JP2014232598A - Heat dissipation structure of power storage device - Google Patents

Heat dissipation structure of power storage device Download PDF

Info

Publication number
JP2014232598A
JP2014232598A JP2013112157A JP2013112157A JP2014232598A JP 2014232598 A JP2014232598 A JP 2014232598A JP 2013112157 A JP2013112157 A JP 2013112157A JP 2013112157 A JP2013112157 A JP 2013112157A JP 2014232598 A JP2014232598 A JP 2014232598A
Authority
JP
Japan
Prior art keywords
storage device
power storage
case
secondary battery
arrangement direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013112157A
Other languages
Japanese (ja)
Other versions
JP6198041B2 (en
Inventor
聖子 林
Kiyoko Hayashi
聖子 林
知也 原田
Tomoya Harada
知也 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013112157A priority Critical patent/JP6198041B2/en
Publication of JP2014232598A publication Critical patent/JP2014232598A/en
Application granted granted Critical
Publication of JP6198041B2 publication Critical patent/JP6198041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipation structure of a power storage device capable of suppressing temperature rising of a secondary battery housed in a case within the power storage device and minimizing a temperature difference of the secondary battery in an array direction.SOLUTION: In the power storage device, a plurality of columnar secondary batteries 2 are arrayed and housed within a case 1 while making axial lines parallel with each other. In the case 1, a side opening 3 is formed on a sidewall 8 closer to both end portion in an array direction orthogonal to the axial lines of the secondary batteries 2, and a center opening 4 is formed on a top plate 10 or a bottom plate 9 which is positioned in a central portion in the array direction. Suction means 5 is provided at one side of the side opening 3 or the center opening 4, and the other side is defined as an air inflow port.

Description

本発明は、二次電池を利用した蓄電装置の放熱構造に関するものである。   The present invention relates to a heat dissipation structure for a power storage device using a secondary battery.

近年、地球環境への配慮、さらには大地震をきっかけとする電力供給問題などが背景となって、エネルギーマネージメントへの関心が高まっている。このエネルギーマネージメントにおいて、不可欠であるのが蓄電装置である。   In recent years, interest in energy management has increased due to consideration of the global environment and the problem of power supply triggered by a major earthquake. In this energy management, a power storage device is indispensable.

この蓄電装置は、余剰電力のピークシフト、太陽光や風力という天候に左右されやすい自然エネルギーの電力平準化、さらにはサーバの非常用電源など幅広い用途がある。また、蓄電装置は、複数の二次電池を直並列により接続し、必要に応じて充電および放電を行うもので、二次電池が充電および放電を行う際に発熱する。   This power storage device has a wide range of uses such as peak shift of surplus power, power leveling of natural energy that is easily affected by weather such as sunlight and wind power, and emergency power supply for servers. The power storage device connects a plurality of secondary batteries in series and parallel, and performs charging and discharging as necessary, and generates heat when the secondary battery performs charging and discharging.

ところで、上記蓄電装置においては、蓄電装置の小型化を考慮し、多数本の円柱状の二次電池を高密度で配置する必要がある。一方、充電時および放電時には、当該二次電池が発熱し高温になる。この二次電池は、高温域で寿命が短くなったり、また充電効率の低下や放電ができなくなったりと特性の劣化が生じるため、安定して電池特性を発揮できる蓄電装置が求められている。   By the way, in the said electrical storage apparatus, in consideration of size reduction of an electrical storage apparatus, it is necessary to arrange | position many cylindrical secondary batteries at high density. On the other hand, at the time of charging and discharging, the secondary battery generates heat and becomes high temperature. This secondary battery has a characteristic that the life is shortened at a high temperature range, or the charging efficiency is lowered or the battery cannot be discharged. Therefore, a power storage device that can stably exhibit battery characteristics is required.

そこで、図5〜図6に示すように、蓄電装置に用いられる従来のケース100は、当該ケース100内に、円柱状の二次電池20が互いの軸線を平行に複数配列されて収納されているとともに、当該軸線に直交した配列方向の両端部側の側壁40に側部開口部30が形成され、かつ当該側部開口部30の一方側に吸引ファン50が設けられ他方側が空気流入口とされている。なお、この従来のケース100は、二次電池20の軸線に直交した上記配列方向に延在する仕切り板80を間に介して複数列の二次電池20が配置されている。   Therefore, as shown in FIGS. 5 to 6, a conventional case 100 used in a power storage device includes a plurality of cylindrical secondary batteries 20 arranged in parallel with each other in parallel with each other in the case 100. In addition, side openings 30 are formed in the side walls 40 at both ends in the arrangement direction orthogonal to the axis, and a suction fan 50 is provided on one side of the side openings 30, and the other side is an air inlet. Has been. In this conventional case 100, a plurality of rows of secondary batteries 20 are arranged with partition plates 80 extending in the arrangement direction perpendicular to the axis of the secondary batteries 20 therebetween.

この従来のケース100は、側部開口部30の一方側に設けられた吸引ファン50の作動によって、当該ケース100内の空気が吸引されるとともに、他方側の側部開口部30の空気流入口から外気が流入し、さらに流入した空気が吸引ファン50の吸引により外部に排出される。これにより、充電時または放電時に発熱した二次電池20は、上記空気流入口から流入される冷たい空気によって冷却されることになる。   In this conventional case 100, the air in the case 100 is sucked by the operation of the suction fan 50 provided on one side of the side opening 30, and the air inlet of the other side opening 30. Outside air flows in from the air, and the air that has further flowed in is discharged to the outside by suction of the suction fan 50. Thus, the secondary battery 20 that generates heat during charging or discharging is cooled by the cold air flowing in from the air inlet.

しかし、上記従来の放熱構造においては、吸引ファン50の吸引によって、上記空気流入口から流入された冷たい空気は、二次電池20の配列方向に沿って上流側から下流側に流通され、発熱した二次電池20により熱せられて冷却効率が低下する。このため、図7(a)の発明者が行った熱解析結果に示すように、上記配列方向において二次電池20の温度差が生じてしまう。   However, in the conventional heat dissipation structure, the cold air flowing in from the air inlet by the suction of the suction fan 50 is circulated from the upstream side to the downstream side along the arrangement direction of the secondary batteries 20 to generate heat. Heating by the secondary battery 20 reduces the cooling efficiency. For this reason, as shown in the thermal analysis result performed by the inventor of FIG. 7A, a temperature difference of the secondary batteries 20 occurs in the arrangement direction.

なお、図7(a)の熱解析結果は、横幅寸法46cm、高さ寸法3.6cmのケース内に、直径17.8mmの二次電池18本を互いの軸線を平行に配列して、当該ケース内の二次電池に一定発熱を加えて、tの方向に吸い込み速度秒速1m/secを与えたときの定常時の温度分布を計算し、2次元で解析を行ったものである。また、環境温度は25℃である。   In addition, the thermal analysis result of FIG. 7 (a) is obtained by arranging 18 secondary batteries having a diameter of 17.8 mm in parallel with their axis lines in a case having a width dimension of 46 cm and a height dimension of 3.6 cm. This is a two-dimensional analysis by calculating a steady-state temperature distribution when applying constant heat to the secondary battery in the case and applying a suction speed of 1 m / sec in the direction of t. The environmental temperature is 25 ° C.

そこで、下記特許文献1においては、電池ユニットの周囲をその配列方向に沿った冷媒の通流路として、当該通流路の最上流側に配置された上記電池ユニットの上流位置に乱流促進体を設けて、熱伝達係数を上げ冷却能力の向上を図っている。   Therefore, in Patent Document 1 below, a turbulent flow promoting body is provided at the upstream position of the battery unit disposed on the most upstream side of the flow path, with the periphery of the battery unit as a flow path for the refrigerant along the arrangement direction. To improve the cooling capacity by increasing the heat transfer coefficient.

特許平11−329518号公報Japanese Patent No. 11-329518

ところが、上記従来の蓄電装置にあっては、冷媒が流れる上記配列方向に対して、二次電池の本数が少ない場合には有効であるが、筐体型蓄電装置においては、二次電池の本数も多く、冷媒が上記配列方向に沿って流れる過程において、発熱した上記二次電池により熱せられてしまい、冷却能力が落ちることになる。
特に、二次電池が円柱形状の場合、二次電池間の熱伝導性が悪いため、この傾向が顕著に現れる。
However, the conventional power storage device is effective when the number of secondary batteries is small with respect to the arrangement direction in which the refrigerant flows, but the number of secondary batteries in the case-type power storage device is also large. In many cases, in the process in which the refrigerant flows along the arrangement direction, the secondary battery that has generated heat is heated and the cooling capacity is reduced.
In particular, when the secondary battery has a cylindrical shape, this tendency appears remarkably because the thermal conductivity between the secondary batteries is poor.

本発明は、かかる事情に鑑みてなされたものであり、蓄電装置内のケース内に収納された二次電池の温度上昇を抑制するとともに、配列方向において二次電池の温度差を最小にすることが可能な蓄電装置の放熱構造を提供することを課題とするものである。   The present invention has been made in view of such circumstances, and suppresses the temperature rise of the secondary batteries housed in the case in the power storage device and minimizes the temperature difference between the secondary batteries in the arrangement direction. It is an object of the present invention to provide a heat dissipation structure for a power storage device that can be used.

上記課題を解決するために、請求項1に記載の発明は、ケース内に円柱状の二次電池が互いの軸線を平行に複数配列されて収納された蓄電装置において、上記ケースは、上記二次電池の上記軸線に直交した配列方向の両端部側の側壁に側部開口部が形成され、かつ上記配列方向の中央部分に位置する天板または底板に中央開口部が形成されているとともに、当該側部開口部または当該中央開口部の一方側に吸引手段が設けられ他方側が空気流入口とされていることを特徴とするものである。   In order to solve the above-described problem, the invention described in claim 1 is a power storage device in which a plurality of cylindrical secondary batteries are housed in a case in which a plurality of axes are arranged in parallel with each other. A side opening is formed on the side walls on both ends in the arrangement direction orthogonal to the axis of the secondary battery, and a central opening is formed on the top plate or the bottom plate located in the central portion of the arrangement direction. A suction means is provided on one side of the side opening or the central opening, and the other side is an air inflow port.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記ケースは、上記二次電池が当該二次電池の軸線に直交した上記配列方向に延在する複数の仕切り板を間に介して複数列収納されているとともに、各列ごとに上記側部開口部および上記中央開口部が形成されていることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the case includes a plurality of partition plates in which the secondary battery extends in the arrangement direction perpendicular to the axis of the secondary battery. A plurality of rows are accommodated therebetween, and the side opening and the central opening are formed for each row.

請求項1〜2に記載の本発明によれば、空気流入口から流入した空気が、上記吸引手段を介して上記配列方向に沿って外部に排出される際に、当該配列方向に形成される流路の距離が、従来に比べて約半分の距離になるため、上記蓄電装置の充電時および放電時に発熱した上記二次電池によって、上記空気が熱せられた場合でも、当該空気が高温になる前に外部に排出させることができる。これにより、上記配列方向に沿って流れる上記空気の冷却効率の低下が抑制されて、上記二次電池を効率良く放熱することができるとともに、上記配列方向において上記二次電池の温度差を最小にすることができる。さらには、各々の上記二次電池の寿命および充電効率の差が生じてしまうことが抑えられて、装置自体の特性を向上させることができる。   According to this invention of Claim 1-2, when the air which flowed in from the air inflow port is discharged | emitted outside along the said arrangement direction via the said suction means, it forms in the said arrangement direction Since the distance of the flow path is about half that of the conventional one, even if the air is heated by the secondary battery that generates heat when the power storage device is charged and discharged, the air becomes high temperature. It can be discharged to the outside before. As a result, a decrease in cooling efficiency of the air flowing along the arrangement direction is suppressed, the secondary batteries can be radiated efficiently, and the temperature difference of the secondary batteries in the arrangement direction is minimized. can do. Furthermore, the difference in the life and charging efficiency of each secondary battery can be suppressed, and the characteristics of the device itself can be improved.

請求項2に記載の発明によれば、上記二次電池の本数が増えて、複数列収納されていた場合でも、各列ごとに上記空気流入口から流入した空気が、上記蓄電装置の充電時および放電時に発熱した上記二次電池によって高温に熱せられる前に、従来に比べて約半分の距離の上記流路に沿って外部に排出させることができる。この結果、上記配列方向に沿って流れる上記空気の冷却効率の低下が抑制されて、上記二次電池を効率良く放熱することができるとともに、上記配列方向において上記二次電池の温度差を最小にすることができる。さらには、各々の上記二次電池の寿命および充電効率の差が生じてしまうことが抑えられて、装置自体の特性を向上させることができる。   According to the second aspect of the present invention, even when the number of the secondary batteries is increased and stored in a plurality of rows, the air flowing in from the air inlet for each row is not charged when the power storage device is charged. In addition, before being heated to a high temperature by the secondary battery that generates heat during discharge, it can be discharged to the outside along the flow path, which is about half the distance from the conventional one. As a result, a decrease in cooling efficiency of the air flowing along the arrangement direction is suppressed, and the secondary batteries can be efficiently dissipated, and the temperature difference between the secondary batteries in the arrangement direction is minimized. can do. Furthermore, the difference in the life and charging efficiency of each secondary battery can be suppressed, and the characteristics of the device itself can be improved.

本発明の一実施形態の蓄電装置に用いられるケースを示し、(a)は断面図、(b)は(a)の断面斜視図である。The case used for the electrical storage apparatus of one Embodiment of this invention is shown, (a) is sectional drawing, (b) is a cross-sectional perspective view of (a). 本発明の一実施形態の蓄電装置に用いられる天板を外した状態のケースの斜視図である。It is a perspective view of a case in the state where a top plate used for a power storage device of one embodiment of the present invention was removed. 本発明の一実施形態の蓄電装置に用いられるケースの空気の流れを示す概略図である。It is the schematic which shows the flow of the air of the case used for the electrical storage apparatus of one Embodiment of this invention. 本発明の一実施形態の変形例の蓄電装置に用いられるケースの空気の流れを示す概略図である。It is the schematic which shows the flow of the air of the case used for the electrical storage apparatus of the modification of one Embodiment of this invention. 従来の蓄電装置に用いられるケースを示し、(a)は断面図、(b)は(a)の断面斜視図である。The case used for the conventional electrical storage apparatus is shown, (a) is sectional drawing, (b) is a cross-sectional perspective view of (a). 従来の蓄電装置に用いられる天板を外した状態のケースの斜視図である。It is a perspective view of the case of the state which removed the top plate used for the conventional electrical storage apparatus. 発熱を加えた二次電池の熱解析結果を示し、(a)は図5および図6の従来の構造の温度分布、(b)は本発明の構造による温度分布である。The thermal analysis result of the secondary battery which added heat | fever is shown, (a) is the temperature distribution of the conventional structure of FIG.5 and FIG.6, (b) is the temperature distribution by the structure of this invention.

図1〜図3は、本発明に係る蓄電装置の放熱構造の一実施形態を示すもので、この蓄電装置に用いられるケース1は、二次電池2が互いの軸線を平行に複数配列されて収納されているとともに、この二次電池2の上記配列方向の両端部の側壁8に側部開口部3と、当該配列方向の中央部分の底板9に中央開口部4が形成され、かつ当該中央開口部4に吸引ファン(吸引手段)5が設けられたものである。   1 to 3 show an embodiment of a heat dissipation structure for a power storage device according to the present invention. A case 1 used in this power storage device includes a plurality of secondary batteries 2 arranged in parallel with each other in the axis. The side opening 3 is formed in the side wall 8 at both ends of the secondary battery 2 in the arrangement direction, and the central opening 4 is formed in the bottom plate 9 in the central part in the arrangement direction. A suction fan (suction means) 5 is provided in the opening 4.

ここで、二次電池2は、円柱状をなし、上記軸線に直交した配列方向の中央部分に隙間6が形成されて複数配列されているとともに、当該二次電池2が積層(図では2層)されて、ケース1内に収納されている。   Here, the secondary battery 2 has a cylindrical shape, and a plurality of gaps 6 are formed in the central portion in the arrangement direction orthogonal to the axis, and the secondary batteries 2 are stacked (two layers in the figure). ) And stored in the case 1.

また、ケース1は、例えば、合金などにより方形状に形成され、蓋部が天板10をなしている。そして、ケース1内には、二次電池2の軸線に直交した上記配列方向に延在する仕切り板7が等間隔に複数枚(図では7枚)設けられている。この仕切り板7は、二次電池2の上記配列方向の長さ寸法とほぼ同一の長さ寸法に形成されているとともに、ケース1の側壁8の高さ寸法ともほぼ同一の高さ寸法に形成されている。   In addition, the case 1 is formed in a square shape from an alloy or the like, for example, and the lid portion forms the top plate 10. In the case 1, a plurality of (seven in the figure) partition plates 7 extending in the arrangement direction perpendicular to the axis of the secondary battery 2 are provided at equal intervals. The partition plate 7 is formed to have substantially the same length as the length of the secondary battery 2 in the arrangement direction, and to the same height as the height of the side wall 8 of the case 1. Has been.

そして、互いの軸線を平行に複数配列された二次電池2が、仕切り板7を間に介して複数列(図では6列)収納されている。さらに、各列ごとに収納された各々の二次電池2の上記軸線に直交した上記配列方向の両端部側の側壁8に側部開口部3が形成されている。   A plurality of secondary batteries 2 arranged in parallel with each other in axis are accommodated in a plurality of rows (six rows in the figure) with a partition plate 7 interposed therebetween. Further, side openings 3 are formed in the side walls 8 on both end sides in the arrangement direction orthogonal to the axis of each secondary battery 2 housed in each row.

この側部開口部3は、吸引ファン5の吸引により外気を取り込む空気流入口をなしている。また、側部開口部3は、外部からの異物の侵入を防止するために、長方形の開口部が側壁8の高さ方向に間隔をおいて複数(図では3つ)形成されている。   The side opening 3 serves as an air inflow port for taking in outside air by suction of the suction fan 5. In addition, the side openings 3 are formed with a plurality (three in the figure) of rectangular openings at intervals in the height direction of the side walls 8 in order to prevent foreign substances from entering from the outside.

さらに、各列ごとに収納された各々の二次電池2の上記配列方向の中央部分の隙間6に位置する底板9に中央開口部4が形成されている。この中央開口部4は、略四角形に開口されているとともに、当該中央開口部4に吸引ファン5が設けられている。   Further, a central opening 4 is formed in the bottom plate 9 located in the gap 6 in the central portion in the arrangement direction of the secondary batteries 2 housed in each row. The central opening 4 is opened in a substantially square shape, and a suction fan 5 is provided in the central opening 4.

そして、ケース1が、例えば、図3に示すように、複数段(図では4段)積層されるとともに、複数の二次電池2が直並列に接続されて、上記蓄電装置内に配設されることになる。   Then, for example, as shown in FIG. 3, the case 1 is stacked in a plurality of stages (four stages in the figure), and a plurality of secondary batteries 2 are connected in series and parallel and arranged in the power storage device. Will be.

上記構成からなる蓄電装置の放熱構造を用いて、充電時または放電時に発熱した二次電池2を放熱させるには、まず、上記蓄電装置のケース1に収納された二次電池2を充電または放電する。これにより、二次電池2が発熱し、例えば、その発熱をセンサーなどにより感知することにより、ケース1の底板9の中央開口部4に設けられた吸引ファン5を作動させる。   In order to dissipate heat from the secondary battery 2 that has generated heat during charging or discharging using the heat dissipation structure of the power storage device having the above configuration, first, the secondary battery 2 housed in the case 1 of the power storage device is charged or discharged. To do. As a result, the secondary battery 2 generates heat. For example, the suction fan 5 provided in the central opening 4 of the bottom plate 9 of the case 1 is operated by detecting the generated heat by a sensor or the like.

次いで、吸引ファン5の作動により、図3に示すように、底板9の中央開口部4から空気が吸引されるとともに、ケース1の側壁8の側部開口部3の各々の空気流入口から外気が流入する。この流入した空気は、二次電池2の配列方向に沿って流通し、発熱した当該二次電池2を冷却しながら、吸引ファン5が設けられた中央開口部4から排出される。   Next, as shown in FIG. 3, air is sucked from the central opening 4 of the bottom plate 9 by the operation of the suction fan 5, and outside air from each air inlet of the side opening 3 of the side wall 8 of the case 1. Flows in. The inflowing air flows along the arrangement direction of the secondary batteries 2 and is discharged from the central opening 4 provided with the suction fan 5 while cooling the secondary batteries 2 that have generated heat.

この際、上記空気が吸引ファン5を介して排出される中央開口部4は、当該二次電池2の上記配列方向の中央部分に形成されているため、当該中央開口部4を間にして、上記配列方向に沿って2方向の流路が形成される。この流路の各々の距離は、従来の二次電池2の配列方向に沿って形成される流路の約半分の距離であるため、各々の上記空気流入口から流入した上記空気が、二次電池2により熱せられて高温になる前に、中央開口部4から外部に排出されることになる。   At this time, since the central opening 4 through which the air is discharged through the suction fan 5 is formed in the central portion of the secondary battery 2 in the arrangement direction, the central opening 4 is interposed therebetween. A flow path in two directions is formed along the arrangement direction. Since the distance of each of the flow paths is about half the distance of the flow paths formed along the arrangement direction of the conventional secondary battery 2, the air flowing in from each of the air inlets is recharged. Before being heated to a high temperature by the battery 2, it is discharged to the outside from the central opening 4.

したがって、二次電池2の上記配列方向においては、上記空気流入口から流入した上記空気と、発熱した二次電池2とに設定された温度差が生じるため、冷却効率の低下が抑制されて、二次電池2を冷却することができる。この結果、上記配列方向において二次電池2の温度差を最小にすることができる。   Therefore, in the arrangement direction of the secondary batteries 2, a temperature difference set between the air that has flowed in from the air inlet and the secondary battery 2 that has generated heat is generated. The secondary battery 2 can be cooled. As a result, the temperature difference between the secondary batteries 2 in the arrangement direction can be minimized.

ここで、図7(b)の発明者が行った計算に基づき、二次電池2の放熱効果について説明する。
なお、図7(b)の熱解析結果は、横幅寸法46cm、高さ寸法3.6cmのケース内に、直径17.8mmの二次電池18本を互いの軸線を平行に配列して、当該ケース内の当該二次電池に一定発熱を加えて、tの方向に吸い込み速度秒速1m/secを与えたときの定常時の温度分布を計算し、2次元で解析を行ったものである。また、環境温度は25℃である。
Here, the heat dissipation effect of the secondary battery 2 will be described based on the calculation performed by the inventor of FIG.
In addition, the thermal analysis result of FIG.7 (b) is the case where 18 axis | shafts of 17.8 mm in diameter are arranged in parallel with each other in the case of a width dimension of 46 cm, and a height dimension of 3.6 cm. This is a two-dimensional analysis by calculating a steady-state temperature distribution when a constant heat is applied to the secondary battery in the case and a suction speed of 1 m / sec is applied in the t direction. The environmental temperature is 25 ° C.

図7(b)の熱解析結果に示すように、二次電池2の上記配列方向の中央部分の隙間から吸引することにより、流入した空気は冷却効率の低下が抑制されて、当該中央部分から排出されるため、上記配列方向において二次電池2の温度差が最小になることが判明した。
したがたって、本願発明の蓄電装置の放熱構造を用いることにより、上記配列方向において二次電池2の温度差が最小になることは明らかである。
As shown in the thermal analysis result of FIG. 7B, by sucking from the gap in the central portion in the arrangement direction of the secondary batteries 2, the inflowing air is suppressed from decreasing in cooling efficiency, and from the central portion. Since it is discharged, it has been found that the temperature difference between the secondary batteries 2 in the arrangement direction is minimized.
Therefore, it is clear that the temperature difference between the secondary batteries 2 in the arrangement direction is minimized by using the heat dissipation structure of the power storage device of the present invention.

また、図4に示すように、本発明に係る蓄電装置の放熱構造の一実施形態の変形例においては、二次電池2の上記配列方向の中央部分に位置するケース1の天板10に、中央開口部4が形成されているとともに、この中央開口部4の上部に、ケース1の側壁8側が開口された排気部11が設けられ、かつ当該排気部11の上記開口部に吸引ファン5が各々設けられている。   Further, as shown in FIG. 4, in the modification of the embodiment of the heat dissipation structure for the power storage device according to the present invention, the top plate 10 of the case 1 located at the central portion in the arrangement direction of the secondary batteries 2 A central opening 4 is formed, an exhaust part 11 having an opening on the side wall 8 side of the case 1 is provided above the central opening 4, and a suction fan 5 is provided in the opening of the exhaust part 11. Each is provided.

この変形例は、上記開口部に設けられた吸引ファン5により吸引することにより、側壁8の側部開口部3の空気流入口から空気が流入する。この流入した当該空気は、二次電池2の配列方向に沿って流通し、中央開口部4から排気部11を介して吸引ファン5が設けられた各々の上記開口部から外部に排出されることになる。   In this modification, air is introduced from the air inlet of the side opening 3 of the side wall 8 by being sucked by the suction fan 5 provided in the opening. The inflowed air flows along the arrangement direction of the secondary batteries 2, and is discharged to the outside from each opening provided with the suction fan 5 through the exhaust opening 11 from the central opening 4. become.

したがって、この変形例においても、上記一実施形態と同様に、二次電池2の上記配列方向においては、上記空気流入口から流入した上記空気と、発熱した二次電池2とに設定された温度差が生じるため、冷却効率の低下が抑制されて、二次電池2を冷却することができる。この結果、上記配列方向において二次電池2の温度差を最小にすることができる。   Therefore, also in this modified example, in the arrangement direction of the secondary batteries 2, similarly to the above-described embodiment, the temperature set in the air that has flowed in from the air inlet and the secondary battery 2 that has generated heat in the arrangement direction of the secondary batteries 2. Since a difference arises, the fall of cooling efficiency is suppressed and the secondary battery 2 can be cooled. As a result, the temperature difference between the secondary batteries 2 in the arrangement direction can be minimized.

以上の構成からなる蓄電装置の放熱構造によれば、空気流入口から流入した空気が、吸引ファン5を介して上記配列方向に沿って外部に排出される際に、当該配列方向に形成される流路の距離が、従来に比べて約半分の距離になるため、上記蓄電装置の充電時および放電時に発熱した二次電池2によって、上記空気が熱せられた場合でも、当該空気が高温になる前に外部に排出させることができる。これにより、上記配列方向に沿って流れる上記空気の冷却効率の低下が抑制されて、二次電池2を効率良く放熱することができるとともに、上記配列方向において二次電池2の温度差を最小にすることができる。さらには、各々の二次電池2の寿命および充電効率の差が生じてしまうことが抑えられて、装置自体の特性を向上させることができる。   According to the heat dissipation structure of the power storage device having the above configuration, when the air flowing in from the air inflow port is discharged to the outside along the arrangement direction via the suction fan 5, it is formed in the arrangement direction. Since the distance of the flow path is about half that of the conventional one, even when the air is heated by the secondary battery 2 that generates heat when the power storage device is charged and discharged, the air becomes high temperature. It can be discharged to the outside before. As a result, a decrease in cooling efficiency of the air flowing along the arrangement direction is suppressed, the secondary batteries 2 can be efficiently radiated, and the temperature difference of the secondary batteries 2 in the arrangement direction is minimized. can do. Furthermore, the difference in the life and charging efficiency of each secondary battery 2 is suppressed, and the characteristics of the device itself can be improved.

また、二次電池2の本数が増えて、複数列収納されていた場合でも、各列ごとに上記空気流入口から流入した空気が、上記蓄電装置の充電時および放電時に発熱した二次電池2によって高温に熱せられる前に、従来に比べて約半分の距離の上記流路に沿って外部に排出させることができる。この結果、上記配列方向に沿って流れる上記空気の冷却効率の低下が抑制されて、二次電池2を効率良く放熱することができるとともに、上記配列方向において二次電池2の温度差を最小にすることができる。さらには、各々の二次電池2の寿命および充電効率の差が生じてしまうことが抑えられて、装置自体の特性を向上させることができる。   Further, even when the number of secondary batteries 2 is increased and stored in a plurality of rows, the secondary battery 2 in which air flowing from the air inlet for each row generates heat during charging and discharging of the power storage device. Before being heated to a high temperature by the above, it can be discharged to the outside along the above-mentioned flow path that is about half the distance compared to the conventional case. As a result, a decrease in cooling efficiency of the air flowing along the arrangement direction is suppressed, the secondary batteries 2 can be efficiently radiated, and the temperature difference of the secondary batteries 2 in the arrangement direction is minimized. can do. Furthermore, the difference in the life and charging efficiency of each secondary battery 2 is suppressed, and the characteristics of the device itself can be improved.

さらに、二次電池2が、当該二次電池2の上記軸線に直交した配列方向の中央部分に隙間6が形成されて複数配列され、ケース1内に収納されていることにより、吸引ファン5により吸引された空気が、隙間6の空間において対流を生じるため、二次電池2の放熱効率を促進させることができる。   Furthermore, a plurality of secondary batteries 2 are arranged in a central portion in the arrangement direction perpendicular to the axis of the secondary battery 2 with a gap 6 formed therein, and housed in the case 1. Since the sucked air causes convection in the space of the gap 6, the heat dissipation efficiency of the secondary battery 2 can be promoted.

なお、上記実施形態においては、ケース1の天板10または底板9に形成された中央開口部4から吸引ファン5を用いて吸引する方法のみ説明したが、本発明はこれに限定されるものではなく、ケース1の側壁8に形成された側部開口部3に吸引ファン5を設けて吸引しても良い。その場合には、二次電池2の配列方向の両端部の側壁8の各々の側部開口部3に吸引ファン5を設けることになる。   In the above embodiment, only the method of suction using the suction fan 5 from the central opening 4 formed in the top plate 10 or the bottom plate 9 of the case 1 has been described, but the present invention is not limited to this. Alternatively, suction may be provided by providing a suction fan 5 in the side opening 3 formed in the side wall 8 of the case 1. In that case, the suction fans 5 are provided in the side openings 3 of the side walls 8 at both ends in the arrangement direction of the secondary batteries 2.

二次電池を利用した蓄電装置に利用することができる。   It can be used for a power storage device using a secondary battery.

1 ケース
2 二次電池
3 側部開口部
4 中央開口部
5 ファン(吸引手段)
6 隙間
7 仕切り板
8 側壁
9 底板
10 天板
DESCRIPTION OF SYMBOLS 1 Case 2 Secondary battery 3 Side part opening part 4 Center opening part 5 Fan (suction means)
6 Gap 7 Partition plate 8 Side wall 9 Bottom plate 10 Top plate

Claims (2)

ケース内に円柱状の二次電池が互いの軸線を平行に複数配列されて収納された蓄電装置において、
上記ケースは、上記二次電池の上記軸線に直交した配列方向の両端部側の側壁に側部開口部が形成され、かつ上記配列方向の中央部分に位置する天板または底板に中央開口部が形成されているとともに、当該側部開口部または当該中央開口部の一方側に吸引手段が設けられ他方側が空気流入口とされていることを特徴する蓄電装置の放熱構造。
In a power storage device in which a plurality of cylindrical secondary batteries are arranged and stored in parallel with each other in the case,
In the case, side openings are formed in side walls on both end sides in the arrangement direction orthogonal to the axis of the secondary battery, and a central opening is formed in a top plate or a bottom plate located in a central portion in the arrangement direction. A heat dissipation structure for a power storage device, which is formed and has suction means provided on one side of the side opening or the central opening and the other side is an air inlet.
上記ケースは、上記二次電池が当該二次電池の軸線に直交した上記配列方向に延在する複数の仕切り板を間に介して複数列収納されているとともに、各列ごとに上記側部開口部および上記中央開口部が形成されていることを特徴とする請求項1に記載の蓄電装置の放熱構造。   In the case, the secondary battery is accommodated in a plurality of rows with a plurality of partition plates extending in the arrangement direction orthogonal to the axis of the secondary battery therebetween, and the side opening is provided for each row. 2. The heat dissipation structure for a power storage device according to claim 1, wherein a portion and a central opening are formed.
JP2013112157A 2013-05-28 2013-05-28 Heat dissipation structure of power storage device Active JP6198041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112157A JP6198041B2 (en) 2013-05-28 2013-05-28 Heat dissipation structure of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112157A JP6198041B2 (en) 2013-05-28 2013-05-28 Heat dissipation structure of power storage device

Publications (2)

Publication Number Publication Date
JP2014232598A true JP2014232598A (en) 2014-12-11
JP6198041B2 JP6198041B2 (en) 2017-09-20

Family

ID=52125876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112157A Active JP6198041B2 (en) 2013-05-28 2013-05-28 Heat dissipation structure of power storage device

Country Status (1)

Country Link
JP (1) JP6198041B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177924A (en) * 2015-03-19 2016-10-06 Fdk株式会社 Heat radiation mechanism in power storage device using secondary battery cell
CN111682282A (en) * 2020-05-27 2020-09-18 风帆(扬州)有限责任公司 High-efficient heat dissipation battery
CN113811147A (en) * 2020-06-16 2021-12-17 株式会社日立制作所 Storage device
US20240097602A1 (en) * 2022-09-19 2024-03-21 Mavn Technology Licensing, Inc. Infrastructureless data center

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022267A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Capacitor cooling structure
JP2008226488A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Package for sodium-sulfur battery
JP2009123398A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Vehicular battery cooling device
JP2009119935A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Battery cooling device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022267A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Capacitor cooling structure
JP2008226488A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Package for sodium-sulfur battery
JP2009123398A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Vehicular battery cooling device
JP2009119935A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Battery cooling device for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177924A (en) * 2015-03-19 2016-10-06 Fdk株式会社 Heat radiation mechanism in power storage device using secondary battery cell
CN111682282A (en) * 2020-05-27 2020-09-18 风帆(扬州)有限责任公司 High-efficient heat dissipation battery
CN111682282B (en) * 2020-05-27 2023-08-08 风帆(扬州)有限责任公司 High-efficient heat dissipation battery
CN113811147A (en) * 2020-06-16 2021-12-17 株式会社日立制作所 Storage device
CN113811147B (en) * 2020-06-16 2023-06-06 株式会社日立制作所 Storage device
US20240097602A1 (en) * 2022-09-19 2024-03-21 Mavn Technology Licensing, Inc. Infrastructureless data center
WO2024064622A1 (en) * 2022-09-19 2024-03-28 Mavn Technology Licensing, Inc. Infrastructurelesstm data center

Also Published As

Publication number Publication date
JP6198041B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
US8859127B2 (en) Rack housing assembly and energy storage apparatus having the same
US8203841B2 (en) Data center
US20060214633A1 (en) Rechargeable battery module
ES2561533T3 (en) Battery group with cooling system
KR101191664B1 (en) Battery module
CN108281590B (en) Battery thermal management device and battery provided with same
JP6423890B2 (en) Battery module
KR101958742B1 (en) Battery module
JP6198041B2 (en) Heat dissipation structure of power storage device
JP6375779B2 (en) Battery pack heat dissipation structure
TW201218481A (en) Formed by a plurality of superposed battery modules
JP2016091951A (en) Battery pack
JP6072575B2 (en) Battery system
KR20130104165A (en) Battery cooling system using thermoelectric module
JP2013004468A (en) Battery pack device
KR101091665B1 (en) Apparatus for cooling battery of hybrid electrical vehicle
JP2020161216A (en) Battery device
JP6527728B2 (en) Heat dissipation mechanism in power storage device using secondary battery cell
CN110635198A (en) Heat dissipation device of power battery
JP2012221802A (en) Cooling structure of battery pack
WO2014132331A1 (en) Cell module and power storage facility
JP2010144989A (en) Outdoor unit of air conditioner
JP7246777B2 (en) BATTERY PACK INCLUDING COOLING MEMBER AND DEVICE INCLUDING THE SAME
US10720679B2 (en) Cooling case for battery and battery module including the same
Ahmadian-Elmi et al. Review of Thermal Management Strategies for Cylindrical Lithium-Ion Battery Packs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6198041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250