WO2009104294A1 - Lead-free solder alloy and semiconductor device - Google Patents

Lead-free solder alloy and semiconductor device Download PDF

Info

Publication number
WO2009104294A1
WO2009104294A1 PCT/JP2008/066018 JP2008066018W WO2009104294A1 WO 2009104294 A1 WO2009104294 A1 WO 2009104294A1 JP 2008066018 W JP2008066018 W JP 2008066018W WO 2009104294 A1 WO2009104294 A1 WO 2009104294A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
free solder
solder alloy
weight
tin
Prior art date
Application number
PCT/JP2008/066018
Other languages
French (fr)
Japanese (ja)
Inventor
石川 久雄
Original Assignee
日本ジョイント株式会社
ホライゾン技術研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ジョイント株式会社, ホライゾン技術研究所株式会社 filed Critical 日本ジョイント株式会社
Publication of WO2009104294A1 publication Critical patent/WO2009104294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the present invention relates to circuit formation of a mounting member such as a semiconductor package or an electronic element on a printed circuit board.
  • a lead-free solder alloy that is soldered via solder between the copper land of the printed circuit board and the lead terminals of semiconductor packages, electronic devices, etc. More specifically, it relates to semiconductor devices that are soldered using the solder. More specifically, it is much more flexible and stretchable than the current lead-free solder alloy. Solder joints with low viscosity in the state, good wetting and spreadability, less likely to become a per volume, difficult to leak into adjacent leads at narrow intervals, and high joint reliability of soldered micro joints In addition, the present invention relates to a lead-free solder alloy that can be used, a semiconductor device soldered using the lead-free solder alloy of the present invention, and a technology.
  • solder joints are also miniaturized and increasingly higher Quality reliability is required.
  • extremely strict reliability is required for the quality of fine solder joints between printed circuit boards and electronic component parts.
  • the solder alloy side used for solder joints is also required to have high solder joint strength, in particular, high reliability of the solder joints as the electronic element and electronic component lead joint area and pitch become smaller. .
  • solder-free solder alloys that do not contain lead have been developed especially in the field of electronic components. It is widely used for soldering processing. Especially, it is possible to use tin or silver solder alloy, and solder alloy with antimony added (Patent Document 1), or tin or silver solder alloy. Solder alloys with added germanium (Patent Document 2) etc. have been proposed It has become. In addition, a number of various solder alloys have been proposed, such as a tin 'zinc' nickel-based solder alloy and a solder alloy further added with silver, copper, bismuth, etc. (Patent Document 3).
  • solder joints since these lead-free solder alloys do not have good wettability at the time of melting, when the solder joint area becomes finer, the solder rises in the joint at a capacity higher than necessary. In circuits where the volume j and the pitch between leads are narrow, there is a difficulty that bridges over adjacent leads and leaks easily, and the elongation, which is one of the physical and mechanical characteristics of the solder during solidification, occurs. Because of its small size, it tends to cause poor continuity due to fatigue fracture of solder joints due to repeated heat cycles when energization is turned on and off, and often impairs the connection reliability of miniaturized electronic devices.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-0 2 8 6 (Patent 3 0 2 7 4 4 1)
  • Patent Document 2 JP-A-11 1 7 7 3 6 6 (Patent 3 2 9 6 2 8 9)
  • Patent Document 3 Japanese Patent Laid-Open No. 9-9 4 6 8 8 (Patent 3 2 9 9 0 9 1)
  • the present invention relates to the problem of the above-mentioned overvolume, which is a difficulty in soldering a small part of a lead-free solder alloy that is currently in practical use, and a small part of a very narrow lead-pitch circuit.
  • the reliability of the joints of micro electronic parts is improved.
  • the present invention provides a lead-free solder alloy that dramatically improves, and a semiconductor device in which the solder joint reliability of minute parts is dramatically improved by using the lead-free solder alloy.
  • the present invention is currently widely used in a solution having a liquid temperature of 180 to 30 consisting of an oil containing 5 to 80% by weight of an organic fatty acid having 13 to 20 carbon atoms.
  • a normal lead-free solder alloy that is, a molten lead-free solder alloy containing tin as the main component and one or more metals selected from silver, copper, zinc, bismuth, antimony, nickel and germanium added thereto.
  • the organic fatty acid used in the present invention can be used even with a carbon number of 12 or less, it has a water absorption property, which is not preferable because it is used at a high temperature.
  • organic fatty acids having 21 or more carbon atoms have a high melting point and poor permeability and are difficult to handle, and the lead-free solder alloy after the treatment has an insufficient antifungal effect.
  • palmitic acid having 16 carbon atoms and stearic acid having 18 carbon atoms are optimal, and one of them is 10 to 70% by weight, and the liquid temperature is composed of the remaining ester synthetic oil 1 80 to 30
  • the oxides and impure metals present inside the lead-free solder alloy are removed, and unprecedented physical, mechanical and chemical properties, especially flexible, stretchable, tough, and melted. It has a low viscosity at the time (the apparent sensation is clearly “smooth” compared to conventional lead pre-solder) and provides a clean, lead-free solder alloy with good solder wettability.
  • the organic fatty acid concentration is effective even if it is 10% by weight or less, but complicated, such as replenishment management, and if it is 70% by weight or more, the liquid viscosity increases, and the stirring resistance with the lead-free solder alloy In order to cause a problem in the mixed permeability, it is preferably 10 to 70% by weight.
  • the liquid temperature is determined by the melting point of the lead-free solder alloy to be used, and it is necessary to vigorously stir and contact the organic fatty acid solution and the molten lead-free solder at least in a temperature range above the melting point.
  • the upper limit temperature is about 300 ° from the viewpoint of smoke generation and energy saving, and is desirably a temperature not lower than the melting point of the lead-free solder to be used up to 27 ° C.
  • the reason for mixing the ester synthetic oil is to reduce the viscosity of the liquid and perform uniform processing and to suppress high-temperature smoke generation of organic fatty acids.
  • the concentration is determined by the concentration of organic fatty acids.
  • the stirring method is a method in which the above-mentioned organic fatty acid and ester synthetic oil are put in a stainless steel container equipped with a heating device and heated to a predetermined temperature while stirring using a normal patch-type stainless steel impeller stirrer.
  • the lead-free solder alloy solution which has been made into a solution and previously melted in a separate tank, is poured into the solution with vigorous stirring little by little. Stirring can efficiently remove oxides and impurities in the sharp free solder in a short time by using a static mixer.
  • solder alloys are actually tin 'silver' copper-based and commercial alloys with nickel and germanium added, and tin 'zinc-based alloys with nickel and silver added.
  • the effects of the immersion stirring treatment were conducted with the above-described organic fatty acid and ester synthetic oil of the present invention centering on the alloy, and the effect was verified. It can be inferred that
  • a lead-free solder alloy that is widely used at present that is, tin as a main component, and silver, copper, zinc, bismuth, antimony, nickel, germanium, or more
  • molten lead-free solder alloy added with metal is injected and immersed and stirred, oxidation of tin oxide, copper oxide, silver oxide, or other added metals present in the molten lead-free solder alloy is performed.
  • Oxidized impurities such as iron, lead, silicon, potassium, etc. that are mixed in the product and react with organic fatty acid ruponyl groups to be saponified and separated and removed from the lead-free solder alloy.
  • the stirring time depends on the amount of the lead-free solder alloy used, the structure of the stirrer, and the stirring conditions, but generally strong stirring for about 10 to 60 minutes is sufficient. Then, using the difference in specific gravity, the lead oxide solder alloy, which has been separated and removed from the bottom of the reaction vessel by the specific gravity difference, has been cleaned and taken out in a molten form, solidified, and solidified. It can be put into a normal soldering device and soldered.
  • Comparative Example 1 a commercially available lead-free solder alloy consisting of 2.5% by weight of silver, 0.5% by weight of copper, and the balance tin was used.
  • Example 1 of the present invention a lead-free solder alloy composed of 2.5% by weight of silver, 0.5% by weight of copper, and the remaining tin having the same composition as Comparative Example 1 was previously melted. Stir vigorously with a rotary stirrer with a stainless impeller installed in two stages while dripping a small amount into a solution at a liquid temperature of 260% consisting of 50% by weight of stearic acid and the remaining ester synthesis. However, after 30 minutes, the cleaned lead-free solder was taken out from the lowermost part of the treatment tank and subjected to an evaluation test.
  • Comparative Example 2 a lead-free solder alloy comprising 2.5% by weight of silver, 0.5% by weight of copper, 0.1% by weight of nickel, 0.05% by weight of germanium, and the balance tin used.
  • Example 2 2.5% by weight of silver and 0.5% of copper having the same composition as Comparative Example 2 were used.
  • Comparative Example 3 a lead-free solder alloy consisting of 8.0 wt% zinc, 0.05 wt% nickel, 1.0 wt% silver and the balance tin was used.
  • Example 3 lead having the same composition as Comparative Example 3 above, consisting of 8.0% by weight of zinc, 0.05% by weight of nickel, 1.0% by weight of silver, and the balance tin Free solder alloy is melted in advance and palmitic acid is 40 weight.
  • a rotary stirrer with stainless steel impeller installed in two stages while dripping a small amount into the solution at a liquid temperature of 2 80, consisting of / 0 , stearic acid, 20% by weight and the remaining ester synthesis.
  • the cleaned lead-free solder was taken out from the lowermost part of the treatment tank and subjected to an evaluation test.
  • the physical-mechanical evaluation method is based on the lead-free solder joints of Comparative Examples 1 to 3 and Examples 1 to 3.
  • a stainless steel (SUS 304) forged mold JIS No. 6
  • the zero crossing time was measured in 5). At that time, a pure copper wire of 0.4 mm ⁇ was used as the measurement pin.
  • the tensile strength of the examples was not much different from that of the comparative example with respect to the magnitude of the elongation, and therefore it was confirmed that the toughness was strong and fatigue failure due to expansion and contraction in the long-term heat cycle test did not easily occur.
  • FIG. 1 is an example of a cross-sectional crystal structure of a lead-free solder alloy (Example 2) according to the present invention.
  • FIG. 2 This is an example of the internal cross-sectional crystal structure of a conventional lead-free solder alloy (Comparative Example 2).
  • the technology of the present invention clearly has high elongation and toughness not found in conventional lead-free solder alloys, especially electronic devices that have small joint breakage risk due to repeated heat cycle fatigue of small area joints, and are therefore miniaturized.
  • This is a technology that is industrially valuable as a lead-free solder alloy that can ensure long-term high-reliability solder joints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A molten lead-free solder alloy comprising tin as a main component and at least one metal selected from silver, copper, zinc, bismuth, antimony, nickel, and germanium added to the tin is immersed in a solution of an oil containing 5 to 80% by weight of an organic fatty acid having 13 to 20 carbon atoms at a solution temperature of 180 to 300°C. The solution is stirred to remove oxides and impurities contained in the lead-free solder. According to the above constitution, the treated lead-free solder alloy is advantageous in that the lead-free solder alloy is flexible and has excellent elongation and toughness and, as compared with the conventional lead-free solder alloy, the treated lead-free solder alloy has lower viscosity in a molten state, possesses better solder wet spreading properties, and can realize solder jointing which provides a solder joint, particularly a microjoint, having high joint reliability unattainable by the prior art technique.

Description

明 細 書  Specification
鉛フリ一はんだ合金おょぴ半導体装置  Lead-free solder alloy oppi semiconductor device
技術分野  Technical field
[0001] 本発明は、 半導体パッケージ、 電子素子等の実装部材をプリント回路板に回路形成 [0001] The present invention relates to circuit formation of a mounting member such as a semiconductor package or an electronic element on a printed circuit board.
, を目的として鉛フリーはんだを用いてはんだ接合する際に、 プリント回路板の銅ランド と半導体パッケージ、 電子素子等のリード端子との間にはんだを介してはんだ接合させ る鉛フリ一はんだ合金、 およぴ該はんだを使用してはんだ接合した半導体装置に関する もので、 更に詳しく言えば、 現行の鉛フリ一はんだ合金よりも物理的機械的物性として 遥かに柔軟で伸ぴ、 靱性に富み、 溶融状態での粘性が低く、 ぬれ広がり性が良くて、 ォ 一パーボリュームになり難く、狭間隔で隣接するリードへプリッジリークし難く、かつ、 はんだ接合した微小接合部の接合信頼性が高いはんだ接合を可能にする鉛フリ一はん だ合金、 また本発明の該鉛フリーはんだ合金を用いてはんだ接合した半導体装置、 及び 技術の提供に関するものである。 A lead-free solder alloy that is soldered via solder between the copper land of the printed circuit board and the lead terminals of semiconductor packages, electronic devices, etc. More specifically, it relates to semiconductor devices that are soldered using the solder. More specifically, it is much more flexible and stretchable than the current lead-free solder alloy. Solder joints with low viscosity in the state, good wetting and spreadability, less likely to become a per volume, difficult to leak into adjacent leads at narrow intervals, and high joint reliability of soldered micro joints In addition, the present invention relates to a lead-free solder alloy that can be used, a semiconductor device soldered using the lead-free solder alloy of the present invention, and a technology.
背景技術  Background art
[0002] 近年、 電子機器はますます高信頼性化と小型軽量化が要求され、 トランジスタ、 ダイ オード、 I C、 抵抗器、 コンデンサーなどの電子素子、 コネクターなどの電子部品をプ リント回路板にはんだ接合して搭載して電子回路を形成させ、 半導体装置や電子装置と して広く使用されているが、 これら電子素子、 電子部品の小型微小化に伴いはんだ接合 部も微細化され、 ますます高品質信頼性が要求されている。 とりわけプリント回路板と 電子素子部品間の微小はんだ接合品質には極めて厳しい信頼性が要求されている。 このため、 はんだ接合に使用するはんだ合金側にもはんだ接合強度、 とりわけ電子素 子、 電子部品のリードの接合面積およぴピッチの微小化に伴うはんだ接合部の高信頼性 が要求されている。  [0002] In recent years, electronic devices are increasingly required to have higher reliability and smaller size and weight, and electronic components such as transistors, diodes, ICs, resistors, capacitors, and electronic components such as connectors are soldered to printed circuit boards. Bonded and mounted to form an electronic circuit, it is widely used as a semiconductor device and electronic device, but with the miniaturization of these electronic elements and electronic components, the solder joints are also miniaturized and increasingly higher Quality reliability is required. In particular, extremely strict reliability is required for the quality of fine solder joints between printed circuit boards and electronic component parts. For this reason, the solder alloy side used for solder joints is also required to have high solder joint strength, in particular, high reliability of the solder joints as the electronic element and electronic component lead joint area and pitch become smaller. .
[0003] また一方では、 近年、 環境汚染ならびに人体に対する有害性の問題で鉛の使用禁止ま たは規制化が進み、 特に電子部品分野においては鉛を含有しない所謂 「鉛フリ一はんだ 合金」 がはんだ付け加工に広く使用されており、 特に、 錫 '銀'銅系はんだ合金、 及ぴそ れにアンチモンを添加したはんだ合金 (特許文献 1 )、 錫 '銀'銅系はんだ合金にニッケ ルまたはゲルマニウムなどを添加したはんだ合金 (特許文献 2 ) などが提案され、 実用 化されている。 このほかにも、 錫 '亜鉛'ニッケル系はんだ合金及ぴ更に銀、 銅、 ビスマ スなどを添加したはんだ合金 (特許文献 3 )など数多くの各種はんだ合金が提案されてい る。 [0003] On the other hand, in recent years, the use of lead has been banned or regulated due to environmental pollution and harmfulness to the human body, and so-called "lead-free solder alloys" that do not contain lead have been developed especially in the field of electronic components. It is widely used for soldering processing. Especially, it is possible to use tin or silver solder alloy, and solder alloy with antimony added (Patent Document 1), or tin or silver solder alloy. Solder alloys with added germanium (Patent Document 2) etc. have been proposed It has become. In addition, a number of various solder alloys have been proposed, such as a tin 'zinc' nickel-based solder alloy and a solder alloy further added with silver, copper, bismuth, etc. (Patent Document 3).
[0004] しかしながら、 これらの鉛フリーはんだ合金は溶融時のぬれ性が良くないため、 はん だ接合部面積が微細になると、 接合部に必要以上の容量ではんだが盛り上がる所謂 「ォ 一パ一ボリュ一ム jやリード間ピツチが狭小の回路では隣接リ一ドにブリッジオーバ一 してリークを生じやすい難点があるばかり力、凝固時のはんだの物理的機械的特性の 1 つである伸びが小さいために通電 o n— o f f に伴う繰返しヒートサイクルによるは んだ接合部の疲労破断による導通不良など生じやすく、微小化した電子機器の接続信頼 性を損なうことも多い。 .  However, since these lead-free solder alloys do not have good wettability at the time of melting, when the solder joint area becomes finer, the solder rises in the joint at a capacity higher than necessary. In circuits where the volume j and the pitch between leads are narrow, there is a difficulty that bridges over adjacent leads and leaks easily, and the elongation, which is one of the physical and mechanical characteristics of the solder during solidification, occurs. Because of its small size, it tends to cause poor continuity due to fatigue fracture of solder joints due to repeated heat cycles when energization is turned on and off, and often impairs the connection reliability of miniaturized electronic devices.
特許文献 1: 特開平 5— 5 0 2 8 6 (特許 3 0 2 7 4 4 1 )  Patent Document 1: Japanese Patent Laid-Open No. 5-0 2 8 6 (Patent 3 0 2 7 4 4 1)
特許文献 2 : 特開平 1 1一 7 7 3 6 6 (特許 3 2 9 6 2 8 9 )  Patent Document 2: JP-A-11 1 7 7 3 6 6 (Patent 3 2 9 6 2 8 9)
特許文献 3 : 特開平 9— 9 4 6 8 8 (特許 3 2 9 9 0 9 1 )  Patent Document 3: Japanese Patent Laid-Open No. 9-9 4 6 8 8 (Patent 3 2 9 9 0 9 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、 現在、 実用化されている鉛フリ一はんだ合金における微小リード ·極狭リ 一ドピッチ回路の微小部はんだ接合時の難点である上記オーバーボリユームの問題、ブ リッジオーバーによる隣接リードとのリークの問題、更には該はんだ接合部の繰返しヒ ートサイクルによる経時劣ィヒ的疲労破断による導通不良の問題を解決することを目的 とし、微小電子部品の微細接合部の接合信頼性を飛躍的に向上させる鉛フリーはんだ合 金、およびそれを使用することにより微小部のはんだ接合信頼性を飛躍的に向上させた 半導体装置を «するものである。 [0005] The present invention relates to the problem of the above-mentioned overvolume, which is a difficulty in soldering a small part of a lead-free solder alloy that is currently in practical use, and a small part of a very narrow lead-pitch circuit. In order to solve the problem of leakage with leads and the problem of poor continuity due to poor fatigue over time due to repeated heat cycles of the solder joints, the reliability of the joints of micro electronic parts is improved. The present invention provides a lead-free solder alloy that dramatically improves, and a semiconductor device in which the solder joint reliability of minute parts is dramatically improved by using the lead-free solder alloy.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、 炭素数が 1 3〜2 0の有機脂肪酸 5〜8 0重量%を含有する油からなる液 温 1 8 0〜3 0 の溶液中に、現在、広く実用されている通常の鉛フリーはんだ合金、 即ち、 錫を主成分としこれに銀、 銅、 亜鉛、 ビスマス、 アンチモン、 ニッケル、 ゲルマ 二ゥムのいずれか 1種以上の金属を添加した溶融鉛フリ一はんだ合金を浸漬し撹拌処 • 理し、 該鉛フリ一はんだ中の酸化物及ぴ不純物を除去することにより、 従来にない物性 を持ったぬれ広がり性が良くて、 はんだの物理的機械的物性として柔軟で伸ぴ、 靭性に 優れ、 それを用いてはんだ接合した接合部、 特に微細接合部の接合信頼性が高いはんだ 接合を可能にするはんだ合金、 及びそれを使用することにより微小部のはんだ接合信頼 性を飛躍的に向上させた半導体装置、 及びその技術の提供に関するものである。 [0006] The present invention is currently widely used in a solution having a liquid temperature of 180 to 30 consisting of an oil containing 5 to 80% by weight of an organic fatty acid having 13 to 20 carbon atoms. A normal lead-free solder alloy, that is, a molten lead-free solder alloy containing tin as the main component and one or more metals selected from silver, copper, zinc, bismuth, antimony, nickel and germanium added thereto. By immersing and stirring, and removing oxides and impurities in the lead-free solder, unprecedented physical properties Solder joints that have good wetting and spreading properties, are flexible and stretchable as the physical and mechanical properties of solder, have excellent toughness, and have high joint reliability, especially for micro-joints. The present invention relates to a solder alloy that can be used, a semiconductor device in which the reliability of solder joints in a minute part is dramatically improved by using the solder alloy, and a technology for the semiconductor device.
[0007] 更に詳しく言えば、 本発明で用いる有機脂肪酸は炭素数 1 2以下でも使用可能では あるが吸水性があり、 高温で使用する関係からあまり好ましくない。 また、 炭素数 2 1 以上の有機脂肪酸では融点が高いこと及び浸透性が悪くまた取扱いし難く処理後の該 鉛フリーはんだ合金の防鯖効果も不充分になる。 望ましくは炭素数 1 6のパルミチン酸、 炭素数 1 8のステアリン酸が最適であり、 そのいずれか 1種を 1 0〜7 0重量%と残部 エステル合成油からなる液温 1 8 0〜 3 0 0での溶液を用いることにより、 該鉛フリー はんだ合金内部に存在する酸化物や不純金属を除去し、 従来にない物理的機械的化学的 物性、 特に、 柔軟で伸ぴ、 靭性に富み、 溶融時の粘性が低く (見た目の感覚でも従来の 鉛プリ一はんだと比較して明らかに 「さらさら』 感がある)、 はんだぬれ性のよい優れ た清浄な鉛フリ一はんだ合金が得られる。  More specifically, although the organic fatty acid used in the present invention can be used even with a carbon number of 12 or less, it has a water absorption property, which is not preferable because it is used at a high temperature. In addition, organic fatty acids having 21 or more carbon atoms have a high melting point and poor permeability and are difficult to handle, and the lead-free solder alloy after the treatment has an insufficient antifungal effect. Desirably, palmitic acid having 16 carbon atoms and stearic acid having 18 carbon atoms are optimal, and one of them is 10 to 70% by weight, and the liquid temperature is composed of the remaining ester synthetic oil 1 80 to 30 By using a solution at 0, the oxides and impure metals present inside the lead-free solder alloy are removed, and unprecedented physical, mechanical and chemical properties, especially flexible, stretchable, tough, and melted. It has a low viscosity at the time (the apparent sensation is clearly “smooth” compared to conventional lead pre-solder) and provides a clean, lead-free solder alloy with good solder wettability.
[0008] 該有機脂肪酸濃度については 1 0重量%以下でも効果はあるが、 補充管理など煩雑な こと、 また 7 0重量%以上では液粘度も高くなり、 該鉛フリ一はんだ合金との撹拌抵抗 及ぴ混合浸透性に問題を生じるため、 好ましくは 1 0〜7 0重量%である。 液温は使用 する鉛フリーはんだ合金の融点で決まり、 少なくとも該融点以上の髙温領域で有機脂肪 酸溶液と溶融した該鉛フリ一はんだを激しく撹拌接触させる必要が る。  [0008] The organic fatty acid concentration is effective even if it is 10% by weight or less, but complicated, such as replenishment management, and if it is 70% by weight or more, the liquid viscosity increases, and the stirring resistance with the lead-free solder alloy In order to cause a problem in the mixed permeability, it is preferably 10 to 70% by weight. The liquid temperature is determined by the melting point of the lead-free solder alloy to be used, and it is necessary to vigorously stir and contact the organic fatty acid solution and the molten lead-free solder at least in a temperature range above the melting point.
[0009] また上限温度は発煙の問題や省エネの観点から 3 0 0 ¾程度であり、 望ましくは使用 する鉛フリーはんだの融点以上の温度〜 2 7 0 °Cである。 また、 エステル合成油を混合 する理由は液粘度を下げて均一な »処理を行うこと及び有機脂肪酸の高温発煙性抑 制にあり、 その濃度は有機脂肪酸濃度で決まる。  [0009] Further, the upper limit temperature is about 300 ° from the viewpoint of smoke generation and energy saving, and is desirably a temperature not lower than the melting point of the lead-free solder to be used up to 27 ° C. The reason for mixing the ester synthetic oil is to reduce the viscosity of the liquid and perform uniform processing and to suppress high-temperature smoke generation of organic fatty acids. The concentration is determined by the concentration of organic fatty acids.
[0010] 撹拌方法は、 加熱装置のついたステンレス容器に上記有機脂肪酸とエステル合成油を 入れて所定の温度に加温しながら通常のパッチ式ステンレス製ィンペラ撹拌子などを 用いて撹拌して均一に溶液化させ、 その中に予め別槽で溶融させた該鉛フリ一はんだ合 金液を少量ずつ激しく撹拌しながら注入すればよレ、。 撹袢はスタティックミキサーを使 うと短時間で該鋭フリ一はんだ中の酸化物おょぴ不純物の除去が効率的に出来る。 [0011] 鉛フリ一はんだ合金の種類は、実際に錫'銀 '銅系とそれに二ッケル、 ゲルマ二ゥムを 添加した市販の合金、 及ぴ錫 '亜鉛系合金にニッケル、 銀を添加した合金を中心に上記 本発明の有機脂肪酸とエステル合成油で浸漬撹拌処理を実施しその効果を検証したが、 これ以外の鉛フリ一はんだ合金に該本発明処理を適用すれば同様の効果が得られるも のと類推される。 [0010] The stirring method is a method in which the above-mentioned organic fatty acid and ester synthetic oil are put in a stainless steel container equipped with a heating device and heated to a predetermined temperature while stirring using a normal patch-type stainless steel impeller stirrer. The lead-free solder alloy solution, which has been made into a solution and previously melted in a separate tank, is poured into the solution with vigorous stirring little by little. Stirring can efficiently remove oxides and impurities in the sharp free solder in a short time by using a static mixer. [0011] The types of lead-free solder alloys are actually tin 'silver' copper-based and commercial alloys with nickel and germanium added, and tin 'zinc-based alloys with nickel and silver added. The effects of the immersion stirring treatment were conducted with the above-described organic fatty acid and ester synthetic oil of the present invention centering on the alloy, and the effect was verified. It can be inferred that
発明の効果  The invention's effect
[0012] 上記の炭素数が 1 3〜2 0の有機脂肪酸 5〜 8 0重量%と残部エステル合成からなる 液温 1 8 0 (使用する鉛はんだ合金材料の融点以上の温度) 〜3 0 0での溶液中に、 現 在、 広く実用されている通常の鉛フリーはんだ合金、 即ち、 錫を主成分としこれに銀、 銅、 亜鉛、 ビスマス、 アンチモン、 ニッケル、 ゲルマニウムのいずれか 1種以上の金属 を添加した溶融鉛フリ一はんだ合金を注入し浸漬撹拌処理すると、 該溶融鉛フリ一はん だ合金中に存在する錫酸化物、 銅酸化物、 銀酸化物、 あるいはその他の添加金属の酸化 物および微量混入している鉄、 鉛、 珪素、 カリウムなどの酸化不純物が有機脂肪酸の力 ルポニル基と反応して取り込まれケン化物となり、 該鉛フリ一はんだ合金内部から分離 除去される。  [0012] 5 to 80% by weight of the organic fatty acid having 13 to 20 carbon atoms and the remaining ester synthesis liquid temperature 1 80 (temperature higher than the melting point of the lead solder alloy material to be used) In general, a lead-free solder alloy that is widely used at present, that is, tin as a main component, and silver, copper, zinc, bismuth, antimony, nickel, germanium, or more When molten lead-free solder alloy added with metal is injected and immersed and stirred, oxidation of tin oxide, copper oxide, silver oxide, or other added metals present in the molten lead-free solder alloy is performed. Oxidized impurities such as iron, lead, silicon, potassium, etc. that are mixed in the product and react with organic fatty acid ruponyl groups to be saponified and separated and removed from the lead-free solder alloy.
撹拌時間は該鉛フリ一はんだ合金の投入量おょぴ撹拌機の構造および撹拌条件にも ' よるが、 一般的には 1 0〜6 0分間程度強撹拌すれば充分である。 その後、 比重差を利 用して反応槽最下部より上記酸化物おょぴ大半の不純物が分離除去され清浄化された 該鉛フリ一はんだ合金を溶融状態で錄型等に取り出し、 凝固させ、 通常のはんだ付け装 置に投入してはんだ接合すればよい。  The stirring time depends on the amount of the lead-free solder alloy used, the structure of the stirrer, and the stirring conditions, but generally strong stirring for about 10 to 60 minutes is sufficient. Then, using the difference in specific gravity, the lead oxide solder alloy, which has been separated and removed from the bottom of the reaction vessel by the specific gravity difference, has been cleaned and taken out in a molten form, solidified, and solidified. It can be put into a normal soldering device and soldered.
[0013] 上述の条件で製造した本発明の鉛フリ一はんだ合金の物理的機械的及び化学的特性 を調べると、 以下の実施例 (1〜3 ) に示した通り、 現在広く使われている鉛フリーは んだ合金 (比較例 1〜 3 ) に較べて、 伸ぴ、 破断伸びが著しく向上していること、 はん だ接合の際のはんだぬれ性も遥かによく、 また溶融時の粘性も低く、微小部のはんだ接 合に最適な鉛フリーはんだ合金であることが確認された。 即ち、 リード面積が 0 . 0 8 ιηπι , 隣接リード間隔が 0 . 0 8 mmの極狭ピッチにおいてもオーバーボリューム、 およびプリッジオーバーして隣接リードにリークすることなく、また髙低温ヒートサイ クルに伴う微小はんだ接合部の疲労破断による電子回路の導通不良もなく、本発明鉛フ リ一はんだによる接合部の長期接続信頼性が優れていることがわかった。 [0013] When the physical mechanical and chemical properties of the lead-free solder alloy of the present invention manufactured under the above conditions were examined, as shown in the following examples (1 to 3), it is currently widely used. Compared to lead-free solder alloys (Comparative Examples 1 to 3), the elongation and breaking elongation are significantly improved, the solder wettability during soldering is much better, and the viscosity during melting It was confirmed that the lead-free solder alloy is optimal for soldering small parts. In other words, even at an extremely narrow pitch with a lead area of 0.08 ιηπι and an adjacent lead spacing of 0.08 mm, there is no over-volume or bridge over and leakage to the adjacent leads, and there is a small amount associated with low temperature heat cycles. There is no electrical circuit continuity failure due to fatigue fracture of solder joints, It was found that the long-term connection reliability of the joint by using the re-solder is excellent.
[0014] <実施例おょぴ比較例 > [0014] <Example Oppi Comparison>
先ず、 比較例 1としては、 一般に市販されている銀 2 . 5重量%、 銅 0 . 5重量%、 残部錫からなる鉛フリ一はんだ合金使用した。  First, as Comparative Example 1, a commercially available lead-free solder alloy consisting of 2.5% by weight of silver, 0.5% by weight of copper, and the balance tin was used.
[0015] —方、 本発明の実施例 1としては、 [上記比較例 1と同じ組成の、 銀 2 . 5重量%、 銅 0 . 5重量%、 残部錫からなる鉛フリーはんだ合金を予め溶融させておき、 ステアリン 酸 5 0重量%と残部エステル合成からなる液温 2 6 0での溶液中に少量ずる滴下しな がら上下 2段に設置されたステンレスインペラ一付回転式撹拌機で激しく撹拌しなが ら、 3 0分後に処理槽の最下部から清浄化された該鉛フリ一はんだを敢り出し、 評価試 験に供した。  [0015] On the other hand, as Example 1 of the present invention, a lead-free solder alloy composed of 2.5% by weight of silver, 0.5% by weight of copper, and the remaining tin having the same composition as Comparative Example 1 was previously melted. Stir vigorously with a rotary stirrer with a stainless impeller installed in two stages while dripping a small amount into a solution at a liquid temperature of 260% consisting of 50% by weight of stearic acid and the remaining ester synthesis. However, after 30 minutes, the cleaned lead-free solder was taken out from the lowermost part of the treatment tank and subjected to an evaluation test.
[0016] 更に、 比較例 2として、銀 2 . 5重量%、銅 0 . 5重量%、 ニッケル 0. 0 1重量%、 ゲルマニウム 0 . 0 0 5重量%、 残部錫からなる鉛フリーはんだ合金を使用した。  [0016] Furthermore, as Comparative Example 2, a lead-free solder alloy comprising 2.5% by weight of silver, 0.5% by weight of copper, 0.1% by weight of nickel, 0.05% by weight of germanium, and the balance tin used.
[0017] これに対し、実施例 2としては、上記比較例 2と同じ組成の、銀 2 . 5重量%、銅 0 .  On the other hand, in Example 2, 2.5% by weight of silver and 0.5% of copper having the same composition as Comparative Example 2 were used.
5重量0 /0、 ニッケル 0 . 0 1重量%、 ゲルマニウム 0 0 5重量%、 残部錫からなる 鉛フリーはんだ合金を予め溶融させておき、 パルミチン酸 4 0重量%と残部エステル合 成からなる液温 2 5 5 °Cの溶液中に少量ずる滴下しながら上下 2段に設置されたステ ンレスィンぺラー付回転式撹拌機で激しく撹拌しながら、 6 0分後に処理槽の最下部か ら清浄化された該鉛フリ一はんだを取り出し、 評価試験に供した。 5 weight 0/0, nickel 0.0 1 wt%, germanium 0 0 5 wt%, allowed to advance melted lead-free solder alloy and the balance tin, palmitic acid 4 0% by weight and liquid balance consisting ester synthesis Purify from the bottom of the treatment tank after 60 minutes while stirring vigorously with a rotary stirrer with stainless steel impeller installed in two stages while dripping a small amount into the solution at a temperature of 255 ° C. The lead-free solder thus taken out was subjected to an evaluation test.
[0018] また更に、 比較例 3として、 亜鉛 8 . 0重量%、 ニッケル 0 . 0 5重量%、 銀 1 . 0 重量%、 残部錫からなる鉛フリ一はんだ合金を使用した。  [0018] Furthermore, as Comparative Example 3, a lead-free solder alloy consisting of 8.0 wt% zinc, 0.05 wt% nickel, 1.0 wt% silver and the balance tin was used.
[0019] これに対し、 実施例 3としては、 上記比較例 3と同じ組成の、 亜鉛 8 . 0重量%、 二 ッケル 0 . 0 5重量%、 銀 1 . 0重量%、 残部錫からなる鉛フリーはんだ合金を予め溶 融させておき、 パルミチン酸 4 0重量。 /0とステアリン酸 2 0重量%と残部エステル合成 からなる液温 2 8 0での溶液中に少量ずる滴下しながら上下 2段に設置されたステン レスィンぺラー付回転式撹拌機で激しく撹拌しながら、 2 0分後に処理槽の最下部から 清浄化された該鉛フリ一はんだを取り出し、 評価試験に供した。 On the other hand, as Example 3, lead having the same composition as Comparative Example 3 above, consisting of 8.0% by weight of zinc, 0.05% by weight of nickel, 1.0% by weight of silver, and the balance tin Free solder alloy is melted in advance and palmitic acid is 40 weight. Stir vigorously with a rotary stirrer with stainless steel impeller installed in two stages while dripping a small amount into the solution at a liquid temperature of 2 80, consisting of / 0 , stearic acid, 20% by weight and the remaining ester synthesis. However, after 20 minutes, the cleaned lead-free solder was taken out from the lowermost part of the treatment tank and subjected to an evaluation test.
[0020] 物理的機械的評価方法は、 上記比較例 1〜 3及ぴ実施例 1〜 3の各鉛フリ一はんだ合 金をステンレス (SUS 304) 製踌造金型 ( J I S 6号) を用レヽ、 評点間距離 L = 50mm、 直径 8κιιηφ、 チヤッキング部長さ L=20mm、 直径 1 Οπιιιιφ の試験片を作成し、 J I S Z 4421) の試験方法により島津製作所製引張り試験機[0020] The physical-mechanical evaluation method is based on the lead-free solder joints of Comparative Examples 1 to 3 and Examples 1 to 3. Using a stainless steel (SUS 304) forged mold (JIS No. 6), make a test piece with a distance between grades of L = 50mm, a diameter of 8κιιηφ, a length of the chucking section of L = 20mm, and a diameter of 1Οπιιιιφ, JISZ 4421 ) Tensile tester made by Shimadzu Corporation
(AG 100型) を用い、 室温 25でにおいて、 それぞれ繰返し' 3 (n = 3) で、 荷重 負荷速度 5 mm/m i nで試験測定した。 (AG 100 type) was used and tested at room temperature 25, repeatedly at '3 (n = 3), at a load rate of 5 mm / min.
また、 化学的物性評価方法は、 上記比較例 1〜 3及ぴ実施例 1〜 3の各鉛フリ一はん だ合金をメニスコグラフによるはんだ濡れ性試験方法によりそれぞれ繰返し 5 · ( n = In addition, the chemical property evaluation method was repeated for each lead-free solder alloy of Comparative Examples 1 to 3 and Examples 1 to 3 according to a meniscograph solder wettability test method.
5) でゼロクロス時間を測定した。 その際、 測定ピンは 0. 4 mm ψの純銅線を使用し た。 The zero crossing time was measured in 5). At that time, a pure copper wire of 0.4 mm ψ was used as the measurement pin.
[0021] その結果は下記 【表 1】 'の通り、 実施例の清浄化鉛フリ一はんだ合金では比較例に較 ベて物理的機械的特性のうち特に伸びが 1.5倍以上大きく、 破断し難いことを示唆して いる。 また、 はんだ濡れ性でも圧倒的に濡れ易く、 溶融状態における粘性、 即ち、 さら さら感も従来のはんだ合金にない低粘性を保有している。 これは、 凝固後のはんだ内部 結晶組織で見ると、 本発明の鉛フリーはんだ合金の場合 (実施例 1) は結晶粒界が小さ レヽ (【図 1】) のに対して、 同じ組成で本発明の処理をしていない鉛フリーはんだ合金の 場合 (比較例 2) は柱状結晶の長さが長いことが知見された (【図 2】)。 また、 伸びの 大きさに対して実施例の引張強度は比較例と大差なく、 従って、 靭性も強靭で長期ヒー トサイクル試験での膨張収縮による疲労破壊も生じ難いことが確認された。  [0021] The results are as shown in [Table 1] below. The cleaned lead-free solder alloy of the example has an especially large elongation of 1.5 times or more compared to the comparative example, and hardly breaks. This suggests. In addition, it is overwhelmingly easy to wet even with solder wettability, and has a low viscosity that is not found in conventional solder alloys. This is because, in the case of the lead-free solder alloy of the present invention (Example 1), the crystal grain boundary is small ([Fig. 1]). In the case of the lead-free solder alloy not subjected to the inventive treatment (Comparative Example 2), it was found that the length of the columnar crystal was long ([Fig. 2]). In addition, the tensile strength of the examples was not much different from that of the comparative example with respect to the magnitude of the elongation, and therefore it was confirmed that the toughness was strong and fatigue failure due to expansion and contraction in the long-term heat cycle test did not easily occur.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1 ] 本発明の鉛フリ一はんだ合金 (実施例 2 ) の內部断面結晶組織事例である。 FIG. 1 is an example of a cross-sectional crystal structure of a lead-free solder alloy (Example 2) according to the present invention.
[図 2] 従来の鉛フリ一はんだ合金 (比較例 2 ) の内部断面結晶組織事例である。 [Fig. 2] This is an example of the internal cross-sectional crystal structure of a conventional lead-free solder alloy (Comparative Example 2).
[0023] [表 1〗 実施例およぴ比較例の評価結果 [0023] [Table 1〗 Evaluation results of Examples and Comparative Examples
Figure imgf000009_0001
Figure imgf000009_0001
以上の通り、 本発明の技術は明らかに従来の鉛フリ一はんだ合金にない高い伸びと '強靭性、 特に微小面積接合部の繰返しヒートサイクル疲労による接合破断リスクが小 さく従って微細化する電子機器のはんだ接合の長期高信頼性確保を可能にする鉛フ リ一はんだ合金として工業的に価値が高い技術である。  As described above, the technology of the present invention clearly has high elongation and toughness not found in conventional lead-free solder alloys, especially electronic devices that have small joint breakage risk due to repeated heat cycle fatigue of small area joints, and are therefore miniaturized. This is a technology that is industrially valuable as a lead-free solder alloy that can ensure long-term high-reliability solder joints.

Claims

請求の範囲 The scope of the claims
[1] プリント回路板を炭素数が 1 3 ~ 2 0の有機脂肪酸 5 ~ 8 0重量%を含有する油か らなる液温 1 8 0〜3 0 0°Cの溶液中に、 錫を主成分としこれに銀、 銅、 亜鉛、 ビスマ ス、 アンチモン、 ニッケル、 ゲルマニウムのいずれか 1種以上の金属を添加した溶融鉛 フリ一はんだ合金を浸漬し撹拌処理することにより、該鉛フリ一はんだ中の酸化物及ぴ 不純物を除去した電子部品用鉛フリ一はんだ合金。  [1] The printed circuit board is mainly composed of tin in a solution composed of oil containing 5 to 80% by weight of an organic fatty acid having 13 to 20 carbon atoms and having a temperature of 180 to 300 ° C. Molten lead free solder alloy with one or more metals of silver, copper, zinc, bismuth, antimony, nickel, germanium added as an ingredient in this lead free solder is immersed in the solder. Lead-free solder alloy for electronic parts from which oxides and impurities are removed.
[2] 前記請求項 1における有機脂肪酸としてパルミチン酸、ステアリン酸のいずれか 1種 を 1 0〜7 0重量%と残部エステル合成油からなる液温 1 8 0〜3 0 0での溶液に、 錫 を主成分としこれに銀、 銅、 亜鉛、 ビスマス、 アンチモン、 ニッケル、 ゲルマニウムの いずれか 1種以上の金属を添加した溶融鉛フリ一はんだ合金を浸漬し撹拌処理するこ とにより、 該鉛フリ一はんだ中の酸ィヒ物及び不純物を除去した電子部品用鉛フリ一はん だ合金。  [2] In the solution at a liquid temperature of 180 to 300, comprising 10 to 70% by weight of any one of palmitic acid and stearic acid as the organic fatty acid in claim 1 and the remaining ester synthetic oil, By immersing and stirring a molten lead-free solder alloy containing tin as a main component and adding at least one of silver, copper, zinc, bismuth, antimony, nickel, and germanium to the lead-free solder alloy. A lead-free solder alloy for electronic parts from which oxidants and impurities in the solder are removed.
[3] プリント回路板を炭素数が 1 3〜 2 0の有機脂肪酸 5〜 8 0重量%を含有する油か らなる液温 1 8 0〜3 0 0での溶液中に、 錫を主成分としこれに銀、 銅、 亜鉛、 ビスマ ス、 アンチモン、 ニッケル、 ゲルマニウムのいずれか 1種以上の金属を添加した溶融鉛 . フリ一はんだ合金を浸漬し撹拌処理することにより、 該鉛フリ一はんだ中の酸化物及び 不純物を除去した電子部品用鉛フリ一はんだ合金を使用してはんだ接合した半導体装 置。  [3] The main component of tin in a printed circuit board is a solution composed of an oil containing 5 to 80% by weight of an organic fatty acid having 13 to 20 carbon atoms at a liquid temperature of 180 to 300. Molten lead to which one or more metals of silver, copper, zinc, bismuth, antimony, nickel, and germanium are added. Semiconductor devices soldered using lead-free solder alloys for electronic components from which oxides and impurities have been removed.
[4] 前記請求項 3における有機脂肪酸としてパノレミチン酸、ステアリン酸のいずれか 1種 を 1 0〜7 0重量%と残部エステル合成油からなる液温 1 8 0〜3 0 0 °Cの溶液に、 錫 を主成分としこれに銀、 銅、 亜鉛、 ビスマス、 アンチモン、 ニッケル、 ゲルマニウムの いずれか 1種以上の金属を添加した溶融鉛フリ一はんだ合金を浸漬し撹拌処理するこ とにより、 該鉛フリ一はんだ中の酸化物及ぴ不純物を除去した電子部品用鉛フリ一はん だ合金を使用してはんだ接合した半導体装置。  [4] The organic fatty acid according to claim 3 is a solution having 10 to 70% by weight of any one of panolemitic acid and stearic acid, and a liquid temperature of 180 to 300 ° C. comprising the remaining ester synthetic oil. By immersing and stirring the molten lead-free solder alloy containing tin as a main component and adding at least one of silver, copper, zinc, bismuth, antimony, nickel, and germanium, the lead A semiconductor device soldered using a lead-free solder alloy for electronic parts from which oxides and impurities in the free solder have been removed.
PCT/JP2008/066018 2008-02-22 2008-08-29 Lead-free solder alloy and semiconductor device WO2009104294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008072364A JP4375485B2 (en) 2008-02-22 2008-02-22 Lead-free solder alloy manufacturing method and semiconductor device manufacturing method
JP2008-72364 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104294A1 true WO2009104294A1 (en) 2009-08-27

Family

ID=40985189

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/066018 WO2009104294A1 (en) 2008-02-22 2008-08-29 Lead-free solder alloy and semiconductor device
PCT/JP2008/073145 WO2009104338A1 (en) 2008-02-22 2008-12-12 Tin, solder alloy, and semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073145 WO2009104338A1 (en) 2008-02-22 2008-12-12 Tin, solder alloy, and semiconductor device

Country Status (2)

Country Link
JP (1) JP4375485B2 (en)
WO (2) WO2009104294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150115020A1 (en) * 2012-04-17 2015-04-30 Tanigurogumi Corporation Solder bump, method for forming a solder bump, substrate provided with solder bump, and method for manufacturing substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355322B1 (en) * 2017-04-10 2022-01-25 메탈로 벨지움 Improved Method for Manufacturing Crude Solder
CN107245602B (en) * 2017-06-09 2019-03-22 升贸科技股份有限公司 Lead-free tin alloy and the tinned wird for using it
CA3132711C (en) * 2019-04-09 2022-05-17 Hisao Ishikawa Method for manufacturing solder product, solder, soldered component, solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin article, method for manufacturing tin intermediate product, tin article, tin intermediate product, and conductive member
JP7026907B2 (en) 2020-04-08 2022-03-01 石川技研株式会社 Manufacturing method of solder products, printed circuit boards, wire rods, flexible printed boards and electronic components
CN111009798B (en) * 2019-12-20 2022-07-01 中国科学院电工研究所 Multi-core iron-based superconducting joint and preparation method thereof
TWI799696B (en) * 2020-03-12 2023-04-21 石川久雄 Method for manufacturing solder product, solder, soldering component, solder product, printed wiring board, printed circuit board, wire material, soldering product, flexible printed circuit board, electronic component, method for manufacturing tin product and tin semifinished product, tin product, tin semifinished product and conductive member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040103B1 (en) * 1969-10-08 1975-12-22
JP2001320162A (en) * 1998-02-27 2001-11-16 Matsushita Electric Ind Co Ltd Solder recovery device, and method of removing oxide
JP2006045676A (en) * 2004-08-03 2006-02-16 Wc Heraeus Gmbh Method for refining and uniformly distributing alloy component, and removing undesired reaction product and sludge from soft solder at the time of producing fine solder
JP2007532321A (en) * 2004-04-16 2007-11-15 ピー.ケイ メタル,インコーポレイティド Soldering method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555715B2 (en) * 1988-10-26 1996-11-20 三菱マテリアル株式会社 Manufacturing method of solder alloy fine powder
JP3090733B2 (en) * 1991-09-04 2000-09-25 ソニー株式会社 Jet solder bath

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040103B1 (en) * 1969-10-08 1975-12-22
JP2001320162A (en) * 1998-02-27 2001-11-16 Matsushita Electric Ind Co Ltd Solder recovery device, and method of removing oxide
JP2007532321A (en) * 2004-04-16 2007-11-15 ピー.ケイ メタル,インコーポレイティド Soldering method and apparatus
JP2006045676A (en) * 2004-08-03 2006-02-16 Wc Heraeus Gmbh Method for refining and uniformly distributing alloy component, and removing undesired reaction product and sludge from soft solder at the time of producing fine solder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150115020A1 (en) * 2012-04-17 2015-04-30 Tanigurogumi Corporation Solder bump, method for forming a solder bump, substrate provided with solder bump, and method for manufacturing substrate

Also Published As

Publication number Publication date
JP4375485B2 (en) 2009-12-02
WO2009104338A1 (en) 2009-08-27
JP2009197315A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
WO2009104294A1 (en) Lead-free solder alloy and semiconductor device
CA2288817C (en) Lead free solder alloy
EP1043112B1 (en) Lead-free solder
ES2672511T3 (en) Welding alloy, solder paste, and electronic circuit board
TW516984B (en) Solder material, device using the same and manufacturing process thereof
WO2010089905A1 (en) Process and apparatus for producing tin or solder alloy for electronic part and solder alloy
JP6804126B1 (en) Lead-free solder alloys and solder joints
WO2007081775A2 (en) Lead-free solder with low copper dissolution
JP4375491B1 (en) Electronic component soldering apparatus and soldering method
KR102242388B1 (en) Solder alloy, solder bonding material and electronic circuit board
TW586982B (en) Improved compositions, methods and devices for high temperature lead-free solder
JP4282482B2 (en) Solder alloys and solder joints
US20050079092A1 (en) Pb-free solder alloy, and solder material and solder joint using same
JP2011114334A (en) Solder coat film forming method and device therefor
JP2004154864A (en) Lead-free soldering alloy
Thwaites The attainment of reliability in modern soldering techniques for electronic assemblies
Zerrer et al. Solidification and wetting behaviour of SnAgCu solder alloyed by reactive metal organic flux
JP6504401B2 (en) Solder alloy and mounting structure using the same
JPH11151591A (en) High-temperature lead-free solder alloy
TW201934768A (en) Cost-effective lead-free solder alloy for electronic applications
JP4485604B1 (en) Manufacturing method, manufacturing apparatus, and solder alloy for tin or solder alloy for electronic parts
CN115927908A (en) Solder alloy and soldered joint
JP2000280066A (en) Forming method of non-lead jointing member
Koon et al. Study on IMC morphology and impact to solder joint performance for different halogen free (HF) flux in semiconductor application
JP4364234B2 (en) Electrical / electronic equipment with solder joints

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872609

Country of ref document: EP

Kind code of ref document: A1