JP2016182601A - Coating film peeling method - Google Patents

Coating film peeling method Download PDF

Info

Publication number
JP2016182601A
JP2016182601A JP2016102967A JP2016102967A JP2016182601A JP 2016182601 A JP2016182601 A JP 2016182601A JP 2016102967 A JP2016102967 A JP 2016102967A JP 2016102967 A JP2016102967 A JP 2016102967A JP 2016182601 A JP2016182601 A JP 2016182601A
Authority
JP
Japan
Prior art keywords
coating film
induction
temperature
induction generator
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016102967A
Other languages
Japanese (ja)
Inventor
佐藤栄作
Eisaku Sato
吉川博
Hiroshi Yoshikawa
岡部次美
Tsugumi OKABE
小野秀一
Shuichi Ono
渡辺真至
Masashi Watanabe
中村順一
Junichi Nakamura
浅見剛一
Koichi Asami
望月彰
Akira Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOCHIZUKI TOSOU CO Ltd
NAPCO KK
Japan Construction Machinery and Construction Association JCMA
Shutoko Maintenance East Tokyo Co Ltd
Original Assignee
MOCHIZUKI TOSOU CO Ltd
NAPCO KK
Japan Construction Machinery and Construction Association JCMA
Shutoko Maintenance East Tokyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOCHIZUKI TOSOU CO Ltd, NAPCO KK, Japan Construction Machinery and Construction Association JCMA, Shutoko Maintenance East Tokyo Co Ltd filed Critical MOCHIZUKI TOSOU CO Ltd
Priority to JP2016102967A priority Critical patent/JP2016182601A/en
Publication of JP2016182601A publication Critical patent/JP2016182601A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable reduction of a physical burden of a worker and proper heat control in a method for peeling a coating film on a steel surface by induction heat.MEANS: An induction generator 12 has an induction head 18 including an induction coil therein, and an electric winch 28 for moving up or down the induction generator 12 is provided. The electric winch 28 is provided at a balance arm 22. The induction generator 12 is suspended by a cable 42 of the electric winch 28. A sensor for detecting a surface temperature of a steel plate or a surface temperature of a coating film is provided in the induction generator 12. A moving speed of the induction head 18 moved by the electric winch 28 is controlled so that the surface temperature of the steel plate or the coating film is in a predetermined range.SELECTED DRAWING: Figure 1

Description

この発明は鋼材表面の塗膜を誘導熱により剥離する方法の改良に関するものである。   The present invention relates to an improvement in a method for peeling a coating film on a steel material surface by induction heat.

誘導熱により鋼材表面の塗膜を剥離する方法は公知である。同方法においては誘導コイルを備えた誘導ヘッドが設けられ、誘導コイルに通電される交流により惹起される電磁場により鋼材に渦電流が発生し、渦電流発生下での電気抵抗発熱により鋼材が加熱され、鋼材表面の塗膜を剥離させることができる。誘導熱による塗膜剥離は、ショットブラストによる剥離作業のような騒音や飛沫を発生することなくクリーンでかつ無音の塗膜剥離を行うことができ、環境にかける負荷が少なく相対的に低コストな点で有用な技術である。この種の塗膜剥離方法については例えば引用文献1及び引用文献2を参照されたい。
特許第4014409号公報 特公昭63−067100号公報
A method of peeling the coating film on the steel material surface by induction heat is known. In this method, an induction head having an induction coil is provided, and an eddy current is generated in the steel material by an electromagnetic field induced by an alternating current energized to the induction coil, and the steel material is heated by electric resistance heat generation under the generation of the eddy current. The coating film on the steel material surface can be peeled off. Coating film peeling by induction heat enables clean and silent film peeling without generating noise and splashing as in shot blasting, and is relatively low-cost with little environmental impact. This is a useful technology in terms of points. See, for example, Cited Document 1 and Cited Document 2 for this type of coating film peeling method.
Japanese Patent No. 4014409 Japanese Patent Publication No. 63-0667100

誘導熱による塗膜剥離方法においては、誘導発生器を鋼材の塗膜面に沿って手持ちにて移動させながら塗膜剥離作業を行うが、誘導発生器は誘導コイルを備えた誘導ヘッドと一体化され、通電や冷却等付属部品を内蔵した保持本体を含めると10kg程度と軽量とは言えず、特に橋梁などの場合は高所での長時間の作業となるため作業員の体力的な負担が大きくてつらい作業となり、作業員の体力的な負担の軽減化が希求されていた。   In the method of removing the coating film by induction heat, the coating generator is removed while moving the induction generator by hand along the coating surface of the steel material. The induction generator is integrated with the induction head equipped with the induction coil. Including a holding body with built-in accessories such as energization and cooling, it cannot be said that the weight is about 10 kg. Especially in the case of a bridge, etc., it takes a long time to work at a high place. It was a big and hard work, and there was a demand for reducing the physical burden on workers.

また、手操作による誘導発生器の移動は誘導ヘッド(誘導コイル)の移動速度の大きな変動が避けられず、移動速度が遅い場合(特に、鋼材の板厚が余り大きくない場合)は、熱伝導下での反対側面の塗膜への悪影響の懸念があり、逆に、移動速度が速い場合は、鋼材の加熱の不足により塗膜の剥離を行い得ず、このことから誘導ヘッドの熱管理の必要性が希求されていた。即ち、誘導熱による塗膜剥離は従来主として大型船舶に利用されており、大型船舶の場合は鋼材の板厚が大きいので反対側面への熱伝導の影響が少なく熱管理の重要性はなかったが、橋梁の場合は板厚が船舶より相当に薄いため、熱伝導により鋼板母材及び反対側面への悪影響が大いに懸念された。   In addition, when the induction generator is moved manually, large fluctuations in the movement speed of the induction head (induction coil) are unavoidable, and if the movement speed is slow (especially when the steel plate is not too thick), heat conduction There is concern about adverse effects on the coating film on the opposite side below, and conversely, when the moving speed is high, the coating film cannot be peeled off due to insufficient heating of the steel material. The need was sought. In other words, coating peeling by induction heat has been used mainly for large ships, and in the case of large ships, the thickness of the steel material is large, so there is little influence of heat conduction on the opposite side, and there was no importance of heat management. In the case of a bridge, the plate thickness is considerably thinner than that of a ship, so there was a great concern about the adverse effects on the steel plate base metal and the opposite side surface due to heat conduction.

この発明はこのような問題点に鑑みてなされたものであり、環境に対する負荷が少ないという誘導熱による剥離方法の利点は損なうことなく作業員への体力的負担を軽減でき、また、橋梁等の肉厚が余り大きくとれない鋼材にあっても、塗膜の剥離のため過不足のない誘導熱を発生させるように熱管理を可能とすることを目的とする。   The present invention has been made in view of such problems, and can reduce the physical burden on the worker without losing the advantage of the peeling method by induction heat that the load on the environment is small. The purpose of this invention is to enable thermal management so as to generate induction heat without excess or deficiency due to the peeling of the coating film even in a steel material whose thickness is not so large.

この発明によれば、鋼材表面に塗膜を形成した対象物に沿わせつつ誘導発生器を移動させ誘導熱によって塗膜を鋼材表面から剥離する塗装剥離方法において、誘導発生器の移動は誘導発生器をワイヤにて懸架し、かつワイヤに誘導発生器の重さの反力となる荷重を印加しつつ行う塗膜剥離方法が提供される。   According to the present invention, in the paint peeling method in which the induction generator is moved along the object on which the coating film is formed on the steel surface and the coating film is peeled off from the steel surface by induction heat, the movement of the induction generator is induced. A coating film peeling method is provided which is performed by suspending a vessel with a wire and applying a load which is a reaction force of the weight of the induction generator to the wire.

ワイヤに誘導発生器の重さの反力をかけるためウインチを使用することができ、ウインチは電動とすることができる。電動ウインチの制御は、鋼材若しくは塗膜の表面温度を検出し、表面温度が所定範囲となるように鋼材の温度管理を行うことができる。   A winch can be used to apply the reaction force of the weight of the induction generator to the wire, and the winch can be electric. The control of the electric winch can detect the surface temperature of the steel material or the coating film, and can control the temperature of the steel material so that the surface temperature falls within a predetermined range.

この方法実施のための塗膜剥離装置は、ワイヤにより誘導発生器を吊り下げ保持しつつ誘導発生器及び電動ウインチを支持する支持手段と、塗膜剥離中における対象物の表面温度検知手段と、表面温度検知手段が検知する表面温度に応じて電動ウインチを制御する手段とを備える。   A coating film peeling apparatus for carrying out this method includes a support means for supporting the induction generator and the electric winch while the induction generator is suspended and held by a wire, a surface temperature detection means for an object during film peeling, Means for controlling the electric winch in accordance with the surface temperature detected by the surface temperature detecting means.

支持手段は、2節バランスアームと旋回台とを備え、バランスアームの下側アームは旋回台に取り付けられ、バランスアームの上側アームにウインチが取り付けられ、ウインチから繰り出されるワイヤはアッパーアームの先端より誘導発生器を方向自在に懸架させる。   The support means includes a two-joint balance arm and a swivel base, the lower arm of the balance arm is attached to the swivel base, a winch is attached to the upper arm of the balance arm, and the wire fed out of the winch is from the tip of the upper arm Suspend the induction generator in any direction.

誘導ヘッドは塗膜剥離(金属面露出)のためのスクレーパ(剥離手段)を誘導ヘッド移動方向の前後に備えることができ、更に、温度センサは非接触型であり、鋼材表面若しくは塗膜表面に近接するように誘導ヘッド移動方向の前後に位置させることができる。   The induction head can be equipped with scrapers (peeling means) for peeling the coating film (exposing the metal surface) before and after the moving direction of the induction head, and the temperature sensor is a non-contact type, and is applied to the steel surface or coating film surface. It can be positioned before and after the guide head moving direction so as to be close to each other.

この発明によれば、誘導発生器を吊り下げるワイヤに誘導発生器の重さの反力となる荷重をかけている。そのため、作業員の負荷を軽減し、長時間の作業を体力的な消耗を伴うことなく行うことができる。   According to this invention, the load which becomes the reaction force of the weight of an induction generator is applied to the wire which suspends an induction generator. Therefore, it is possible to reduce the load on the worker and perform long-time work without physical exhaustion.

また、対象物表面温度に応じた誘導ヘッドの移動制御により鋼材の適正な温度管理を行うことができ、表面の塗膜剥離のための過不足のない誘導加熱が可能となり、塗膜剥離作業中に鋼材の温度の過大を防止し、反対側面の塗膜への悪影響を防止することができ、鋼材自体(母材)への熱影響の懸念も排除することができる。   In addition, it is possible to perform appropriate temperature management of steel materials by controlling the movement of the induction head according to the surface temperature of the object, enabling induction heating without excess or deficiency for peeling the coating film on the surface. In addition, it is possible to prevent the temperature of the steel material from being excessive, to prevent the adverse effect on the coating film on the opposite side, and to eliminate the concern of the thermal effect on the steel material itself (base material).

図1はこの発明の塗膜剥離作業装置の模式的斜視図である。FIG. 1 is a schematic perspective view of a coating film peeling apparatus according to the present invention. 図2は図1の装置の電動ウインチ及び誘導ヘッドの模式的平面図であり、両者の模式的電気系統結線図を示す。FIG. 2 is a schematic plan view of the electric winch and the induction head of the apparatus of FIG. 1, and shows a schematic electrical system connection diagram of both. 図3は誘導ヘッドの模式的側面図である。FIG. 3 is a schematic side view of the induction head. 図4は図1の装置におけるバランスアームの模式的側面である。FIG. 4 is a schematic side view of the balance arm in the apparatus of FIG. 図5は誘導ヘッドの移動速度と鋼板表面温度との間の関係を示すグラフであり、(イ)は誘導ヘッド真下(温度ピーク)での計測結果を示し、(ロ)は誘導ヘッド通過後2秒後の計測結果を示す。FIG. 5 is a graph showing the relationship between the moving speed of the induction head and the steel sheet surface temperature. (A) shows the measurement result immediately below the induction head (temperature peak), and (b) shows 2 after passing the induction head. The measurement result after 2 seconds is shown. 図6は誘導ヘッドの移動速度と塗膜表面温度との間の関係を示すグラフであり、(イ)は誘導ヘッド真下(温度ピーク)での計測結果を示し、(ロ)は誘導ヘッド通過後2秒後の計測結果を示す。FIG. 6 is a graph showing the relationship between the moving speed of the induction head and the coating film surface temperature. (A) shows the measurement result immediately below the induction head (temperature peak), and (b) shows the result after passing the induction head. The measurement result after 2 seconds is shown. 図7は鋼板表面温度と塗膜表面温度との間の関係を示すグラフであり、(イ)は誘導ヘッド真下での計測結果を示し、(ロ)は誘導ヘッド通過後2秒後の計測結果を示す。FIG. 7 is a graph showing the relationship between the steel plate surface temperature and the coating film surface temperature, (A) shows the measurement result directly under the induction head, and (B) shows the measurement result 2 seconds after passing through the induction head. Indicates. 図8は図1−図4の装置の模式的動作図である。FIG. 8 is a schematic operation diagram of the apparatus shown in FIGS.

〔具体的構成〕
図1はこの発明による塗装剥離方法を模式的に示すものであり、10は鋼材の表面に塗膜を形成した剥離作業の対象物としてのI桁(I形断面)であり、12は誘導熱による塗膜剥離を行う誘導発生器を示し、誘導発生器12は保持本体13を備え、保持本体13には通電及び冷却水のケーブル14が接続され、保持本体13からはブラケット16が延びており、ブラケット16の先端に内部に誘導コイル(図示しない)を備えた誘導ヘッド18が設けられ、誘導ヘッド18の両端にホイール20が取り付けられる。誘導発生器12による塗膜剥離は保持本体13を作業者が保持しながら誘導ヘッド18を要剥離面に沿って移動させて行う。その際、ホイール20は転動することにより鋼板10の表面に沿った誘導ヘッド18の移動を円滑に行うことを意図したものである。誘導ヘッド18は直立配置される鋼板10の表面に沿って昇降(下り方向を図1の矢印aにて示し、上り方向を矢印bにて示す)され、誘導熱により鋼板10の表面の塗膜10A(図3参照)の剥離が行われる。誘導コイルへの交流電圧の印加により誘導コイルに対向した鋼板10の部位に渦電流を発生させ、鋼材内を渦電流が流れるときの電気抵抗により鋼板10を渦電流生成部位にて発熱させ、これにより鋼板10の表面の塗膜10Aの剥離を行う仕組みとなっている。このような誘導熱による塗膜の剥離装置としては、例えば、ノルウェー国のRPR Technologies A/S社の製品がある。従来のこの種の誘導加熱による塗膜剥離は作業員が誘導発生器12を本体13又はブラケット16の部位にて手持ちし、ホイール20のガイド下で誘導ヘッド18を鋼板10の表面に沿って移動させて行うが、誘導発生器12の全重量としては10kg程度にもなるため、橋梁等の高所での直立面の作業のような場合、長時間にわたってその重さを支え続けての作業となり、体力的負担が大きく作業員にとってつらい作業となっていた。また、誘導熱による塗膜剥離に際しては鋼材に適正な熱を加える必要があるが、従来の手操作に依拠した移動操作では誘導ヘッド(誘導コイル)の速度の大きな変動が避けられず、速度が過大であると加熱が不十分であるため塗膜の剥離を行うことができず、また速度が過少となると、過大な誘導熱が発生し、橋梁の場合鋼板の肉厚が薄いこともあって、この熱が熱伝導下で鋼板10の反対側面(箱桁(箱形断面)の場合は内側面)に伝わり、反対側面に付された塗膜に悪影響(塗膜の劣化)を及ぼし、また鋼板10の過熱は鋼材自体(強度等)に悪影響さえ懸念された。
[Specific configuration]
FIG. 1 schematically shows a coating peeling method according to the present invention, wherein 10 is an I-digit (I-shaped cross section) as an object of peeling work in which a coating film is formed on the surface of a steel material, and 12 is induction heat. The induction generator 12 includes a holding body 13, a cable 14 for energization and cooling water is connected to the holding body 13, and a bracket 16 extends from the holding body 13. An induction head 18 having an induction coil (not shown) is provided at the tip of the bracket 16, and wheels 20 are attached to both ends of the induction head 18. The coating film peeling by the induction generator 12 is performed by moving the guidance head 18 along the peeling required surface while the operator holds the holding body 13. At that time, the wheel 20 is intended to smoothly move the guide head 18 along the surface of the steel plate 10 by rolling. The induction head 18 is moved up and down along the surface of the steel plate 10 arranged upright (the downward direction is indicated by an arrow a in FIG. 1 and the upward direction is indicated by an arrow b), and the coating film on the surface of the steel plate 10 is induced by induction heat. The peeling of 10A (see FIG. 3) is performed. By applying an alternating voltage to the induction coil, an eddy current is generated in a portion of the steel plate 10 facing the induction coil, and the steel plate 10 is heated at the eddy current generation site by an electric resistance when the eddy current flows in the steel material. Thus, the coating film 10A on the surface of the steel plate 10 is peeled off. As an example of such a coating film peeling apparatus using induction heat, there is a product of RPR Technologies A / S of Norway. In the conventional film peeling by this kind of induction heating, an operator holds the induction generator 12 at the site of the main body 13 or the bracket 16 and moves the induction head 18 along the surface of the steel plate 10 under the guide of the wheel 20. However, since the total weight of the induction generator 12 is about 10 kg, work such as work on an upright surface at a high place such as a bridge continues to support the weight for a long time. The physical burden was heavy and it was a difficult task for the workers. In addition, it is necessary to apply appropriate heat to the steel material when the coating film is peeled off by induction heat. However, a large fluctuation in the speed of the induction head (induction coil) is unavoidable in the moving operation based on the conventional manual operation, and the speed is high. If it is too large, the coating cannot be peeled off due to insufficient heating, and if the speed is too low, excessive induction heat will be generated, and in the case of bridges, the steel sheet may be thin. This heat is transferred to the opposite side of the steel plate 10 under heat conduction (inner side in the case of a box girder (box-shaped cross section)), adversely affecting the coating applied to the opposite side (deterioration of the coating), and There was concern about overheating of the steel plate 10 even if it adversely affects the steel itself (strength and the like).

この発明は誘導発生器12の重さの作業者への負担を軽減するため、誘導発生器12をその重さをウインチで支えることにより作業員にその重さを実質的に体感させることなく作業を行うことができるようにし、また鋼板に生ずる誘導熱が適正となるように誘導ヘッド18の移動速度制御を行うようにしたものであり、以下これについて説明する。この発明の一実施形態における誘導発生器12のための支持装置(支持手段)はその全体が符号22にて表される。支持装置22はバランスアーム24と、旋回台26と、電動ウインチ28とを基本的構成要素とする。バランスアーム24は上側アーム30と下側アーム32を備えた2節アームとして構成され、上側アーム30と下側アーム32とは枢軸34にて回動可能に連結される。旋回台26は回転テーブル36を備え、回転テーブル36にバランスアーム24の下側アーム32の下端が枢軸38によって回動可能に連結される。そして、回転テーブル36は旋回台26に対して直立軸線の周りをフリー回転可能となっている。また、旋回台26はこの実施形態にあってはスライド式台座40に載置され、スライド式台座40は鋼板10側への延出部がI桁としての鋼板10のフランジ部10-1を収容するようにチャンネル形状をなしており、これによりスライド式台座40は鋼板10のフランジ部10-1に沿って鋼板10の長手方向にフリーにスライドさせることができるようになっている。必要あれば、スライド式台座40をフランジ部10-1の任意部位に一時的に固定するロックボルトのようなロック手段を備えることができる。ウインチ28からワイヤ42が延出され、ワイヤ42は上側アーム30の先端のガイドローラ44を介して誘導発生器12を懸架している。ワイヤ42の先端は金属製連結リング46に連結され、連結リング46は保持本体13の外壁面のU字形状金具に通されている。そのため、ワイヤ42に吊り下げられる誘導発生器12は手操作により鋼板10に押し付けることが可能となっている。   In order to reduce the burden on the operator due to the weight of the induction generator 12, the present invention supports the induction generator 12 with a winch so that the operator can work without substantially experiencing the weight. The moving speed of the induction head 18 is controlled so that the induction heat generated in the steel sheet is appropriate, and this will be described below. The support device (support means) for the induction generator 12 according to an embodiment of the present invention is generally designated by reference numeral 22. The support device 22 includes a balance arm 24, a swivel base 26, and an electric winch 28 as basic components. The balance arm 24 is configured as a two-joint arm including an upper arm 30 and a lower arm 32, and the upper arm 30 and the lower arm 32 are pivotally connected by a pivot 34. The swivel base 26 includes a turntable 36, and the lower end of the lower arm 32 of the balance arm 24 is rotatably connected to the turntable 36 by a pivot 38. The rotary table 36 can freely rotate around the upright axis with respect to the swivel base 26. Further, in this embodiment, the swivel base 26 is placed on the slide type pedestal 40, and the slide type pedestal 40 accommodates the flange portion 10-1 of the steel plate 10 with the extending portion toward the steel plate 10 being an I-digit. Thus, the channel shape is formed, so that the slide base 40 can be freely slid along the flange portion 10-1 of the steel plate 10 in the longitudinal direction of the steel plate 10. If necessary, a lock means such as a lock bolt for temporarily fixing the slide base 40 to an arbitrary portion of the flange portion 10-1 can be provided. A wire 42 extends from the winch 28, and the wire 42 suspends the induction generator 12 via a guide roller 44 at the tip of the upper arm 30. The tip of the wire 42 is connected to a metal connecting ring 46, and the connecting ring 46 is passed through a U-shaped metal fitting on the outer wall surface of the holding body 13. Therefore, the induction generator 12 suspended from the wire 42 can be pressed against the steel plate 10 by manual operation.

ウインチ28は電動式であり、図2に示すように、ウインチ28は電動モータ48と歯車式の減速機50とを備え、減速機50に連結される巻取ドラム51に巻き上げワイヤ42が巻回され、電動モータ48の正転及び逆転により巻き上げワイヤ42の巻き取り及び繰り出しが切り替えられるようになっている。電動モータ48は周知の内部に電磁ブレーキを備えたものであり、電動モータ48の停止時に自動的に制動されるようになっている。そして、減速機50は大小の噛合する歯車により40対1といった大きな減速比に構成され、電動モータ48の回転を巻取ドラム51に減速して伝達する。電動モータ48は取り付け部49によって上側アーム30に固定され(図1及び図4)、また後述の制御部54を備え、後述のように鋼材の表面温度に応じた誘導ヘッド18の速度制御が可能となっている。   The winch 28 is an electric type, and as shown in FIG. 2, the winch 28 includes an electric motor 48 and a gear type reduction gear 50, and a winding wire 42 is wound around a winding drum 51 connected to the reduction gear 50. The winding and feeding of the winding wire 42 can be switched by forward and reverse rotation of the electric motor 48. The electric motor 48 is provided with an electromagnetic brake in a known inside, and is automatically braked when the electric motor 48 is stopped. The reduction gear 50 is configured to have a large reduction ratio of 40 to 1 with large and small meshing gears, and the rotation of the electric motor 48 is reduced and transmitted to the winding drum 51. The electric motor 48 is fixed to the upper arm 30 by a mounting portion 49 (FIGS. 1 and 4), and further includes a control unit 54 described later, and can control the speed of the induction head 18 according to the surface temperature of the steel material as described later. It has become.

図1において2節アームとして構成されたバランスアーム24は、誘導発生器12及びウインチ28の荷重をスプリングにて受けつつその姿勢を維持することができるもので、その枢軸34, 38にコイルスプリングを備えたその構造自体は周知のものである。コイルスプリングは、枢軸34に設けたものは図4においては上側アーム30及び下側アーム32間に配置された圧縮ばね52にて模式的に表され、枢軸38に設けたものは下側アーム32及びテーブル36間の圧縮ばね53にて模式的に表される。巻き上げワイヤ42に誘導発生器12及びウインチ28の重さがかかっていない圧縮ばね52, 53の自然状態に対しこれらの重さが加わると圧縮ばね52, 53は矢印方向にばね力を発生し縮むことになる。誘導発生器12及びウインチ28の支持のためバランスアーム24に限定されず、支持手段として代替手段を採用可能であり、例えば、ごく単純に柱状体により誘導発生器12を吊り下げるようにすることも可能である。また、本発明の実施として必ずしも電動ウインチを使用せず、誘導発生器12をワイヤにより吊り下げ、ワイヤに重量を軽減する方向の反力を生成することで塗膜剥離を行う作業員の負荷を軽減することも包含される。   The balance arm 24 configured as a two-joint arm in FIG. 1 can maintain the posture while receiving the load of the induction generator 12 and the winch 28 by the spring. The structure itself provided is well known. The coil spring provided on the pivot 34 is schematically represented by a compression spring 52 disposed between the upper arm 30 and the lower arm 32 in FIG. 4, and the coil spring provided on the pivot 38 is represented by the lower arm 32. And a compression spring 53 between the tables 36. When these weights are applied to the natural state of the compression springs 52 and 53 where the induction generator 12 and the winch 28 are not weighted on the winding wire 42, the compression springs 52 and 53 generate a spring force in the direction of the arrow and contract. It will be. The support arm 24 is not limited to the balance arm 24 for supporting the induction generator 12 and the winch 28, and an alternative means can be adopted as the support means. For example, the induction generator 12 can be suspended simply by a columnar body. Is possible. In addition, as an embodiment of the present invention, an electric winch is not necessarily used. The induction generator 12 is suspended by a wire, and a reaction force in a direction to reduce the weight is generated on the wire, thereby reducing the load on the worker who performs coating film peeling. Mitigating is also encompassed.

図3は誘導発生器12を側面より模式的に示しており、誘導ヘッド18の上面には取付金具56が設けられ、取付金具56は誘導発生器12の移動方向(図3の紙面の左右方向)に延びており、その両端(図1では上下両端)に温度センサ58a, 58bが設けられる。温度センサ58a, 58bは周知の非接触型のもの(赤外線カメラ式のもの等)であり、鋼板10の表面に近接して配置される。尚、取付金具56には鋼材表面の塗膜掻取用の上下のスクレーパ59a, 59b(本発明の部分的塗膜剥離手段)がその先端がホイール20に向けやや下向きに設けられる。スクレーパ59a, 59bは尖鋭先端面が幅方向(図3の紙面に直交方向)に延びており、スクレーパ59a, 59bの幅分の塗膜の掻き取りを行うことができる。温度センサ58a, 58bからの温度信号は図2に示すように信号線60によって制御部54に送られる。また、保持本体13はその上面に操作部62を備えており、操作部62はスイッチ63a, 63bを備え、スイッチ63aは誘導発生器12の下降用、スイッチ63bは誘導発生器12の上昇用である。また、ウインチ昇降動作の正常を表示する緑ランプ64-1及び異常を表示する赤ランプ64-2 が設けられる。スイッチ及び動作表示部62から制御部54への信号線を66にて示す。スイッチ63a, 63bのいづれもが押されていないときは制御部54は電動モータ48は停止させ、電動モータ48の内部における電磁ブレーキを制動動作させ、電動ウインチ28のワイヤ42は巻き取り(上昇)も繰り出しも(下降)もされず、ブレーキにより制動されて誘導発生器12は一定位置に留まるように仕組まれている。68は過巻防止のためのリミットスイッチであり、図4に示すように、上側アーム30の先端に設けられ、誘導発生器12が上限まで巻き上げられるとリミットスイッチ68のフィーラ68-1が誘導発生器12の本体13の上端部により叩かれ、信号線70(図2)を介し制御部54をして電動モータ48を停止せしめ(電磁ブレーキによる制動もかかり)、ワイヤ42の過巻防止を行う。   FIG. 3 schematically shows the induction generator 12 from the side. A mounting bracket 56 is provided on the top surface of the induction head 18, and the mounting bracket 56 moves in the direction of movement of the induction generator 12 (the horizontal direction in FIG. 3). Temperature sensors 58a and 58b are provided at both ends thereof (upper and lower ends in FIG. 1). The temperature sensors 58a and 58b are well-known non-contact type (infrared camera type or the like), and are arranged close to the surface of the steel plate 10. The mounting bracket 56 is provided with upper and lower scrapers 59a, 59b (partial coating film peeling means of the present invention) for scraping the coating film on the surface of the steel material, with the tip thereof facing the wheel 20 slightly downward. The scrapers 59a and 59b have sharp tip surfaces extending in the width direction (perpendicular to the paper surface of FIG. 3), and can scrape the coating film for the width of the scrapers 59a and 59b. The temperature signals from the temperature sensors 58a and 58b are sent to the control unit 54 through the signal line 60 as shown in FIG. The holding body 13 has an operation unit 62 on its upper surface. The operation unit 62 includes switches 63a and 63b. The switch 63a is used for lowering the induction generator 12, and the switch 63b is used for raising the induction generator 12. is there. Further, a green lamp 64-1 for displaying normality of the winch raising / lowering operation and a red lamp 64-2 for displaying abnormality are provided. A signal line from the switch and operation display unit 62 to the control unit 54 is indicated by 66. When neither of the switches 63a and 63b is pressed, the control unit 54 stops the electric motor 48, brakes the electromagnetic brake inside the electric motor 48, and winds (raises) the wire 42 of the electric winch 28. The induction generator 12 is designed to remain in a fixed position by being braked by a brake without being fed out or lowered (lowered). Reference numeral 68 denotes a limit switch for preventing overwinding. As shown in FIG. 4, when the induction generator 12 is wound up to the upper limit, the feeler 68-1 of the limit switch 68 generates induction. The electric motor 48 is stopped by the control unit 54 via the signal line 70 (FIG. 2) and the electric motor 48 is stopped (the brake is also applied by the electromagnetic brake) to prevent the wire 42 from being overwound. .

本発明においては誘導発生器12の全荷重は支持装置22によって支持され、誘導発生器12の上、下は電動ウインチ28のワイヤ42の巻き取り、繰り出しで行われる。作業員は誘導ヘッド18を鋼材表面の塗膜10A(図3参照)の要剥離部位に近接位置させ、スクレーパ59a, 59bを塗膜10Aに食い込ませ、スイッチ63a, 63bを操作することにより塗膜10Aの剥離を行うことができる。作業員は作業中に誘導発生器12の10kgといった重さを支える必要がなく、作業員の労働を軽減することができる。即ち、上下方向においては、スイッチ63bを押すことによりウインチ28を正転させることで誘導発生器12を上昇させ、スイッチ63aを押すことによりウインチを逆転させることで誘導発生器12を下降させること、これにより鋼板10の表面の塗膜剥離を上下方向の全域において実施することができる。そして、鋼板10の長手方向については誘導ヘッドの支持装置22をスライド式台座40によって少しずつ移動させながら長手方向の全域について誘導熱による塗膜剥離を行うことができる。バランスアーム24は旋回台26上に設置されているため、バランスアーム24を旋回台26上で回すことによって長手方向における鋼板10に対する誘導ヘッド18の位置の微調整を行うことができる。   In the present invention, the entire load of the induction generator 12 is supported by the support device 22, and the upper and lower sides of the induction generator 12 are performed by winding and unwinding the wire 42 of the electric winch 28. The worker places the induction head 18 close to the required peeling site of the coating film 10A (see FIG. 3) on the steel surface, bites the scrapers 59a and 59b into the coating film 10A, and operates the switches 63a and 63b to operate the coating film. 10A can be peeled off. The worker does not need to support the weight of 10 kg of the induction generator 12 during the work, and can reduce the labor of the worker. That is, in the vertical direction, the induction generator 12 is raised by rotating the winch 28 by pressing the switch 63b, and the induction generator 12 is lowered by reversing the winch by pressing the switch 63a. Thereby, coating-film peeling of the surface of the steel plate 10 can be implemented in the whole area of an up-down direction. And about the longitudinal direction of the steel plate 10, the coating film peeling by induction heat can be performed about the whole area of a longitudinal direction, moving the support apparatus 22 of the induction head little by little with the slide type base 40. FIG. Since the balance arm 24 is installed on the swivel base 26, the position of the guide head 18 with respect to the steel plate 10 in the longitudinal direction can be finely adjusted by turning the balance arm 24 on the swivel base 26.

上述例ではスクレーパ59a, 59bは塗膜剥離機能も担わせているが、従来通りに塗膜剥離はへらのような道具で作業員が手動で行うことができる。この場合、スクレーパ59a, 59b(剥離手段)として先端がホイール20に向けてやや曲折された針状部をホイール20の前後に設け、塗膜剥離に先立って誘導発生器12の移動方向の後側の針状体により穿刺させ、それに継続する誘導発生器12の移動下で塗膜を線状に剥離することで、針状体の通過後の金属面を線状に露出させ、移動方向における後側に位置する温度センサ58a又は58bによる金属面の温度検出を行うようにすることもできる。   In the above-described example, the scrapers 59a and 59b also have a coating film peeling function, but the coating film peeling can be manually performed by a worker with a tool such as a spatula as usual. In this case, the scrapers 59a and 59b (peeling means) are provided with needle-like portions slightly bent toward the wheel 20 at the front and rear of the wheel 20, and the rear side in the moving direction of the induction generator 12 prior to coating film peeling. The needle-like body is punctured, and the coating film is peeled linearly under the continuous movement of the induction generator 12, thereby exposing the metal surface after passing the needle-like body to a linear shape. The temperature of the metal surface may be detected by the temperature sensor 58a or 58b located on the side.

〔熱電対による温度測定結果〕
橋梁等に使用されるものとして代表的なフタル酸樹脂系の塗料を塗布(平均膜厚約30μm)した肉厚12mmの直立した鋼板(SS400)について、前記RPR Technologies A/S社の誘導ヘッド(横幅(150mm)のもの)を使用し、9箇所(No.1〜No.9)の夫々について加熱側及び裏面側で鋼板表面及び塗膜表面の温度計測可能に熱電対を固定設置した。図1のように誘導発生器12を移動(上から下方向又は下から上方向に移動)させることにより温度計測を行った。誘導ヘッド18の移動速度は定点間の移動に要する時間より算出した。誘導発生器12における誘導ヘッド18(誘導コイル)が熱電対と正対位置(直上位置)するとき(温度がピークとなるとき)の加熱面側及び裏面側における鋼板表面温度及び塗膜表面温度の計測を行った。熱電対の計測値のサンプリングは2秒毎であった。表1は誘導ヘッド18が熱電対と正対位置し、測定値がピークとなる時点での加熱面側(誘導発生器12側)及び裏面側(誘導発生器12と反対側)での計測結果である。
[Temperature measurement results with thermocouple]
For an upright steel plate (SS400) with a thickness of 12 mm coated with a typical phthalic acid resin paint (used for bridges, etc.) (average film thickness of about 30 μm), the induction head of RPR Technologies A / S ( The thermocouple was fixedly installed so that the temperature of the steel plate surface and the coating film surface could be measured on the heating side and the back side at each of nine locations (No. 1 to No. 9). The temperature was measured by moving the induction generator 12 (moving from top to bottom or from bottom to top) as shown in FIG. The moving speed of the induction head 18 was calculated from the time required for moving between fixed points. When the induction head 18 (induction coil) in the induction generator 12 faces the thermocouple (position directly above) (when the temperature reaches a peak), the steel sheet surface temperature and the coating film surface temperature on the heating surface side and the back surface side Measurement was performed. The thermocouple measurement was sampled every 2 seconds. Table 1 shows the measurement results on the heating surface side (induction generator 12 side) and the back surface side (opposite side of the induction generator 12) when the induction head 18 is directly opposite the thermocouple and the measured value reaches a peak. It is.

表1(ピークにおける測定値)
加熱面側温度(℃) 裏面側温度(℃)
No 鋼板表面 塗膜表面 鋼板表面 塗膜表面 速度(m/min) 移動方向
1 220 87 70 72 3.3 上→下
2 259 91 78 67 3.9 〃
3 289 85 72 65 3.3 〃
4 135 57 47 49 4.7 下→上
5 211 65 55 58 5.4 〃
6 114 60 57 55 3.8 〃
7 171 66 57 54 4.9 〃
8 178 52 54 64 4.3 〃
9 144 84 59 62 4.2 〃
Table 1 (Measured value at peak)
Heating side temperature (° C) Backside temperature (° C)
No Steel sheet surface Paint film surface Steel sheet surface Paint film surface Speed (m / min) Movement direction
1 220 87 70 72 3.3 Top → Bottom
2 259 91 78 67 3.9 〃
3 289 85 72 65 3.3 〃
4 135 57 47 49 4.7 Bottom → Top
5 211 65 55 58 5.4 〃
6 114 60 57 55 3.8 〃
7 171 66 57 54 4.9 〃
8 178 52 54 64 4.3 〃
9 144 84 59 62 4.2 〃

また、誘導ヘッド18が熱電対と正対位置してから2秒後のサンプリング時の熱電対により計測される加熱面側における鋼板表面及び塗膜表面の温度の測定結果を表2に示す。   Table 2 shows the measurement results of the temperature of the steel plate surface and the coating film surface on the heating surface side measured by the thermocouple at the time of sampling 2 seconds after the induction head 18 is directly facing the thermocouple.

表2(2秒後における測定値)
加熱面側温度(℃)
No 鋼板表面 塗膜表面 速度(m/min) 移動方向
1 197 86 3.3 上→下
2 221 73 3.9 〃
3 168 84 3.3 〃
4 114 57 4.7 下→上
5 89 61 5.4 〃
6 79 59 3.8 〃
7 85 65 4.9 〃
8 110 51 4.3 〃
9 86 84 4.2 〃
Table 2 (Measured value after 2 seconds)
Heating surface side temperature (℃)
No Steel sheet surface Paint film surface Speed (m / min) Movement direction
1 197 86 3.3 Top → Bottom
2 221 73 3.9 〃
3 168 84 3.3 〃
4 114 57 4.7 Bottom → Top
5 89 61 5.4 〃
6 79 59 3.8 〃
7 85 65 4.9 〃
8 110 51 4.3 〃
9 86 84 4.2 〃

表1及び表2の結果より、加熱面側(誘導発生器12設置側)における鋼板若しくは塗膜温度と誘導ヘッド18の移動速度との関係を検討すると、図5(イ)は加熱面側におけるピーク時(熱電対に誘導ヘッド18が正対位置する時)の誘導ヘッド18の移動速度と鋼板表面温度との関係を示し、(ロ)は加熱面側におけるピーク位置から2秒経過時における同様な関係を示す。データの変動は大きいが、誘導ヘッド18の概ね3−6m/minの速度範囲においてピーク時及び2秒経過時のいづれにおいても移動速度と鋼板表面温度との間に反比例の関係があることが分かる。   From the results of Tables 1 and 2, when examining the relationship between the steel plate or coating film temperature on the heating surface side (the induction generator 12 installation side) and the moving speed of the induction head 18, FIG. The relationship between the moving speed of the induction head 18 at the peak time (when the induction head 18 is directly facing the thermocouple) and the steel sheet surface temperature is shown. (B) is the same when 2 seconds have elapsed from the peak position on the heating surface side. Showing the relationship. Although the fluctuation of the data is large, it can be seen that there is an inversely proportional relationship between the moving speed and the steel plate surface temperature at both the peak time and the time when 2 seconds elapse in the speed range of about 3-6 m / min of the induction head 18. .

図6(イ)は加熱面側におけるピーク時(熱電対に誘導ヘッド18が正対位置する時)の誘導ヘッド18の移動速度と塗膜表面温度との関係を示し、(ロ)は加熱面側におけるピーク位置から2秒経過時における同様な関係を示す。これについてもデータの変動は大きいが、誘導ヘッドの概ね3−6m/minの速度範囲において2秒経過後においても移動速度と塗膜表面温度との間に反比例の関係があることが分かる。   FIG. 6 (a) shows the relationship between the moving speed of the induction head 18 and the coating film surface temperature at the peak time on the heating surface side (when the induction head 18 is directly facing the thermocouple), and (b) is the heating surface. A similar relationship is shown when 2 seconds have elapsed from the peak position on the side. In this case as well, the data fluctuation is large, but it can be seen that there is an inversely proportional relationship between the moving speed and the coating film surface temperature even after 2 seconds in the speed range of about 3-6 m / min of the induction head.

以上より、鋼板に加わる誘導熱の管理のため加熱面側において鋼板表面温度でも塗膜表面温度でも使用可能であることが分かる。また、鋼板表面温度又は塗膜表面温度の検出部位として必ずしも誘導ヘッドとの正対時(ピーク)でなくても幾分ピークから外れた(温度としては下がった)部位の表面温度検出結果によっても誘導熱の制御(加熱不足の場合の誘導ヘッド18の減速及び加熱過多における誘導ヘッド18の増速)に反映させることが可能であることが分かる。   From the above, it can be seen that it is possible to use either the steel plate surface temperature or the coating film surface temperature on the heating surface side in order to manage induction heat applied to the steel plate. In addition, the detection position of the steel plate surface temperature or the coating film surface temperature is not necessarily the time when it is directly facing (peak) with the induction head. It can be seen that this can be reflected in the control of induction heat (deceleration of the induction head 18 when heating is insufficient and acceleration of the induction head 18 due to excessive heating).

次に、裏面側の温度も測定した表1の結果より誘導発生器12による生じた誘導熱が及ぼす鋼板の裏面側への影響を検討すると、フタル酸樹脂系の塗料の場合、鋼材温度が概ね120℃付近から塗膜の剥離が可能となると言われている。表1より誘導ヘッド12の概ね3−6m/minの速度範囲において、加熱面側において鋼板の表面温度は概ねこの値に達している。他方、裏面側の温度であるが、加熱面側において鋼板の表面温度が最大の290℃近辺に達していても裏面側において鋼板の表面温度は80℃は超えることがなく、上記速度範囲において加熱面側の誘導熱が裏面側の塗膜に影響を及ぼすことがないことが分かった。また、誘導熱による鋼板の加熱の影響は表面側の290℃近辺の最大温度からみて鋼材の強度特性等への懸念を排除するものであるとは言いえる。   Next, when the influence of the induction heat generated by the induction generator 12 on the back side of the steel sheet is examined from the results of Table 1 in which the temperature on the back side is also measured, in the case of a phthalate resin-based paint, the steel material temperature is approximately It is said that the coating film can be peeled off from around 120 ° C. From Table 1, in the speed range of the induction head 12 of approximately 3-6 m / min, the surface temperature of the steel sheet generally reaches this value on the heating surface side. On the other hand, although it is the temperature on the back surface side, the surface temperature of the steel plate does not exceed 80 ° C. on the back surface side even if the surface temperature of the steel plate reaches the maximum around 290 ° C. on the heating surface side, and heating is performed in the above speed range. It was found that the induction heat on the surface side does not affect the coating film on the back surface side. Moreover, it can be said that the influence of the heating of the steel sheet by induction heat eliminates the concern about the strength characteristics of the steel material in view of the maximum temperature around 290 ° C. on the surface side.

〔温度管理のための動作例〕
以上の実験結果を考慮して、鋼板表面温度の範囲を140℃から240℃とし、上下に余裕を見て160℃から220℃に制御する動作例を説明する。この動作の模式的ダイアグラムを図8に示す。尚、温度計測に関し、図1−図4の具体的装置では移動中の表面温度計測のため温度計測は熱電対の代わりに赤外線カメラ型などの非接触型のセンサ58a, 58bを使用している。
[Operation example for temperature control]
Considering the above experimental results, an example of operation in which the steel sheet surface temperature range is set to 140 ° C. to 240 ° C. and control is performed from 160 ° C. to 220 ° C. with allowances in the vertical direction will be described. A schematic diagram of this operation is shown in FIG. Regarding the temperature measurement, the specific apparatus shown in FIGS. 1 to 4 uses a non-contact type sensor 58a, 58b such as an infrared camera type instead of a thermocouple for measuring the surface temperature during movement. .

冷温状態からの始動においては鋼板10はもとより鋼材表面の剥離すべき塗膜の温度も低温である。剥離作業開始のため、誘導発生器12を停止のまま塗膜表面に近接位置させると誘導熱によって誘導ヘッド18に対向した鋼材の部位が加熱昇温され、鋼材の昇温によりその表面の塗膜の温度が上がる。下方に向けての塗膜剥離から作業に入るとすると、図3において誘導ヘッド18の移動すべき方向は矢印a(図3の右方向)である。この方向においては図の左側(図1では上側)に位置するスクレーパ59aが塗膜10Aの掻き取りを行う。この場合、上側(移動方向aの後側)のセンサ58aにより鋼材表面温度の検出を行ない、下側(移動方向aにおける前側)のセンサ58bにより塗膜10Aの表面温度の検出を行う。塗膜10Aが未剥離の状態では非接触型のセンサ58aは鋼板10の表面の温度検出はなし得ない。他方、誘導ヘッド本体13による誘導加熱による鋼材の加熱昇温により塗膜表面の温度は高まって行き、センサ58bは塗膜表面の温度を検出する(センサ58bは誘導ヘッド18から少し外れて位置しているが熱伝導により塗膜の概ねの温度は把握し得る)。この状態において電動ウインチ28のモータ48は回転せず誘導発生器12はその位置に留まる。誘導熱によって塗膜面の温度は図8のラインLのように上昇して行く。冷温からのスタートにおいて鋼材の誘導加熱が進み、塗膜の温度が120℃程度まで上昇すると、鋼板10の表面温度も200℃といった塗膜剥離可能な温度に上昇している。この時点tが誘導発生器12の移動(誘導発生器12の下降)による塗膜剥離の開始を示し、電動ウインチ28のモータ48の回転が開始し、ワイヤ42が繰り出されるため、誘導発生器12は下降(矢印a)を開始する。このときのワイヤ42の繰り出し速度(誘導ヘッド移動速度)は4m/分といった初期設定値である。上側スクレーパ59aは下降によって金属面に対して浮いた塗膜10Aの剥離を開始する(又はスクレーパ59aは鋼材表面温度検出のための鋼材表面の露出のみを担わせ、塗膜剥離はへら等により人手で行うことができる)。図3において上側スクレーパ59aが食い込みを開始した塗膜の部位を10A'にて示し、図3は塗膜の剥離が幾分進行し、上側温度センサ58aが金属面に対向する状態に至り、温度センサ58aによる鋼材の表面温度検出が開始され、下側閾値を160℃、上側閾値を220℃とする誘導発生器12の移動制御が行われる。即ち、本制御例では誘導ヘッド18の真下を幾分過ぎた位置(誘導コイルに正対する位置を少し過ぎた位置)で温度センサ58aは鋼板表面温度を検出している。図8において温度センサによる金属表面温度の検出間隔はδ(例えば0.5秒)とし、即ち、下降時(矢印a)は温度センサ58aによる温度検出は0.5秒毎に行われる。上側温度センサ58aが検出する金属表面温度がラインLS1に沿って下降した状況において、下側の閾値160℃を下回ると、1段目のスピード降下が指令され(この時点をtにて表す)、ワイヤ42の繰り出しによる誘導ヘッド18の移動速度(下降速度)が4m/分から3.8m/分に1段落とされ、その結果温度の下降変化はラインLS2のように緩められる。鋼板表面温度が下側の閾値160℃を下回ったままであると、3.6m/分と2段目のスピード降下が指令される(この時点をtにて表す)。このように、温度検出は一定時間間隔毎に行われ、段階的(0.2m/分ずつ)の速度制御が行われ、終にはラインLS3にて示すように昇温に切り替わり、下側の閾値160℃を上回る(この時点をtにて表す)。逆に、鋼材表面温度が上側の閾値220℃を超えると(ラインLS4にて示す)、1段目のスピード上昇が指令される(この時点をtにて表す)。上側の閾値220℃を超えた状態が継続されると2段目の速度上昇が指令され、このようにδ秒毎の段階的増速が行われる。その結果、終にはラインLS5に示すように鋼材表面温度は上側の閾値220℃より下がってくる。 In starting from a cold temperature state, the temperature of the coating film to be peeled off from the steel plate surface as well as the steel plate 10 is also low. When the induction generator 12 is brought close to the surface of the coating film in order to start the peeling operation, the temperature of the steel material facing the induction head 18 is heated by the induction heat, and the coating film on the surface is heated by the temperature increase of the steel material. Temperature rises. Assuming that the operation starts after the coating film is peeled downward, the direction in which the guide head 18 should move in FIG. 3 is an arrow a (the right direction in FIG. 3). In this direction, the scraper 59a located on the left side (upper side in FIG. 1) scrapes off the coating film 10A. In this case, the steel surface temperature is detected by the sensor 58a on the upper side (rear side in the movement direction a), and the surface temperature of the coating film 10A is detected by the sensor 58b on the lower side (front side in the movement direction a). When the coating film 10A is not peeled off, the non-contact sensor 58a cannot detect the temperature of the surface of the steel plate 10. On the other hand, the temperature of the coating film surface increases due to the heating temperature rise of the steel material by induction heating by the induction head body 13, and the sensor 58b detects the temperature of the coating film surface (the sensor 58b is located slightly off the induction head 18). However, the approximate temperature of the coating can be determined by heat conduction). In this state, the motor 48 of the electric winch 28 does not rotate and the induction generator 12 remains in that position. Temperature of the coated surface by induction heat rises like a line L P of FIG. When induction heating of the steel material progresses from the cold temperature and the temperature of the coating film rises to about 120 ° C., the surface temperature of the steel sheet 10 also rises to a temperature at which the coating film can be peeled off, such as 200 ° C. At this time t 0, the start of coating film peeling is indicated by the movement of the induction generator 12 (lowering of the induction generator 12), the rotation of the motor 48 of the electric winch 28 is started, and the wire 42 is fed out. 12 starts descending (arrow a). At this time, the feeding speed (guide head moving speed) of the wire 42 is an initial set value such as 4 m / min. The upper scraper 59a starts peeling of the coating film 10A that has floated on the metal surface when lowered (or the scraper 59a is responsible only for the exposure of the steel surface for detecting the steel surface temperature, and the coating film peeling is performed manually with a spatula or the like. Can be done). In FIG. 3, the part of the coating film where the upper scraper 59a has started to bite is indicated by 10A ′, and FIG. 3 shows that the coating film has peeled somewhat and the upper temperature sensor 58a is opposed to the metal surface. Detection of the surface temperature of the steel material by the sensor 58a is started, and movement control of the induction generator 12 is performed so that the lower threshold value is 160 ° C. and the upper threshold value is 220 ° C. That is, in this control example, the temperature sensor 58a detects the steel sheet surface temperature at a position slightly below the induction head 18 (a position slightly beyond the position facing the induction coil). In FIG. 8, the detection interval of the metal surface temperature by the temperature sensor is δ (for example, 0.5 seconds), that is, when the temperature is lowered (arrow a), the temperature detection by the temperature sensor 58a is performed every 0.5 seconds. In a situation where the metal surface temperature detected by the upper temperature sensor 58a is lowered along the line L S1 , if the lower temperature falls below 160 ° C., the first speed drop is commanded (this time is represented by t 1) . ), the moving speed of the induction head 18 by feeding the wire 42 (lowering speed) is one paragraph 4m / min 3.8 m / min, fall change resulting temperatures are loosened like a line L S2. If the steel sheet surface temperature remains below the lower threshold of 160 ° C., a second speed drop of 3.6 m / min is commanded (this time is represented by t 2 ). In this way, temperature detection is performed at regular time intervals, stepwise (by 0.2 m / min) speed control is performed, and finally, the temperature is switched to a temperature rise as shown by line L S3 . It exceeds the threshold value 160 ° C. (representing the time at t 3). Conversely, when the steel surface temperature exceeds the upper threshold 220 ° C. (indicated by the line L S4 ), a first-stage speed increase is commanded (this time is indicated by t 4 ). When the state exceeding the upper threshold value 220 ° C. is continued, the second stage speed increase is commanded, and the stepwise speed increase is performed every δ seconds in this way. As a result, the steel surface temperature falls below the upper threshold value 220 ° C. as indicated by line L S5 .

上昇時には上げスイッチ63b(図2)が押され、誘導発生器12は上昇し(図1の矢印b方向であり図3では左向き方向)下側スクレーパ59bによる塗膜10Aの掻き取りが行われ(またはへら等による人手での塗膜の掻き取りが行われ)、移動方向bの後側に今度は位置する下側の温度センサ58b(図3)が鋼板10の掻き取り後の表面と対向するに至り、鋼板表面温度の測定を行い、温度センサ58bが検出する鋼板表面温度に応じた誘導ヘッド18の上昇移動速度の制御が図8について説明した誘導ヘッド18の下降速度の制御と同様に行なわれる。即ち、温度センサ58bによる温度検出は時間間隔δ毎に行われ、温度センサ58bが検出する鋼材表面温度が下側の閾値160℃より下がれば、鋼板の温度上昇のため誘導ヘッド18の上昇速度の段階的減速(0.2m/分ずつ)が行われ、温度センサ58bが検出する鋼材表面温度が上側の閾値220℃を上回れば、鋼板の温度下降のため誘導ヘッド18の上昇速度の段階的増速(0.2m/分ずつ)が行われ、このような制御により誘導発生器12の上昇時においても所定範囲への鋼材表面温度の制御が行われる。   When raising, the raising switch 63b (FIG. 2) is pushed, and the induction generator 12 is raised (in the direction of arrow b in FIG. 1 and leftward in FIG. 3), and the coating film 10A is scraped off by the lower scraper 59b ( Alternatively, the coating film is manually scraped off with a spatula or the like), and the lower temperature sensor 58b (FIG. 3), which is now positioned behind the moving direction b, faces the scraped surface of the steel plate 10. Thus, the steel plate surface temperature is measured, and the control of the upward movement speed of the induction head 18 according to the steel plate surface temperature detected by the temperature sensor 58b is performed in the same manner as the control of the downward speed of the induction head 18 described with reference to FIG. It is. That is, the temperature detection by the temperature sensor 58b is performed every time interval δ, and if the steel surface temperature detected by the temperature sensor 58b falls below the lower threshold 160 ° C., the temperature of the induction head 18 is increased due to the temperature rise of the steel plate. If the steel surface temperature detected by the temperature sensor 58b exceeds the upper threshold value 220 ° C. by stepwise deceleration (by 0.2 m / min), the temperature of the steel plate is lowered to increase the rising speed of the induction head 18 stepwise. The speed (0.2 m / min) is performed, and the steel surface temperature is controlled to a predetermined range even when the induction generator 12 is raised by such control.

以上の制御により、図8に示すように、鋼材表面温度は下側の閾値160℃より適当に低い140℃と上側閾値220℃より適当に高い240℃の間に制御され、この正常な制御が行われている場合は緑ランプ64-1(図2)が点灯される。また、鋼材表面温度が140℃を下回ったり、240℃を超えた場合は塗膜剥離が正常に行われていないと判断し、赤ランプ64-2が点灯される。尚、ランプ64-1, 64-2の動作表示は電動ウインチ28の作動と連動して行い、電動ウインチの停止時点でランプ表示は終了する(電動ウインチ内蔵のブレーキに制動がかかることによりワイヤ42も停止する)仕組みとしている。   By the above control, as shown in FIG. 8, the steel surface temperature is controlled between 140 ° C. which is appropriately lower than the lower threshold value 160 ° C. and 240 ° C. which is appropriately higher than the upper threshold value 220 ° C. If so, the green lamp 64-1 (FIG. 2) is lit. If the steel surface temperature falls below 140 ° C. or exceeds 240 ° C., it is determined that the coating film has not been removed normally, and the red lamp 64-2 is turned on. The operation display of the lamps 64-1, 64-2 is performed in conjunction with the operation of the electric winch 28, and the lamp display is terminated when the electric winch stops (the wire 42 is applied by braking the brake built in the electric winch). Also stop).

また、図8に関する動作説明において誘導ヘッド18の速度制御は鋼板表面温度に応じて行っているが、図7のように鋼板表面温度は塗膜表面温度とも対応関係があるので、塗膜表面温度に応じた誘導ヘッド18の速度制御も可能である。即ち、この場合、誘導発生器12の移動方向における前側のセンサ(誘導発生器12が図3の矢印aの方向に移動するときはセンサ58b、矢印aと反対方向に誘導発生器12が移動するときはセンサ58a)が塗膜10Aの温度を検出し、塗膜10Aの温度が所定範囲となるように誘導発生器12の移動制御、即ち、ウインチ28の制御を行う。   In the explanation of the operation related to FIG. 8, the speed control of the induction head 18 is performed according to the steel plate surface temperature. However, as shown in FIG. 7, the steel plate surface temperature also has a corresponding relationship with the coating film surface temperature. The speed of the induction head 18 can be controlled according to the above. That is, in this case, the front sensor in the direction of movement of the induction generator 12 (sensor 58b when the induction generator 12 moves in the direction of arrow a in FIG. 3, and the induction generator 12 moves in the direction opposite to arrow a. When the sensor 58a) detects the temperature of the coating film 10A, the movement of the induction generator 12, that is, the control of the winch 28 is controlled so that the temperature of the coating film 10A falls within a predetermined range.

以上の説明では誘導発生器12の上昇及び下降の双方において塗膜の剥離を行っているが、塗膜剥離の際の誘導発生器12の移動は上昇又は下降の一方のみにおいて実施することも可能である。この場合、温度サンセは両側になくてもよく片側設置でも良く、鋼材表面温度による速度制御の場合は塗膜剥離後の移動方向における後側(誘導ヘッドの通過後)、塗膜表面温度による速度制御の場合は塗膜剥離後の移動方向における前側(誘導ヘッドの通過前)のみの設置でもよい。   In the above description, the coating film is peeled off both when the induction generator 12 is raised and lowered. However, the movement of the induction generator 12 at the time of peeling the coating film can be performed only during one of the raising and lowering. It is. In this case, the temperature sensation does not have to be on both sides and may be installed on one side. In the case of speed control based on the steel surface temperature, the back side in the direction of movement after peeling the coating (after passing through the induction head), the speed depending on the coating surface temperature In the case of control, it may be installed only on the front side (before passing through the induction head) in the moving direction after coating film peeling.

10…I型鋼板(剥離作業の対象物)
12…誘導発生器
13…保持本体
18…誘導ヘッド
20…ホイール
22…誘導発生器の支持装置(支持手段)
24…バランスアーム
26…旋回台
28…電動ウインチ
34, 38…枢軸
36…回転テーブル
40…スライド式台座
42…ワイヤ
48…電動モータ
50…減速機
58a, 58b…温度センサ
59a, 59b…スクレーパ(本発明の部分的塗膜剥離手段)
62…操作部
63a, 63b…スイッチ
68…リミットスイッチ
10 ... I-type steel plate (object of peeling work)
DESCRIPTION OF SYMBOLS 12 ... Induction generator 13 ... Holding body 18 ... Induction head 20 ... Wheel 22 ... Induction generator support apparatus (support means)
24 ... balance arm 26 ... swivel 28 ... electric winch
34, 38 ... pivot 36 ... rotary table 40 ... slide base 42 ... wire 48 ... electric motor 50 ... speed reducer
58a, 58b… Temperature sensor
59a, 59b ... scraper (partial coating film peeling means of the present invention)
62. Operation unit
63a, 63b ... switch 68 ... limit switch

Claims (2)

作業対象物である既設の橋梁における長手方向に延び、表面に塗膜を形成した鋼板に沿わせつつ誘導発生器を上下方向に移動させ誘導熱によって塗膜を昇温させ、スクレーパによりその幅分の塗膜を鋼板表面から剥離するようにし、鋼板の長手方向については誘導発生器を横移動させ、誘導発生器の上下移動による塗膜の昇温とスクレーパによる塗膜の剥離を繰り返すことにより鋼板の長手方向全域での塗装剥離を行なうようにし、塗膜剥離のための誘導発生器の前記上下移動の速度は、過熱による母材強度等への悪影響を防止するべく、加熱面側で検出される鋼板表面温度が所定範囲となるように、かつ加熱面と反対側で検出される鋼板表面温度が所定値を超えないように制御される塗膜剥離方法。 The induction generator is moved up and down while moving along the steel sheet with the coating film formed on the surface of the existing bridge, which is the work object, and the coating film is heated by induction heat. In the longitudinal direction of the steel sheet, the induction generator is moved laterally, and the temperature rise of the coating film by the vertical movement of the induction generator and the peeling of the coating film by the scraper are repeated. The speed of the vertical movement of the induction generator for peeling the coating film is detected on the heating surface side in order to prevent adverse effects on the base material strength due to overheating. The coating film peeling method is controlled such that the steel sheet surface temperature to be within a predetermined range and the steel sheet surface temperature detected on the side opposite to the heating surface does not exceed a predetermined value . 請求項1に記載の発明において、加熱面側で検出される鋼板表面温度の前記所定範囲は140℃から240℃であり、加熱面と反対側で検出される鋼板表面温度の前記所定値は80℃である塗膜剥離方法。In the first aspect of the invention, the predetermined range of the steel sheet surface temperature detected on the heating surface side is 140 ° C. to 240 ° C., and the predetermined value of the steel sheet surface temperature detected on the side opposite to the heating surface is 80 Coating film peeling method which is ° C.
JP2016102967A 2016-05-24 2016-05-24 Coating film peeling method Pending JP2016182601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102967A JP2016182601A (en) 2016-05-24 2016-05-24 Coating film peeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102967A JP2016182601A (en) 2016-05-24 2016-05-24 Coating film peeling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016038780A Division JP2016163885A (en) 2016-03-01 2016-03-01 Induction generator

Publications (1)

Publication Number Publication Date
JP2016182601A true JP2016182601A (en) 2016-10-20

Family

ID=57241372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102967A Pending JP2016182601A (en) 2016-05-24 2016-05-24 Coating film peeling method

Country Status (1)

Country Link
JP (1) JP2016182601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153222A (en) * 2019-03-12 2020-09-24 マクセルホールディングス株式会社 Structure deterioration suppression system and application method therefor
JP2021138880A (en) * 2020-03-06 2021-09-16 日本橋梁株式会社 Method for peeling coating using exothermic coating material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691870A (en) * 1979-12-25 1981-07-25 Japanese National Railways<Jnr> Paint splitting
JP2001232271A (en) * 2000-02-21 2001-08-28 Mitsubishi Heavy Ind Ltd Method, device, and system for removing coating film
JP2006344421A (en) * 2005-06-07 2006-12-21 Oyo Denki Kk High frequency induction heating device
JP2007146459A (en) * 2005-11-28 2007-06-14 Taisei Rotec Corp Induction heating equipment for bridge deck asphalt pavement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691870A (en) * 1979-12-25 1981-07-25 Japanese National Railways<Jnr> Paint splitting
JP2001232271A (en) * 2000-02-21 2001-08-28 Mitsubishi Heavy Ind Ltd Method, device, and system for removing coating film
JP2006344421A (en) * 2005-06-07 2006-12-21 Oyo Denki Kk High frequency induction heating device
JP2007146459A (en) * 2005-11-28 2007-06-14 Taisei Rotec Corp Induction heating equipment for bridge deck asphalt pavement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153222A (en) * 2019-03-12 2020-09-24 マクセルホールディングス株式会社 Structure deterioration suppression system and application method therefor
JP7374027B2 (en) 2019-03-12 2023-11-06 マクセル株式会社 Structural deterioration control system and its usage
JP2021138880A (en) * 2020-03-06 2021-09-16 日本橋梁株式会社 Method for peeling coating using exothermic coating material
JP7285488B2 (en) 2020-03-06 2023-06-02 日本橋梁株式会社 Coating stripping method using exothermic paint

Similar Documents

Publication Publication Date Title
JP5896849B2 (en) Paint peeling method
JP6325801B2 (en) Electric winch device
JP2016182601A (en) Coating film peeling method
CA2854472A1 (en) Wire feeding systems and devices
JPWO2015198452A1 (en) Cable system
JP2003312991A (en) Catenary installation device
CA2737339A1 (en) Wind turbine generator having a detection unit for detecting foreign object inside rotor and operating method thereof
JP2014014933A5 (en)
JP2016163885A (en) Induction generator
JP7012972B2 (en) Crane malfunction prevention system
JP2000005897A (en) Automatic welding device for pipe
JP6939994B2 (en) Groove wear detector
KR100993598B1 (en) Cable reel tension less system
WO2011040636A1 (en) Control device and method for hoist
KR20120020237A (en) Winch for transfer system using cable
JP7236288B2 (en) Brake evaluation device and brake evaluation method
JP2000327272A (en) Hoist
JP2016504196A (en) Method and apparatus for winding a metal strip
CN209117769U (en) Power drive system test platform
JPS6010995B2 (en) Hanging load mass measuring device for robots, hoists, cranes, etc.
KR20100108014A (en) Force control method of electronic parking brake system
JP6807802B2 (en) Wire extension system, wire extension or wire removal method
JP2013128939A (en) Welding system
CN210558553U (en) Aluminum-magnesium alloy welding wire layer winding device
JPH0977410A (en) Elevator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620