JP2016177924A - Heat radiation mechanism in power storage device using secondary battery cell - Google Patents

Heat radiation mechanism in power storage device using secondary battery cell Download PDF

Info

Publication number
JP2016177924A
JP2016177924A JP2015055684A JP2015055684A JP2016177924A JP 2016177924 A JP2016177924 A JP 2016177924A JP 2015055684 A JP2015055684 A JP 2015055684A JP 2015055684 A JP2015055684 A JP 2015055684A JP 2016177924 A JP2016177924 A JP 2016177924A
Authority
JP
Japan
Prior art keywords
battery cell
battery
heat dissipation
housing
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015055684A
Other languages
Japanese (ja)
Other versions
JP6527728B2 (en
Inventor
聖子 林
Kiyoko Hayashi
聖子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2015055684A priority Critical patent/JP6527728B2/en
Publication of JP2016177924A publication Critical patent/JP2016177924A/en
Application granted granted Critical
Publication of JP6527728B2 publication Critical patent/JP6527728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the temperature difference between battery cells generating heat in a power storage device using many battery cells when the battery cells are charged/discharged.SOLUTION: Cylindrical battery cell groups charged and discharged by a power storage device are arranged in rows to be adjacent to one another in a housing so that the axial directions of the battery cells 9 are parallel to one another. The housing is provided with an upstream-side passage and a downstream-side passage through which refrigerant is made to flow in a direction intersecting to the axial direction of the battery cell groups. A discharge member which contacts the battery cell groups along the peripheral surface shape of the battery cell groups and covers the battery cell groups at the downstream side is provided. A surface opposite to the surface on which the discharge member contacts the battery cell groups is a flat surface, a passage through which refrigerant flows is formed between the flat surface and the inner surface of the housing, and the passage is configured to be narrower toward the downstream side of the housing.SELECTED DRAWING: Figure 2

Description

本発明は、多数の二次電池セルを用いた蓄電装置において電池セルの充放電の際に発熱する電池セル間の温度差を低減させる放熱機構に関する。   The present invention relates to a heat dissipation mechanism that reduces a temperature difference between battery cells that generate heat during charging and discharging of battery cells in a power storage device using a large number of secondary battery cells.

地球環境への配慮や、震災時における電力供給の問題を背景として、エネルギーマネジメントへの関心が高まっている。このエネルギーマネジメントに不可欠であるのが蓄電装置である。この蓄電装置は、余剰電力のピークシフト、電力供給の安定化、サーバ装置の非常用電源等に用いられ、エネルギーマネジメントにおいて幅広い用途及び役割が期待されている。   Interest in energy management is increasing against the background of consideration for the global environment and the problem of power supply in the event of an earthquake. A power storage device is indispensable for this energy management. This power storage device is used for peak shift of surplus power, stabilization of power supply, emergency power supply for server devices, and the like, and is expected to have a wide range of uses and roles in energy management.

この蓄電装置では多数の二次電池セル(以下「電池セル」という)を直並列に接続し、必要に応じて充電および放電を行うものであるが、この充電および放電により電池セルは発熱することになる。電池セルは高温域で寿命が短くなるまたは充放電ができなくなるといった特性の劣化が見られるため、安定して電池特性を発揮できる方策が求められている。
このような方策の一つとして、以下の特許文献に示すような、電池セルの冷却機構が提案されている。この冷却機構では電池セル群を所定の間隔を隔てて多段に配列し、その配列方向に沿って空気を通流させる筐体の最上流位置にダミーの電池ユニットなどからなる乱流促進体を設けて、筐体内に導入する空気の流れを乱すことが提案されている。
In this power storage device, a large number of secondary battery cells (hereinafter referred to as “battery cells”) are connected in series and parallel, and charging and discharging are performed as necessary. However, the battery cells generate heat by this charging and discharging. become. Since battery cells show deterioration in characteristics such as shortening of the life or inability to charge and discharge at high temperatures, there is a need for measures that can stably exhibit battery characteristics.
As one of such measures, a battery cell cooling mechanism as shown in the following patent document has been proposed. In this cooling mechanism, battery cell groups are arranged in multiple stages at predetermined intervals, and a turbulent flow promoting body including a dummy battery unit is provided at the most upstream position of the casing through which air flows along the arrangement direction. Thus, it has been proposed to disturb the flow of air introduced into the housing.

特開平11−329518号公報JP 11-329518 A

しかし、上記従来の冷却機構では電池セル等を所定の間隔を隔てて配列するとともに最上流位置にダミーの電池ユニットなどからなる乱流促進体を設ける必要があるため、多数の二次電池セルを高密度に配列することはできなかった。   However, in the conventional cooling mechanism, it is necessary to arrange battery cells and the like at a predetermined interval and to provide a turbulent flow promoting body including a dummy battery unit at the most upstream position. It was not possible to arrange with high density.

そこで、本発明は上記のような従来の問題点を解決して、筐体内に電池セルを高密度に配列するとともに電池セルの充放電に伴う発熱の温度差を低減させることができる放熱機構を提供することにある。   Accordingly, the present invention solves the conventional problems as described above, and provides a heat dissipation mechanism that can arrange battery cells in a housing at a high density and reduce the temperature difference of heat generation associated with charging and discharging of the battery cells. It is to provide.

前述した課題を解決する本発明は、蓄電装置によって充放電される筒型の電池セル群をその各電池セルの軸方向が平行となるように隣接して筐体内に列設し、前記筐体には前記電池セル群の軸方向と直交する方向に冷媒を流通させる通路を設け、前記冷媒の前記通路の少なくとも下流側に位置する前記電池セル群の周面にその周面形状に沿って接するとともにこれらの電池セル群の前記周面を覆う放熱部材を設け、前記放熱部材の前記電池セル群と接する面と反対側の面を平坦面とし、前記平坦面と前記筐体の内面との間に前記冷媒が流通する前記通路を画成し、前記通路を前記筐体の下流側に向かうに従い狭幅にしてなることを特徴とする電池セルの蓄電装置における放熱機構である。   The present invention that solves the above-described problems includes a group of cylindrical battery cells that are charged and discharged by a power storage device, arranged adjacent to each other in a casing so that the axial directions of the battery cells are parallel to each other. Is provided with a passage through which the refrigerant flows in a direction perpendicular to the axial direction of the battery cell group, and is in contact with the circumferential surface of the battery cell group located at least downstream of the passage of the refrigerant along the circumferential shape. And a heat dissipating member covering the peripheral surface of these battery cell groups, a surface opposite to the surface contacting the battery cell group of the heat dissipating member is a flat surface, and between the flat surface and the inner surface of the housing The heat dissipation mechanism in the battery cell power storage device is characterized in that the passage through which the refrigerant flows is defined, and the passage becomes narrower toward the downstream side of the housing.

本発明の放熱機構によれば、多数の電池セルが密に配設された場合であっても、充放電の際に電池セル群の少なくとも一部の電池セル群の温度上昇を抑制することによって電池セル間での温度差を減少させ、電池セル間で充放電特性に個体差が生ずるのを低減させることができる。   According to the heat dissipation mechanism of the present invention, even when a large number of battery cells are densely arranged, by suppressing the temperature rise of at least some of the battery cell groups during charging and discharging. The temperature difference between battery cells can be reduced, and the occurrence of individual differences in charge / discharge characteristics between battery cells can be reduced.

本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。   Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明の第1実施形態における放熱機構を示す斜視図である。It is a perspective view which shows the thermal radiation mechanism in 1st Embodiment of this invention. 本発明の第1実施形態における放熱機構を示す側断面図である。It is a sectional side view which shows the thermal radiation mechanism in 1st Embodiment of this invention. 本発明の第1実施形態における放熱部材の形状を示す側面図である。It is a side view which shows the shape of the heat radiating member in 1st Embodiment of this invention. 本発明の第1実施形態における放熱機構の評価を説明するために用いた電池セル配列を示す図である。It is a figure which shows the battery cell arrangement | sequence used in order to demonstrate evaluation of the thermal radiation mechanism in 1st Embodiment of this invention. 本発明の第2実施形態における放熱機構を示す斜視図である。It is a perspective view which shows the thermal radiation mechanism in 2nd Embodiment of this invention. 本発明の第2実施形態における放熱機構を示す側断面図である。It is a sectional side view which shows the thermal radiation mechanism in 2nd Embodiment of this invention.

==第1の実施形態==
以下、図1〜図2を参照して、本実施形態に係る電池セルを用いた蓄電装置における放熱機構の一例を示す。
== First Embodiment ==
Hereinafter, with reference to FIGS. 1-2, an example of the thermal radiation mechanism in the electrical storage apparatus using the battery cell which concerns on this embodiment is shown.

図1は、本発明の第1実施例に係る蓄電装置における放熱機構1をその天板を取り除いた状態で上方から見たときの斜視図であり、図2は、蓄電装置における放熱機構の側断面図である。尚、図中において、X軸、Y軸、Z軸は、各図面の中で、各部材の位置関係を明確にするために方向を示すものであり、X軸は左右方向、Y軸は前後方向、Z軸は上下方向と定義する。   FIG. 1 is a perspective view of the heat dissipation mechanism 1 in the power storage device according to the first embodiment of the present invention when viewed from above with the top plate removed, and FIG. 2 is a side of the heat dissipation mechanism in the power storage device. It is sectional drawing. In the drawings, the X axis, the Y axis, and the Z axis indicate directions in order to clarify the positional relationship of each member in each drawing. The X axis is the left and right direction, and the Y axis is the front and rear. The direction and Z axis are defined as the vertical direction.

本実施形態に係る放熱機構1は矩形の筐体2を有し、筐体2は底板2a、側板2b、2cおよび天板2d(図2参照)からなっており、筐体の図1における左側板に空気などの冷媒の流入口3が設けられ、筐体の右側板には冷媒の流出口4が設けられ(図2参照)、その流出口には排気用ファン5が取り付けられている。排気ファン5を駆動すると空気などの冷媒が流入口3から筐体内に入り、その内部を流通して流出口4から排気される。筐体の内部左方には充放電制御装置6が収納され、その右方の筐体部分には電池収納空間7が設けられている。電池収納空間7は左右に延長し前後方向に平行な仕切板8で画成されている。前端側と後端側にはそれぞれ1枚の仕切板8が配置されており、前後方向に二つの電池収納空間7が隣接して画成されている位置については前後方向に2枚の仕切板8が配置されている。すなわち12枚の仕切板8によって全部で6個の電池収納空間7が画成されている。各電池収納空間7の前後方向の幅は電池セル9の軸方向の長さと同等となっている。そして、各電池収納空間7には電池セル9の軸方向を前後方向として筒状の側面を左右方向に密着して直線状に配列された電池セル9群が上下2段に配列されている。下段の電池セル群は筐体1の底板2aから上方に所定の間隔を置いて電池収納空間7内に保持されている。この保持機構としては、例えば、各仕切板8の前後にその下端から若干(約1〜1.5cm)離れた上方部分に前後幅が数ミリ程度の鍔部(図示せず)を左右方向全長に亘って設け、この相対向する鍔部で下段の電池セル9の両端部を支えるようにすればよい。   The heat dissipation mechanism 1 according to the present embodiment includes a rectangular housing 2, and the housing 2 includes a bottom plate 2a, side plates 2b, 2c, and a top plate 2d (see FIG. 2). A refrigerant inlet 3 such as air is provided on the plate, a refrigerant outlet 4 is provided on the right side plate of the housing (see FIG. 2), and an exhaust fan 5 is attached to the outlet. When the exhaust fan 5 is driven, a refrigerant such as air enters the casing through the inlet 3, flows through the inside thereof, and is exhausted from the outlet 4. The charging / discharging control device 6 is accommodated in the left side of the housing, and a battery housing space 7 is provided in the housing portion on the right side thereof. The battery storage space 7 is defined by a partition plate 8 that extends in the left-right direction and is parallel to the front-rear direction. One partition plate 8 is arranged on each of the front end side and the rear end side, and two partition plates in the front-rear direction at positions where two battery storage spaces 7 are adjacently defined in the front-rear direction. 8 is arranged. That is, a total of six battery storage spaces 7 are defined by the 12 partition plates 8. The width of each battery storage space 7 in the front-rear direction is equal to the length of the battery cell 9 in the axial direction. In each battery storage space 7, a group of battery cells 9 arranged in a straight line with the cylindrical side surfaces in close contact in the left-right direction with the axial direction of the battery cells 9 as the front-rear direction is arranged in two upper and lower stages. The lower battery cell group is held in the battery storage space 7 at a predetermined interval from the bottom plate 2 a of the housing 1. As this holding mechanism, for example, a hook part (not shown) having a width of about several millimeters in the upper and lower sides is provided in the upper part of the front and rear of each partition plate 8 slightly (approximately 1 to 1.5 cm) from its lower end. What is necessary is just to make it support over both ends of the battery cell 9 of a lower stage with this collar part which opposes.

また、上記の冷媒の流入口2と流出口3は前後の仕切板8によって仕切られた各電池収納空間7の延長線上の左右の側壁に形成されている。なお、好ましくは筐体および仕切板は亜鉛メッキ鋼板により形成される。   The refrigerant inlet 2 and outlet 3 are formed on the left and right side walls on the extension of each battery storage space 7 partitioned by the front and rear partition plates 8. In addition, Preferably, a housing | casing and a partition plate are formed with a galvanized steel plate.

この実施例に係る電池セル9は、例えば、円筒形状のニッケル水素二次電池により構成される。ニッケル水素二次電池は、円筒形状の外装缶内に、帯状の正極板、セパレータ及び負極板が渦巻状に巻かれて、電解液とともに収容されている。そして、外装缶の長手方向の両端に正極端子と負極端子が取り付けられて構成されている。そして、筐体内に収納された多数の二次電池セル9は、夫々の正極端子と負極端子が電路(図示せず)に接続され、充放電制御装置6により充放電が制御される。尚、充放電制御装置6は、多数の電池セルに接続された電路を開閉する充放電制御回路を有し、電池セル9を放電させて当該電路に接続された電力負荷に電力を供給したり、当該電路に接続された電源から電力の供給を受けて多数の電池セルを充電させる周知の制御装置である。   The battery cell 9 according to this embodiment is constituted by, for example, a cylindrical nickel-hydrogen secondary battery. In a nickel-metal hydride secondary battery, a strip-shaped positive electrode plate, a separator, and a negative electrode plate are spirally wound in a cylindrical outer can and accommodated together with an electrolytic solution. And the positive electrode terminal and the negative electrode terminal are attached to the both ends of the longitudinal direction of an armored can, and it is comprised. And as for many secondary battery cells 9 accommodated in the housing | casing, each positive electrode terminal and negative electrode terminal are connected to an electric circuit (not shown), and charging / discharging is controlled by the charging / discharging control apparatus 6. FIG. The charge / discharge control device 6 has a charge / discharge control circuit that opens and closes electric circuits connected to a large number of battery cells, and discharges the battery cells 9 to supply electric power to an electric power load connected to the electric circuits. This is a well-known control device that receives a supply of power from a power source connected to the electric circuit and charges a large number of battery cells.

そして、上記の構成の筐体1に第2図に示すように天板2dを取り付けた状態では、上下2段に配設された電池セル群の上面と筐体1の天板との間及び電池セル群の下面と筐体1の底板2aとの間に、図2に示すように間隙S1,S2が形成されている。   And in the state which attached the top plate 2d to the housing | casing 1 of said structure as shown in FIG. 2, between the upper surface of the battery cell group arrange | positioned at two steps up and down, and the top plate of the housing | casing 1, As shown in FIG. 2, gaps S <b> 1 and S <b> 2 are formed between the lower surface of the battery cell group and the bottom plate 2 a of the housing 1.

上記のように筐体内の電池収納空間内7に多数の電池セル9を配置した状態で、排気ファン5を駆動して筐体1の流入口3側から流出口4に向けて空気などの冷媒を送気すると、冷媒は各電池セルの軸方向と直交する方向に流通し、上流側の電池セルは冷気により充分に冷却されるが、下流側の電池セルは冷気が上流側の排熱により温められるため冷却能力が落ちてしまい、上流側の電池セルと下流側のそれとでは大きな温度差が生じやすく、これにより電池セル間の寿命にばらつきを生じさせることになる。   In the state where a large number of battery cells 9 are arranged in the battery storage space 7 in the casing as described above, the exhaust fan 5 is driven and a refrigerant such as air flows from the inlet 3 side of the casing 1 toward the outlet 4. The refrigerant flows in a direction perpendicular to the axial direction of each battery cell, and the upstream battery cell is sufficiently cooled by cold air, but the downstream battery cell is cooled by exhaust heat from the upstream side. Since it is warmed, the cooling capacity is reduced, and a large temperature difference is likely to occur between the upstream battery cell and the downstream battery cell, thereby causing variations in the life between the battery cells.

そしてまた、隣接する電池セル間の空隙、特に湾曲する曲面同士が隣接することにより形成される空隙は、電池セルが冷気と接触する表面積を増加させる一方で、多数の電池セルを筐体内に密に配設した構造においては、乱流や滞留を生じさせ、これが冷気の流れを阻害し、放熱効果を悪化させる原因になると考えられる。   In addition, a gap between adjacent battery cells, particularly a gap formed by adjacent curved curved surfaces increases the surface area where the battery cells come into contact with the cold air, while the large number of battery cells are sealed in the casing. It is considered that the structure disposed in the above causes turbulent flow and stagnation, which inhibits the flow of cold air and causes the heat dissipation effect to deteriorate.

そこで、本発明では電池収納空間7内に収納された電池セル群の表面に密着してそれらを覆う放熱部材10を設け、それと同時に、放熱部材10の設置位置および冷気の乱流や停滞を防止する機構を採用した。   Therefore, in the present invention, the heat dissipating member 10 is provided in close contact with and covers the surface of the battery cell group housed in the battery housing space 7, and at the same time, the installation position of the heat dissipating member 10 and the turbulence and stagnation of the cold air are prevented. Adopted a mechanism.

本発明の第1実施例では図1および図2に示したように電池収納空間内に収納された下流側の半分の電池セル9群の上面および下面を覆うように放熱部材10を取り付けた。電池セルの上面に取付ける放熱部材の断面形状は図3に示すように、その底部は連接して配列された円筒形電池セルの上面形状に密着するように円弧状の湾曲面10aが連続して形成され、またその上方部は右方に行くに従い肉厚が増大する一方で上面10bは平滑面となっている。なお、電池収納空間7内に収納された下方の電池セル群の下面に取り付けられる放熱部材10は図3に示したものを上下方向に対称としたものである。   In the first embodiment of the present invention, as shown in FIGS. 1 and 2, the heat radiating member 10 is attached so as to cover the upper and lower surfaces of the downstream half battery cell group 9 housed in the battery housing space. As shown in FIG. 3, the cross-sectional shape of the heat dissipating member attached to the upper surface of the battery cell is such that the arcuate curved surface 10a is continuous so that its bottom portion is in close contact with the upper surface shape of the cylindrical battery cells arranged in series. The upper part 10b is formed and the upper part 10b becomes a smooth surface while the thickness increases toward the right. In addition, the heat radiating member 10 attached to the lower surface of the lower battery cell group accommodated in the battery accommodating space 7 is symmetrical to that shown in FIG. 3 in the vertical direction.

上記のように筐体内の電池収納空間7内に電池セルを配置して放熱部材10を取り付けた後に筐体の天板2dを取り付けた本発明における第1実施例の放熱機構は図2に示されているよう、上下の放熱部材の平滑面10bと筐体の天板1dおよび底板1aとの間にはそれぞれ上下対称となる空隙部S1,S2が形成され、その空隙部の上下の方向の幅は右方の流出口4に行くに従って狭くなっている。   FIG. 2 shows the heat dissipation mechanism of the first embodiment of the present invention in which the battery cell is arranged in the battery storage space 7 in the casing as described above and the heat dissipation member 10 is mounted and then the top plate 2d of the casing is mounted. As shown in the figure, gaps S1 and S2 that are vertically symmetrical are formed between the smooth surface 10b of the upper and lower heat radiating members and the top plate 1d and the bottom plate 1a of the casing, respectively. The width becomes narrower as going to the right outlet 4.

本発明の第1実施例の放熱機構1によれば、筺体の右端に設けた排気用ファン5を駆動すると空気からなる冷媒が筐体の流入口3から筐体内に入り電池収納空間7に配置された電池セル群の上下部と筐体の上底板とのそれぞれの間に形成された上下2つの空隙通路S1、S2を通って筐体の右端の流出口4に至る流路が形成される。この際、流路の下流側にある電池セル群の内部で発生した熱は放熱部材10の高伝導率によって流路中に放出されることになる。また、上下の放熱部材10と筐体の天板2dおよび底板2aとの間にそれぞれ形成された冷媒の上下方向の流路S1,S2が筐体の流出口4に向けて徐々に狭くなるため、流出口に向けて流速が増大することにより放熱部材10の放熱効果を上げることができる。   According to the heat dissipation mechanism 1 of the first embodiment of the present invention, when the exhaust fan 5 provided at the right end of the housing is driven, air refrigerant enters the housing through the housing inlet 3 and is disposed in the battery housing space 7. A flow path is formed through the upper and lower gap passages S1 and S2 formed between the upper and lower portions of the battery cell group thus formed and the upper bottom plate of the casing to the outlet 4 at the right end of the casing. . At this time, the heat generated inside the battery cell group on the downstream side of the flow path is released into the flow path due to the high conductivity of the heat radiating member 10. Further, since the upper and lower flow paths S1 and S2 of the refrigerant formed between the upper and lower heat radiating members 10 and the top plate 2d and the bottom plate 2a of the casing are gradually narrowed toward the outlet 4 of the casing. The heat dissipation effect of the heat dissipation member 10 can be increased by increasing the flow velocity toward the outlet.

電池セル群の放熱部材10としては、例えば、銅やアルミニウム等の熱伝導率の高い材料により構成される。そして、放熱を優先させる場合は熱伝導率が非常に高い材料である銅を用い、軽量化を優先させる場合は比重が小さい材料であるアルミニウムを用いるのが望ましい。   As the heat radiating member 10 of a battery cell group, it is comprised with material with high heat conductivity, such as copper and aluminum, for example. And when giving priority to heat dissipation, it is desirable to use copper, which is a material with very high thermal conductivity, and when giving priority to weight reduction, it is desirable to use aluminum, which is a material with a small specific gravity.

(評価)
本実施形態に係る放熱構造の放熱効果を評価するために、筐体2内に多数の電池セル9を配列しただけで放熱部材を使用しない場合(以下「従来例」と称す)と、放熱部材として単なる平板の放熱部材を用いた場合(以下、「比較例」という)と、本発明の第一実施例に従った放熱部材10を使用した場合(以下「実施例」という)の電池セルの表面の温度変化を調べた。具体的には、第2図および図4に示したように、筐体2内に電池セル9を18個左右方向に密接して並列に列設し、図4に示すように上段の電池セルのうち最上流側に位置する電池セルを電池1とし、そこから下流側に5個、11個、17個離れた電池をそれぞれ電池2、電池3、電池4として、全ての電池セルの充放電を開始してから定常状態に至ったときの上記電池1〜4の表面温度を測定した。
(Evaluation)
In order to evaluate the heat dissipation effect of the heat dissipation structure according to the present embodiment, when a large number of battery cells 9 are arranged in the housing 2 and the heat dissipation member is not used (hereinafter referred to as “conventional example”), As a battery cell in the case of using a simple flat heat dissipation member (hereinafter referred to as “comparative example”) and in the case of using the heat dissipation member 10 according to the first embodiment of the present invention (hereinafter referred to as “example”) The surface temperature change was examined. Specifically, as shown in FIG. 2 and FIG. 4, 18 battery cells 9 are closely arranged in parallel in the left-right direction in the housing 2, and the upper battery cell is arranged as shown in FIG. Among them, the battery cell located on the most upstream side is referred to as battery 1, and the batteries separated by 5, 11 and 17 downstream are designated as battery 2, battery 3 and battery 4, respectively. The surface temperature of the batteries 1 to 4 was measured when a steady state was reached after starting.

放熱部材は下流側(右側)の9個の電池セルの上下の表面に第1実施例のごとく配設した。この計測に用いた放熱機構の各部は、以下の寸法で設計されている。具体的には、筐体は、X方向の長さ460mm、Y方向の長さ445mm、Z方向の長さ53.5mm、各壁面は厚さ3mmの亜鉛メッキ鋼板で構成され、電池セルは、軸方向の長さ69mm、直径17.8mmのニッケル水素電池で構成し、放熱部材は、上流側(図3に示すb部分)を厚さ1mm、下流側(a部分)は厚さ2.6mmの銅板で構成し、流出口のファンは20mm角吸気ファン(1000rpm)とした。   The heat dissipating members were arranged on the upper and lower surfaces of nine battery cells on the downstream side (right side) as in the first example. Each part of the heat dissipation mechanism used for this measurement is designed with the following dimensions. Specifically, the casing is made of a galvanized steel sheet having a length of 460 mm in the X direction, a length of 445 mm in the Y direction, a length of 53.5 mm in the Z direction, and a thickness of 3 mm. It is composed of a nickel-metal hydride battery with an axial length of 69 mm and a diameter of 17.8 mm. The heat dissipating member is 1 mm thick on the upstream side (b portion shown in FIG. 3) and 2.6 mm thick on the downstream side (a portion). The outlet fan was a 20 mm square intake fan (1000 rpm).

表1に、環境温度50℃において測定した上記電池1〜電池4の表面温度を示す。   Table 1 shows the surface temperatures of the batteries 1 to 4 measured at an environmental temperature of 50 ° C.

Figure 2016177924
表1から、放熱部材を配設しない従来例の場合、冷媒としての空気が流通する方向の最上流側に配設された電池セル1と最下流側に配設され電池セル4との間で11.2℃もの温度差が生じ、上流側と下流側の電池セルの充放電特性に大きな個体差が生じている。また、本実施形態に係る放熱部材を用いた場合は、従来例および比較例の場合に比して、上流側と下流側との電池セルの温度差がより平滑化されることが理解できる。これは、本実施形態の場合には、放熱部材の放熱効果に加えて、冷媒としての空気が電池セル表面と筐体の天板および底板との間の空隙S1,S2において乱流や滞留することがなくなるとともに、下流側に向かうほど流速が増して放熱効果が向上するためと考えられる。尚、本実施形態に係る放熱部材が上流側と下流側との温度差を平滑化できる度合は、平板状の放熱部材に比して0.5℃程度であるが、充放電は繰り返し長時間に亘って行われるため、この程度の温度差であっても十分な効果は期待できる。
Figure 2016177924
From Table 1, in the case of the conventional example in which no heat radiating member is disposed, between the battery cell 1 disposed on the most upstream side in the direction in which the air as the refrigerant flows and the battery cell 4 disposed on the most downstream side. A temperature difference of 11.2 ° C. occurs, and a large individual difference occurs in the charge / discharge characteristics of the upstream and downstream battery cells. Moreover, when the heat radiating member which concerns on this embodiment is used, it can understand that the temperature difference of the battery cell of an upstream and a downstream is smoothed compared with the case of a prior art example and a comparative example. In the case of this embodiment, in addition to the heat dissipation effect of the heat dissipation member, air as a refrigerant turbulently or stays in the gaps S1 and S2 between the battery cell surface and the top and bottom plates of the housing. This is probably because the flow rate increases toward the downstream side and the heat dissipation effect is improved. The degree to which the heat radiating member according to the present embodiment can smooth the temperature difference between the upstream side and the downstream side is about 0.5 ° C. as compared with the flat plate-like heat radiating member. Therefore, a sufficient effect can be expected even with such a temperature difference.

以上、本実施形態に係る放熱機構によれば、空気等の冷媒通路の下流側における放熱効果を高め、電池セルの上流側と下流側との温度差を低減させることができる。そのため、電池セルの充放電特性に比較的大きな個体差が生じることを防止することができる。   As described above, according to the heat dissipation mechanism according to the present embodiment, the heat dissipation effect on the downstream side of the refrigerant passage such as air can be enhanced, and the temperature difference between the upstream side and the downstream side of the battery cell can be reduced. Therefore, it is possible to prevent a relatively large individual difference from occurring in the charge / discharge characteristics of the battery cell.

===第2の実施形態===
図5は本発明の第2実施形態に係る放熱機構の天板を取り外して内部構造を上方から見たときの斜視図、図6は第2実施形態に係る放熱機構の内部構造を示す断面図である。
=== Second Embodiment ===
FIG. 5 is a perspective view when the top plate of the heat dissipation mechanism according to the second embodiment of the present invention is removed and the internal structure is viewed from above, and FIG. 6 is a cross-sectional view showing the internal structure of the heat dissipation mechanism according to the second embodiment. It is.

第2実施形態は、電池セルの上下表面の全体を覆うように、放熱部材を配設した点で第1の実施形態と相違する。その他の構成については、第1の実施形態と同様の構成であるため、第1実施形態と同一部材については同一の参照番号を付して説明は省略する。
第2実施形態における放熱部材10aは、図5および図6に示したよう、筐体内の電池収納空間に配設された全ての電池セル群の上面および下面を冷媒が流通する通路の上流端から下流端に至るまで覆うように設けられている。そして、その肉厚は上記上流端から下流端に向けて漸次大きくなっている。これにより、冷媒が流通する通路S1及びS2の間隙は上流端から下流端に向けて漸次狭くなっている。
The second embodiment is different from the first embodiment in that a heat radiating member is disposed so as to cover the entire upper and lower surfaces of the battery cell. Since other configurations are the same as those in the first embodiment, the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
As shown in FIGS. 5 and 6, the heat radiating member 10a according to the second embodiment is arranged from the upstream end of the passage through which the refrigerant flows through the upper and lower surfaces of all battery cell groups arranged in the battery storage space in the housing. It is provided so as to cover the downstream end. The wall thickness gradually increases from the upstream end toward the downstream end. Accordingly, the gap between the passages S1 and S2 through which the refrigerant flows gradually becomes narrower from the upstream end toward the downstream end.

(評価)
第2実施形態に係る放熱部材の放熱効果を評価するために、電池セルの表面の温度変化を第1実施例と同様に測定した。なお、第2実施例と比較するサンプルは、放熱部材を用いない従来例と、比較例としては均一な厚さの平坦な放熱部材を全ての電池セル群の上下面に配設した構成とした。
(Evaluation)
In order to evaluate the heat dissipation effect of the heat dissipation member according to the second embodiment, the temperature change of the surface of the battery cell was measured in the same manner as in the first example. In addition, the sample compared with 2nd Example was set as the structure which has arrange | positioned the flat heat radiating member of uniform thickness to the upper and lower surfaces of all the battery cell groups as a comparative example which does not use a heat radiating member, and a comparative example. .

Figure 2016177924
表2から、本実施形態に係る放熱部材を配設した場合、放熱部材を設けない場合(従来例)や、平板状の放熱部材を配設した場合に(比較例)比して、電池セルの表面の温度差がより平滑化されることが理解できる。
Figure 2016177924
From Table 2, when the heat radiating member according to the present embodiment is provided, the battery cell is compared with the case where the heat radiating member is not provided (conventional example) or the case where the plate-shaped heat radiating member is provided (comparative example). It can be understood that the temperature difference of the surface of the surface is smoothed.

以上、本実施形態に係る放熱機構によれば、第1の実施形態と同様に、下流側における放熱効果を高め、電池セルの上流側と下流側との温度差を低減することができる。また、その温度差の低減の度合いとしては第2実施例の方が優れていると言える。   As described above, according to the heat dissipation mechanism according to the present embodiment, the heat dissipation effect on the downstream side can be enhanced and the temperature difference between the upstream side and the downstream side of the battery cell can be reduced, as in the first embodiment. Further, it can be said that the second embodiment is superior in reducing the temperature difference.

===その他の実施形態===
上記実施例では、放熱部材を空気などの冷媒が流通する通路の中央から下流側に位置する電池セル群に対して設けた場合(第1実施例)と、全ての電池セル群に対して設けた場合(第2実施例)について説明したが、本発明はこれに限られず、放熱部材を電池セル群の中央より離れた下流側のみに配置するようにしてもよいし、またはこの放熱部剤を電池セル群の下流側から中央を越えて上流側に一部入り込む位置まで延長して設けても、電池セル群の温度差を低減させることができる。
=== Other Embodiments ===
In the above embodiment, the heat dissipating member is provided for the battery cell group located downstream from the center of the passage through which the refrigerant such as air flows (first embodiment), and provided for all the battery cell groups. However, the present invention is not limited to this, and the heat dissipating member may be disposed only on the downstream side away from the center of the battery cell group, or the heat dissipating member. Even if it is extended from the downstream side of the battery cell group to a position where it partially enters the upstream side beyond the center, the temperature difference of the battery cell group can be reduced.

また、上記各実施形態では、冷媒として空気を用いたが、他の気体を用いてもよいし、筐体内に冷媒を流通させる手段としては吸引ファンに代えて送風ファンを用いてもよい。   In each of the above embodiments, air is used as the refrigerant. However, other gas may be used, and a blower fan may be used instead of the suction fan as means for circulating the refrigerant in the housing.

1…放電機構
2…筐体
3…流入口
4…流出口
5…排気ファン
6…充放電制御装置
9…電池セル
10…放熱部材
10a…放熱部材の湾曲面
10b…放熱部材の平坦面
DESCRIPTION OF SYMBOLS 1 ... Discharge mechanism 2 ... Housing 3 ... Inlet 4 ... Outlet 5 ... Exhaust fan 6 ... Charge / discharge control device 9 ... Battery cell 10 ... Radiation member 10a ... Radiation member curved surface 10b ... Radiation member flat surface

Claims (5)

蓄電装置によって充放電される筒型の電池セル群をその各電池セルの軸方向が平行となるように隣接して筐体内に列設し、
前記筐体には前記電池セル群の軸方向と直交する方向に冷媒を流通させる通路を設け、
前記冷媒の前記通路の少なくとも下流側に位置する前記電池セル群の周面にその周面形状に沿って接するとともにこれらの電池セル群の前記周面を覆う放熱部材を設け、
前記放熱部材の前記電池セル群と接する面と反対側の面を平坦面とし、前記平坦面と前記筐体の内面との間に前記冷媒が流通する前記通路を画成し、
前記通路を前記筐体の下流側に向かうに従い狭幅にしてなることを特徴とする電池セルの蓄電装置における放熱機構。
A group of cylindrical battery cells charged and discharged by the power storage device are arranged in a row adjacent to each other so that the axial directions of the respective battery cells are parallel,
The housing is provided with a passage through which the refrigerant flows in a direction orthogonal to the axial direction of the battery cell group,
Providing a heat dissipating member that contacts the peripheral surface of the battery cell group located at least downstream of the passage of the refrigerant along the peripheral surface shape and covers the peripheral surface of the battery cell group;
The surface of the heat radiating member opposite to the surface in contact with the battery cell group is a flat surface, and the passage through which the refrigerant flows is defined between the flat surface and the inner surface of the housing.
A heat dissipation mechanism in a battery cell power storage device, wherein the passage is narrower toward a downstream side of the housing.
前記放熱部材の肉厚が前記冷媒の前記通路の上流側から下流側に向けて徐々に肉厚となるように形成されてなることを特徴とする請求項1記載の電池セルの蓄電装置における放熱機構。   2. The heat dissipation in the battery cell power storage device according to claim 1, wherein the thickness of the heat radiating member is gradually increased from the upstream side to the downstream side of the passage of the refrigerant. mechanism. 前記放熱部材が前記電池セル群の中間よりも前記下流側に位置する電池セルの周面に接して設けられていることを特徴とする請求項1または請求項2記載の電池セルの蓄電装置における放熱機構。   3. The battery cell power storage device according to claim 1, wherein the heat dissipating member is provided in contact with a peripheral surface of the battery cell located on the downstream side of the middle of the battery cell group. Heat dissipation mechanism. 前記放熱部材が前記電池セル群の全ての電池セルの周面に接して設けられていることを特徴とする請求項1または請求項2記載の電池セルの蓄電装置における放熱機構。   3. The heat dissipation mechanism in the battery cell power storage device according to claim 1, wherein the heat dissipation member is provided in contact with a peripheral surface of all the battery cells of the battery cell group. 前記電池セル群が前記筐体内に前記電池セルの軸方向と直交する方向に2列に密接して配置され、各列の電池セル群の前記筐体の内面と対向する側周面に前記放熱部材を設けてなることを特徴とする請求項1〜4の何れかに1項に係る電池セルの蓄電装置における放熱機構。   The battery cell groups are closely arranged in two rows in the casing in a direction orthogonal to the axial direction of the battery cells, and the heat dissipation is performed on a side circumferential surface facing the inner surface of the casing of the battery cell groups in each row. The member is provided, The heat dissipation mechanism in the electrical storage apparatus of the battery cell which concerns on any one of Claims 1-4 characterized by the above-mentioned.
JP2015055684A 2015-03-19 2015-03-19 Heat dissipation mechanism in power storage device using secondary battery cell Active JP6527728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055684A JP6527728B2 (en) 2015-03-19 2015-03-19 Heat dissipation mechanism in power storage device using secondary battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055684A JP6527728B2 (en) 2015-03-19 2015-03-19 Heat dissipation mechanism in power storage device using secondary battery cell

Publications (2)

Publication Number Publication Date
JP2016177924A true JP2016177924A (en) 2016-10-06
JP6527728B2 JP6527728B2 (en) 2019-06-05

Family

ID=57071312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055684A Active JP6527728B2 (en) 2015-03-19 2015-03-19 Heat dissipation mechanism in power storage device using secondary battery cell

Country Status (1)

Country Link
JP (1) JP6527728B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578738A (en) * 2018-11-05 2020-05-27 Xerotech Ltd Thermal management system
CN112930619A (en) * 2018-11-21 2021-06-08 信越聚合物株式会社 Heat dissipation structure and battery provided with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253747A (en) * 2010-06-03 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Storage battery module
JP2013077432A (en) * 2011-09-30 2013-04-25 Panasonic Corp Battery module
JP2014093280A (en) * 2012-11-07 2014-05-19 Toyota Motor Corp Cooling structure of battery pack
JP2014232598A (en) * 2013-05-28 2014-12-11 Fdk株式会社 Heat dissipation structure of power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253747A (en) * 2010-06-03 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Storage battery module
JP2013077432A (en) * 2011-09-30 2013-04-25 Panasonic Corp Battery module
JP2014093280A (en) * 2012-11-07 2014-05-19 Toyota Motor Corp Cooling structure of battery pack
JP2014232598A (en) * 2013-05-28 2014-12-11 Fdk株式会社 Heat dissipation structure of power storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578738A (en) * 2018-11-05 2020-05-27 Xerotech Ltd Thermal management system
GB2578738B (en) * 2018-11-05 2020-12-09 Xerotech Ltd Thermal management system for a battery
CN112930619A (en) * 2018-11-21 2021-06-08 信越聚合物株式会社 Heat dissipation structure and battery provided with same
CN112930619B (en) * 2018-11-21 2023-12-01 信越聚合物株式会社 Heat radiation structure and battery with the same

Also Published As

Publication number Publication date
JP6527728B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US10326185B2 (en) Battery module including array of cooling fins having different thicknesses
CN108353518B (en) Battery charging device and system, heat energy transfer system and heat energy transfer method
KR101586197B1 (en) Battery Pack Having Novel Cooling Structure
US8748027B2 (en) Middle or large-sized battery pack case providing improved distribution uniformity of coolant flux
US8420245B2 (en) Middle or large-sized battery pack case providing improved distribution uniformity of coolant flux
US8227106B2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
WO2016171345A1 (en) Battery cell cooling device and battery module including same
KR100667943B1 (en) Secondary battery module
JP2016178063A (en) Battery pack
JP5201296B2 (en) Power supply
KR102058688B1 (en) Battery Module of Indirect Cooling
US20160111762A1 (en) Electrical storage apparatus
JP2008258027A (en) Collective battery
JP3432079B2 (en) Power supply device and heat dissipation method thereof
JP2011175896A (en) Secondary battery module and secondary battery module device
KR20110126764A (en) Cooling member of compact structure and excellent stability and battery module employed with the same
TW201316591A (en) Battery pack having cooling system
KR20200001705A (en) Battery pack having cooling device
JP2011249225A (en) Storage battery module
KR20100081674A (en) Battery pack
KR102072764B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP6527728B2 (en) Heat dissipation mechanism in power storage device using secondary battery cell
JP6213440B2 (en) Power storage module
JP6198041B2 (en) Heat dissipation structure of power storage device
JP2013004468A (en) Battery pack device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250