JP2016179920A - METHOD FOR MANUFACTURING SiC RAW MATERIAL USED FOR SUBLIMATION RECRYSTALLIZATION METHOD AND SiC RAW MATERIAL - Google Patents

METHOD FOR MANUFACTURING SiC RAW MATERIAL USED FOR SUBLIMATION RECRYSTALLIZATION METHOD AND SiC RAW MATERIAL Download PDF

Info

Publication number
JP2016179920A
JP2016179920A JP2015060827A JP2015060827A JP2016179920A JP 2016179920 A JP2016179920 A JP 2016179920A JP 2015060827 A JP2015060827 A JP 2015060827A JP 2015060827 A JP2015060827 A JP 2015060827A JP 2016179920 A JP2016179920 A JP 2016179920A
Authority
JP
Japan
Prior art keywords
sic
raw material
powder
sublimation
sic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015060827A
Other languages
Japanese (ja)
Other versions
JP6489891B2 (en
Inventor
正史 中林
Masashi Nakabayashi
正史 中林
小島 清
Kiyoshi Kojima
清 小島
博之 出合
Hiroyuki Deai
博之 出合
幸雄 永畑
Yukio Nagahata
幸雄 永畑
光太 下村
Kota Shimomura
光太 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Materials Co Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015060827A priority Critical patent/JP6489891B2/en
Publication of JP2016179920A publication Critical patent/JP2016179920A/en
Application granted granted Critical
Publication of JP6489891B2 publication Critical patent/JP6489891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new SiC raw material capable of preventing a sublimation gas composition from being varied in a sublimation recrystallization method for sublimating SiC used as a raw material to grow a SiC single crystal on a seed crystal, reducing the variation of the gas permeability and surface area and suppressing the time variation of sublimation velocity.SOLUTION: The method for manufacturing a SiC raw material used for a sublimation recrystallization method includes heating a SiC powder at a temperature of 1500-2200°C in an inert gas atmosphere having a pressure of 1.33×10Pa or more to obtain the SiC raw material consisting of a SiC porous sintered body having a porosity of 20-50% and an effective thermal conductivity of 0.5 W/mK or more at a temperature of 1000°C in the atmospheric pressure. The SiC powder consists of a mixed powder of a fine particle SiC powder having a small average particle size with a coarse particle SiC powder having a large average particle size. The fine particle SiC powder has an average particle size a of 30-200 μm, and the coarse particle SiC powder has an average particle size b of 210-2000 μm. The average particle sizes satisfy the relationship of 7a≤b.SELECTED DRAWING: Figure 2

Description

本発明は、昇華再結晶法に用いるSiC原料の製造方法、及び昇華再結晶法用のSiC原料に関するものである。   The present invention relates to a method for producing a SiC raw material used for the sublimation recrystallization method, and a SiC raw material for the sublimation recrystallization method.

SiC(炭化珪素)は、2.2〜3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体であり、その優れた物理的、化学的特性から半導体材料としての研究開発が以前から行われてきている。特に近年は、青色から紫外にかけての短波長光デバイス、高周波電子デバイス、高耐圧・高出力電子デバイス向けの材料として、より実用的な段階でSiCが注目されている。ところが、SiCは、良質な大口径単結晶の製造が難しくこれがSiCデバイスの実用化を妨げる一つの要因であった。   SiC (silicon carbide) is a wide band gap semiconductor having a wide forbidden band of 2.2 to 3.3 eV, and research and development as a semiconductor material has been performed for a long time because of its excellent physical and chemical characteristics. ing. Particularly in recent years, SiC has attracted attention as a material for short wavelength optical devices from blue to ultraviolet, high frequency electronic devices, and high withstand voltage / high output electronic devices at a more practical stage. However, SiC is difficult to produce a high-quality large-diameter single crystal, which is one factor that hinders the practical use of SiC devices.

従来、研究室程度の規模では、例えば昇華再結晶法(レーリー法)で半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では得られる単結晶の面積が小さく、その寸法、形状、さらには結晶多形(ポリタイプ)や不純物キャリア濃度の制御も容易ではない。一方、化学気相成長(Chemical Vapor Deposition:CVD)を用いて珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では大面積の単結晶は得られるが、SiCとSiの格子不整合が約20%もあることなどから、多くの欠陥(〜107/cm2)を含むSiC単結晶しか成長させることができず、高品質のSiC単結晶は得られていない。 Conventionally, on the scale of a laboratory level, for example, a SiC single crystal having a size capable of producing a semiconductor element by a sublimation recrystallization method (Rayleigh method) has been obtained. However, in this method, the area of the obtained single crystal is small, and it is not easy to control the size, shape, crystal polymorph (polytype), and impurity carrier concentration. On the other hand, a cubic SiC single crystal is also grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using chemical vapor deposition (CVD). With this method, a single crystal having a large area can be obtained, but only SiC single crystal containing many defects (˜10 7 / cm 2 ) is grown because there is about 20% lattice mismatch between SiC and Si. Therefore, a high-quality SiC single crystal has not been obtained.

そこで、これらの問題点を解決するために、SiC単結晶基板を種結晶として用いて昇華再結晶を行う改良型のレーリー法が提案されている(非特許文献1参照)。この改良レーリー法を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)や、形状、キャリア型、及び濃度を制御しながらSiC単結晶を成長させることができる。尚、SiCには200以上の結晶多形(ポリタイプ)が存在するが、結晶の生産性と電子デバイス性能の点で4Hポリタイプが最も優れているとされており、商業生産されるSiC単結晶は4Hであることが多い。また、導電性は、ドーパントとして窒素が扱いやすい点で、単結晶インゴットはn型導電性で育成される場合がほとんどである。ただし、通信デバイス用途では、ドーパント元素を殆ど含まない、抵抗率の高い結晶も製造されている。   In order to solve these problems, an improved Rayleigh method has been proposed in which sublimation recrystallization is performed using a SiC single crystal substrate as a seed crystal (see Non-Patent Document 1). By using this modified Rayleigh method, a SiC single crystal can be grown while controlling the crystal polymorphism (6H type, 4H type, 15R type, etc.) of SiC single crystal, shape, carrier type, and concentration. There are over 200 crystalline polymorphs (polytypes) of SiC, but the 4H polytype is considered to be the most excellent in terms of crystal productivity and electronic device performance. The crystals are often 4H. In addition, the conductivity is that nitrogen is easy to handle as a dopant, and single crystal ingots are mostly grown with n-type conductivity. However, for communication device applications, crystals having a high resistivity and almost no dopant element are also produced.

現在、改良レーリー法で作製したSiC単結晶から、口径51mm(2インチ)から100mmのSiC単結晶ウェハが切り出され、電力エレクトロニクス分野等のデバイス作製に供されている。更には150mmウェハの上市も開始されており(非特許文献2参照)、100mm又は150mmウェハを用いたデバイスの本格的な実用化が期待されている。こうした状況にあって、ウェハコストの低下に繋がる、SiCインゴットの生産性や結晶成長歩留まりの向上技術は、その重要性が益々高まってきている。   At present, a SiC single crystal wafer having a diameter of 51 mm (2 inches) to 100 mm is cut out from a SiC single crystal manufactured by an improved Rayleigh method, and is used for device manufacturing in the field of power electronics and the like. Furthermore, a 150 mm wafer has been put on the market (see Non-Patent Document 2), and a full-scale practical application of a device using a 100 mm or 150 mm wafer is expected. Under such circumstances, technologies for improving the productivity and crystal growth yield of SiC ingots that lead to a reduction in wafer costs are becoming increasingly important.

SiC単結晶インゴットの主たる製造方法は、前述した通り改良レーリー法である。溶液成長(非特許文献3参照)や高温CVD法(非特許文献4参照)なども研究レベルでは行われているが、生産性(インゴットあたりのウェハの取れ枚数や、良質インゴットの成長成功率)や品質の点で改良レーリー法に及ぶものではない。しかし、改良レーリー法は2000℃以上の超高温で行われるプロセスであり、さらに気相による原料供給であるなど、成長条件の制御には技術的な難しさがある。SiCウェハメーカー各社の正確な数値は公表されていないが、インゴットあたりのウェハの取れ枚数や、良質インゴットの成長成功率は、Siなどの完成度の高い産業には及ばないと言われており、商業的利益の追求という観点で、SiC単結晶の生産性には更なる向上が求められているのが現状である。   The main manufacturing method of the SiC single crystal ingot is the improved Rayleigh method as described above. Solution growth (see Non-Patent Document 3) and high-temperature CVD (see Non-Patent Document 4) are also carried out at the research level, but productivity (the number of wafers that can be taken per ingot and the success rate of high-quality ingot growth) It does not extend to the improved Rayleigh method in terms of quality. However, the improved Rayleigh method is a process performed at an ultra-high temperature of 2000 ° C. or higher, and further, there is a technical difficulty in controlling growth conditions such as supply of raw material by a gas phase. Although the exact figures of SiC wafer manufacturers are not disclosed, it is said that the number of wafers that can be taken per ingot and the growth success rate of high-quality ingots are not as good as those in highly mature industries such as Si. From the viewpoint of pursuing commercial profits, the current situation is that further improvement is required in the productivity of SiC single crystals.

上述した目的のために、昇華再結晶法によるSiC単結晶インゴットの製造条件に関して盛んに研究開発が行われている。一方、昇華再結晶法用のSiC原料(以下、単に原料という場合がある。)がSiC単結晶の生産性や品質に与える影響も大きい。非特許文献5では、SiC原料を坩堝に充填した原料充填部での通気性が昇華量(昇華ガスの発生量)に与える影響について報告している。非特許文献6では、成長プロセス中に原料粉末の温度勾配によって、原料が充填された空間の内部で昇華と再結晶が発生(所謂、原料の再配置として知られる現象)し、それが成長速度に影響を与えるとことが報告されている。また、非特許文献7では、原料の再配置によって成長中の結晶へ供給されるガス組成が変化することが指摘されている。   For the above-mentioned purpose, research and development are actively conducted on the production conditions of SiC single crystal ingots by the sublimation recrystallization method. On the other hand, a SiC raw material for sublimation recrystallization (hereinafter sometimes simply referred to as a raw material) has a great influence on the productivity and quality of a SiC single crystal. Non-Patent Document 5 reports the effect of air permeability in the raw material filling part in which a crucible is filled with a SiC raw material on the sublimation amount (sublimation gas generation amount). In Non-Patent Document 6, sublimation and recrystallization occur in the space filled with the raw material due to the temperature gradient of the raw material powder during the growth process (a phenomenon known as so-called rearrangement of the raw material), which is the growth rate. Has been reported to affect In Non-Patent Document 7, it is pointed out that the gas composition supplied to the growing crystal changes due to the rearrangement of the raw materials.

上述の視点に基づいて、内容は様々だが昇華再結晶法における原料に関する技術開発が進んでおり、いくつかの報告例がある。例えば、特許文献1には、ホットプレスしたSiC焼結体を原料として用いる方法が開示されている。この方法は、原料の高密度化による空間効率の向上、原料の高熱伝導化によるエネルギー効率の向上などを意図したものである。   Based on the above-mentioned viewpoint, although the contents are various, technical development regarding the raw material in the sublimation recrystallization method is progressing, and there are some report examples. For example, Patent Document 1 discloses a method of using a hot-pressed SiC sintered body as a raw material. This method is intended to improve the space efficiency by increasing the density of the raw materials and to improve the energy efficiency by increasing the thermal conductivity of the raw materials.

特許文献2には、SiCを含む粉末を加圧成形したのち仮焼して、所定の硬度を有する原料を製造し、この原料を坩堝内の上部に、種結晶を坩堝内の下部に配置して単結晶成長を行う方法が開示されている。この方法は、種結晶の支持部材を用いないことで、支持部材による品質劣化を回避することを目的としている。   In Patent Document 2, a powder containing SiC is pressure-molded and calcined to produce a raw material having a predetermined hardness. The raw material is placed in the upper part of the crucible and the seed crystal is placed in the lower part of the crucible. A method for performing single crystal growth is disclosed. This method aims to avoid quality deterioration due to the support member by not using a seed crystal support member.

特許文献3には、SiC単結晶の製造法において、単結晶製造容器下部内に原料を収容するに際し、上記容器内空間に接する表面部に配置される上記原料粉末の粒子径が、低部に配置される上記原料粉末の粒子径より大径であり、これら大径の粒子間の間隙が、低部側で発生する昇華ガスの通路となるようにすることで、原料を効率良く昇華させる方法が開示されている。   In Patent Document 3, in the method for producing a SiC single crystal, when the raw material is stored in the lower part of the single crystal production container, the particle diameter of the raw material powder arranged on the surface part in contact with the space in the container is reduced to a lower part. A method of efficiently sublimating a raw material by making the gap between the particles of the raw material powder to be arranged and the gap between the large-diameter particles be a passage for sublimation gas generated on the lower side. Is disclosed.

特許文献4には、平均粒子径が5μm以上200μm以下の一次粒子を焼結させ、平均粒径100μm以上700μm以下であり、かつ比表面積が0.05m/g以上0.30m/g以下とした二次粒子をSiC単結晶製造用のSiC粉体として用いて、高くかつ安定した昇華速度(加熱時間あたり原料減少量)を実現する方法が開示されている。 Patent Document 4, the average particle size is sintered 200μm or less of primary particles more than 5 [mu] m, or less average particle size 100μm above 700 .mu.m, and a specific surface area of 0.05 m 2 / g or more 0.30 m 2 / g or less A method for realizing a high and stable sublimation rate (a reduced amount of raw material per heating time) using the secondary particles described above as SiC powder for producing a SiC single crystal is disclosed.

特許文献5には、原料であるSiC粉末を充填した坩堝の内部を還元雰囲気下で500℃以上、2000℃以下に加熱することにより、坩堝や原料表面の窒素の化学結合を切断し、高純度なSiC単結晶を作る方法が開示されている。   In Patent Document 5, the inside of a crucible filled with raw material SiC powder is heated to 500 ° C. or higher and 2000 ° C. or lower in a reducing atmosphere, thereby breaking the chemical bond of nitrogen on the crucible or the raw material surface to obtain high purity. A method for making a simple SiC single crystal is disclosed.

特許文献6には、SiC粉末の質量の2%以上を予め昇華させて得られる原料を用いて、単結晶への介在物の混入を抑制し、高品質なSiC単結晶を得る方法が開示されている。   Patent Document 6 discloses a method of obtaining a high-quality SiC single crystal by using a raw material obtained by preliminarily sublimating 2% or more of the mass of SiC powder and suppressing inclusion of inclusions in the single crystal. ing.

特許第4619567号公報Japanese Patent No. 4619567 特開2012−36035号公報JP 2012-36035 A 特許第4048606号公報Japanese Patent No. 4048606 特開2012−101996号公報JP 2012-101996 A 特許第5336307号公報Japanese Patent No. 5336307 特開2013−95632号公報JP 2013-95632 A

Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vols.52 (1981) pp.146-150Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vols. 52 (1981) pp.146-150 A.A.Burk et al.,Mater.Sci.Forum,717-720,(2012) pp75-80A.A.Burk et al. , Mater.Sci. Forum, 717-720, (2012) pp75-80 K. Kusunoki1 et al.,Mater.Sci.Forum,778-780,(2014) pp79-82K. Kusunoki1 et al. , Mater.Sci. Forum, 778-780, (2014) pp79-82 Y.Tokuda et al.,Mater.Sci.Forum,778-780,(2014) pp51-54Y. Tokuda et al. , Mater.Sci. Forum, 778-780, (2014) pp51-54 X.wang et al.,Journal of Crystal Growth, vols.305 (207) pp.122-132X.wang et al. , Journal of Crystal Growth, vols.305 (207) pp.122-132 A.V.Kulik et al.,Mater.Sci.Forum,457-460,(2004) pp67-70A.V.Kulik et al. , Mater.Sci. Forum, 457-460, (2004) pp67-70 T.Fujimoto et al.,Mater.Sci.Forum,457-460,(2004) pp67-70T. Fujimoto et al. , Mater.Sci. Forum, 457-460, (2004) pp67-70

上述した通り、SiCはその優れた特性から高性能、省エネルギーデバイスの材料であることは自明であるものの、その単結晶製造の難しさ故に生産性や品質に問題があり、実用化展開の障害となっていた。   Although it is obvious that SiC is a material for high-performance and energy-saving devices due to its excellent characteristics, as described above, there are problems in productivity and quality due to the difficulty in producing single crystals, which is an obstacle to the practical development. It was.

ここで、昇華再結晶法で用いるSiC原料の点で言えば、例えば、上記した特許文献1では、ホットプレス焼結体の嵩密度には言及されていないものの、固体・気体間の伝熱がないと記述されていることから(段落0017等参照)、極めて気孔が少なく、表面積の小さい、緻密な焼結体であることが分かる。この様な材料を原料として用いれば、坩堝内部の空間利用効率は向上し、また、高い熱伝導率により、原料の再配置も抑制されると推察される。しかしながら、表面積が極端に小さいために昇華速度が低下し、工業生産に必要なレベルの成長速度を得るのは困難であり、また、焼結助剤としてp型ドーパントである硼素などが用いられていることから、得られる単結晶の汚染や電気特性の劣化の問題も避けられない。   Here, in terms of the SiC raw material used in the sublimation recrystallization method, for example, in the above-mentioned Patent Document 1, although the bulk density of the hot press sintered body is not mentioned, the heat transfer between the solid and the gas is not described. (See paragraph 0017 etc.), it can be seen that this is a dense sintered body with very few pores and a small surface area. If such a material is used as a raw material, it is presumed that the space utilization efficiency inside the crucible is improved and the rearrangement of the raw material is also suppressed due to the high thermal conductivity. However, since the surface area is extremely small, the sublimation rate is lowered, and it is difficult to obtain a growth rate of a level necessary for industrial production, and boron, which is a p-type dopant, is used as a sintering aid. Therefore, problems of contamination of the obtained single crystal and deterioration of electrical characteristics are inevitable.

また、特許文献2には、SiC粉末を加圧成形の後に熱処理する技術が開示されているが、昇華再結晶用原料の熱処理条件や空隙率などの記述はされていない。該発明の目的である、原料の坩堝上部での保持のためには、昇華用の原料は空隙率が小さく強固なほど有利と推察できる。そのため、この技術においても成長速度や品質の向上を十分考慮したものではないと言える。   Patent Document 2 discloses a technique for heat-treating SiC powder after pressure forming, but does not describe heat treatment conditions, porosity, etc. of the sublimation recrystallization raw material. In order to hold the raw material in the crucible upper portion, which is the object of the present invention, it can be presumed that the raw material for sublimation is more advantageous as the porosity is smaller and stronger. Therefore, it can be said that this technology does not fully consider the growth rate and quality improvement.

また、特許文献3のような原料の配置にしたり、特許文献4のようなSiC粉体を原料とすることで、SiC単結晶成長の初期段階においては効率の良い、高い昇華速度を実現できる可能性があるが、成長プロセス中に生じる昇華と再結晶による原料の再配置を減少させることについて考慮した方法ではないため、成長後半の時間帯では成長速度の低下が予想され、更には成長結晶の品質劣化が懸念される。   In addition, by using the raw material arrangement as in Patent Document 3 or using SiC powder as in Patent Document 4 as a raw material, it is possible to realize an efficient and high sublimation rate in the initial stage of SiC single crystal growth. However, it is not a method that considers reducing the rearrangement of raw materials due to sublimation and recrystallization that occurs during the growth process, so the growth rate is expected to decrease during the latter half of the growth period. There is concern about quality degradation.

特許文献5及び6は原料粉体をSiC単結晶成長に先立って熱処理するという内容であるが、その目的は原料の高純度化であって、昇華条件の改善を意図したものではない。   Patent Documents 5 and 6 have the content of heat-treating the raw material powder prior to SiC single crystal growth, but the purpose is to increase the purity of the raw material and not to improve the sublimation conditions.

本発明は、上記の問題を鑑みて為されたものであり、昇華再結晶法に用いるSiC原料として、従来にない新規の昇華用原料を用いることで、SiC単結晶製造の生産性を向上させ、更に、高品質のSiC単結晶が得られるようにすることを目的とする。   The present invention has been made in view of the above-mentioned problems, and improves the productivity of SiC single crystal production by using an unprecedented new sublimation raw material as the SiC raw material used in the sublimation recrystallization method. It is another object of the present invention to obtain a high-quality SiC single crystal.

本発明者らは、上記課題を解決するために鋭意検討した結果、原料の空隙率を適度な値(適度に高い嵩密度)にすることで、限られた坩堝内のスペース(原料充填室)に十分な量の原料を充填でき、良好な通気性、表面積による十分な昇華速度、及び成長速度を確保し、しかも、適度に高い熱伝導率を有することで、原料の再配置を軽減し、昇華ガス組成の変動を防ぐと共に、その通気性や表面積の変化を低減させて、昇華速度の時間変化を抑制できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have set the void ratio of the raw material to an appropriate value (moderately high bulk density), thereby limiting the space in the limited crucible (raw material filling chamber). Can be filled with a sufficient amount of raw materials, ensuring good air permeability, sufficient sublimation rate due to surface area, and growth rate, and having moderately high thermal conductivity, reducing the rearrangement of raw materials, The inventors have found that the change in sublimation gas composition can be prevented and the change in air permeability and surface area can be reduced to suppress the change in sublimation rate over time, thereby completing the present invention.

すなわち、本発明の要旨は、以下の構成より成るものである。
(1)原料であるSiCを昇華させて、種結晶上にSiC単結晶を成長させる昇華再結晶法に用いるSiC原料の製造方法であって、
SiC粉体を圧力1.33×104Pa以上の不活性ガス雰囲気中、1500℃以上2200℃以下の温度で熱処理して、空隙率が20%以上50%以下、かつ、1000℃大気圧での有効熱伝導率が0.5W/mK以上のSiC多孔質焼結体からなるSiC原料を得ることを特徴とする昇華再結晶法に用いるSiC原料の製造方法。
(2)前記SiC粉体が、体積基準による粒度の累積分布で、累積20%の粒径にあたる粒径D20が200μm以下であると共に、該粒径D20が累積50%の粒径にあたる粒径D50の0.2倍未満の粒度分布を有するものであることを特徴とする(1)に記載の昇華再結晶法に用いるSiC原料の製造方法。
(3)前記SiC粉体が、平均粒径の小さい細粒SiC粉体と平均粒径の大きい粗粒SiC粉体との混合粉からなり、細粒SiC粉体の平均粒径aが30μm以上200μm以下、粗粒SiC粉体の平均粒径bが210μm以上2000μm以下であって、かつ、これらの平均粒径が7a≦bの関係を満たすことを特徴とする(1)に記載の昇華再結晶法に用いるSiC原料の製造方法。
(4)前記細粒SiC粉体が、混合粉中に30質量%以上50質量%以下の割合で混合されていることを特徴とする(3)に記載の昇華再結晶法に用いるSiC原料の製造方法。
(5)原料であるSiCを昇華させて、種結晶上にSiC単結晶を成長させる昇華再結晶法に用いるSiC原料であって、空隙率が20%以上50%以下であり、かつ、1000℃大気圧での有効熱伝導率が0.5W/mK以上のSiC多孔質焼結体からなることを特徴とする昇華再結晶法用のSiC原料。
That is, the gist of the present invention is constituted as follows.
(1) A method for producing a SiC raw material used in a sublimation recrystallization method in which SiC as a raw material is sublimated to grow a SiC single crystal on a seed crystal,
The SiC powder is heat-treated in an inert gas atmosphere at a pressure of 1.33 × 10 4 Pa or more at a temperature of 1500 ° C. or more and 2200 ° C. or less, and the porosity is 20% or more and 50% or less and 1000 ° C. at atmospheric pressure. A SiC raw material for use in a sublimation recrystallization method, characterized in that an SiC raw material comprising an SiC porous sintered body having an effective thermal conductivity of 0.5 W / mK or more is obtained.
(2) the SiC powder, a cumulative distribution of the particle size by volume basis, with a particle size D 20 corresponding to cumulative 20% particle size is 200μm or less, a particle the particle diameter D 20 falls on the cumulative 50% particle size method for manufacturing a SiC raw material used in the sublimation recrystallization method described in (1) to be one having a particle size distribution of less than 0.2 times the diameter D 50.
(3) The SiC powder is a mixed powder of a fine SiC powder having a small average particle diameter and a coarse SiC powder having a large average particle diameter, and the average particle diameter a of the fine SiC powder is 30 μm or more. 200 μm or less, the average particle diameter b of the coarse SiC powder is 210 μm or more and 2000 μm or less, and these average particle diameters satisfy the relationship of 7a ≦ b. A method for producing an SiC raw material used in a crystallization method.
(4) The SiC raw material used in the sublimation recrystallization method according to (3), wherein the fine SiC powder is mixed in a mixed powder at a ratio of 30% by mass to 50% by mass. Production method.
(5) SiC raw material used in a sublimation recrystallization method in which SiC as a raw material is sublimated to grow a SiC single crystal on a seed crystal, and the porosity is 20% or more and 50% or less, and 1000 ° C. A SiC raw material for a sublimation recrystallization method, comprising an SiC porous sintered body having an effective thermal conductivity at atmospheric pressure of 0.5 W / mK or more.

本発明によれば、得られたSiC原料を用いて、昇華再結晶法で単結晶を成長させることで、成長時間の全体に亘って適度な昇華速度が維持され、昇華ガス組成の変動も小さいので、結晶成長の成功率が高く、品質の高いSiC単結晶を製造することができるようになる。   According to the present invention, by using the obtained SiC raw material to grow a single crystal by the sublimation recrystallization method, an appropriate sublimation rate is maintained over the entire growth time, and the fluctuation of the sublimation gas composition is small. Therefore, the success rate of crystal growth is high, and a high-quality SiC single crystal can be manufactured.

図1は、本発明の実施例で用いられた結晶成長装置を示す模式図である。FIG. 1 is a schematic diagram showing a crystal growth apparatus used in an example of the present invention. 図2は、本発明に係るSiC原料を得るための熱処理や結晶製造一環プロセスの概要を示す模式図である。FIG. 2 is a schematic diagram showing an outline of a heat treatment and crystal manufacturing part process for obtaining a SiC raw material according to the present invention.

以下、本発明について詳しく説明する。
先ず、本発明において、昇華再結晶法に用いる原料はSiCで構成されており、SiC多孔質焼結体としたときの空隙率が20%以上50%以下である。空隙率が20%未満では、昇華ガスが通過する通路である気孔の面積が過小であり、昇華再結晶法における昇華ガスの発生界面である原料の表面積が小さくなり、昇華速度が著しく低下し、その結果成長速度も低下することから、単結晶の生産性が悪化する。一方、空隙率が50%超となると、坩堝内での原料充填量が低下し、得られる単結晶インゴットの高さは必然的に低くなり、やはり生産性が悪化する。加えて、固体部分の熱伝導寄与が低下することにより、多孔質焼結体の熱伝導率が低下し、成長プロセス中のSiC多孔質焼結体の温度勾配が大きくなってしまい、このような原料の温度勾配が大きいほど、発生した昇華ガスがその発生箇所近傍の低温箇所で再結晶化する、所謂、原料の再配置現象が促進されてしまう。このようにSiC原料が再配置し易い条件化では、成長結晶に届く昇華ガス量が減少すると共に、反応後の昇華ガスはSiリッチ化し、ガスの組成も変動するので、単結晶インゴットの生産性、品質の両面で望ましくない。なお、本発明におけるSiC原料の空隙率は、SiC粉体、SiC多孔質焼結体の場合ともに、下記の式(1)より求めたものである。
空隙率[%]=〔(SiC原料体積[cm3])−(SiC原料質量[g]/3.215[g/cm3])〕/SiC原料体積[cm3]×100 …(1)
(但し、3.215はSiCの理論密度[g/cm3]を表す)
The present invention will be described in detail below.
First, in this invention, the raw material used for the sublimation recrystallization method is comprised with SiC, and the porosity when it is set as a SiC porous sintered compact is 20% or more and 50% or less. When the porosity is less than 20%, the area of the pores, which are passages through which the sublimation gas passes, is too small, the surface area of the raw material that is the sublimation gas generation interface in the sublimation recrystallization method is reduced, and the sublimation rate is significantly reduced. As a result, the growth rate also decreases, and the productivity of the single crystal deteriorates. On the other hand, when the porosity exceeds 50%, the raw material filling amount in the crucible decreases, the height of the obtained single crystal ingot inevitably decreases, and the productivity also deteriorates. In addition, since the thermal conductivity contribution of the solid portion is reduced, the thermal conductivity of the porous sintered body is reduced, and the temperature gradient of the SiC porous sintered body during the growth process is increased. As the temperature gradient of the raw material is larger, the so-called relocation phenomenon of the raw material, in which the generated sublimation gas is recrystallized at a low temperature portion near the generation point, is promoted. Under such conditions that the SiC raw material can be easily rearranged, the amount of sublimation gas reaching the grown crystal decreases, and the sublimation gas after the reaction becomes Si-rich and the composition of the gas fluctuates. Undesirable in terms of quality. In addition, the porosity of the SiC raw material in this invention is calculated | required from following formula (1) in the case of SiC powder and a SiC porous sintered compact.
Porosity [%] = [(SiC raw material volume [cm 3 ]) − (SiC raw material mass [g] /3.215 [g / cm 3 ])] / SiC raw material volume [cm 3 ] × 100 (1)
(However, 3.215 represents the theoretical density [g / cm 3 ] of SiC)

また、本発明に係るSiC原料の有効熱伝導率は、原則として高い方が好ましく、大気圧、1000℃の条件にて、0.5W/mK以上である必要があり、望ましくは1.0W/mK以上、さらに望ましくは1.5W/mK以上である。なお、熱伝導率の測定方法として、本発明では非定常熱線法を採用し、JISR2616に準拠した測定を行った。また、焼結による収縮が著しく、SiC多孔質焼結体が小さくなってしまう場合のように、試験片のサイズに制約のある場合には、JISR1611-1997に準拠したレーザーフラッシュ法を用いた。   In addition, the effective thermal conductivity of the SiC raw material according to the present invention is preferably higher in principle, and should be 0.5 W / mK or more under the conditions of atmospheric pressure and 1000 ° C., desirably 1.0 W / mK or more, more desirably 1.5 W / mK or more. In addition, as a measuring method of thermal conductivity, the unsteady hot wire method was employ | adopted in this invention, and the measurement based on JISR2616 was performed. Further, when the size of the test piece is limited as in the case where the shrinkage due to sintering is significant and the SiC porous sintered body becomes small, the laser flash method conforming to JIS R1611-1997 was used.

ここで、得られたSiC多孔質焼結体の有効熱伝導率に上限は設定しないが、10W/mKを超える有効熱伝導率を得るためには、原料を緻密体として個体の熱伝導の効果を大きくする必要があるが、過剰に緻密化した原料はSiC単結晶インゴットの生産性や品質の点で好ましくないことから、SiC多孔質焼結体の有効熱伝導率は10W/mK以下であるのが望ましい。一方で、SiC多孔質焼結体を得るための原料粉(すなわちSiC粉体)を坩堝に充填しただけでは、本発明の物性値を得るのは難しい。例えば、GC研磨材や化学合成した市販のSiC粉末原料を坩堝に充填しただけでは、有効熱伝導率が0.5W/mK以上となることはない。充填した粉体は微小な個体(粉体粒子)と微小な空間(粉体粒子の間にある気孔)とから構成されており、熱エネルギーは格子振動のエネルギーと光エネルギー間で頻繁に変換を繰り返すことになり、伝導抵抗が大きくなることがその理由である。有効熱伝導率を増加させるためには、充填した粉体に適当な条件で熱処理を施し、焼結体とすることが有効である。本発明に係るSiC多孔質焼結体は、SiC粉体の粒成長とネックグロースとによってネットワーク状の構造が形成されており、一方で、充填した粉体が焼結体に至るまでに体積変化はないので、一つの気孔のサイズは大きくなっている。このような構造体では、ネットワーク構造による熱伝導と、サイズの大きくなった気孔を伝わる輻射伝導とによって、熱エネルギーは効果的に伝わるため、有効熱伝導率が向上する。   Here, no upper limit is set for the effective thermal conductivity of the obtained SiC porous sintered body, but in order to obtain an effective thermal conductivity exceeding 10 W / mK, the effect of the thermal conductivity of the solid is made by using the raw material as a dense body. However, since the excessively densified raw material is not preferable in terms of productivity and quality of the SiC single crystal ingot, the effective thermal conductivity of the SiC porous sintered body is 10 W / mK or less. Is desirable. On the other hand, it is difficult to obtain the physical property values of the present invention simply by filling the crucible with raw material powder (ie, SiC powder) for obtaining a SiC porous sintered body. For example, simply filling a crucible with a GC abrasive or a chemically synthesized commercially available SiC powder material does not result in an effective thermal conductivity of 0.5 W / mK or more. The filled powder consists of minute solids (powder particles) and minute spaces (pores between the powder particles), and thermal energy is frequently converted between the energy of lattice vibration and light energy. The reason for this is that the conduction resistance increases. In order to increase the effective thermal conductivity, it is effective to heat the filled powder under appropriate conditions to obtain a sintered body. In the SiC porous sintered body according to the present invention, a network-like structure is formed by the grain growth and neck growth of the SiC powder, and on the other hand, the volume change until the filled powder reaches the sintered body. Since there is no, the size of one pore is increasing. In such a structure, the thermal energy is effectively transmitted by the heat conduction by the network structure and the radiation conduction through the pores whose size is increased, so that the effective thermal conductivity is improved.

そこで、SiC多孔質焼結体を得るための熱処理は、SiC粉体を圧力1.33×104Pa以上の不活性ガス雰囲気で行う必要がある。何故なら、1.33×104Pa未満の圧力では焼結反応よりも昇華反応が優先的に起きてしまうからである。また、SiC粉体の表面の酸化を防ぐため、雰囲気は不活性でなければならない。熱処理時の最高温度は1500℃以上、2200℃以下である。1500℃未満では十分な焼結反応は得られず、反対に2200℃超では、たとえ前述の圧力範囲であっても昇華反応が起きてしまい、目的とするSiC多孔質焼結体(単に焼結体という場合がある。)が生成されないためである。なお、熱処理の際の圧力はSiC粉体が昇華せずに焼結反応を進めることができればよく、その上限は特に制限されないが、作業性や熱処理に用いる装置の仕様等を考慮すれば圧力は1.33×10Pa以下にするのが望ましい。 Therefore, the heat treatment for obtaining the SiC porous sintered body needs to be performed in an inert gas atmosphere with the SiC powder at a pressure of 1.33 × 10 4 Pa or more. This is because a sublimation reaction preferentially occurs over a sintering reaction at a pressure of less than 1.33 × 10 4 Pa. Also, the atmosphere must be inert to prevent oxidation of the surface of the SiC powder. The maximum temperature during the heat treatment is 1500 ° C. or higher and 2200 ° C. or lower. If the temperature is lower than 1500 ° C., a sufficient sintering reaction cannot be obtained. On the other hand, if it exceeds 2200 ° C., a sublimation reaction occurs even in the aforementioned pressure range, and the intended SiC porous sintered body (sintered simply) This is because the body may not be generated. The pressure during the heat treatment is not limited as long as the SiC powder can proceed with the sintering reaction without sublimation, and the upper limit is not particularly limited, but the pressure is determined in consideration of the workability and the specifications of the apparatus used for the heat treatment. It is desirable to set it as 1.33 * 10 < 5 > Pa or less.

こうして得られる焼結体は、自立するほどの強度を有することから、手で取り扱って焼結体をSiC単結晶成長用の坩堝に収納し、結晶成長プロセスに供することができる。そのため、SiC多孔質焼結体を得る際には、不活性ガス雰囲気下で上記のような圧力及び温度でSiC粉体を熱処理することができる熱処理装置であれば特に制限はないが、一般的に昇華再結晶法でSiC単結晶を製造する炉(結晶成長装置)を用いても上記条件の熱処理を行うことができることから、SiC原料の移設等の手間を省くことができるなどの観点から、好ましくは、SiC単結晶の製造プロセスの前段として原料粉末焼結プロセスを組み込んで、SiC単結晶の製造と連続した一環プロセスとしてSiC粉体の熱処理を実施するのがよい。   Since the sintered body obtained in this way has a strength sufficient to be self-supporting, it can be handled by hand and stored in a crucible for SiC single crystal growth and used for a crystal growth process. Therefore, when obtaining a SiC porous sintered body, there is no particular limitation as long as it is a heat treatment apparatus capable of heat treating SiC powder at the above pressure and temperature in an inert gas atmosphere. In view of the fact that heat treatment under the above conditions can be performed using a furnace (crystal growth apparatus) for producing a SiC single crystal by the sublimation recrystallization method, it is possible to save time and labor for transferring the SiC raw material, etc. Preferably, the raw material powder sintering process is incorporated as a pre-stage of the manufacturing process of the SiC single crystal, and the SiC powder is heat-treated as a continuous process continuous with the manufacturing of the SiC single crystal.

一方で、一般的なSiC粉体に対して上記の熱処理を行っても、本発明のようなSiC多孔質焼結体を形成させることは難しい。適度な焼結反応を発生させるためには、第1の実施形態として、好ましくは、SiC粉体の体積基準による粒度の累積分布の20%にあたる粒径D20が200μm以下であり、なおかつ同50%にあたる粒径D50の0.2倍よりも粒径D20が小さいことが必要である。ここで、本発明において、SiC粉体の粒径は、レーザー回折法を用いて測定した。 On the other hand, even if the above-mentioned heat treatment is performed on a general SiC powder, it is difficult to form a SiC porous sintered body as in the present invention. In order to generate an appropriate sintering reaction, as the first embodiment, preferably, the particle size D 20 corresponding to 20% of the cumulative particle size distribution of the SiC powder is 200 μm or less, and the same 50 it is necessary than 0.2 times the particle diameter D 50 smaller particle size D 20 corresponding to%. Here, in the present invention, the particle size of the SiC powder was measured using a laser diffraction method.

ここで、熱処理する対象のSiC粉体の粒径D20が200μmを超えると、本発明で目的とするような焼結反応が進まない。一方、単に粒径D20が200μm以下であるような、小さい粒子だけで構成された粉体は、短時間で急激な焼結反応を起こすために制御が困難である。そのため、粒径D20が粒径D50の0.2倍未満となるように、ブロードな粒度分布を有する粉体であれば、焼結反応の緩やかな粗粒が含まれることになるため、熱処理による焼結の反応速度が適度に低下し、焼結体の嵩密度の過剰な上昇を抑えることができる。また、GC研磨剤などに使用される一般的なSiC粉体は、本発明のSiC粉体と比較して粒径のヒストグラムがシャープに立っており、粒径D20は粒径D50の0.2倍よりもはるかに大きいことから、単に坩堝に収容しただけでは空隙率が50%を超えてしまう。そのため、仮に、本発明で規定したような空隙率が20%以上50%以下のSiC多孔質焼結体を得るには、通常は圧縮成形等の手法を取る必要があるが、本発明に係る粒度分布を有したSiC粉体であれば、粗粒の隙間に細粒が入りこむ構造を取ることから、特に圧縮成形等を行わなくても本発明で規定の空隙率を有するSiC多孔質焼結体を得ることができる。 Here, when the particle diameter D 20 of SiC powder for which heat treatment is more than 200 [mu] m, sintering reaction does not proceed as an object in the present invention. On the other hand, just as the particle size D 20 is at 200μm or less, only the powder made up of small particles, it is difficult to control in order to cause rapid sintering reaction in a short time. Therefore, as the particle diameter D 20 is 0.2 times less than the particle size D 50, if the powder having a broad particle size distribution, because that will contain the loose grit sintering reaction, The reaction rate of the sintering due to the heat treatment is appropriately reduced, and an excessive increase in the bulk density of the sintered body can be suppressed. Also, common SiC powder used in such GC abrasives, as compared with the SiC powder of the present invention is standing histogram of particle size sharp, 0 particle size D 20 is the particle diameter D 50 Since it is much larger than 2 times, the void ratio exceeds 50% when it is simply contained in the crucible. Therefore, in order to obtain a SiC porous sintered body having a porosity of 20% to 50% as defined in the present invention, it is usually necessary to take a technique such as compression molding. Since SiC powder having a particle size distribution has a structure in which fine grains enter into gaps between coarse grains, SiC porous sintering having a porosity specified in the present invention without performing compression molding or the like. You can get a body.

本発明に係るSiC粉体の粒径D20については、例えば原料を坩堝に充填する際の作業性等を考慮すると、下限は30μmであるのがよい。同様に、粒径D50については、充填密度を高めるためには、D20がD50の0.2倍未満である必要があり、また、適度な焼結反応性も必要であることなどから、好ましくは粒径D50が150μm以上2000μm以下であるのがよい。 For particle size D 20 of the SiC powder according to the present invention, for example considering the workability at the time of filling the raw material of the crucible, the lower limit may be between 30 [mu] m. Similarly, for the particle size D 50, in order to increase the packing density, it is necessary D 20 is less than 0.2 times the D 50, also the like that moderate sintering reactivity is also required , and it is preferably a particle size D 50 is 150μm or more 2000μm or less.

また、上記のようなSiC多孔質焼結体を製造するためのSiC粉体を得るにあたり、第2の実施形態として、平均粒径の異なる2種類以上の粉体の混合粉を使用することも効果的である。その場合、好ましくは、平均粒径が最小であるSiC粉体Aの平均粒径aと、平均粒径が最大であるSiC粉体Bの平均粒径bとが、7a≦bの関係となるように配合すると共に、30μm≦a≦200μm、及び、210μm≦b≦2000μmである粒子の組み合わせを選択するのがよい。より具体的には平均粒径の異なる2種類の粉体の混合粉を使用し、平均粒径の小さい細粒SiC粉体の平均粒径aが30μm≦a≦200μm、平均粒径の大きい粗粒SiC粉体の平均粒径bが210μm≦b≦2000μmであって、これらが7a≦bの関係を満たすのがよい。   Further, in obtaining the SiC powder for producing the SiC porous sintered body as described above, a mixed powder of two or more kinds of powders having different average particle diameters may be used as the second embodiment. It is effective. In that case, preferably, the average particle diameter a of the SiC powder A having the smallest average particle diameter and the average particle diameter b of the SiC powder B having the largest average particle diameter are in a relationship of 7a ≦ b. In addition, it is preferable to select a combination of particles satisfying 30 μm ≦ a ≦ 200 μm and 210 μm ≦ b ≦ 2000 μm. More specifically, a mixed powder of two kinds of powders having different average particle diameters is used, and the average particle diameter a of the fine SiC powder having a small average particle diameter is 30 μm ≦ a ≦ 200 μm, and the coarse powder having a large average particle diameter is used. The average particle diameter b of the granular SiC powder is 210 μm ≦ b ≦ 2000 μm, and these satisfy the relationship of 7a ≦ b.

ここで、本発明におけるSiC多孔質焼結体を得るにあたり、焼結反応に寄与するのはSiC粉体のうち、第1の実施形態における粒径D20以下の粒子もしくは第2の実施形態における平均粒径aの細粒SiC粉体である。この粒径D20又は細粒SiC粉体の平均粒径aが30μm未満では焼結反応が急峻であり、焼結体物性値の制御が困難となるので好ましくない。また、この粒径D20又は平均粒径aが200μmを超える場合は焼結反応が起こり難いのでやはり好ましくない。一方、第1の実施形態におけるSiC粉体の粒径D20を粒径D50の0.2倍未満とする、又は、第2の実施形態における平均粒径bの粗粒SiC粉体を細粒SiC粉体の平均粒径aの7倍以上とすることで、SiC粉体の充填率を高め、最適な嵩密度とすることができる。 Here, in obtaining the SiC porous sintered body in the present invention, it is the SiC powder that contributes to the sintering reaction among the particles of the particle diameter D 20 or less in the first embodiment or in the second embodiment. This is a fine SiC powder having an average particle diameter a. The particle size D 20 or the average particle diameter a of the fine SiC powder is steep sintering reaction is less than 30 [mu] m, is not preferred since the control of the sintered body physical properties is difficult. Furthermore, also not preferred because hardly occurs sintering reaction in this case the particle size D 20 or the average particle diameter a of more than 200 [mu] m. On the other hand, the particle size D 20 of the SiC powder in the first embodiment and 0.2 times less than the particle size D 50, or the coarse SiC powder having an average particle size of b in the second embodiment fine By setting the average particle size a of the granular SiC powder to 7 times or more, the filling rate of the SiC powder can be increased and an optimum bulk density can be obtained.

このような観点から、先に示した第2の実施形態における平均粒径bの下限値は平均粒径aの下限値の7倍である210μmである。同様に平均粒径bの上限値は2000μmである。2000μmを超える粗大粒子は、焼結反応を著しく低下させてしまうので好ましくない。なお、SiC粉体A及びBの平均粒径は先に述べた測定方法により求められるものである。   From such a viewpoint, the lower limit value of the average particle diameter b in the second embodiment described above is 210 μm, which is seven times the lower limit value of the average particle diameter a. Similarly, the upper limit of the average particle diameter b is 2000 μm. Coarse particles exceeding 2000 μm are not preferred because they significantly reduce the sintering reaction. In addition, the average particle diameter of SiC powder A and B is calculated | required by the measuring method described above.

また、SiC粉体A及びBを含む混合粉の場合、好ましくは、細粒のSiC粉体であるSiC粉体Aは、混合粉全体の質量において30%以上50%以下の質量比で混合されるのがよい。細粒のSiC粉体の質量比がこれより少ない場合は焼結反応が過小となり、多い場合は焼結反応が過大となるので好ましくない。   In the case of a mixed powder containing SiC powders A and B, preferably, SiC powder A, which is a fine SiC powder, is mixed at a mass ratio of 30% to 50% in the total mass of the mixed powder. It is better. When the mass ratio of the fine SiC powder is less than this, the sintering reaction is excessively small, and when it is large, the sintering reaction is excessively undesirable.

本発明によって得られたSiC多孔質焼結体は、昇華再結晶法による公知の結晶成長装置を用いて、種結晶上にSiC単結晶を成長させることができる。このようなSiC多孔質焼結体をSiC原料とすることで、成長時間の全体に亘って適度な昇華速度が維持され、昇華ガス組成の変動も小さく、結晶成長の成功率を高めて、良好な品質のSiC単結晶を製造することができるようになる。   The SiC porous sintered body obtained by the present invention can grow a SiC single crystal on a seed crystal using a known crystal growth apparatus based on a sublimation recrystallization method. By using such a SiC porous sintered body as a SiC raw material, an appropriate sublimation rate is maintained over the entire growth time, fluctuations in the sublimation gas composition are small, and the success rate of crystal growth is improved. It becomes possible to manufacture a SiC single crystal of a high quality.

以下、実施例及び比較例に基づき、本発明を具体的に説明する。
図1は、本発明の実施例、及び比較例に係るSiC単結晶インゴットの製造に用いた、改良型レーリー法による単結晶成長の装置である。結晶成長は、昇華原料(SiC原料)3を誘導加熱により昇華させ、種結晶1上に再結晶させることにより行われる。種結晶1は、坩堝蓋体6の内面に取り付けられており、昇華原料3は黒鉛坩堝4の内部に充填される。この黒鉛坩堝4、及び坩堝蓋体6は、熱シールドのために断熱材5で被膜され、二重石英管8内部の黒鉛支持台座7の上に設置される。石英管8の内部を、真空排気装置及び圧力制御装置12を用いて1.0×10−4Pa未満まで真空排気した後、純度99.9999%以上の高純度Arガスを、配管10を介してマスフローコントローラ11で制御しながら流入させ、真空排気装置及び圧力制御装置12を用いて石英管内圧力を80kPaに保ちながら、ワークコイル9に高周波電流を流し、黒鉛坩堝下部を目標温度である2400℃まで上昇させる。予め行うSiC原料の焼結と、結晶成長とを一環して行うプロセスの場合は、この段階の圧力と温度が異なるので後述する。窒素ガス(N)も同様に、配管10を介してマスフローコントローラ11で制御しながら流入させ、雰囲気ガス中の窒素分圧を制御して、SiC結晶中に取り込まれる窒素元素の濃度を調整した。坩堝温度の計測は、坩堝上部及び下部の断熱材5に直径2〜15mmの光路を設けて放射温度計13a及び13bにより行う。坩堝上部温度を種結晶温度、坩堝下部温度を原料温度とした。その後、石英管内圧力を成長圧力である0.8kPa〜3.9kPaまで約15分かけて減圧し、この状態を所定の時間維持して結晶成長を実施した。
Hereinafter, based on an Example and a comparative example, this invention is demonstrated concretely.
FIG. 1 shows an apparatus for growing a single crystal by an improved Rayleigh method used for manufacturing SiC single crystal ingots according to examples of the present invention and comparative examples. Crystal growth is performed by sublimating a sublimation raw material (SiC raw material) 3 by induction heating and recrystallizing on the seed crystal 1. The seed crystal 1 is attached to the inner surface of the crucible lid 6, and the sublimation raw material 3 is filled inside the graphite crucible 4. The graphite crucible 4 and the crucible lid 6 are coated with a heat insulating material 5 for heat shielding, and are placed on a graphite support base 7 inside the double quartz tube 8. After evacuating the inside of the quartz tube 8 to less than 1.0 × 10 −4 Pa using the vacuum exhaust device and the pressure control device 12, high purity Ar gas having a purity of 99.9999% or more is supplied through the pipe 10. The high pressure current is supplied to the work coil 9 while keeping the pressure in the quartz tube at 80 kPa using the vacuum exhaust device and the pressure control device 12, and the lower part of the graphite crucible is set to a target temperature of 2400 ° C. Raise to. In the case of a process in which the SiC raw material sintering and the crystal growth performed in advance are performed together, the pressure and temperature at this stage are different, which will be described later. Similarly, nitrogen gas (N 2 ) was allowed to flow through the pipe 10 while being controlled by the mass flow controller 11, and the nitrogen partial pressure in the atmospheric gas was controlled to adjust the concentration of the nitrogen element taken into the SiC crystal. . The crucible temperature is measured by the radiation thermometers 13a and 13b with an optical path having a diameter of 2 to 15 mm provided in the heat insulating material 5 at the upper and lower parts of the crucible. The crucible upper temperature was the seed crystal temperature, and the crucible lower temperature was the raw material temperature. Thereafter, the pressure inside the quartz tube was reduced from 0.8 kPa to 3.9 kPa, which is the growth pressure, over about 15 minutes, and this state was maintained for a predetermined time to perform crystal growth.

(実施例1〜3)
先ず、1つの実施例につき、ブロードな粒度分布を有する第1の実施形態に係るSiC粉体を1種用意した。各SiC粉体の粒径D50、粒径D20、空隙率及び有効熱伝導率を表1に示す。種結晶上へのSiC単結晶の結晶成長に先だって、SiC粉体の熱処理を行った。それぞれのSiC粉体を、成長で用いる100mm結晶製造用坩堝と同じサイズの黒鉛製の熱処理用坩堝に充填した。その際、熱処理後に得られるSiC多孔質焼結体と坩堝との剥離を容易にするために、SiC粉体と熱処理用坩堝との間に厚さ1mmの高純度黒鉛のシートを挿入した。次に、黒鉛製ヒーターを有する市販の抵抗加熱炉にSiC粉体を充填した坩堝を入れて熱処理を行った。熱処理前に抵抗加熱炉内を1.0×10−4Pa未満まで真空排気した後、不活性雰囲気ガスであるArを導入して所定の圧力に制御しながら、4時間かけて室温から所定の熱処理温度まで加熱し、所定温度で6時間維持して熱処理を行った。その後、炉冷を行い、室温付近まで冷却された後に坩堝を取出した。熱処理の圧力と温度は表1に示す。
(Examples 1-3)
First, one kind of SiC powder according to the first embodiment having a broad particle size distribution was prepared for one example. Table 1 shows the particle diameter D 50 , particle diameter D 20 , porosity and effective thermal conductivity of each SiC powder. Prior to crystal growth of the SiC single crystal on the seed crystal, the SiC powder was heat-treated. Each SiC powder was filled in a heat treatment crucible made of graphite having the same size as the 100 mm crystal production crucible used for growth. At that time, a sheet of high-purity graphite having a thickness of 1 mm was inserted between the SiC powder and the crucible for heat treatment in order to facilitate separation of the SiC porous sintered body obtained after the heat treatment and the crucible. Next, a crucible filled with SiC powder was placed in a commercially available resistance heating furnace having a graphite heater, and heat treatment was performed. Before the heat treatment, the inside of the resistance heating furnace is evacuated to less than 1.0 × 10 −4 Pa, and then introduced from the room temperature over a period of 4 hours while introducing Ar, which is an inert atmosphere gas, and controlling to a predetermined pressure Heating was performed up to the heat treatment temperature and maintained at the predetermined temperature for 6 hours. Thereafter, furnace cooling was performed, and after cooling to near room temperature, the crucible was taken out. The pressure and temperature for the heat treatment are shown in Table 1.

また、各実施例で用いたSiC粉体とその熱処理条件に関して、事前に84mm×200mm×65mmのSiC多孔質焼結体を作製して、その物性値を測定した。有効熱伝導率、及びSiC多孔質焼結体の体積と質量から算出された空隙率を表1に示す。焼結体は手で持ち上げられるほどの強度を有していたが、粉体から焼結体に至る過程で体積変化はないので、算出される空隙率は熱処理前のSiC粉体と同一であった。ここで、SiC粉体の粒径D20及び粒径D50は、レーザー回折法を用いて、粒径を測定し、換算した粒子体積からヒストグラムを作成して求めたものである。また、有効熱伝導率の測定は、SiC粉体、SiC多孔質焼結体ともに、非定常熱線法を用いて、大気雰囲気にて検体を加熱して測定を行った。更に、空隙率は、SiC粉体、SiC多孔質焼結体ともに、先の式(1)を使って算出した。ここで、SiC原料の体積は原料寸法の直接測定、もしくは黒鉛坩堝の中の原料が充填されている部分の内容積から求めた(下記の実施例、比較例についても同様)。 Moreover, regarding the SiC powder used in each Example and its heat treatment conditions, an SiC porous sintered body of 84 mm × 200 mm × 65 mm was prepared in advance, and its physical property values were measured. Table 1 shows the effective thermal conductivity and the porosity calculated from the volume and mass of the SiC porous sintered body. Although the sintered body was strong enough to be lifted by hand, there was no volume change in the process from the powder to the sintered body, so the calculated porosity was the same as the SiC powder before heat treatment. It was. Here, the particle diameter D 20 and the particle diameter D 50 of the SiC powder are obtained by measuring the particle diameter using a laser diffraction method and creating a histogram from the converted particle volume. The effective thermal conductivity was measured by heating the specimen in an air atmosphere using the unsteady hot wire method for both the SiC powder and the SiC porous sintered body. Furthermore, the porosity was calculated using the above equation (1) for both the SiC powder and the SiC porous sintered body. Here, the volume of the SiC raw material was obtained from the direct measurement of the raw material dimensions or the internal volume of the portion filled with the raw material in the graphite crucible (the same applies to the following examples and comparative examples).

次に、上記で得られたSiC多孔質焼結体を用いて、図1に示したような結晶成長装置により、1つの実施例につきSiC単結晶の製造をそれぞれ3回行った。単結晶製造の条件について説明する。実施例1〜3で用いた黒鉛坩堝4、及び坩堝蓋体6は、100mmインゴット製造用のサイズと構造を有している。種結晶1として、(0001)面を主面とし、<0001>軸が<11−20>方向に4°傾いた、口径101mmの4Hの単一ポリタイプで構成されたSiC単結晶基板を使用した。種結晶のマイクロパイプ密度は1個/cm2以下である。昇華原料3として、前述のSiC多孔質焼結体を使用した。成長圧力は1.33kPaであり、窒素ガスの分圧は180Paから90Paである。窒素分圧は得られるインゴット全体で最適な導電性を維持するために変化させた。そして、ワークコイル9に高周波電流を流し、黒鉛坩堝下部を目標温度2400℃にしてSiC単結晶を成長させた。 Next, using the SiC porous sintered body obtained above, a SiC single crystal was manufactured three times for each example by a crystal growth apparatus as shown in FIG. The conditions for producing a single crystal will be described. The graphite crucible 4 and the crucible lid 6 used in Examples 1 to 3 have a size and a structure for manufacturing a 100 mm ingot. As the seed crystal 1, an SiC single crystal substrate composed of a single polytype of 4H with a diameter of 101 mm, with the (0001) plane as the principal plane and the <0001> axis tilted by 4 ° in the <11-20> direction is used. did. The micropipe density of the seed crystal is 1 piece / cm 2 or less. As the sublimation raw material 3, the above-mentioned SiC porous sintered body was used. The growth pressure is 1.33 kPa, and the partial pressure of nitrogen gas is 180 Pa to 90 Pa. The nitrogen partial pressure was varied to maintain optimum conductivity throughout the resulting ingot. Then, a high-frequency current was passed through the work coil 9, and the lower part of the graphite crucible was set to a target temperature of 2400 ° C. to grow a SiC single crystal.

上記の製造方法にて得られたSiC単結晶インゴットは、口径がいずれも約105mmであり、高さは条件によって異なり、表1に示したとおりであった。外観観察では、得られたインゴットに結晶欠陥の発生は認められなかった。また、成長完了後の坩堝を解体し、原料の状態を観察したところ、昇華後に残る炭素残留物は昇華前の焼結体のネットワーク状構造を大部分で維持しており、原料の再配置に起因する緻密なSiC多結晶体又は緻密な炭素は、原料の中心部に僅かに残るだけであった。   The SiC single crystal ingot obtained by the above production method had a diameter of about 105 mm, and the height was different depending on conditions, as shown in Table 1. In appearance observation, no crystal defects were observed in the obtained ingot. Also, when the crucible after growth was disassembled and the state of the raw material was observed, the carbon residue remaining after sublimation maintained most of the network structure of the sintered body before sublimation. The resulting dense SiC polycrystal or dense carbon remained only slightly in the center of the raw material.

そして、得られたインゴットは公知の加工技術により、種結晶と同じく、オフ角度4°の(0001)面を有する厚さ0.4mmの鏡面ウェハに加工し、透過光観察を行い、更にマイクロパイプをCandela社製のCS10 Optical Surface Analyzerを用いてカウントした。観察結果を表1に示す。得られた結晶の品質はすべて種結晶と同等以上の良質なものであった。   The obtained ingot is processed into a 0.4 mm-thick mirror surface wafer having a (0001) surface with an off angle of 4 ° by a known processing technique, using a known processing technique, and transmitted light observation is performed. Were counted using a CS10 Optical Surface Analyzer manufactured by Candela. The observation results are shown in Table 1. The quality of the obtained crystals was all the same or better than that of the seed crystals.

Figure 2016179920
Figure 2016179920

(実施例4〜6)
実施例4〜6の結晶成長は、SiC粉体の焼結プロセスを組み込んだ、結晶製造と連続した一環プロセスとして実施した。用意したSiC粉体は、第2の実施形態に係る細粒と粗粒の混合粉であり、1つの実施例につき、細粒と粗粒の混合粉からなるSiC粉体をそれぞれ1種用意した。用いた細粒のSiC粉体と粗粒のSiC粉体の平均粒径とこれらの混合比のほか、空隙率、及び有効熱伝導率を表2に示す。
(Examples 4 to 6)
The crystal growth of Examples 4 to 6 was carried out as a continuous process continuous with crystal production incorporating a SiC powder sintering process. The prepared SiC powder is a mixed powder of fine particles and coarse particles according to the second embodiment, and one kind of SiC powder made of mixed powder of fine particles and coarse particles is prepared for each example. . Table 2 shows the average particle diameter of the fine SiC powder and the coarse SiC powder used, the mixing ratio thereof, the porosity, and the effective thermal conductivity.

それぞれの実施例について、細粒と粗粒の混合粉からなるSiC粉体を結晶成長用坩堝内の原料充填室に充填し、下記のような各3回のSiC単結晶インゴットの製造実験を行った。ここで、SiC粉体の坩堝への充填方法としては、予め粉体をロッキングミキサー等で十分に混合した後に坩堝に充填する方法や、先に粗粒を所定量充填し、その後、篩い振とう器などで坩堝を所定の振動数で揺らしながら、所定量の細粒を粗粒の上に投入していく方法などがある。本発明はSiC粉体の充填の方法に限定されるものではなく、また、坩堝内に粒度の分布を作ることを意図してはいない。   For each example, SiC powder consisting of a mixture of fine and coarse particles was filled into the raw material filling chamber in the crystal growth crucible, and the following three production experiments of SiC single crystal ingot were conducted. It was. Here, as a filling method of the SiC powder into the crucible, a method in which the powder is sufficiently mixed with a rocking mixer or the like in advance and then charged into the crucible, or a predetermined amount of coarse particles are first filled and then shaken. For example, there is a method in which a predetermined amount of fine particles are put on the coarse particles while the crucible is shaken at a predetermined frequency with a vessel. The present invention is not limited to the method of filling the SiC powder, nor is it intended to create a particle size distribution in the crucible.

次に、図1に示したような結晶成長装置を用いたSiC粉体の熱処理と単結晶製造の一環プロセスについて説明する。実施例4〜6で用いた黒鉛坩堝4、及び坩堝蓋体6は、150mmインゴット製造用のサイズと構造を有している。種結晶1は、口径152mmを有し、<0001>軸が<11−20>方向に4°傾いた(0001)面を主面とし、4Hの単一ポリタイプで構成されたSiC単結晶基板を使用した。種結晶のマイクロパイプ密度は1個/cm2以下である。SiC粉体と種結晶が装填された坩堝を、結晶成長炉の石英管内に設置し、通常の成長と同様に真空排気した後、純度99.9999%以上の高純度Arガスを、配管10を介してマスフローコントローラ11で制御しながら流入させ、真空排気装置及び圧力制御装置12を用いて石英管内圧力を熱処理の所定圧力に保ちながら、ワークコイル9に高周波電流を流し、SiC粉体が所定の温度に達するまで加熱するようにした。その際の熱処理温度は、坩堝上下の放射温度計測定値を元に、数値計算によって求めた値である。熱処理の圧力と温度は表2に示す。そして、所定の温度を保持したまま、SiC粉体を均一に焼結させるために、ワークコイル9を黒鉛坩堝4に対して上下に駆動させた。その際、結晶成長時に設定するコイル位置を中心に、黒鉛坩堝の原料充填室の高さ程度に相当する幅でワークコイル9を上下方向に駆動させ、1時間に1mm〜10mm程度の速度で位置を変更しながら、12時間の熱処理を行った。 Next, a description will be given of a part process of heat treatment of SiC powder and single crystal production using the crystal growth apparatus as shown in FIG. The graphite crucible 4 and the crucible lid 6 used in Examples 4 to 6 have a size and a structure for producing a 150 mm ingot. The seed crystal 1 has a diameter of 152 mm, a SiC single crystal substrate composed of a single polytype of 4H with a <0001> axis tilted by 4 ° in the <11-20> direction as a principal plane (0001) plane It was used. The micropipe density of the seed crystal is 1 piece / cm 2 or less. A crucible loaded with SiC powder and seed crystal was placed in a quartz tube of a crystal growth furnace, and after evacuation in the same way as in normal growth, high purity Ar gas with a purity of 99.9999% or more was connected to pipe 10 The high-frequency current is passed through the work coil 9 while keeping the pressure in the quartz tube at a predetermined pressure of the heat treatment using the vacuum exhaust device and the pressure control device 12, and the SiC powder is supplied in a predetermined manner. Heating was done until the temperature was reached. The heat treatment temperature at that time is a value obtained by numerical calculation based on the measured values of the radiation thermometers above and below the crucible. The heat treatment pressure and temperature are shown in Table 2. Then, the work coil 9 was driven up and down with respect to the graphite crucible 4 in order to uniformly sinter the SiC powder while maintaining a predetermined temperature. At that time, the work coil 9 is driven vertically with a width corresponding to the height of the raw material filling chamber of the graphite crucible around the coil position set at the time of crystal growth, and positioned at a speed of about 1 mm to 10 mm per hour. The heat treatment was performed for 12 hours while changing.

上記のようにして各実施例に係るSiC多孔質焼結体を得た後、ワークコイル9をSiC単結晶の成長で使用する位置に移動させて、坩堝下部を目標温度である2400℃まで上昇させ、石英管内の圧力を、熱処理の圧力から成長圧力である1.33kPaまで約15分かけて減圧し、SiC単結晶の成長を開始した。窒素ガスの分圧は180Paから90Paである。窒素分圧はインゴット全体で最適な導電性を維持するために変化させた。上述した一環プロセスの運転条件の概略は図2に示す。   After obtaining the SiC porous sintered body according to each example as described above, the work coil 9 is moved to a position where it is used for the growth of the SiC single crystal, and the lower part of the crucible is raised to the target temperature of 2400 ° C. The pressure in the quartz tube was reduced from the heat treatment pressure to the growth pressure of 1.33 kPa over about 15 minutes to start the growth of the SiC single crystal. The partial pressure of nitrogen gas is 180 Pa to 90 Pa. The nitrogen partial pressure was varied to maintain optimal conductivity throughout the ingot. An outline of the operating conditions of the above-described part process is shown in FIG.

ここで、SiC多孔質焼結体の物性については、上記と同じ熱処理過程を経たSiC多孔質焼結体から84mm×200mm×65mmの試験片を加工し、各物性値を測定した。熱伝導率、及び先の式(1)から算出された空隙率を表2に示す。実施例1〜3と同様に、SiC粉体から焼結体に至る過程で体積変化はなく、空隙率は粉体と同一であった。   Here, as for the physical properties of the SiC porous sintered body, a test piece of 84 mm × 200 mm × 65 mm was processed from the SiC porous sintered body that had undergone the same heat treatment process as described above, and each physical property value was measured. Table 2 shows the thermal conductivity and the porosity calculated from the above equation (1). As in Examples 1 to 3, there was no volume change in the process from the SiC powder to the sintered body, and the porosity was the same as that of the powder.

上記の製造方法にて得られたSiC単結晶インゴットは、いずれも口径が約155mmであり、高さは条件によって異なり、表2に示したとおりであった。外観観察では、得られたインゴットに結晶欠陥の発生は認められなかった。成長完了後の原料の状態を観察したところ、実施例1〜3同様に、昇華後に残る炭素残留物は昇華前の焼結体のネットワーク状構造を大部分で維持しており、原料の再配置に起因する緻密なSiC多結晶体又は緻密な炭素は、原料の中心部に僅かに残るだけであった。   The SiC single crystal ingots obtained by the above production methods all had a diameter of about 155 mm, and the height was different depending on conditions, as shown in Table 2. In appearance observation, no crystal defects were observed in the obtained ingot. When the state of the raw material after completion of growth was observed, the carbon residue remaining after sublimation maintained most of the network structure of the sintered body before sublimation as in Examples 1 to 3, and the rearrangement of the raw material The dense SiC polycrystal or the dense carbon resulting from is left only in the center of the raw material.

得られたインゴットは実施例1〜3と同様に、オフ角度4°の(0001)面を有する厚さ0.4mmの鏡面ウェハに加工し、透過光観察とマイクロパイプのカウントを行った。観察結果を表2に示す。得られた結晶の品質はすべて種結晶と同等以上の良質なものであった。   The obtained ingot was processed into a mirror wafer having a thickness of 0.4 mm having a (0001) surface with an off angle of 4 ° in the same manner as in Examples 1 to 3, and the transmitted light was observed and the micropipes were counted. The observation results are shown in Table 2. The quality of the obtained crystals was all the same or better than that of the seed crystals.

Figure 2016179920
Figure 2016179920

(比較例1〜2)
次に、比較例の単結晶製造について説明する。比較例1及び2では、粒径D20が13μm及び粒径D50が32μmの市販のSiC粉体(比較例1)、粒径D20が568μm及び粒径D50が710μmの市販のSiC粉体(比較例2)をそれぞれ用いて成長を行った。SiC原料は粉体の状態で坩堝内に充填し、焼結体を得るための熱処理はせずに、それ以外は実施例1〜3と同様にしてSiC単結晶の成長を開始した。実施例1〜3と同様に、SiC粉体の物性値測定を行っている。その結果は表3に示す。坩堝構造と結晶成長プロセスは実施例1〜3と同一である。これらの比較例1及び2についてもそれぞれ同一の条件にてインゴット製造を3回行った。得られたSiC単結晶インゴットの外観観察では、明らかに結晶欠陥が発生したことが確認できるインゴットもあった。結晶の評価結果も表3に示す。インゴットの高さは実施例と比較して低い。これは、比較例1及び2で充填された粉体の空隙率は実施例よりも高いものの、成長プロセス中に大規模な再配置が発生し、再配置後の空隙率、表面積はむしろ実施例よりも低くなっており、それ以降の昇華反応が進み難くなったことによるものと考えられる。また、マイクロパイプ密度は種結晶のそれよりも増加しているが、これは、再配置の際に誘発されるガス組成の変動、ガス供給量の変動によって、SiC単結晶の成長面にSi粒や炭素粒などの異物相が形成されたことや、更には異物相を起点として異種ポリタイプも発生したことによるものと考えられる。
(Comparative Examples 1-2)
Next, the manufacture of the single crystal of the comparative example will be described. In Comparative Examples 1 and 2, the particle size D 20 commercial SiC powder of 13μm and a particle size D 50 of 32 [mu] m (Comparative Example 1), the particle size D 20 is 568μm and particle size D 50 of commercial SiC powder 710μm Growth was performed using each of the bodies (Comparative Example 2). The SiC raw material was filled in the crucible in a powder state, and without performing heat treatment to obtain a sintered body, the growth of the SiC single crystal was started in the same manner as in Examples 1 to 3. Similar to Examples 1 to 3, physical property values of SiC powder are measured. The results are shown in Table 3. The crucible structure and the crystal growth process are the same as in Examples 1-3. For these Comparative Examples 1 and 2, ingot production was performed three times under the same conditions. In the appearance observation of the obtained SiC single crystal ingot, there was also an ingot that could clearly confirm that crystal defects were generated. The evaluation results of the crystals are also shown in Table 3. The height of the ingot is low compared to the examples. This is because, although the porosity of the powder filled in Comparative Examples 1 and 2 is higher than that of the example, large-scale rearrangement occurred during the growth process, and the porosity and surface area after the rearrangement are rather examples. This is probably because the sublimation reaction after that became difficult to proceed. In addition, the micropipe density is higher than that of the seed crystal. This is due to the change of the gas composition induced by the rearrangement and the change of the gas supply amount. This is considered to be due to the formation of a foreign phase such as carbon particles, and the occurrence of foreign polytypes starting from the foreign phase.

また、成長完了後の坩堝を解体し、原料の状態の観察を行った。昇華後に残る炭素残留物について、昇華前の粉体の形態を維持していた部分は原料体積の半分以下であり、原料の再配置に起因する緻密なSiC多結晶体又は緻密な炭素が原料の中心部に柱状に大きな体積で存在していた。   In addition, the crucible after the growth was disassembled and the state of the raw material was observed. Regarding the carbon residue remaining after sublimation, the portion that maintained the powder form before sublimation is less than half of the raw material volume, and the dense SiC polycrystal or dense carbon resulting from the rearrangement of the raw material is the raw material. It existed in a large volume in a columnar shape in the center.

Figure 2016179920
Figure 2016179920

(比較例3〜4)
比較例3〜4について説明する。比較例3〜4では比較例1〜2と同じ市販のSiC粉体を用いて、予めSiC粉体を熱処理した上でSiC単結晶の成長を行った。比較例3〜4で用いた黒鉛坩堝は、実施例1〜3で用いた坩堝と同じ100mm結晶製造用坩堝であり、種結晶1は実施例1〜3と同様である。結晶成長はSiC粉体の熱処理と結晶製造の連続した一環プロセスとして成長を実施した。比較例3〜4の一環プロセスの条件を以下で説明する。
(Comparative Examples 3-4)
Comparative examples 3 to 4 will be described. In Comparative Examples 3 to 4, the same commercially available SiC powder as in Comparative Examples 1 and 2 was used, and the SiC powder was grown in advance after heat-treating the SiC powder in advance. The graphite crucible used in Comparative Examples 3 to 4 is the same 100 mm crystal manufacturing crucible as the crucible used in Examples 1 to 3, and the seed crystal 1 is the same as in Examples 1 to 3. Crystal growth was carried out as a continuous continuous process of heat treatment and crystal production of SiC powder. The conditions of the partial process of Comparative Examples 3 to 4 will be described below.

SiC粉体と種結晶が装填された坩堝を、結晶成長炉の石英管内に設置し、通常の成長と同様に真空排気した後、純度99.9999%以上の高純度Arガスを、配管10を介してマスフローコントローラ11で制御しながら流入させ、真空排気装置及び圧力制御装置12を用いて石英管内圧力を所定の圧力に保ちながら、ワークコイル9に高周波電流を流し、SiC粉体が所定の温度に達するまで加熱した。その際、この比較例3〜4においても実施例4〜6と同様の設定でコイルの上下動を行った。所定の移動が完了した後に熱処理を完了とした。熱処理条件は表4に示す。   A crucible loaded with SiC powder and seed crystal was placed in a quartz tube of a crystal growth furnace, and after evacuation in the same way as in normal growth, high purity Ar gas with a purity of 99.9999% or more was connected to pipe 10 The SiC powder is allowed to flow through the work coil 9 while keeping the pressure inside the quartz tube at a predetermined pressure by using the vacuum exhaust device and the pressure control device 12 to control the SiC powder. Heated until reached. At that time, in Comparative Examples 3 to 4, the coils were moved up and down with the same settings as in Examples 4 to 6. The heat treatment was completed after the predetermined movement was completed. The heat treatment conditions are shown in Table 4.

上記のようにしてSiC粉体の熱処理を行った後、ワークコイル9をSiC単結晶の成長で使用する位置に移動させて、坩堝下部を目標温度である2400℃まで上昇させ、石英管内の圧力を、9kPaから成長圧力である1.33kPaまで約15分かけて減圧し、成長を開始した。窒素ガスの分圧は180Paから90Paである。窒素分圧はインゴット全体で最適な導電性を維持するために変化させた。   After heat-treating the SiC powder as described above, the work coil 9 is moved to a position where it is used for the growth of the SiC single crystal, the crucible lower part is raised to the target temperature of 2400 ° C., and the pressure in the quartz tube is increased. The pressure was reduced from 9 kPa to a growth pressure of 1.33 kPa over about 15 minutes to start growth. The partial pressure of nitrogen gas is 180 Pa to 90 Pa. The nitrogen partial pressure was varied to maintain optimal conductivity throughout the ingot.

ここで、この比較例3〜4で用いたSiC粉体について、それぞれ上記と同じ条件にて事前に熱処理実験を行い、熱処理後の粉体の物性を評価した。比較例3〜4の熱処理条件は本発明の範囲内ながら、空隙率が高いために粉体は焼結しておらず、熱処理前との物性変化は誤差の範囲内であった。上記の通り、焼結の効果が得られていないため、比較例3〜4にて得られたインゴットの高さは、比較例1〜2と同等である。従って、成長完了後の原料の状態や結晶品質も比較例1〜2と同等と言えるものであった。   Here, the SiC powder used in Comparative Examples 3 to 4 was subjected to a heat treatment experiment in advance under the same conditions as described above, and the physical properties of the powder after the heat treatment were evaluated. Although the heat treatment conditions of Comparative Examples 3 to 4 were within the scope of the present invention, the powder was not sintered because the porosity was high, and the change in physical properties before the heat treatment was within the error range. Since the effect of sintering is not acquired as above-mentioned, the height of the ingot obtained in Comparative Examples 3-4 is equivalent to Comparative Examples 1-2. Therefore, it can be said that the state of the raw material after completion of the growth and the crystal quality are equivalent to those of Comparative Examples 1 and 2.

Figure 2016179920
Figure 2016179920

(比較例5〜7)
比較例5〜7は、SiC粉体の焼結プロセスを組み込んだ、結晶製造と連続した一環プロセスとして実施した。熱処理の工程は実施例4〜6と同様である。1つの比較例につき、SiC粉体を1種用意した。各SiC粉体の粒径D50、D20、空隙率、有効熱伝導率、及び熱処理の処理圧力と最高温度を表5に示す。
(Comparative Examples 5-7)
Comparative Examples 5 to 7 were carried out as a part process continuous with crystal production, incorporating a sintering process of SiC powder. The heat treatment process is the same as in Examples 4-6. One kind of SiC powder was prepared for one comparative example. Table 5 shows the particle diameters D 50 and D 20 , the porosity, the effective thermal conductivity, and the heat treatment pressure and maximum temperature of each SiC powder.

それぞれの比較例について、SiC粉体を結晶成長用坩堝内の原料充填室に充填し、各3回のSiC単結晶インゴットの製造実験を行った。これらの比較例5〜7で用いた黒鉛坩堝4、坩堝蓋体6の構造、種結晶の口径と仕様、及び一環プロセスの条件も実施例4〜6と同様である。   About each comparative example, SiC powder was filled in the raw material filling chamber in the crucible for crystal growth, and the production experiment of the SiC single crystal ingot was performed three times. The structures of the graphite crucible 4 and the crucible lid 6 used in these comparative examples 5 to 7, the diameter and specification of the seed crystal, and the conditions of the one-piece process are the same as those in the examples 4 to 6.

ここで、この比較例5〜7で用いたSiC粉体について、それぞれ上記と同じ条件にて事前に熱処理を施し、焼結性を調査した。比較例5の粉体は粒径D50とD20の比率と熱処理条件は本発明範囲内ながら、粒径D20が大きいために焼結性が低い。比較例6は粒径D50とD20、比率とも本発明の範囲内ながら、熱処理温度が低い。そのため、比較例5〜6では焼結体は得られず、熱処理後も粉体充填体の形態であった。また、熱処理後の粉体に対してあらためて有効熱伝導率の測定を行ったが、熱処理前との差異は誤差範囲であった。熱処理後のSiC粉体の有効熱伝導率、及び先の式(1)から算出された空隙率を表5に示す。熱処理過程で体積変化はなく、算出される空隙率は熱処理前後で変化無かった。 Here, the SiC powder used in Comparative Examples 5 to 7 was heat-treated in advance under the same conditions as described above, and the sinterability was investigated. The ratio between the heat treatment condition in the comparative example the powder particle size D 50 of 5 and D 20 while within the scope of the present invention, a low sinterability for the particle size D 20 is greater. Comparative Example 6 is a particle size D 50 and D 20, the ratio also while within the scope of the present invention, the low heat treatment temperatures. Therefore, in the comparative examples 5-6, the sintered compact was not obtained and it was the form of the powder filler after heat processing. In addition, the effective thermal conductivity was measured again for the powder after the heat treatment, but the difference from that before the heat treatment was within an error range. Table 5 shows the effective thermal conductivity of the SiC powder after the heat treatment and the porosity calculated from the previous equation (1). There was no volume change during the heat treatment, and the calculated porosity was unchanged before and after the heat treatment.

一方、比較例7は、第1の実施形態の範囲のSiC粉体であるが、熱処理温度が非常に高い。このため、坩堝内に投入されたSiC粉体はその内部で昇華と再結晶を発生させ、また焼成収縮により著しく体積が減少しており、空隙率は低下していた。なお、収縮のため84mm×200mm×65mmの試験片を作製することができなかったことから、別途φ10mm×5mmの試験片を加工し、レーザーフラッシュ法にて有効熱伝導率を測定した。すなわち、Ndガラスレーザを用いて、試料の片面に入熱し、反対側の面の温度変化を赤外線センサで捉えたデータを解析することによりφ10mm×5mmの試験片の有効熱伝導率を測定した。   On the other hand, Comparative Example 7 is the SiC powder in the range of the first embodiment, but the heat treatment temperature is very high. For this reason, the SiC powder put in the crucible generated sublimation and recrystallization inside thereof, and the volume was remarkably reduced due to firing shrinkage, and the porosity was lowered. Since a test piece of 84 mm × 200 mm × 65 mm could not be produced due to shrinkage, a test piece of φ10 mm × 5 mm was separately processed, and the effective thermal conductivity was measured by a laser flash method. That is, using Nd glass laser, heat was applied to one side of the sample, and the effective thermal conductivity of the test piece of φ10 mm × 5 mm was measured by analyzing the data obtained by capturing the temperature change of the opposite side with an infrared sensor.

上記のような各SiC原料を用いて実施例4〜6と同様にしてSiC単結晶の成長を行った。得られた比較例5〜7のインゴットの高さは、同じ結晶口径である実施例4〜6のインゴット高さと比較して低い。特に比較例7のインゴットの高さが低く、インゴットの外観観察でも、得られたインゴットには異種ポリタイプの混在やマイクロパイル(MP)の存在を反映した、放射状の筋模様やディンプルが多数見られた。成長完了後の坩堝を解体し、原料の状態の観察を行ったところ、原料の再配置に起因する緻密なSiC多結晶体又は緻密な炭素が原料の中心部に柱状に大きな体積で存在していた。比較例5及び6の原料は焼結させていないため、原料の極所的な加熱や再配置などの現象が発生し、結晶成長条件が不安定になったと推察された。一方、比較例7の原料は、成長前の熱処理により原料充填室の内部で昇華、再結晶と焼成収縮を起し、成長開始前に著しく空隙率が低下していた。このため、成長中の再配置はほとんど発生しないものの、成長開始時点から最後まで昇華量の極端に少ない条件であったと推察できる。得られたインゴットは実施例と同様に鏡面ウェハに加工し、透過光観察とマイクロパイプのカウントを行った。観察結果を表5に示す。全てのウェハで種結晶よりもMP密度が増加していた。   A SiC single crystal was grown in the same manner as in Examples 4 to 6 using each SiC raw material as described above. The heights of the obtained ingots of Comparative Examples 5 to 7 are lower than the ingot heights of Examples 4 to 6 having the same crystal diameter. In particular, the height of the ingot of Comparative Example 7 is low, and even in the appearance observation of the ingot, the resulting ingot has a large number of radial streaks and dimples reflecting the presence of different polytypes and the presence of micropile (MP). It was. When the crucible after the growth was disassembled and the state of the raw material was observed, a dense SiC polycrystal or dense carbon resulting from the rearrangement of the raw material was present in a columnar large volume in the center of the raw material. It was. Since the raw materials of Comparative Examples 5 and 6 were not sintered, it was assumed that phenomena such as extreme heating and rearrangement of the raw materials occurred and the crystal growth conditions became unstable. On the other hand, the raw material of Comparative Example 7 undergoes sublimation, recrystallization, and firing shrinkage inside the raw material filling chamber due to the heat treatment before growth, and the porosity was significantly reduced before the growth started. For this reason, although rearrangement during the growth hardly occurs, it can be inferred that the sublimation amount was extremely small from the start of the growth to the end. The obtained ingot was processed into a mirror wafer in the same manner as in the example, and the transmitted light was observed and the micropipes were counted. The observation results are shown in Table 5. All wafers had higher MP density than the seed crystal.

Figure 2016179920
Figure 2016179920

(比較例8〜10)
比較例8〜10では、実施例1〜3と同様の方法で、成長に先だってSiC粉体を焼結させる熱処理を行った。1つの実施例につき、細粒のSiC粉体と粗粒のSiC粉体とからなる混合粉を1種用意し、SiC単結晶の成長で用いる100mm結晶製造用坩堝と同じサイズの黒鉛製の熱処理用坩堝に充填し、所定の圧力と温度にて熱処理を行った。用いた細粒のSiC粉体と粗粒のSiC粉体の平均粒径とこれらの混合比のほか、その混合粉からなるSiC粉体の粒径D50と粒径D20、熱処理の条件を表6に示す。各比較例について、細粒SiC粉体と粗粒SiC粉体とを結晶成長用坩堝内の原料充填室に充填し、熱処理を行い、その後、各3回のSiC単結晶インゴットの製造実験を行った。熱処理の条件、熱処理前後の原料の有効熱伝導率、先の式(1)から算出された空隙率を表6に示す。
(Comparative Examples 8 to 10)
In Comparative Examples 8 to 10, heat treatment was performed to sinter SiC powder prior to growth in the same manner as in Examples 1 to 3. In one embodiment, one kind of mixed powder composed of fine SiC powder and coarse SiC powder is prepared, and a heat treatment made of graphite having the same size as a crucible for producing 100 mm crystal used for growing a SiC single crystal. The crucible for filling was filled and heat-treated at a predetermined pressure and temperature. In addition to the average particle diameter of the fine SiC powder and the coarse SiC powder used and the mixing ratio thereof, the particle diameter D 50 and particle diameter D 20 of the SiC powder made of the mixed powder, and the heat treatment conditions are Table 6 shows. For each comparative example, a fine SiC powder and a coarse SiC powder were filled into a raw material filling chamber in a crystal growth crucible, subjected to heat treatment, and then a SiC single crystal ingot was manufactured three times each. It was. Table 6 shows the heat treatment conditions, the effective thermal conductivity of the raw material before and after the heat treatment, and the porosity calculated from the previous equation (1).

比較例8の細粒SiC粉体の粒径、細粒SiC粉体と粗粒SiC粉体の平均粒径の関係(7a≦b)は第2の実施形態で示した範囲内であるが、混合粉における細粒の割合が非常に多い。このため、熱処理条件は本発明の範囲内ながら、高い焼結反応性のために著しく収縮し、熱処理後の原料の体積は大幅に減少していた。比較例8の熱処理後のSiC粉体の有効熱伝導率は、比較例7と同様にレーザーフラッシュ法にて測定した。比較例9も細粒SiC粉体の粒径、細粒SiC粉体と粗粒SiC粉体との平均粒径の関係(7a≦b)は第2の実施形態で示した範囲内であるが、混合粉における細粒の比率が小さい。このために、本発明範囲の条件で熱処理を行っても焼結体は得られず、熱処理の前後で粉体の物性値に有意差は見られなかった。比較例10のSiC粉体は、細粒SiC粉体と粗粒SiC粉体との混合比は第2の実施形態で示した範囲内である。しかしながら、細粒SiC粉体の平均粒径が過大であるために、焼結反応性が低下しており、本発明範囲の条件で熱処理を行っても焼結体は得られず、熱処理の前後で粉体の物性値に有意差は見られなかった。   The particle size of the fine SiC powder of Comparative Example 8 and the relationship between the average particle size of the fine SiC powder and the coarse SiC powder (7a ≦ b) are within the range shown in the second embodiment. The proportion of fine particles in the mixed powder is very large. For this reason, while the heat treatment conditions were within the scope of the present invention, the material contracted significantly due to high sintering reactivity, and the volume of the raw material after the heat treatment was greatly reduced. The effective thermal conductivity of the SiC powder after the heat treatment in Comparative Example 8 was measured by the laser flash method as in Comparative Example 7. In Comparative Example 9, the particle size of the fine SiC powder and the relationship between the average particle size of the fine SiC powder and the coarse SiC powder (7a ≦ b) are within the range shown in the second embodiment. The ratio of fine particles in the mixed powder is small. For this reason, a sintered body was not obtained even when heat treatment was carried out under the conditions of the present invention, and no significant difference was observed in the physical property values of the powder before and after the heat treatment. In the SiC powder of Comparative Example 10, the mixing ratio of the fine SiC powder and the coarse SiC powder is in the range shown in the second embodiment. However, since the average particle size of the fine SiC powder is excessive, the sintering reactivity is lowered, and a sintered body cannot be obtained even if heat treatment is performed under the conditions of the present invention. No significant difference was observed in the physical properties of the powder.

これらのSiC原料を用いて実施例1〜3と同様の方法でSiC単結晶の成長を行ったところ、比較例8〜10にて得られたSiC単結晶インゴットは、口径は約105mmと実施例1〜3と同等であったが、インゴットの高さは実施例よりも低く、結晶性は大きく劣っていた。インゴットの高さと結晶品質について表6に示す。   When SiC single crystals were grown in the same manner as in Examples 1 to 3 using these SiC raw materials, the SiC single crystal ingots obtained in Comparative Examples 8 to 10 had a diameter of about 105 mm. Although it was equivalent to 1-3, the height of the ingot was lower than the Example and crystallinity was greatly inferior. Table 6 shows the ingot height and crystal quality.

また、成長完了後の原料の状態の観察も行った。比較例9〜10の原料については、原料の再配置に起因する緻密なSiC多結晶体又は緻密な炭素は原料の中心部に柱状に大きな体積で存在していた。成長プロセス中の再配置によって原料が中心部に移動した結果である。比較例8は、熱処理で形成された緻密な焼結体の形態をほぼ保っており、成長プロセス前後の変化は小さかった。   In addition, the state of the raw material after completion of the growth was also observed. In the raw materials of Comparative Examples 9 to 10, a dense SiC polycrystal or dense carbon resulting from the rearrangement of the raw materials was present in a large volume in a columnar shape in the center of the raw material. This is a result of the raw material moving to the center due to rearrangement during the growth process. In Comparative Example 8, the form of the dense sintered body formed by the heat treatment was almost maintained, and the change before and after the growth process was small.

Figure 2016179920
Figure 2016179920

1:種結晶(SiC単結晶)
2:SiC単結晶インゴット
3:昇華原料(SiC原料)
4:黒鉛坩堝
5:断熱材
6:坩堝蓋体
7:黒鉛支持台座(坩堝支持台および軸)
8:二重石英管
9:ワークコイル
10:配管
11:マスフローコントローラ
12:真空排気装置及び圧力制御装置
13a:放射温度計(坩堝上部用)
13b:放射温度計(坩堝下部用)
1: Seed crystal (SiC single crystal)
2: SiC single crystal ingot 3: Sublimation material (SiC material)
4: graphite crucible 5: heat insulating material 6: crucible lid 7: graphite support base (crucible support base and shaft)
8: Double quartz tube 9: Work coil 10: Piping 11: Mass flow controller 12: Vacuum exhaust device and pressure control device 13a: Radiation thermometer (for crucible upper part)
13b: Radiation thermometer (for crucible lower part)

Claims (5)

原料であるSiCを昇華させて、種結晶上にSiC単結晶を成長させる昇華再結晶法に用いるSiC原料の製造方法であって、
SiC粉体を圧力1.33×104Pa以上の不活性ガス雰囲気中、1500℃以上2200℃以下の温度で熱処理して、空隙率が20%以上50%以下、かつ、1000℃大気圧での有効熱伝導率が0.5W/mK以上のSiC多孔質焼結体からなるSiC原料を得ることを特徴とする昇華再結晶法に用いるSiC原料の製造方法。
A method for producing a SiC raw material used in a sublimation recrystallization method in which SiC as a raw material is sublimated to grow a SiC single crystal on a seed crystal,
The SiC powder is heat-treated in an inert gas atmosphere at a pressure of 1.33 × 10 4 Pa or more at a temperature of 1500 ° C. or more and 2200 ° C. or less, and the porosity is 20% or more and 50% or less and 1000 ° C. at atmospheric pressure. A SiC raw material for use in a sublimation recrystallization method, characterized in that an SiC raw material comprising an SiC porous sintered body having an effective thermal conductivity of 0.5 W / mK or more is obtained.
前記SiC粉体が、体積基準による粒度の累積分布で、累積20%の粒径にあたる粒径D20が200μm以下であると共に、該粒径D20が累積50%の粒径にあたる粒径D50の0.2倍未満の粒度分布を有するものであることを特徴とする請求項1に記載の昇華再結晶法に用いるSiC原料の製造方法。 The SiC powder, a cumulative distribution of the particle size by volume basis, with a particle size D 20 corresponding to the particle size of cumulative 20% is 200μm or less, the particle diameter D 50 the particle diameter D 20 falls on the particle size of cumulative 50% The manufacturing method of the SiC raw material used for the sublimation recrystallization method of Claim 1 which has a particle size distribution of 0.2 times less than this. 前記SiC粉体が、平均粒径の小さい細粒SiC粉体と平均粒径の大きい粗粒SiC粉体との混合粉からなり、細粒SiC粉体の平均粒径aが30μm以上200μm以下、粗粒SiC粉体の平均粒径bが210μm以上2000μm以下であって、かつ、これらの平均粒径が7a≦bの関係を満たすことを特徴とする請求項1に記載の昇華再結晶法に用いるSiC原料の製造方法。   The SiC powder is a mixed powder of a fine SiC powder having a small average particle diameter and a coarse SiC powder having a large average particle diameter, and the average particle diameter a of the fine SiC powder is 30 μm or more and 200 μm or less, 2. The sublimation recrystallization method according to claim 1, wherein the average particle diameter b of the coarse SiC powder is 210 μm or more and 2000 μm or less, and the average particle diameter satisfies a relationship of 7a ≦ b. The manufacturing method of the SiC raw material to be used. 前記細粒SiC粉体が、混合粉中に30質量%以上50質量%以下の割合で混合されていることを特徴とする請求項3に記載の昇華再結晶法に用いるSiC原料の製造方法。   The method for producing a SiC raw material for use in the sublimation recrystallization method according to claim 3, wherein the fine SiC powder is mixed in the mixed powder at a ratio of 30% by mass or more and 50% by mass or less. 原料であるSiCを昇華させて、種結晶上にSiC単結晶を成長させる昇華再結晶法に用いるSiC原料であって、空隙率が20%以上50%以下であり、かつ、1000℃大気圧での有効熱伝導率が0.5W/mK以上のSiC多孔質焼結体からなることを特徴とする昇華再結晶法用のSiC原料。   A SiC raw material used in a sublimation recrystallization method in which SiC, which is a raw material, is sublimated to grow a SiC single crystal on a seed crystal, and has a porosity of 20% or more and 50% or less and 1000 ° C. at atmospheric pressure An SiC raw material for a sublimation recrystallization method, comprising an SiC porous sintered body having an effective thermal conductivity of 0.5 W / mK or more.
JP2015060827A 2015-03-24 2015-03-24 Method for producing SiC raw material used in sublimation recrystallization method Active JP6489891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060827A JP6489891B2 (en) 2015-03-24 2015-03-24 Method for producing SiC raw material used in sublimation recrystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060827A JP6489891B2 (en) 2015-03-24 2015-03-24 Method for producing SiC raw material used in sublimation recrystallization method

Publications (2)

Publication Number Publication Date
JP2016179920A true JP2016179920A (en) 2016-10-13
JP6489891B2 JP6489891B2 (en) 2019-03-27

Family

ID=57132360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060827A Active JP6489891B2 (en) 2015-03-24 2015-03-24 Method for producing SiC raw material used in sublimation recrystallization method

Country Status (1)

Country Link
JP (1) JP6489891B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152632A (en) * 2019-03-21 2020-09-24 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Manufacturing method of ingot, raw material for ingot growth, and its manufacturing method
CN112226815A (en) * 2020-11-16 2021-01-15 哈尔滨科友半导体产业装备与技术研究院有限公司 Pretreatment method of silicon carbide powder for growing silicon carbide single crystal by PVT (physical vapor transport) method
JP2021014385A (en) * 2019-07-12 2021-02-12 住友電気工業株式会社 Method for manufacturing 4h silicon carbide single crystal
KR20210073681A (en) * 2019-12-10 2021-06-21 주식회사 포스코 Apparatus for growing silicon carbide single crystal
CN114108077A (en) * 2020-08-31 2022-03-01 赛尼克公司 Method for producing silicon carbide ingot and silicon carbide ingot produced thereby
US11421339B2 (en) 2018-09-06 2022-08-23 Showa Denko K.K. Method of manufacturing SiC single crystal and covering member
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material
JP7400451B2 (en) 2019-12-25 2023-12-19 株式会社レゾナック Method for manufacturing SiC single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236396B1 (en) 2020-05-29 2021-04-02 에스케이씨 주식회사 Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326876A (en) * 2001-05-01 2002-11-12 Bridgestone Corp Silicon carbide power and its manufacturing method and silicon carbide sintered compact
JP2010105863A (en) * 2008-10-30 2010-05-13 Bridgestone Corp Apparatus and method for manufacturing silicon carbide single crystal
JP2012101996A (en) * 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology Silicon carbide powder for producing silicon carbide single crystal, and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326876A (en) * 2001-05-01 2002-11-12 Bridgestone Corp Silicon carbide power and its manufacturing method and silicon carbide sintered compact
JP2010105863A (en) * 2008-10-30 2010-05-13 Bridgestone Corp Apparatus and method for manufacturing silicon carbide single crystal
JP2012101996A (en) * 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology Silicon carbide powder for producing silicon carbide single crystal, and production method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421339B2 (en) 2018-09-06 2022-08-23 Showa Denko K.K. Method of manufacturing SiC single crystal and covering member
JP2020152632A (en) * 2019-03-21 2020-09-24 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Manufacturing method of ingot, raw material for ingot growth, and its manufacturing method
US11225730B2 (en) 2019-03-21 2022-01-18 Senic Inc. Method for producing ingot, raw material for ingot growth, and method for preparing the raw material
JP2021014385A (en) * 2019-07-12 2021-02-12 住友電気工業株式会社 Method for manufacturing 4h silicon carbide single crystal
KR20210073681A (en) * 2019-12-10 2021-06-21 주식회사 포스코 Apparatus for growing silicon carbide single crystal
KR102325007B1 (en) * 2019-12-10 2021-11-11 주식회사 포스코 Apparatus for growing silicon carbide single crystal
JP7400451B2 (en) 2019-12-25 2023-12-19 株式会社レゾナック Method for manufacturing SiC single crystal
CN114108077A (en) * 2020-08-31 2022-03-01 赛尼克公司 Method for producing silicon carbide ingot and silicon carbide ingot produced thereby
CN114108077B (en) * 2020-08-31 2024-04-05 赛尼克公司 Method for producing silicon carbide ingot and silicon carbide ingot produced thereby
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material
CN112226815A (en) * 2020-11-16 2021-01-15 哈尔滨科友半导体产业装备与技术研究院有限公司 Pretreatment method of silicon carbide powder for growing silicon carbide single crystal by PVT (physical vapor transport) method

Also Published As

Publication number Publication date
JP6489891B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6489891B2 (en) Method for producing SiC raw material used in sublimation recrystallization method
US11761117B2 (en) SiC single crystal sublimation growth apparatus
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
KR101530057B1 (en) Silicon carbide single crystal wafer and manufacturing method for same
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
TWI719164B (en) Vapor deposition apparatus and techniques using high purity polymer derived silicon carbide
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP5931825B2 (en) Method for producing silicon carbide single crystal ingot
KR101760030B1 (en) The method of Variable scale SiC ingot growth using large scale SiC ingot growing apparatus
WO2010024390A1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JP6462857B2 (en) Method for producing silicon carbide single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
CN111819311A (en) Method for producing silicon carbide single crystal
JP2013060328A (en) Method for manufacturing silicon carbide crystal
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JP2014201498A (en) Method for producing silicon carbide single crystal
JP2013047159A (en) Method of producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2010077023A (en) Silicon carbide single crystal and method of manufacturing the same
JP2009280436A (en) Method for producing silicon carbide single crystal thin film
KR101480491B1 (en) Method for manufacturing sintered bulk of raw materials, and growing nethod for single crystal using sintered bulk
JP6883409B2 (en) SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot
KR20130013710A (en) Method for growth of ingot
JP5333363B2 (en) Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
TWI767309B (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6489891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350