so that the blocky blocking material 300 is scattered at a high speed when the safety valve 1 is operated. It is possible to obtain the above-described effect of suppressing the occurrence. Here, in principle, increasing the dimension “a” of the head 220 increases the effect of inhibiting the release of the blocking material 300, so that high-speed scattering of the blocky blocking material 300 can be further suppressed. However, if the release of the blocking material 300 is too hindered, there is a risk of hindering smooth pressure release. Therefore, it is preferable that the dimension a of the head 220 is determined based on the balance of these factors.

ただし、以上の実施の形態として説明したように、頭部220の寸法aを貫通孔110の幅Bよりもわずかに大きくすることで、尾部230の寸法cも貫通孔110の幅Bより大きいことから飛散抑制部材200が貫通孔110内から抜けることがないようにすることができる。このようにすることで、本体100と飛散抑制部材200とが分離することがないため、取り扱いを容易にして利便性を向上することが可能である。   However, as described in the above embodiment, when the dimension a of the head 220 is slightly larger than the width B of the through hole 110, the dimension c of the tail 230 is also larger than the width B of the through hole 110. It is possible to prevent the scattering suppressing member 200 from coming out of the through hole 110. By doing in this way, since the main body 100 and the scattering suppression member 200 do not separate, it is possible to facilitate handling and improve convenience.

1 安全弁、 100 本体、 110 貫通孔、 111 内部側段差部、 112 外部側段差部、 120 入口部、 130 出口部、 200 飛散抑制部材、 210 軸部、 220 頭部、 230 尾部、 231 尾部貫通孔、 300 閉塞材、 400 保護膜、 501 プール、 502 水、 503 ヒータ、 504 スライダック、 505 ボンベ、 506 減圧弁、 507 銅配管   DESCRIPTION OF SYMBOLS 1 Safety valve, 100 Main body, 110 Through-hole, 111 Inner side step part, 112 Outer side step part, 120 Inlet part, 130 Outlet part, 200 Splash suppression member, 210 Shaft part, 220 Head part, 230 Tail part, 231 Tail part through hole , 300 occluding material, 400 protective film, 501 pool, 502 water, 503 heater, 504 slidac, 505 cylinder, 506 pressure reducing valve, 507 copper piping

Claims (3)

内部に冷媒が封入された配管又は容器の内部と外部とを通じる貫通孔が形成された本体と、
予め定められた温度以上で軟化する材料からなり、前記本体の前記貫通孔内に挿入されて前記貫通孔を閉塞する閉塞材と、
前記本体の前記貫通孔内に通された飛散抑制部材と、を備え、
前記飛散抑制部材は、
前記貫通孔内に通され、前記貫通孔より長い軸部と、
前記配管又は容器の外部側の前記軸部に設けられ、前記軸部の長手方向に垂直な断面より大きな外形を有する頭部と、
前記配管又は容器の内部側の前記軸部に設けられ、前記貫通孔の内形より大きな外形を有する尾部と、を備えた安全弁。
A main body in which a through-hole is formed through the inside or outside of a pipe or container in which a refrigerant is sealed;
It is made of a material that softens at a predetermined temperature or higher, and a closing material that is inserted into the through hole of the main body and closes the through hole;
A scattering suppression member passed through the through hole of the main body,
The scattering suppression member is
A shaft that is passed through the through hole and is longer than the through hole;
A head having an outer shape larger than a cross section perpendicular to the longitudinal direction of the shaft provided on the shaft of the pipe or the container on the outside;
A safety valve comprising: a tail portion provided on the shaft portion on the inner side of the pipe or the container and having an outer shape larger than the inner shape of the through hole.
前記尾部には、前記尾部を前記軸部の長手方向に貫通する孔が形成された請求項1に記載の安全弁。   The safety valve according to claim 1, wherein a hole that penetrates the tail portion in a longitudinal direction of the shaft portion is formed in the tail portion. 前記頭部は、前記貫通孔の内形より大きな外形を有する請求項1又は請求項2に記載の安全弁。   The safety valve according to claim 1, wherein the head has an outer shape larger than an inner shape of the through hole.
JP2015063014A 2015-03-25 2015-03-25 safety valve Pending JP2016183690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063014A JP2016183690A (en) 2015-03-25 2015-03-25 safety valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063014A JP2016183690A (en) 2015-03-25 2015-03-25 safety valve

Publications (1)

Publication Number Publication Date
JP2016183690A true JP2016183690A (en) 2016-10-20

Family

ID=57242725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063014A Pending JP2016183690A (en) 2015-03-25 2015-03-25 safety valve

Country Status (1)

Country Link
JP (1) JP2016183690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517953A (en) * 2018-04-25 2021-07-29 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh A method for assembling a soluble safety device, a gas container, and a soluble safety device and installing them in the gas container.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517953A (en) * 2018-04-25 2021-07-29 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh A method for assembling a soluble safety device, a gas container, and a soluble safety device and installing them in the gas container.
JP7037668B2 (en) 2018-04-25 2022-03-16 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A method for assembling a soluble safety device, a gas container, and a soluble safety device and installing it in the gas container.
US11940101B2 (en) 2018-04-25 2024-03-26 Robert Bosch Gmbh Fusible link, gas tank, and method for assembling a fusible link and for installing same in a gas tank

Similar Documents

Publication Publication Date Title
JP5818854B2 (en) safety valve
JP2014146630A (en) Method of manufacturing semiconductor device, and soldering iron
JP2016183690A (en) safety valve
JP2006234071A (en) Butterfly valve with water filling function
JP6157831B2 (en) Equipment for dispensing plastic melt
KR101695853B1 (en) Fire fighting
US11413485B2 (en) Sprinkler head
US20210197002A1 (en) Sprinkler Head
JP6387273B2 (en) safety valve
JP2008073409A (en) Thermo-sensitive head
CN112005044B (en) Fuse, gas container and method for assembling a fuse and mounting it in a gas container
JP6846187B2 (en) Valve device
TWI579477B (en) Transmission line&#39;s connector
JP2006029577A (en) Fusible tap
JP2005331016A (en) Fusible plug
US9551556B2 (en) Chemical detonator with electric trigger
JP2009203501A (en) Fusible stop
JP6610393B2 (en) Slug darts
JP2013160355A (en) Safety valve
JP6329793B2 (en) Check valve
JP5012768B2 (en) Manufacturing method of fusible stopper
BR102013013340B1 (en) flow meter apparatus
JPH10339528A (en) Pressure container of freezer
JP6753773B2 (en) Water injection device
JP2014240731A (en) Fusible plug