JP5012768B2 - Manufacturing method of fusible stopper - Google Patents

Manufacturing method of fusible stopper Download PDF

Info

Publication number
JP5012768B2
JP5012768B2 JP2008289798A JP2008289798A JP5012768B2 JP 5012768 B2 JP5012768 B2 JP 5012768B2 JP 2008289798 A JP2008289798 A JP 2008289798A JP 2008289798 A JP2008289798 A JP 2008289798A JP 5012768 B2 JP5012768 B2 JP 5012768B2
Authority
JP
Japan
Prior art keywords
melting point
point metal
low melting
hole
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008289798A
Other languages
Japanese (ja)
Other versions
JP2010117065A (en
Inventor
晃 前田
武之 前川
隆 池田
哲也 山下
昌一郎 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008289798A priority Critical patent/JP5012768B2/en
Publication of JP2010117065A publication Critical patent/JP2010117065A/en
Application granted granted Critical
Publication of JP5012768B2 publication Critical patent/JP5012768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、冷凍装置などの高圧容器の安全装置として用いられる可溶栓の製造方法に関するものである。   The present invention relates to a method for producing a soluble stopper used as a safety device for a high-pressure container such as a refrigeration apparatus.

可溶栓とは、冷凍装置などの高圧容器の側壁または液溜部に備えられたネジ状の部材である。このネジ状の部材には高圧容器の内外を導通する逃がし穴(貫通孔)が備えられており、この貫通孔には高圧容器の内部に貯蔵された冷媒などの臨界温度以下の融点を有する低融点金属が充填されている。何らかの原因で高圧容器の内部に貯蔵された冷媒などが異常昇圧した場合に冷媒の温度も上昇する性質を利用し、可溶栓の貫通孔に充填されている低融点金属が軟化溶解して高圧容器内の冷媒を外気中に放出させることで、圧力容器の破裂を未然に防ぐことができる。   The fusible stopper is a screw-like member provided on a side wall or a liquid reservoir of a high-pressure container such as a refrigeration apparatus. This screw-like member is provided with a relief hole (through hole) that conducts the inside and outside of the high-pressure vessel, and this through-hole has a low melting point that is lower than the critical temperature of the refrigerant or the like stored inside the high-pressure vessel. Filled with melting point metal. Utilizing the property that the temperature of the refrigerant rises when the refrigerant stored inside the high-pressure vessel is abnormally pressurized for some reason, the low melting point metal filled in the through hole of the fusible cap softens and dissolves, causing high pressure By releasing the refrigerant in the container to the outside air, it is possible to prevent the pressure container from rupturing.

可溶栓に用いられる低融点金属としては、スズ(Sn)、ビスマス(Bi)およびインジウム(In)からなる合金がある(例えば、特許文献1参照)。この合金を溶解して貫通孔に充填して可溶栓を製造することができる。また、可溶栓の本体となる貫通孔を有するネジ状の部材(ブランク材)と低融点金属との濡れ性をよくするために、貫通孔の内壁にフラックスを塗布し、その後低融点金属を貫通孔に充填する方法が開示されている(例えば、特許文献2参照)。   As a low melting point metal used for the fusible stopper, there is an alloy made of tin (Sn), bismuth (Bi) and indium (In) (for example, see Patent Document 1). This alloy can be melted and filled into the through holes to produce a fusible plug. In addition, in order to improve the wettability between the screw-shaped member (blank material) having a through-hole serving as the main body of the fusible plug and the low-melting-point metal, a flux is applied to the inner wall of the through-hole, and then the low-melting-point metal is applied. A method of filling through holes is disclosed (for example, see Patent Document 2).

可溶栓に要求される特性としては、上述のように高圧容器の内部圧力が異常昇圧したときに低融点金属が確実に軟化溶融して高圧容器内の冷媒を外気中に放出させることができる特性と同時に、60℃、4MPa程度の可溶栓の正常時の使用環境下で低融点金属が長年設置したままでも微小リークなどの誤動作しない信頼性(耐クリープ性と称する)が要求される。この耐クリープ性を向上させる手段としては、貫通孔の内壁にニッケル(Ni)を主成分とする金属層を形成し、この貫通孔に溶融したスズ(Sn)を主成分とする低融点金属を流し込み、これを冷却して逃がし穴内低融点金属を固着した可溶栓が開示されている(例えば、特許文献3参照)。   As a characteristic required for the fusible stopper, as described above, when the internal pressure of the high-pressure vessel is abnormally increased, the low melting point metal is surely softened and melted and the refrigerant in the high-pressure vessel can be released into the outside air. At the same time as the characteristics, reliability (referred to as creep resistance) that does not cause a malfunction such as a minute leak is required even when a low-melting-point metal is installed for many years under a normal use environment of a soluble stopper at 60 ° C. and 4 MPa. As a means of improving the creep resistance, a metal layer mainly composed of nickel (Ni) is formed on the inner wall of the through hole, and a low melting point metal mainly composed of molten tin (Sn) is formed in the through hole. There is disclosed a fusible plug in which a low melting point metal in the escape hole is fixed by pouring and cooling (see, for example, Patent Document 3).

WO2006/057029号公報(4頁、図1)WO 2006/057029 (page 4, FIG. 1) 特開2003−130240号公報(5頁、図1)JP 2003-130240 A (page 5, FIG. 1) 特開2001−201218号公報(3頁、図1)Japanese Patent Laying-Open No. 2001-201218 (page 3, FIG. 1)

近年、冷凍装置の小型化や従来のフッ素系冷媒に替わり、更なる省エネルギー化が可能なHFC冷媒やCOやNHなどの自然冷媒の適用によって、高圧容器の内部圧力が高くなる傾向にある。そのため、可溶栓に対してさらに高い耐クリープ性が求められていた。従来の可溶栓の貫通孔と低融点金属との濡れ性を向上させるための、フラックスや金属層を貫通孔の内壁に塗布する方法においては、確かに可溶栓の本体と低融点金属との接合強度が向上することによって耐クリープ性は向上するが、その耐クリープ性には限界があった。とくにアンチモンを含む低融点金属を用いた場合、貫通孔の内壁にNiを主成分とする金属層を形成しても耐クリープ性の向上が顕著に得られないという問題があった。 In recent years, the internal pressure of high-pressure vessels tends to increase due to the application of natural refrigerants such as HFC refrigerant and CO 2 and NH 4 that can further save energy instead of downsizing refrigeration equipment and conventional fluorine-based refrigerants. . Therefore, higher creep resistance has been demanded for the fusible stopper. In the conventional method of applying a flux or a metal layer to the inner wall of the through hole in order to improve the wettability between the through hole of the fusible plug and the low melting point metal, the main body of the fusible plug and the low melting point metal Although the creep resistance is improved by improving the bonding strength, there is a limit to the creep resistance. In particular, when a low melting point metal containing antimony is used, there has been a problem that even if a metal layer mainly composed of Ni is formed on the inner wall of the through-hole, the improvement in creep resistance cannot be obtained remarkably.

発明者は、アンチモンを含む低融点金属を用いたときの耐クリープ性があまり向上しない原因、すなわち60℃、4MPa程度の正常時の使用環境下での微小リークの原因を調査したところ、貫通孔に充填された低融点金属の内部に存在するボイド(気泡)が60℃、4MPa程度の長時間の環境下において圧力に対する合金の変形起点となり、微小リークの原因となっていることがわかった。   The inventor investigated the cause of the creep resistance when using a low melting point metal containing antimony, that is, the cause of microleakage under normal operating conditions of 60 ° C. and 4 MPa. It was found that voids (bubbles) present in the low melting point metal filled in the metal became a deformation starting point of the alloy with respect to pressure in a long-time environment of about 60 ° C. and 4 MPa, causing microleakage.

この発明は、アンチモンを含む低融点金属を用いた場合、低融点金属の内部に存在するボイドを低減し、耐クリープ性を一段と向上させることができる可溶栓の製造方法を得ることを目的とする。   An object of the present invention is to obtain a method for producing a fusible plug capable of reducing the voids present inside the low melting point metal and further improving the creep resistance when a low melting point metal containing antimony is used. To do.

この発明に係る可溶栓の製造方法は、貫通孔を有するブランク材の貫通孔の内壁にアンチモンを含む低融点金属を被覆する工程と、内壁に低融点金属を被覆した貫通孔に溶融状態の低融点金属を充填する工程と、貫通孔に充填された低融点金属を冷却して固化する工程とを含むものである。   The manufacturing method of the fusible plug according to the present invention includes a step of coating a low melting point metal containing antimony on an inner wall of a through hole of a blank material having a through hole, and a molten state in a through hole in which the inner wall is coated with a low melting point metal. The method includes a step of filling a low melting point metal and a step of cooling and solidifying the low melting point metal filled in the through hole.

この発明に係る可溶栓の製造方法においては、アンチモンを含む低融点金属を用いる場合に、貫通孔の内壁にこの低融点金属を被覆したのちにアンチモンを含む低融点金属を貫通孔に充填しているので、低融点金属の内部に存在するボイドを低減し、耐クリープ性を一段と向上させることができる。   In the method for producing a fusible plug according to the present invention, when a low melting point metal containing antimony is used, the through hole is filled with the low melting point metal containing antimony after the inner wall of the through hole is coated with the low melting point metal. Therefore, voids existing inside the low melting point metal can be reduced and the creep resistance can be further improved.

実施の形態1.
図1は、この発明を実施するための実施の形態1における可溶栓の模式図である。可溶栓1の本体となるブランク材2は、ネジ状の形状をしており、中央部に貫通孔3を有している。この貫通孔3には低融点金属4が充填されている。
Embodiment 1 FIG.
FIG. 1 is a schematic view of a fusible plug according to Embodiment 1 for carrying out the present invention. The blank material 2 which becomes the main body of the fusible plug 1 has a screw-like shape and has a through hole 3 at the center. The through hole 3 is filled with a low melting point metal 4.

本実施の形態における可溶栓の製造方法について説明する。ブランク材2として、貫通孔3の穴径がφ6mm、ネジ部の外径がφ11mm、長さが21mmの黄銅製の部材を用意した。ネジ部の先端に黄銅製のふたを配置し、このふたを下にして350℃に過熱したホットプレートに載せた。上部の開口した貫通孔から溶融させた低融点金属である20Sn−35In−40Bi−5Sb(wt%)を流し込み、ブランク材のみを持ち上げることにより溶融した低融点金属を貫通孔の外部に排出し、ブランク材を空冷により冷却した。最後に、ブランク材をアセトン中で約5分間の超音波洗浄を行った。このようにして、貫通孔の内壁に厚さ約100μmの低融点金属の被膜を形成した。次に、この貫通孔の内壁に低融点金属が被覆されたブランク材のネジ部の先端に黄銅製のふたを配置して、このふたを下にしてホットプレートに載せた。上部の開口した貫通孔からφ2mm×1mm程度の小片に加工された低融点金属である20Sn−35In−40Bi−5Sb(wt%)を詰め込み、ホットプレートの温度を約350℃まで加熱して貫通孔に挿入した低融点金属を溶融する。このとき、貫通孔が完全に低融点金属で充填されるように、適宜低融点金属の小片を追加し、ステンレス製の攪拌棒で攪拌するなどした。最後に、ホットプレートの加熱を終了し、空冷により低融点金属が固化したのちにふたを取り、本実施の形態の可溶栓を作製した。このようにして、本実施の形態の可溶栓5個を用意した(実施例1〜5)。   The manufacturing method of the soluble stopper in this Embodiment is demonstrated. As the blank material 2, a brass member having a through hole 3 with a hole diameter of 6 mm, an outer diameter of a screw part of 11 mm, and a length of 21 mm was prepared. A brass lid was placed at the tip of the threaded portion, and this lid was placed on a hot plate heated to 350 ° C. with the lid down. The molten low melting point metal 20Sn-35In-40Bi-5Sb (wt%) is poured from the upper opening through hole, and the molten low melting point metal is discharged by lifting only the blank material to the outside of the through hole. The blank was cooled by air cooling. Finally, the blank was ultrasonically cleaned in acetone for about 5 minutes. In this way, a low melting point metal film having a thickness of about 100 μm was formed on the inner wall of the through hole. Next, a brass lid was placed at the tip of the threaded portion of the blank with the low melting point metal coated on the inner wall of the through hole, and this lid was placed on the hot plate with the lid down. 20Sn-35In-40Bi-5Sb (wt%), which is a low melting point metal processed into a small piece of φ2mm x 1mm from the upper open through hole, is packed and heated to a hot plate temperature of about 350 ° C. The low melting point metal inserted in is melted. At this time, small pieces of low melting point metal were appropriately added so that the through holes were completely filled with the low melting point metal, and the mixture was stirred with a stainless steel stirring rod. Finally, the heating of the hot plate was finished, the lid was removed after the low melting point metal solidified by air cooling, and the fusible plug of this embodiment was produced. In this way, five soluble stoppers of the present embodiment were prepared (Examples 1 to 5).

次に、比較のために、貫通孔の内壁に低融点金属を被覆しない比較例を作製した。上述の実施例と同じブランク材を用いて、ネジ部の先端に黄銅製のふたを配置し、350℃に保持した恒温槽内で10分ほど加熱した後、ふたを下にして石膏ボード上に置き、先端にロジン系のフラックス(例えば千住金属工業株式会社製デルタラックス523H)が塗布されたφ2mm×300mmの棒状の低融点金属である20Sn−35In−40Bi−5Sb(wt%)を、貫通孔の内壁に接触させることにより溶融させながら充填した。最後に、空冷により低融点金属が固化したのちにふたを取り、比較例となる可溶栓を5個作製した(比較例1〜5)。なお、気泡を抜くために、低融点金属を貫通孔に溶融させながら充填する際に、適宜ステンレス製の攪拌棒で溶融した低融点金属を上下攪拌した
次に、本実施の形態で作製した、実施例1〜5および比較例1〜5の可溶栓において、ボイド率、動作性および耐クリープ性を評価した。これらの評価方法について説明する。
Next, for comparison, a comparative example was prepared in which the inner wall of the through hole was not covered with a low melting point metal. Using the same blank as in the above example, a brass lid was placed at the tip of the threaded portion, heated for about 10 minutes in a thermostatic bath maintained at 350 ° C., and then placed on the gypsum board with the lid down. 20Sn-35In-40Bi-5Sb (wt%), which is a rod-like low melting point metal of φ2 mm × 300 mm coated with a rosin flux (for example, Deltalux 523H manufactured by Senju Metal Industry Co., Ltd.) at the tip, It was filled while melting by bringing it into contact with the inner wall. Finally, after the low-melting point metal was solidified by air cooling, the lid was removed to prepare five soluble stoppers as comparative examples (Comparative Examples 1 to 5). In order to remove bubbles, when the low melting point metal was filled while being melted in the through-hole, the low melting point metal was appropriately stirred up and down with a stainless steel stirring rod, and then produced in the present embodiment. In the fusible stoppers of Examples 1 to 5 and Comparative Examples 1 to 5, the void ratio, operability, and creep resistance were evaluated. These evaluation methods will be described.

ボイド率は、3次元透過X線装置を用いて、全方位からの可溶栓の透過画像を取得後、画像処理装置で透過画像を2値化し、ボイドと推定される白い部分の面積を積算し、低融点金属の全面積に対するボイドの積算面積の割合を算出し、この割合の4方向の画像から得られる平均値をボイド率(%)とした。   The void ratio is obtained by acquiring a transmission image of a fusible plug from all directions using a three-dimensional transmission X-ray device, then binarizing the transmission image with an image processing device and integrating the area of the white portion estimated as a void. Then, the ratio of the void integrated area to the total area of the low melting point metal was calculated, and the average value obtained from the images in four directions of this ratio was defined as the void ratio (%).

動作性および耐クリープ性を評価するために、可溶栓を圧力容器に取付けた。この圧力容器に、封止弁を備えた配管を経由して圧力計および減圧弁を備えた窒素ボンベを接続し、封止弁を開状態にして窒素ボンベから圧力容器に窒素ガスを封入し、圧力計が4.5MPaを指したところで、封止弁を閉じた。この圧力容器を温度制御装置によって水温を調整することができる水槽内に水没させた。   A fusible stopper was attached to the pressure vessel to evaluate operability and creep resistance. A nitrogen cylinder equipped with a pressure gauge and a pressure reducing valve is connected to this pressure container via a pipe equipped with a sealing valve, and the sealing valve is opened and nitrogen gas is sealed from the nitrogen cylinder into the pressure container. When the pressure gauge indicated 4.5 MPa, the sealing valve was closed. This pressure vessel was submerged in a water tank whose water temperature could be adjusted by a temperature control device.

動作性は、高圧力容器の内部の冷媒などが異常昇圧し冷媒の温度が上昇したときに内部の圧力を減圧するために、可溶栓が少なくとも75℃以下で確実にリークすることを意味する。このように水没させた圧力容器に対して、水温を60℃から80℃まで1分間定温で保持したのちに1℃ずつ上昇させたときに、75℃以下で可溶栓から気泡が発生した場合は可溶栓が動作したものと判断し、75℃でも気泡が発生しない場合は動作しなかったものと判断した。   The operability means that the fusible stopper leaks reliably at at least 75 ° C. or lower in order to reduce the internal pressure when the refrigerant or the like inside the high pressure vessel is abnormally pressurized and the temperature of the refrigerant rises. . When bubbles are generated from a soluble stopper at 75 ° C or lower when the water temperature is kept at a constant temperature from 60 ° C to 80 ° C for 1 minute and then raised by 1 ° C for a submerged pressure vessel. Judged that the fusible stopper worked, and if no bubbles were generated even at 75 ° C., it was judged that it did not work.

耐クリープ性は、60℃以下の正常状態で高圧容器を長時間保持したときに、リークなどが発生しないことを意味する。上述の動作性の評価に用いた圧力容器と同様な圧力容器を用いるが、動作性の評価のときは封止弁を閉じるときの圧力容器の内圧を4.5MPaとしたが、耐クリープ性の評価のときは、圧力容器の内圧は9MPaとした。このように内圧を設定して水没させた圧力容器に対して、水温を60℃に一定に保った状態で100時間保持し、2時間毎に可溶栓からの気泡の発生および低融点金属の飛び出しを観測した。そして、100時間経過後まで気泡の発生および低融点金属の飛び出しが観測されなければ、耐クリープ性は合格とし、100時間経過前に気泡の発生あるいは低融点金属の飛び出しのどちらか一方でも観測された場合は、耐クリープ性は不合格とした。   Creep resistance means that no leakage or the like occurs when the high-pressure vessel is held for a long time in a normal state of 60 ° C. or lower. A pressure vessel similar to the pressure vessel used for the above-described operability evaluation is used. In the operability evaluation, the internal pressure of the pressure vessel when closing the sealing valve was set to 4.5 MPa. At the time of evaluation, the internal pressure of the pressure vessel was 9 MPa. The pressure vessel thus submerged by setting the internal pressure is maintained for 100 hours with the water temperature kept constant at 60 ° C., and bubbles are generated from the fusible stopper and the low melting point metal is removed every 2 hours. Observed popping out. If no bubble generation and low-melting point metal jump are observed until 100 hours have elapsed, the creep resistance is acceptable, and either bubble generation or low-melting point metal jumping is observed before 100 hours have elapsed. The creep resistance was rejected.

表1は、本実施の形態における、実施例1〜5および比較例1〜5の可溶栓のボイド率、動作性および耐クリープ性を示したものである。動作性に関しては、動作した場合を「○」、動作しなかった場合を「×」で示している。耐クリープ性に関しては、合格した場合を「○」、不合格の場合を「×」で示している。   Table 1 shows the void ratio, operability, and creep resistance of the soluble plugs of Examples 1 to 5 and Comparative Examples 1 to 5 in the present embodiment. Regarding the operability, “◯” indicates that it has operated, and “X” indicates that it has not operated. Regarding creep resistance, “◯” indicates a case of passing, and “X” indicates a case of failure.

Figure 0005012768
Figure 0005012768

表1から、本実施の形態における実施例1〜5のように、貫通孔に充填する低融点金属と同じ低融点金属を貫通孔の内壁にあらかじめ被覆したのちに低融点金属を充填することで、ボイドの発生を抑制できるとともに耐クリープ性も向上することがわかる。   From Table 1, as in Examples 1 to 5 in the present embodiment, the low melting point metal that is the same as the low melting point metal that fills the through hole is coated on the inner wall of the through hole in advance, and then the low melting point metal is filled. It can be seen that the generation of voids can be suppressed and the creep resistance is also improved.

このようにアンチモンを含む低融点金属を貫通孔の内壁にあらかじめ被覆したのちに同種の低融点金属を充填することで耐クリープ性が向上する理由は、次のように予想される。アンチモンを含む低融点金属は、このアンチモンが低融点金属の濡れ性を低下させるため、比較例1〜5のように貫通孔の内壁に被覆がない場合には、貫通孔の内壁に直接接触する低融点金属を長時間溶融状態にする必要があるため酸化物が生成されやすくなる。その結果、ボイドの発生が多くなると考えられる。これに対して、実施例のようにあらかじめ貫通孔の内壁に被覆を施すと、この被覆の膜厚が約100μmと薄いためにすぐに溶融拡散して濡れを確保(冷却固化)することができる。その結果酸化物が生成されにくくなってボイドの発生を抑制することができると考えられる。   The reason why the creep resistance is improved by previously coating the inner wall of the through hole with the low melting point metal containing antimony and then filling the same kind of low melting point metal is expected as follows. Since the low melting point metal containing antimony reduces the wettability of the low melting point metal, when the inner wall of the through hole is not covered as in Comparative Examples 1 to 5, it directly contacts the inner wall of the through hole. Since the low melting point metal needs to be in a molten state for a long time, an oxide is easily generated. As a result, the generation of voids is considered to increase. On the other hand, when the inner wall of the through hole is previously coated as in the embodiment, since the coating has a thin film thickness of about 100 μm, it can immediately melt and diffuse to ensure wetting (cooling and solidification). . As a result, it is considered that an oxide is hardly generated and generation of voids can be suppressed.

なお、本実施の形態においては、低融点金属として、20Sn−35In−40Bi−5Sb(wt%)を用いたが、他のSnInBiSb系合金、例えば17Sn−35In−41Bi−7Sb(wt%)などを用いても同様な効果が得られる。   In this embodiment, 20Sn-35In-40Bi-5Sb (wt%) is used as the low melting point metal, but other SnInBiSb alloys such as 17Sn-35In-41Bi-7Sb (wt%) are used. Even if it is used, the same effect can be obtained.

また、本実施の形態においては、貫通孔の内壁の被膜の厚さは約100μmであったが、この被膜の厚さは10〜100μmの範囲であればよい。この範囲であれば、被膜が冷却固化されるまでに酸化物の生成を抑制する作用があるので、ボイドの発生を抑制できるとともに耐クリープ性も向上することができる。   In the present embodiment, the thickness of the coating on the inner wall of the through hole is about 100 μm, but the thickness of this coating may be in the range of 10 to 100 μm. If it is this range, since there exists an effect | action which suppresses the production | generation of an oxide before a film is cooled and solidified, generation | occurrence | production of a void can be suppressed and creep resistance can also be improved.

さらに、本実施の形態においては、貫通孔の内壁に被覆する低融点金属と貫通孔の内部に充填させる低融点金属とは同じ組成のものを用いたが、必ずしも同一の組成である必要はなく、アンチモンが3〜10wt%含むSnInBiSb系合金であればよい。   Furthermore, in the present embodiment, the low melting point metal that covers the inner wall of the through hole and the low melting point metal that fills the inside of the through hole have the same composition, but they do not necessarily have the same composition. Any SnInBiSb alloy containing 3 to 10 wt% of antimony may be used.

また、本実施の形態においては、低融点金属を350℃で溶融したが、溶融温度は高い方が望ましい。溶融温度が高いほど低融点金属が速く溶融して全ての低融点金属が液相になるまでの時間が短くなり、粘度が短時間で低下するためにボイドの発生をさらに抑制することができる。とくに、溶融温度が400℃以上でこの効果は一層顕著になる。   In this embodiment, the low melting point metal is melted at 350 ° C., but it is desirable that the melting temperature is higher. The higher the melting temperature is, the faster the low melting point metal melts and the time until all the low melting point metals become a liquid phase is shortened, and the viscosity decreases in a short time, so that the generation of voids can be further suppressed. In particular, this effect becomes more remarkable when the melting temperature is 400 ° C. or higher.

実施の形態2.
実施の形態1においては、貫通孔の内壁に被覆を形成しない比較例を示したが、実施の形態2においては、Niを主成分とする被膜を形成した比較例を示す。本実施の形態においては、可溶栓の実施例1〜5は、実施の形態1と同じである。比較例6〜10となる可溶栓の製造方法について説明する。
Embodiment 2. FIG.
In the first embodiment, a comparative example in which a coating is not formed on the inner wall of the through hole is shown. In the second embodiment, a comparative example in which a coating containing Ni as a main component is formed. In the present embodiment, Examples 1 to 5 of the fusible plug are the same as those of the first embodiment. The manufacturing method of the soluble stopper used as the comparative examples 6-10 is demonstrated.

実施の形態1と同様なブランク材を用意し、貫通孔の内壁にめっきを用いてNiの被膜を形成した。このNi被膜の膜厚は約10μmである。貫通孔の内壁にNi被膜が形成されたブランク材を、実施の形態1の実施例1〜5と同様に、ホットプレートなどを用いて低融点金属である20Sn−35In−40Bi−5Sb(wt%)を貫通孔に充填した。このようにして、本実施の形態における比較例5個を用意した(比較例6〜10)。さらに、実施の形態1と同様に、ボイド率、動作性および耐クリープ性を評価した。   A blank material similar to that of the first embodiment was prepared, and a Ni film was formed on the inner wall of the through hole using plating. The thickness of this Ni coating is about 10 μm. A blank material in which a Ni coating is formed on the inner wall of the through-hole is made of 20Sn-35In-40Bi-5Sb (wt%), which is a low melting point metal, using a hot plate or the like, as in Examples 1 to 5 of the first embodiment. ) Was filled in the through holes. Thus, the five comparative examples in this Embodiment were prepared (comparative examples 6-10). Furthermore, the void ratio, operability, and creep resistance were evaluated as in the first embodiment.

表2は、本実施の形態における、比較例6〜10の可溶栓のボイド率、動作性および耐クリープ性を示したものである。比較のために、実施の形態1で示した実施例1〜5も併せて示している。   Table 2 shows the void ratio, operability, and creep resistance of the soluble plugs of Comparative Examples 6 to 10 in the present embodiment. For comparison, Examples 1 to 5 shown in the first embodiment are also shown.

Figure 0005012768
Figure 0005012768

表2から、本実施の形態における比較例6〜10のように、貫通孔に充填する低融点金属と異なる低融点金属を貫通孔の内壁にあらかじめ被覆しても、ボイドの発生をある程度抑制できるものの、耐クリープ性の向上が不十分であることがわかる。これに対して、実施例1〜5のように、貫通孔に充填する低融点金属と同じ低融点金属を貫通孔の内壁にあらかじめ被覆したのちに低融点金属を充填することで、ボイドの発生を抑制できるとともに耐クリープ性も向上させることができる。   From Table 2, even if the inner wall of the through-hole is previously coated with a low-melting point metal different from the low-melting point metal filling the through-hole as in Comparative Examples 6 to 10 in the present embodiment, the generation of voids can be suppressed to some extent. However, it can be seen that the improvement in creep resistance is insufficient. On the other hand, as in Examples 1 to 5, voids are generated by filling the inner wall of the through-hole with the same low-melting-point metal as the low-melting-point metal that fills the through-hole in advance and then filling the low-melting-point metal. As well as creep resistance can be improved.

実施の形態3.
実施の形態1においては、貫通孔に低融点金属を充填する際に、固体状態の小片を挿入したのち低融点金属の融点以上の350℃に加熱していたが、実施の形態2においては、溶融状態で貫通孔に低融点金属を充填する例を示す。
Embodiment 3 FIG.
In the first embodiment, when filling the through-hole with the low melting point metal, the solid piece was inserted and then heated to 350 ° C. above the melting point of the low melting point metal, but in the second embodiment, An example in which a through-hole is filled with a low-melting-point metal in a molten state is shown.

実施の形態1と同様に、ブランク材の貫通孔の内壁に厚さ約100μmの低融点金属である20Sn−35In−40Bi−5Sb(wt%)の被膜を形成する。次に、ネジ部の先端に黄銅製のふたを配置し、350℃に保持した恒温槽内で10分ほど加熱した後、ふたを下にして石膏ボード上に置き、先端にロジン系のフラックス(例えば千住金属工業株式会社製デルタラックス523H)が塗布されたφ2mm×300mmの棒状の低融点金属である20Sn−35In−40Bi−5Sb(wt%)を、貫通孔の内壁に接触させることにより溶融させながら充填した。最後に、空冷により低融点金属が固化したのちにふたを取り、比較例となる可溶栓を5個作製した(実施例6〜10)。   As in the first embodiment, a film of 20Sn-35In-40Bi-5Sb (wt%), which is a low melting point metal having a thickness of about 100 μm, is formed on the inner wall of the through hole of the blank material. Next, a brass lid is placed at the tip of the threaded portion, heated for about 10 minutes in a thermostatic bath maintained at 350 ° C., placed on a gypsum board with the lid down, and a rosin-based flux ( For example, 20 Sn-35In-40Bi-5Sb (wt%), which is a rod-like low melting point metal of φ2 mm × 300 mm coated with Deltalux 523H manufactured by Senju Metal Industry Co., Ltd., is melted by contacting the inner wall of the through hole. While filling. Finally, after the low-melting point metal was solidified by air cooling, the lid was removed to prepare five soluble stoppers as comparative examples (Examples 6 to 10).

表3は、本実施の形態における、実施例6〜10の可溶栓のボイド率、動作性および耐クリープ性を示したものである。   Table 3 shows the void ratio, operability, and creep resistance of the fusible plugs of Examples 6 to 10 in the present embodiment.

Figure 0005012768
Figure 0005012768

表3から、本実施の形態における実施例6〜10のように、貫通孔に充填する低融点金属と同じ低融点金属を貫通孔の内壁にあらかじめ被覆したのちに低融点金属を溶融しながら充填した場合でも、固体状態で低融点金属を挿入する実施の形態の実施例1〜5と同様に、ボイドの発生を抑制できるとともに耐クリープ性も向上することがわかる。   From Table 3, as in Examples 6 to 10 in the present embodiment, the low melting point metal that is the same as the low melting point metal that fills the through hole is previously coated on the inner wall of the through hole, and then the low melting point metal is filled while melting Even in this case, as in Examples 1 to 5 of the embodiment in which the low melting point metal is inserted in a solid state, it is understood that generation of voids can be suppressed and creep resistance is also improved.

なお、本実施の形態においては、低融点金属を350℃で溶融したが、溶融温度は高い方が望ましい。溶融温度が高いほど低融点金属が速く溶融して全ての低融点金属が液相になるまでの時間が短くなり、粘度が短時間で低下するためにボイドの発生をさらに抑制することができる。とくに、溶融温度が400℃以上でこの効果は一層顕著になる。低融点金属の溶融温度を400℃以上にする場合には、ロジン系フラックスよりの耐熱性の高い、燐酸、塩素あるいは亜鉛を含有した無機系フラックスを用いる方が好ましい。   In this embodiment, the low melting point metal is melted at 350 ° C., but it is desirable that the melting temperature be higher. The higher the melting temperature is, the faster the low melting point metal melts and the time until all the low melting point metals become a liquid phase is shortened, and the viscosity decreases in a short time, so that the generation of voids can be further suppressed. In particular, this effect becomes more remarkable when the melting temperature is 400 ° C. or higher. When the melting temperature of the low melting point metal is set to 400 ° C. or higher, it is preferable to use an inorganic flux containing phosphoric acid, chlorine or zinc, which has higher heat resistance than the rosin flux.

実施の形態4.
実施の形態4においては、実施の形態1において貫通孔に低融点金属を充填する際に、固体状態の小片を挿入するときに、同時にフラックスを滴下する例を示す。
Embodiment 4 FIG.
In Embodiment 4, when filling a through-hole with a low melting-point metal in Embodiment 1, when inserting a small piece of a solid state, the example which dripped a flux simultaneously is shown.

まず始めに、フラックス(例えば千住金属工業株式会社製デルタラックス523H)をシリンジに充填した。そして、実施の形態1と同様に貫通孔の内壁に厚さ約100μmの低融点金属の被膜を形成した。次に、この貫通孔の内壁に低融点金属が被覆されたブランク材のネジ部の先端に黄銅製のふたを配置して、このふたを下にしてホットプレートに載せた。上部の開口した貫通孔からφ2mm×1mm程度の小片に加工された低融点金属である20Sn−35In−40Bi−5Sb(wt%)を詰め込むときに、シリンジからフラックスを所定の量同時に貫通孔の内部に滴下した。その後、ホットプレートの温度を約350℃まで加熱して貫通孔に挿入した低融点金属を溶融した。本実施の形態においては、フラックスの滴下量を、0.0(フラックスなし)、0.1、0.3、0.5、0.7、1.0,1.5および2.0ccと変化させた可溶栓を作製した。さらにこれらのフラックスの滴下量を変化させた可溶栓に対して、実施の形態1と同様にボイド率を測定した。   First, a flux (for example, Deltalux 523H manufactured by Senju Metal Industry Co., Ltd.) was filled in a syringe. In the same manner as in the first embodiment, a low melting point metal film having a thickness of about 100 μm was formed on the inner wall of the through hole. Next, a brass lid was placed at the tip of the threaded portion of the blank with the low melting point metal coated on the inner wall of the through hole, and this lid was placed on the hot plate with the lid down. When packing 20Sn-35In-40Bi-5Sb (wt%), which is a low melting point metal processed into a small piece of φ2 mm × 1 mm from the upper open through hole, a predetermined amount of flux is simultaneously injected into the through hole from the syringe. It was dripped in. Thereafter, the temperature of the hot plate was heated to about 350 ° C. to melt the low melting point metal inserted into the through hole. In this embodiment, the amount of flux dropped varies from 0.0 (no flux), 0.1, 0.3, 0.5, 0.7, 1.0, 1.5, and 2.0 cc. A soluble stopper was prepared. Furthermore, the void ratio was measured in the same manner as in the first embodiment with respect to the soluble stopper in which the dropping amount of these fluxes was changed.

図2は、本実施の形態における、フラックスの滴下量とボイド率との関係を示した特性図である。図2にから、フラックスの滴下量が0.1〜0.5ccの範囲において、フラックスを滴下していない場合よりボイド率が低下することがわかる。また、実施の形態1および実施の形態3における実施例1〜10のボイド率と耐クリープ性との相関から、ボイド率が8%以下であればクリープ特性の向上が見られることから、フラックス滴下量を、0.1cc以上1.0cc以下にすることで、耐クリープ性が向上し信頼性の高い可溶栓を作製することができる。   FIG. 2 is a characteristic diagram showing the relationship between the flux dripping amount and the void ratio in the present embodiment. From FIG. 2, it can be seen that the void ratio is lower than that in the case where the flux is not dropped in the range where the flux is dropped from 0.1 to 0.5 cc. Further, from the correlation between the void ratio and the creep resistance of Examples 1 to 10 in Embodiment 1 and Embodiment 3, if the void ratio is 8% or less, improvement in creep characteristics is seen, so that the flux dripping By setting the amount to 0.1 cc or more and 1.0 cc or less, creep resistance is improved and a highly reliable soluble stopper can be produced.

なお、上述のようなフラックスの滴下量は、可溶栓の大きさや低融点金属の充填密度、加熱温度、フラックスの種類や濃度により変化するが、概ね上述のような滴下量の範囲で問題ないと思われる。   The amount of the flux dropped as described above varies depending on the size of the fusible plug, the filling density of the low melting point metal, the heating temperature, the type and concentration of the flux, but there is no problem in the range of the amount dropped as described above. I think that the.

この発明の実施の形態1における可溶栓の模式図である。It is a schematic diagram of the soluble stopper in Embodiment 1 of this invention. この発明の実施の形態4における可溶栓の特性図である。It is a characteristic view of the fusible plug in Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 可溶栓
2 ブランク材
3 貫通孔
4 低融点金属
1 Fusible stopper 2 Blank material 3 Through hole 4 Low melting point metal

Claims (3)

貫通孔を有するブランク材の前記貫通孔の内壁にアンチモンを含む低融点金属を被覆する工程と、
内壁に前記低融点金属が被覆された前記貫通孔に溶融状態の前記低融点金属を充填する工程と、
前記貫通孔に充填された前記低融点金属を冷却して固化する工程と
を含む可溶栓の製造方法。
Coating the low melting point metal containing antimony on the inner wall of the through hole of the blank material having the through hole;
Filling the through hole whose inner wall is coated with the low melting point metal with the low melting point metal in a molten state;
And a step of cooling and solidifying the low melting point metal filled in the through hole.
貫通孔を有するブランク材の前記貫通孔の内壁にアンチモンを含む低融点金属を被覆する工程と、
内壁に前記低融点金属が被覆された前記貫通孔に固体状態の前記低融点金属を挿入する工程と、
前記低融点金属を融点以上の温度に加熱して前記低融点金属を溶融する工程と、
前記貫通孔に充填された前記低融点金属を冷却して固化する工程と
を含む可溶栓の製造方法。
Coating the low melting point metal containing antimony on the inner wall of the through hole of the blank material having the through hole;
Inserting the low melting point metal in a solid state into the through hole whose inner wall is coated with the low melting point metal;
Heating the low melting point metal to a temperature equal to or higher than the melting point to melt the low melting point metal;
And a step of cooling and solidifying the low melting point metal filled in the through hole.
貫通孔に低融点金属を挿入する工程において、前記貫通孔にフラックスを注入することを特徴とする請求項2記載の可溶栓の製造方法。 The method for producing a fusible plug according to claim 2, wherein in the step of inserting a low melting point metal into the through hole, a flux is injected into the through hole.
JP2008289798A 2008-11-12 2008-11-12 Manufacturing method of fusible stopper Expired - Fee Related JP5012768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289798A JP5012768B2 (en) 2008-11-12 2008-11-12 Manufacturing method of fusible stopper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289798A JP5012768B2 (en) 2008-11-12 2008-11-12 Manufacturing method of fusible stopper

Publications (2)

Publication Number Publication Date
JP2010117065A JP2010117065A (en) 2010-05-27
JP5012768B2 true JP5012768B2 (en) 2012-08-29

Family

ID=42304847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289798A Expired - Fee Related JP5012768B2 (en) 2008-11-12 2008-11-12 Manufacturing method of fusible stopper

Country Status (1)

Country Link
JP (1) JP5012768B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226746B2 (en) * 2000-01-24 2009-02-18 三菱電機株式会社 Fusible stopper and refrigeration apparatus equipped with the same
JP3681060B2 (en) * 2001-10-29 2005-08-10 三菱電機株式会社 Soluble plug, method for producing the same, and refrigeration apparatus provided with the same
JP2005273842A (en) * 2004-03-26 2005-10-06 Mitsui Chemicals Inc Temperature actuated valve
JP2005331016A (en) * 2004-05-19 2005-12-02 Senju Sprinkler Kk Fusible plug
US9175782B2 (en) * 2004-11-24 2015-11-03 Senju Metal Industry Co., Ltd. Alloy for a fusible plug and a fusible plug
JP2006329374A (en) * 2005-05-30 2006-12-07 Senju Sprinkler Kk Fusible plug and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010117065A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
TW508281B (en) Lead-free solder alloy and electronic components using same
US20220395934A1 (en) Mixed Alloy Solder Paste, Method of Making the Same and Soldering Method
JP5140487B2 (en) safety valve
CN113732559A (en) Composite brazing filler metal and preparation method thereof
JP5012768B2 (en) Manufacturing method of fusible stopper
JP2010155268A (en) Bi-Sn-BASED REEL-WOUND SOLDER WIRE, AND METHOD FOR MANUFACTURING SOLDER WIRE
JP5775688B2 (en) Soluble valve for safety valve
WO2019069788A1 (en) Solder alloy, solder junction material, and electronic circuit substrate
KR100964738B1 (en) Pressure relief device for high pressure gas cylinder and manufacturing method thereof
WO2009104294A1 (en) Lead-free solder alloy and semiconductor device
JP2010023110A (en) Au-Ga-Sn-BASED BRAZING FILLER METAL
JP2009203501A (en) Fusible stop
JP2005331016A (en) Fusible plug
JP3681060B2 (en) Soluble plug, method for producing the same, and refrigeration apparatus provided with the same
JP2008030093A (en) Au/Ge ALLOY SOLDER BALL
JP5469922B2 (en) Fusible stopper
JP2003342666A (en) Lead-free and cadmium-free low melting point alloy, temperature sensitive safety valve and fuse element
JP4226746B2 (en) Fusible stopper and refrigeration apparatus equipped with the same
JP4890221B2 (en) Die bond material
JP2002286138A (en) Meltable plug for pressure vessel, manufacturing method for meltable plug, and pressure vessel
EP2623826B1 (en) Fusible Plug
JP2003247700A (en) Safety valve for pressure vessel
JP2011202874A (en) Alloy for fusible plug, fusible plug using the same, and refrigeration device
JP3630409B2 (en) Soluble stopper and method for producing the same
CN204099674U (en) Safe pressure relief device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5012768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees