JP2016176127A - Film deposition apparatus, and deposition method - Google Patents

Film deposition apparatus, and deposition method Download PDF

Info

Publication number
JP2016176127A
JP2016176127A JP2015058306A JP2015058306A JP2016176127A JP 2016176127 A JP2016176127 A JP 2016176127A JP 2015058306 A JP2015058306 A JP 2015058306A JP 2015058306 A JP2015058306 A JP 2015058306A JP 2016176127 A JP2016176127 A JP 2016176127A
Authority
JP
Japan
Prior art keywords
plasma
film forming
hollow
processed
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015058306A
Other languages
Japanese (ja)
Other versions
JP6543982B2 (en
Inventor
康弘 小澤
Yasuhiro Ozawa
康弘 小澤
和之 中西
Kazuyuki Nakanishi
和之 中西
崇 伊関
Takashi Izeki
崇 伊関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015058306A priority Critical patent/JP6543982B2/en
Publication of JP2016176127A publication Critical patent/JP2016176127A/en
Application granted granted Critical
Publication of JP6543982B2 publication Critical patent/JP6543982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition apparatus capable of filming even a processing object such as powder efficiently by a plasma CVD method.SOLUTION: A film deposition apparatus (M) of the present invention comprises a hollow electrode (21) arranged in a chamber constituting a closed space. The hollow electrode has a hollow housing part of a bottomed hollow shape capable of accommodating a processed product, and an aperture communicating the inside and the outside of the housing part. Since no counter electrode is arranged in the housing part, a hollow cathode discharge occurs at the hollow electrode, when a negative voltage is applied to the hollow electrode, so that a plasma of a high density is established. According the film deposition apparatus of the invention, therefore, the firm formation by a plasma CVD method can be efficiently performed. In the case where the processed product is granular, on the other hand, the hollow electrode is rotated so that the plasma CVD processing may be performed while performing the agitation. In this case, a DC pulse power source or the like may be used as the plasma power source.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマCVD法により被処理物に効率的に成膜できる成膜装置と成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method capable of efficiently forming a film on an object to be processed by a plasma CVD method.

部材の耐食性、耐摩耗性、摺動性、意匠性等を向上させるため、DLC膜、TiN膜等の薄膜で部材表面を被覆することが多い。このような薄膜形成(成膜)には、PVD(Physical Vapor Deposition:物理蒸着)法やCVD(Chemical Vapor Deposition:化学蒸着)法が用いられる。もっとも、様々な形状の部材に対しても、薄膜を均一的な厚さで効率的に成膜できるCVD法が広く利用されている。中でも、比較的低温で処理でき、種々の組成からなる緻密な薄膜を形成できるプラズマCVD法が多用されるようになっている。   In order to improve the corrosion resistance, wear resistance, slidability, designability, etc. of the member, the surface of the member is often covered with a thin film such as a DLC film or a TiN film. For such thin film formation (film formation), a PVD (Physical Vapor Deposition) method or a CVD (Chemical Vapor Deposition) method is used. However, a CVD method capable of efficiently forming a thin film with a uniform thickness is widely used for members having various shapes. Among them, the plasma CVD method, which can be processed at a relatively low temperature and can form a dense thin film having various compositions, is often used.

プラズマ生成方法にも種々あるが、一般的なCCP(Capacitively Coupled Plasma:容量結合型プラズマ)を用いたCVDは、通常、次のようにしてなされる。真空チャンバー内に平板状のアノード電極とカソード電極を対向させて配置し、アノード電極側から供給した原料ガスを電極間の(グロー)放電によりプラズマ化して、各種のプラズマ粒子をカソード電極上に載置した被処理物の表面に堆積(蒸着)させる。   Although there are various plasma generation methods, CVD using general CCP (Capacitively Coupled Plasma) is usually performed as follows. A plate-like anode electrode and cathode electrode are placed facing each other in a vacuum chamber, and the source gas supplied from the anode electrode side is turned into plasma by (glow) discharge between the electrodes, and various plasma particles are mounted on the cathode electrode. It is deposited (evaporated) on the surface of the workpiece to be placed.

このような一般的なプラズマCVD法は、適当な大きさの部材やバルク材等の表面に成膜することを対象としており、粒子や小物(ねじ等)等の粒状物またはその集合物(粉末等)に適するものではなかった。そこで、被処理物が粉末粒子等であっても、均一的に成膜できるプラズマCVD法が下記の特許文献で提案されている。   Such a general plasma CVD method is intended to form a film on the surface of an appropriately sized member, a bulk material, etc., and is a granular material such as particles or small items (screws) or an aggregate thereof (powder). Etc.). Therefore, the following patent document proposes a plasma CVD method capable of forming a film evenly even if the object to be processed is powder particles or the like.

特開2003−13229号公報JP 2003-13229 A 特開2014−157760号公報JP 2014-157760 A

特許文献1および特許文献2は、いずれも、粉末等を収容した円筒状のカソード電極(真空チャンバー)とその真空チャンバーの中央に対向配置したアノード電極(対向電極)との間でプラズマを生成し、カソード電極を回転させながらCVD処理を行っている。この場合、被処理物(粉末等)はカソード電極内で撹拌されながらCVD処理されるため、微細な粒子等にも均一的な成膜が可能となる。   In both Patent Document 1 and Patent Document 2, plasma is generated between a cylindrical cathode electrode (vacuum chamber) containing powder or the like and an anode electrode (counter electrode) disposed opposite to the center of the vacuum chamber. The CVD process is performed while rotating the cathode electrode. In this case, since the object to be processed (powder or the like) is CVD-treated while being stirred in the cathode electrode, a uniform film can be formed even on fine particles.

しかし、無数の微粒子の表面等に成膜する場合、成膜表面積の合計は、同質量のバルク材等よりも遙かに大きい。このため、それら特許文献に記載された装置・方法を用いても、従来と同様な原理で発生させたプラズマを利用してCVD処理をしている限り、粉末等へ成膜するには、バルク材等に成膜する場合に比べて、遙かに長時間の処理が必要となり、効率的な処理は困難である。   However, when a film is formed on the surface of countless fine particles, the total surface area of the film is much larger than a bulk material having the same mass. For this reason, even if the apparatus and method described in these patent documents are used, as long as the CVD process is performed using the plasma generated based on the same principle as in the past, a bulk film can be formed on a powder or the like. Compared with the case where a film is formed on a material or the like, a much longer processing time is required, and an efficient processing is difficult.

本発明はこのような事情に鑑みて為されたものであり、被処理物が粒状物でCVDによる成膜面積が実質的に大きくなるような場合でも、均一的な成膜を効率的に行うことができる成膜装置および成膜方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when the object to be processed is granular and the film formation area by CVD is substantially increased, uniform film formation is efficiently performed. It is an object of the present invention to provide a film forming apparatus and a film forming method that can be used.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、従来のプラズマCVD法とは異なり、ホローカソード放電により生成させたプラズマを利用してCVD処理することを着想し、この着想を具現化することに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   The present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, the conventional plasma CVD method is different from the conventional plasma CVD method, and the idea is that CVD processing is performed using plasma generated by hollow cathode discharge, We succeeded in embodying this idea. By developing this result, the present invention described below has been completed.

《成膜装置》
(1)本発明の成膜装置は、密閉空間を構成するチャンバー内で被処理物の表面にプラズマCVD法による成膜を行う成膜装置であって、前記被処理物を収容し得る有底中空状の収容部と該収容部の内外を連通する開口部とを有する中空電極を備え、該収容部内に対向電極が配置されておらずホローカソード放電によりプラズマを生成し得ることを特徴とする。
<Film deposition system>
(1) A film forming apparatus according to the present invention is a film forming apparatus that forms a film by a plasma CVD method on the surface of an object to be processed in a chamber that forms a sealed space, and has a bottom that can accommodate the object to be processed. A hollow electrode having a hollow housing portion and an opening communicating with the inside and the outside of the housing portion is provided, and a counter electrode is not disposed in the housing portion, and plasma can be generated by hollow cathode discharge. .

(2)本発明の成膜装置によれば、ホローカソード放電により中空電極内のプラズマ密度を大きくでき、中空電極の収容部内にある被処理物に対して、プラズマCVDによる成膜を効率的に行える。このため本発明の成膜装置を用いれば、表面積(成膜面積)の質量に対する割合(適宜「比表面積」という。)が大きい被処理物(例えば粒状物)に対しても、プラズマCVDの処理時間(成膜時間)を短縮でき、ひいては薄膜被覆した製品の生産コスト低減を図れる。 (2) According to the film forming apparatus of the present invention, the plasma density in the hollow electrode can be increased by hollow cathode discharge, and film formation by plasma CVD can be efficiently performed on the object to be processed in the housing portion of the hollow electrode. Yes. For this reason, if the film forming apparatus of the present invention is used, the plasma CVD process is performed even on an object to be processed (for example, a granular material) having a large ratio of surface area (film forming area) to mass (referred to as “specific surface area” as appropriate). The time (deposition time) can be shortened, and as a result, the production cost of a product coated with a thin film can be reduced.

(3)ちなみに中空電極(ホローカソード)内のプラズマ密度が、平行平板電極間のプラズマ密度等よりも大きくなる理由は次のように考えられる。中空電極を陰極(カソード)とした場合、その内側のある陰極面から放出された二次電子は、シース(プラズマ相に接する電極表面近傍に形成される単一極性の荷電粒子層)により、その内側の対向する陰極面の方向(収容部が円筒状または球面状なら半径方向)へ加速される。この際、その二次電子は、平均自由工程が十分に長い(収容部が円筒状または球面状なら直径より長い)と、対向する陰極面に近づくことになる。 (3) Incidentally, the reason why the plasma density in the hollow electrode (hollow cathode) becomes larger than the plasma density between the parallel plate electrodes is considered as follows. When the hollow electrode is a cathode (cathode), secondary electrons emitted from the cathode surface inside the hollow electrode are caused by the sheath (single polarity charged particle layer formed near the electrode surface in contact with the plasma phase). It is accelerated in the direction of the inner facing cathode surface (in the radial direction if the accommodating portion is cylindrical or spherical). At this time, if the mean free path is sufficiently long (longer than the diameter if the accommodating portion is cylindrical or spherical), the secondary electrons approach the opposing cathode surface.

しかし、仮に、シースの厚さが対向する陰極面間の距離の1/2(収容部が円筒状または球面状なら半径)よりも小さいか、ほぼ等しい場合、二次電子は対向する陰極面の前面側にあるシース内で運動エネルギーを失って反射され、元の陰極面に向かって加速される。このような現象が中空電極内で繰り返し生じる結果、中空電極内には高エネルギーで長寿命な電子が閉じ込められた状態となり、中空電極内で電離回数が増加して、高いプラズマ密度が得られるホローカソード放電が生じると考えられる。   However, if the sheath thickness is smaller than or approximately equal to ½ of the distance between the opposing cathode surfaces (the radius if the accommodating portion is cylindrical or spherical), the secondary electrons are on the opposing cathode surface. It loses kinetic energy in the sheath on the front side, is reflected, and is accelerated toward the original cathode surface. As a result of repeated occurrence of such a phenomenon in the hollow electrode, high-energy and long-life electrons are confined in the hollow electrode, and the number of ionization increases in the hollow electrode, resulting in a hollow plasma with high plasma density. It is thought that cathode discharge occurs.

《成膜方法》
本発明は、上述した成膜装置としてのみならず、次のような成膜方法としても把握できる。すなわち本発明は、密閉空間を構成するチャンバー内でホローカソード放電によりプラズマを生成させて被処理物にプラズマCVD法による成膜を行う成膜工程を備えることを特徴とする成膜方法でもよい。なお、本発明の成膜方法は、上述した成膜装置を用いて実施できることは勿論であるが、その場合に制限(限定)されるものではない。
<Film formation method>
The present invention can be grasped not only as the film forming apparatus described above but also as the following film forming method. That is, the present invention may be a film forming method characterized by including a film forming process in which plasma is generated by hollow cathode discharge in a chamber constituting a sealed space and a film is formed on a workpiece by a plasma CVD method. The film forming method of the present invention can of course be carried out using the film forming apparatus described above, but is not limited (limited) in that case.

また、本発明の成膜方法は、種々の被処理物を対象とできるが、被処理物が粒状物である場合、本発明に係る成膜工程は、粒状物を撹拌する撹拌工程を伴うものであると好適である。これにより、粒状物に対しても均一的な成膜を効率的に行うことができる。なお、この撹拌工程は断続的になされてもよいが、成膜中に連続的になされると、より均一的な成膜が可能となり好ましい。   In addition, the film forming method of the present invention can target various objects to be processed. However, when the object to be processed is a granular material, the film forming process according to the present invention involves an agitation step of stirring the granular material. Is preferable. Thereby, uniform film formation can be efficiently performed even on granular materials. The stirring step may be intermittently performed, but it is preferable that the stirring step be continuously performed during the film formation because a more uniform film formation is possible.

《その他》
(1)本発明の成膜装置は、対向電極(アノード電極)が中空電極に内包されていない点で、従来のプラズマCVD装置と大きく異なる。但し、本発明の成膜装置にとって対向電極は必須ではない。中空電極内でホローカソード放電が生じる限り、種々のプラズマ源()を用いることができるからである。例えば、CCP以外に、ECP(Electron Cyclotron resonance Plasma:電子サイクロトン共鳴プラズマ)、HWP(Helicon Wave Plasma:ヘリコン波励起プラズマ)、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)、SWP(Surface Wave Plasma:マイクロ波励起表面波プラズマ)等を用いることができ、対向電極の有無はプラズマ源の種類に依る。
<Others>
(1) The film forming apparatus of the present invention is greatly different from the conventional plasma CVD apparatus in that the counter electrode (anode electrode) is not included in the hollow electrode. However, the counter electrode is not essential for the film forming apparatus of the present invention. This is because various plasma sources () can be used as long as hollow cathode discharge occurs in the hollow electrode. For example, besides CCP, ECP (Electron Cyclotron Resonance Plasma), HWP (Helicon Wave Plasma), ICP (Inductively Coupled Plasma), SWP (Surface Wave Plasma): Microwave excitation surface wave plasma) can be used, and the presence or absence of the counter electrode depends on the type of plasma source.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

成膜装置の一実施例を示す模式図である。It is a schematic diagram which shows one Example of the film-forming apparatus. 中空電極となる容体を示す半断面図である。It is a half sectional view showing a container used as a hollow electrode. その容体を構成する半球体を示す平面図である。It is a top view which shows the hemisphere which comprises the container. 中空電極に生じる放電(プラズマ生成)を模式的に示した図である。It is the figure which showed typically the discharge (plasma production | generation) which arises in a hollow electrode. その様子を撮影した写真である。This is a picture of the situation. 開放電極に生じる放電(プラズマ生成)を模式的に示した図である。It is the figure which showed typically the discharge (plasma production | generation) which arises in an open electrode. その様子を撮影した写真である。This is a picture of the situation. 中空電極と開放電極をそれぞれ用いてプラズマCVD処理したときの発光分析結果である。It is an emission analysis result when carrying out plasma CVD processing using a hollow electrode and an open electrode, respectively.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の成膜装置のみならず成膜方法にも適宜該当し得る。方法的な構成要素であっても物的な構成要素ともなり得る。方法に関する構成要素は、プロダクトバイプロセスクレームとして理解すれば物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in this specification can be appropriately applied not only to the film forming apparatus of the present invention but also to the film forming method. Even a method component can be a physical component. A component related to a method can be a component related to an object if understood as a product-by-process claim. Which embodiment is the best depends on the target, required performance, and the like.

《中空電極》
本発明に係る中空電極は収容部と開口部を備える。収容部は、被処理物を収容できる有底中空状であって、ホローカソード放電が可能な形状であれば、その具体的な形状を問わない。収容部は、例えば、有底筒状、開口球状、開口殻状等、様々な形態をとり得る。いずれにしても収容部は、開口部分を除き、内壁面(電極面)同士が対向した形状からなるとよい。また、収容部の内壁面は角部の少ない滑らかな曲面状からなり、側面と底面の接続部分がある場合は角部が丸められた形状であると好ましい。これにより放電が一部に集中することが抑止され、安定したホローカソード放電が得られ易い。
<< Hollow electrode >>
The hollow electrode according to the present invention includes an accommodating portion and an opening. The accommodating portion may be of any specific shape as long as it has a bottomed hollow shape capable of accommodating an object to be processed and is capable of hollow cathode discharge. The accommodating portion can take various forms such as a bottomed cylindrical shape, an open spherical shape, and an open shell shape. In any case, the housing portion may have a shape in which the inner wall surfaces (electrode surfaces) face each other except for the opening portion. Further, the inner wall surface of the housing portion is formed in a smooth curved surface with few corners, and when there is a connection portion between the side surface and the bottom surface, the corner portion is preferably rounded. As a result, it is possible to prevent the discharge from being concentrated on a part, and it is easy to obtain a stable hollow cathode discharge.

開口部は、被処理物を収容部内へ入れたり収容部内から出したりするために利用され得るのみならず、収容部内の排気や収容部への給気等に必要である。開口部は、処理中の被処理物が収容部内に安定保持される限り、その形態、配置、大きさ等を問わない。例えば、開口部は、処理中の中空電極の配置を基準として、その上方側(水平位置〜鉛直上方)に開口した穴等である。   The opening can be used not only for putting the object to be processed into and out of the container, but also for exhausting the container and supplying air to the container. As long as the to-be-processed object in process is stably hold | maintained in an accommodating part, an opening part does not ask | require the form, arrangement | positioning, magnitude | size, etc. For example, the opening is a hole or the like opened on the upper side (horizontal position to vertically above) with respect to the arrangement of the hollow electrode being processed.

《成膜装置》
(1)本発明の成膜装置は、プラズマCVDを行うために、チャンバーおよび中空電極以外にも、チャンバー内へ各種ガス(原料ガス、キャリアーガス等)を供給する給気手段、プラズマ生成(ホローカソード放電)に必要な電力を供給する電源回路またはそのような電力の供給源等を適宜備える。また、大気圧プラズマを利用する場合もあるが、一般的には減圧雰囲気で生成したプラズマ(真空プラズマ)を利用することが多いため、チャンバー内を排気(減圧)する排気手段もあると好ましい。
<Film deposition system>
(1) In order to perform plasma CVD, the film forming apparatus according to the present invention includes an air supply means for supplying various gases (source gas, carrier gas, etc.) into the chamber, plasma generation (hollow), in addition to the chamber and the hollow electrode. A power supply circuit for supplying electric power necessary for cathode discharge) or a supply source of such electric power is appropriately provided. In some cases, atmospheric pressure plasma is used, but generally, plasma (vacuum plasma) generated in a reduced pressure atmosphere is often used, and therefore it is preferable that there is an exhaust means for exhausting (reducing pressure) the chamber.

成膜時の電源(プラズマ電源)には、直流電源、高周波電源、パルス電源等を用いることができる。もっとも、粉末粒子等のように比表面積の大きな(または軽量な)被処理物は、処理中の帯電により浮遊等し、安定したプラズマ生成や成膜が困難となる場合もある。このような場合、高周波通電またはパルス通電(特にDCパルス通電)して成膜がなされると、安定した成膜が可能となる。そこで、チャンバー内にプラズマを生成させる電力を供給する給電手段は、高周波電源回路またはパルス電源回路からなると好適である。被処理物、原料ガス、チャンバー内圧等により適宜調整され得るが、例えば、粒状物(特に粉体)を入れた中空電極に直流パルス通電する場合、印加電圧:300〜3000Vさらには400〜600V、周波数:5kHz〜350kHzさらには50kHz〜150kHz、休止時間:0.4〜5μsさらには0.5〜2μsとするとよい。   A DC power source, a high frequency power source, a pulse power source, or the like can be used as a power source (plasma power source) during film formation. However, an object to be processed having a large specific surface area (or light weight) such as powder particles may float due to charging during the process, and stable plasma generation and film formation may be difficult. In such a case, when film formation is performed by high-frequency energization or pulse energization (particularly DC pulse energization), stable film formation becomes possible. Therefore, it is preferable that the power supply means for supplying electric power for generating plasma in the chamber comprises a high frequency power supply circuit or a pulse power supply circuit. The pressure can be adjusted as appropriate depending on the object to be processed, the raw material gas, the internal pressure of the chamber, etc. For example, when a DC pulse is applied to a hollow electrode containing a granular material (particularly powder), applied voltage: 300 to 3000 V, further 400 to 600 V, Frequency: 5 kHz to 350 kHz, further 50 kHz to 150 kHz, pause time: 0.4 to 5 μs, further 0.5 to 2 μs may be used.

(2)被処理物に均一的な成膜を行うために、本発明の成膜装置は、収容部内で被処理物の姿勢を変動させる変動手段を備えると好ましい。変動手段は、種々考えられ、被処理物に応じて適切な手段を選択すれば良い。例えば、被処理物が粉末等の粒状物である場合なら、変動手段には、被処理物に振動または揺動を付与する加振手段や被処理物を移動または転動させる撹拌手段などを用いることができる。 (2) In order to perform uniform film formation on the object to be processed, it is preferable that the film forming apparatus of the present invention includes a changing means for changing the posture of the object to be processed in the accommodating portion. Various fluctuating means may be considered, and an appropriate means may be selected according to the object to be processed. For example, when the object to be processed is a granular material such as a powder, the fluctuation means uses an oscillating means for imparting vibration or swinging to the object to be processed or an agitating means for moving or rolling the object to be processed. be able to.

但し、比表面積の大きな被処理物(粉末等)は、処理中に加振されると、浮揚等し易くなって、安定した成膜が困難となる場合もある。このような場合、変動手段として、中空電極を回転させる回転手段を用いて、被処理物を収容部の内壁面に沿ってゆっくり転動等させながら、その姿勢を緩やかに変化させて処理すると、種々の被処理物に対して安定した成膜が可能となる。なお、ここでいう「回転」には、中空電極が自転する場合の他、公転する場合、さらには自転と公転の両方を行う場合も含まれる。被処理物等により適宜調整され得るが、例えば、粒状物(特に粉体)を入れた中空電極を自転させる場合、回転数:0.1〜10rpmさらには0.5〜5rpm程度でもよい。   However, an object to be processed (powder or the like) having a large specific surface area is likely to float when it is vibrated during processing, and stable film formation may be difficult. In such a case, using the rotating means that rotates the hollow electrode as the changing means, while slowly rolling the object to be processed along the inner wall surface of the container, etc. Stable film formation can be performed on various objects to be processed. The “rotation” referred to here includes not only the case where the hollow electrode rotates, but also the case where it revolves, and further includes the case where both rotation and revolution are performed. Although it can adjust suitably with a to-be-processed object etc., for example, when rotating the hollow electrode containing a granular material (especially powder), rotation speed: 0.1-10 rpm Furthermore, about 0.5-5 rpm may be sufficient.

中空電極が回転する場合、その収容部は被処理物と接触する内壁面の少なくとも一部(例えば内底面側)から突出した撹拌部を有すると好ましい。このような中空電極を用いると、被処理物が粒状物でも、効率的に、より均一的な成膜を行い得る。   When the hollow electrode rotates, it is preferable that the housing portion has a stirring portion protruding from at least a part (for example, the inner bottom surface side) of the inner wall surface in contact with the object to be processed. When such a hollow electrode is used, even if the object to be processed is a granular material, more uniform film formation can be performed efficiently.

《被処理物》
本発明の成膜装置または成膜方法は、種々の被処理物を対象とするが、例えば、粉末(砥粒粉を含む)、ねじ、ナット、ワッシャ等の粒状物の成膜に好適である。被処理物の材質は、金属、セラミックス、樹脂等のいずれでもよい。また、複雑な形態の被処理物でも、本発明の成膜装置等によれば均一的な成膜が可能である。なお、粒状物のサイズは被処理物毎に異なるため一概に特定することは困難であるが、例えば、一粒子または一品あたりの平均質量が2.1×10−6mg〜0.5gさらには4.0×10−6mg〜6.0×10−6gであると、本発明によるプラズマCVD処理に適する。
<Processed object>
The film forming apparatus or film forming method of the present invention targets various objects to be processed, and is suitable for film formation of granular materials such as powder (including abrasive powder), screws, nuts, washers, and the like. . The material of the object to be processed may be any of metal, ceramics, resin and the like. Further, even a complex object to be processed can be uniformly formed by the film forming apparatus of the present invention. Although the size of the granules is difficult to identify categorically different for each object to be processed, for example, the average mass per particle or article is 2.1 × 10 -6 mg~0.5g more When it is 4.0 × 10 -6 mg~6.0 × 10 -6 g, suitable for a plasma CVD process according to the present invention.

中空電極を配設した成膜装置を製作し、粉体にプラズマCVD処理を行った。また中空電極を開放電極に置換した成膜装置でも、同様に粉体にプラズマCVD処理を行った。それぞれの処理中における様子を観察し、電極の相違による影響を評価した。以下、そのような具体例を挙げつつ、本発明をより詳しく説明する。   A film forming apparatus provided with a hollow electrode was manufactured, and plasma CVD treatment was performed on the powder. Moreover, plasma CVD treatment was similarly performed on the powder in a film forming apparatus in which the hollow electrode was replaced with an open electrode. The state during each treatment was observed, and the influence due to the difference in electrodes was evaluated. Hereinafter, the present invention will be described in more detail with reference to such specific examples.

《成膜装置》
(1)本発明の一実施例である成膜装置Mの概要を図1に模式的に示した。成膜装置Mは、真空チャンバー1と、処理機構部2と、電源部3と、ガス供給部4と、排気部5を備える。
<Film deposition system>
(1) An outline of a film forming apparatus M which is an embodiment of the present invention is schematically shown in FIG. The film forming apparatus M includes a vacuum chamber 1, a processing mechanism unit 2, a power supply unit 3, a gas supply unit 4, and an exhaust unit 5.

真空チャンバー1は、導電材(ステンレス/JIS SUS304)からなり、全体がプラズマCVD処理を行う際の陽極(アノード電極)となる。   The vacuum chamber 1 is made of a conductive material (stainless steel / JIS SUS304), and the whole serves as an anode (anode electrode) when performing plasma CVD processing.

処理機構部2は、被処理物w(粉体)を収容する容体21(中空電極)と、容体21を斜め上方に延在する軸周りに回動可能に支承する一組の笠歯車(軸角が鈍角(例えば135°))からなる支持体22と、支持体22内にある一方の笠歯車に一端側が連結されていると共に鉛直下方に延在して真空チャンバー1を貫通する入力軸23と、入力軸23を駆動する回転数制御型のモータ24と、真空チャンバー1と入力軸23との間で絶縁性および気密性を確保しつつ入力軸23を真空チャンバー1に対して支承する絶縁真空シール付きの軸受25と、入力軸23とモータ24の回転軸とを絶縁して連結する絶縁カップリング26とを備える。なお、容体21と支持体22は、真空チャンバー1内に配設されており、モータ24は真空チャンバー1外に配設されている。容体21を除く処理機構部2が本発明でいう回転手段(変動手段)に相当する。   The processing mechanism unit 2 includes a container 21 (hollow electrode) that accommodates a workpiece w (powder) and a set of bevel gears (shafts) that rotatably support the container 21 around an axis extending obliquely upward. A support body 22 having an obtuse angle (for example, 135 °), and an input shaft 23 having one end connected to one bevel gear in the support body 22 and extending vertically downward through the vacuum chamber 1. Insulation for supporting the input shaft 23 with respect to the vacuum chamber 1 while ensuring insulation and airtightness between the vacuum chamber 1 and the input shaft 23, and a rotational speed control type motor 24 that drives the input shaft 23. A bearing 25 with a vacuum seal and an insulating coupling 26 that insulates and connects the input shaft 23 and the rotating shaft of the motor 24 are provided. The container 21 and the support 22 are disposed in the vacuum chamber 1, and the motor 24 is disposed outside the vacuum chamber 1. The processing mechanism unit 2 excluding the container 21 corresponds to the rotating means (fluctuating means) in the present invention.

電源部3(給電手段)は、商用電源(図略)から電力を供給されて、真空チャンバー1と入力軸23の間へプラズマ生成に必要な直流パルス電圧を印加できるプラズマ電源回路30からなる。プラズマ電源回路30の陽極31は真空チャンバー1に接続されていると共に接地(アース)されており、その陰極32は入力軸23に接続されている。これにより真空チャンバー1はアノード電極となり、入力軸23を介した容体21は負電圧が印加されるカソード電極となる。   The power supply unit 3 (power supply means) includes a plasma power supply circuit 30 that is supplied with power from a commercial power supply (not shown) and can apply a DC pulse voltage necessary for plasma generation between the vacuum chamber 1 and the input shaft 23. The anode 31 of the plasma power supply circuit 30 is connected to the vacuum chamber 1 and grounded (earthed), and the cathode 32 thereof is connected to the input shaft 23. Thereby, the vacuum chamber 1 becomes an anode electrode, and the container 21 through the input shaft 23 becomes a cathode electrode to which a negative voltage is applied.

ガス供給部4(給気手段)は、真空チャンバー1内に配設され真空チャンバー1内へガスを供給するガス供給シャワー41と、そのガス源であるガス貯蔵体42と、ガス貯蔵体42からガス供給シャワー41へ供給するガス量を制御する流量調整器(マスフローコントローラ)43とを備える。ガス貯蔵体42は、各種の原料ガスまたはキャリアーガスを貯蔵したガスボンベ、または原料となる合成ガスを発生させるガス発生器からなる。ガス供給シャワー41と流量調整器43は真空チャンバー1外に配設される。   The gas supply unit 4 (air supply means) includes a gas supply shower 41 that is disposed in the vacuum chamber 1 and supplies gas into the vacuum chamber 1, a gas storage body 42 that is a gas source thereof, and a gas storage body 42. And a flow rate regulator (mass flow controller) 43 that controls the amount of gas supplied to the gas supply shower 41. The gas storage body 42 includes a gas cylinder that stores various source gases or carrier gases, or a gas generator that generates a synthesis gas as a source. The gas supply shower 41 and the flow rate regulator 43 are disposed outside the vacuum chamber 1.

排気部5(排気手段)は、真空チャンバー1の内外を連通する排気路51と、排気路51の連通と遮断を切替えて排気量(真空チャンバー1内の真空度)を調整する調整弁(バタフライ弁)52と、排気路51および調整弁52を通じて真空チャンバー1内を排気する真空ポンプ53とを備える。   The exhaust unit 5 (exhaust means) includes an exhaust passage 51 that communicates between the inside and outside of the vacuum chamber 1, and an adjustment valve (butterfly) that adjusts the exhaust amount (the degree of vacuum in the vacuum chamber 1) by switching between communication and blocking of the exhaust passage 51. Valve) 52 and a vacuum pump 53 for exhausting the inside of the vacuum chamber 1 through the exhaust path 51 and the regulating valve 52.

(2)中空電極となる容体21は、その半断面図である図2Aに示すように、平坦な円板状の底面211aと半球面状の側面211bを有する半球体211と、円状の開口212a(開口部)と半球面状の側面212bを有する半球筒体212とからなる。そして、半球体211と半球筒体212は、それぞれの外周側から突出したフランジ面を突き合わせて、ボルトおよびナットからなる固定具213により連結されている。なお、半球体211と半球筒体212も導電材(ステンレス/JIS SUS304)からなる。 (2) As shown in FIG. 2A, which is a half sectional view of the container 21, which is a hollow electrode, a hemisphere 211 having a flat disk-shaped bottom surface 211a and a hemispherical side surface 211b, and a circular opening 212a (opening) and a hemispherical cylinder 212 having a hemispherical side surface 212b. The hemispherical body 211 and the hemispherical tubular body 212 are connected by a fixture 213 made up of a bolt and a nut, with the flange surfaces projecting from the respective outer peripheral sides abutting each other. The hemisphere 211 and the hemisphere cylinder 212 are also made of a conductive material (stainless steel / JIS SUS304).

半球体211は、その平面図である図2Bに示すように、側面211に沿って、その内壁面から中央(中心)方向へ突出した突起列214(撹拌部)を有する。この突起列214は、周方向に同ピッチで8条配設されている。容体21が軸p周りに回転すると、容体21内に投入された被処理物wは、半球体211の内壁面に沿いつつ、その突起列214により撹拌されることとなる。   As shown in FIG. 2B, which is a plan view of the hemisphere 211, the hemisphere 211 has a protrusion row 214 (stirring portion) protruding from the inner wall surface toward the center (center) direction along the side surface 211. The protrusion rows 214 are arranged in eight rows at the same pitch in the circumferential direction. When the container 21 rotates around the axis p, the workpiece w put into the container 21 is agitated by the projection row 214 along the inner wall surface of the hemisphere 211.

《プラズマCVD処理/成膜方法》
成膜装置Mを用いて、次のような条件下で、被処理物wである粉体:20g(純Fe粉/粒度:74〜106μm)にプラズマCVD処理を施した。
<< Plasma CVD process / film formation method >>
Using the film forming apparatus M, a plasma CVD process was performed on 20 g (pure Fe powder / particle size: 74 to 106 μm) of the powder to be processed w under the following conditions.

容体21(図2A参照)を支持体22に取り付け、その容体21(図2A参照)内へ被処理物wを入れて真空チャンバー1を密閉した。この真空チャンバー1内を排気部5により排気して真空状態(7Pa)とした。この真空チャンバー1内へ、ガス供給部4から原料ガス(炭化水素系ガス:70sccm、窒素ガス(N):120sccm)を供給した。容体21を処理機構部2により自転(回転数:1rpm)させつつ(撹拌工程)、電源部3から、−600Vの直流パルス電圧を印加した(パルス通電工程)。このとき、パルス休止時間(T):1.5μsec、周波数:50kHzとした。このプラズマCVD処理を30分間行い(成膜工程)、各粉末粒子の表面に約0.1μmのアモルファス炭素膜が形成されていることを粉体粒子断面のSEM観察(株式会社日立ハイテクノロジーズ製 S−4300)により確認した。 The container 21 (see FIG. 2A) was attached to the support 22, and the workpiece w was put into the container 21 (see FIG. 2A) to seal the vacuum chamber 1. The inside of the vacuum chamber 1 was evacuated by the exhaust unit 5 to be in a vacuum state (7 Pa). A raw material gas (hydrocarbon gas: 70 sccm, nitrogen gas (N 2 ): 120 sccm) was supplied from the gas supply unit 4 into the vacuum chamber 1. While the container 21 was rotated (rotation speed: 1 rpm) by the processing mechanism unit 2 (stirring step), a DC pulse voltage of −600 V was applied from the power source unit 3 (pulse energization step). At this time, the pulse pause time (T) was 1.5 μsec, and the frequency was 50 kHz. This plasma CVD treatment is performed for 30 minutes (film formation step), and an SEM observation of the cross section of the powder particle (S manufactured by Hitachi High-Technologies Corporation) confirms that an amorphous carbon film of about 0.1 μm is formed on the surface of each powder particle. -4300).

《プラズマ観察》
(1)上記のプラズマCVD処理中における容体21(中空電極)の周囲の様子を図3Aに模式的に示すと共に、容体21の開口212a付近を撮影した写真を図3Bに示した。
<< Plasma observation >>
(1) FIG. 3A schematically shows the surroundings of the container 21 (hollow electrode) during the plasma CVD process, and a photograph of the vicinity of the opening 212a of the container 21 is shown in FIG. 3B.

容体21の半球筒体212を取り外して、半球体211のみとした開放電極を用いて、同様なプラズマCVD処理を行った。この処理中における半球体211の周囲の様子を図4Bに模式的に示すと共に、その上面側を撮影した写真を図4Bに示した。   A similar plasma CVD process was performed using an open electrode in which the hemispherical cylinder 212 of the container 21 was removed and only the hemisphere 211 was formed. A state around the hemisphere 211 during this processing is schematically shown in FIG. 4B, and a photograph of the upper surface side is shown in FIG. 4B.

(2)中空電極を用いたときに生成されたプラズマ(図3B参照)と、開放電極を用いたときに生成されたプラズマ(図4B参照)とを、浜松ホトニクス株式会社製 プラズマプロセスモニタ(C10346−1)を用いて発光分析した。これにより得られた結果を図5に示した。 (2) Plasma generated when using a hollow electrode (see FIG. 3B) and plasma generated when using an open electrode (see FIG. 4B) are plasma process monitors (C10346 made by Hamamatsu Photonics). -1) was used for luminescence analysis. The results thus obtained are shown in FIG.

《評価》
(1)図3Bと図4Bを比較すると明らかなように、開放電極を用いたときよりも、中空電極を用いたときに、より強い発光のプラズマが生じていることがわかる。このことは、図5に示したCH(波長:391.1nm)のそれぞれの発光強度からも明らかであり、中空電極を用いたときの発光強度は、開放電極を用いたときの約3倍となっていた。
<Evaluation>
(1) As can be seen from a comparison between FIG. 3B and FIG. 4B, it can be seen that stronger light emission plasma is generated when the hollow electrode is used than when the open electrode is used. This is also clear from the respective emission intensities of CH (wavelength: 391.1 nm) shown in FIG. 5, and the emission intensity when using the hollow electrode is about 3 times that when using the open electrode. It was.

このように中空電極を用いることにより大きなプラズマ密度を得ることができ、プラズマCVD処理を効率的に行い得ることがわかった。また、粉体等のように微細な粒子からなる被処理物であっても、成膜装置Mのように撹拌しつつ処理することにより、各粒子に対して均一的な成膜も可能となる。   Thus, it was found that by using the hollow electrode, a large plasma density can be obtained and the plasma CVD process can be performed efficiently. Further, even if the object to be processed is made of fine particles such as powder, the film can be uniformly formed on each particle by processing with stirring as in the film forming apparatus M. .

(2)容体21の内壁面は、球面状の側面と平面からなり、それらの境界も円弧曲面で接続されている。このように被処理物の収容部の内壁面が滑らかな曲面からなることにより、中空電極内で電位集中によって放電が不均一になることが防止される。従って本実施例のような中空電極を用いると、内部全体で、均一的で高密度なプラズマ生成が可能となり、ひいては細かな被処理物の全面に対しても、均一的な成膜を効率よく行える。 (2) The inner wall surface of the container 21 is composed of a spherical side surface and a flat surface, and the boundary between them is also connected by an arc curved surface. As described above, since the inner wall surface of the accommodating portion for the object to be processed is formed of a smooth curved surface, the discharge is prevented from being non-uniform due to potential concentration in the hollow electrode. Therefore, when a hollow electrode as in this embodiment is used, uniform and high-density plasma can be generated throughout the interior, and as a result, uniform film formation can be efficiently performed on the entire surface of a fine workpiece. Yes.

また、被処理物が比表面積の大きい粒子等からなる場合に、プラズマ電源として単なる直流電源を用いると、被処理物がCVD処理中に浮遊したり、さらには、その浮遊した粒子が収容部の内壁面に再接触したときにアーク放電を生じたりして、放電ひいてはプラズマ生成が不安定になり得る。これに対して本実施例のようにプラズマ電源としてパルス電源を用いると、放電ひいてはプラズマ生成が安定化して、被処理物が粉体等であっても、高品質な成膜を効率的に行い得る。   In addition, when the object to be processed is composed of particles having a large specific surface area, if a simple DC power source is used as the plasma power source, the object to be processed floats during the CVD process, and furthermore, the suspended particles are stored in the container. When the inner wall surface is contacted again, an arc discharge may occur, and the discharge and thus the plasma generation may become unstable. In contrast, when a pulse power source is used as the plasma power source as in this embodiment, the discharge and thus the plasma generation is stabilized, and even if the object to be processed is a powder or the like, high-quality film formation is efficiently performed. obtain.

図3Aに示すように、プラズマシースが容体21(中空電極)の最大内径(直径)の1/2より小さいか、ほぼ等しくなるときに、安定したホローカソード放電が生じ易くなり、効率的で安定したプラズマCVD処理が可能となる。   As shown in FIG. 3A, when the plasma sheath is smaller than or substantially equal to ½ of the maximum inner diameter (diameter) of the container 21 (hollow electrode), a stable hollow cathode discharge is likely to occur, which is efficient and stable. It is possible to perform plasma CVD processing.

1 真空チャンバー
2 処理機構部(回転手段)
21 容体(中空電極)
214 突起列(撹拌部)
3 電源部(給電手段)
4 ガス供給部(給気手段)
5 排気部(排気手段)
1 Vacuum chamber 2 Processing mechanism (rotating means)
21 Container (hollow electrode)
214 Projection row (stirring section)
3 Power supply (power supply means)
4 Gas supply section (air supply means)
5 Exhaust section (exhaust means)

Claims (8)

密閉空間を構成するチャンバー内で被処理物の表面にプラズマCVD法による成膜を行う成膜装置であって、
前記被処理物を収容し得る有底中空状の収容部と該収容部の内外を連通する開口部とを有する中空電極を備え、
該収容部内に対向電極が配置されておらずホローカソード放電によりプラズマを生成し得ることを特徴とする成膜装置。
A film forming apparatus for forming a film by a plasma CVD method on a surface of an object to be processed in a chamber constituting a sealed space,
A hollow electrode having a bottomed hollow accommodating portion capable of accommodating the object to be processed and an opening communicating the inside and outside of the accommodating portion,
2. A film forming apparatus, wherein a counter electrode is not disposed in the housing portion and plasma can be generated by hollow cathode discharge.
さらに、前記収容部内にある前記被処理物の姿勢を変動させる変動手段を備える請求項1に記載の成膜装置。   Furthermore, the film-forming apparatus of Claim 1 provided with the fluctuation | variation means to fluctuate the attitude | position of the said to-be-processed object in the said accommodating part. 前記変動手段は、前記中空電極を回転させる回転手段である請求項2に記載の成膜装置。   The film forming apparatus according to claim 2, wherein the changing unit is a rotating unit that rotates the hollow electrode. 前記中空電極は、前記被処理物が接触し得る前記収容部の内壁面から突出した撹拌部を有する請求項3に記載の成膜装置。   The film forming apparatus according to claim 3, wherein the hollow electrode has a stirring portion protruding from an inner wall surface of the housing portion with which the object to be processed can come into contact. さらに、前記チャンバー内にプラズマを生成させる電力を供給する給電手段を備え、
該給電手段は、高周波電源回路またはパルス電源回路からなる請求項1〜4のいずれかに記載の成膜装置。
Furthermore, a power supply means for supplying electric power for generating plasma in the chamber is provided,
The film forming apparatus according to claim 1, wherein the power supply unit includes a high frequency power supply circuit or a pulse power supply circuit.
密閉空間を構成するチャンバー内でホローカソード放電によりプラズマを生成させて被処理物にプラズマCVD法による成膜を行う成膜工程を備えることを特徴とする成膜方法。   A film forming method comprising: forming a plasma by a hollow cathode discharge in a chamber constituting a sealed space and forming a film on an object to be processed by a plasma CVD method. 前記被処理物は、粒状物であり、
前記成膜工程は、該粒状物を撹拌する撹拌工程を伴う請求項6に記載の成膜方法。
The object to be processed is a granular material,
The film forming method according to claim 6, wherein the film forming step includes a stirring step of stirring the granular material.
前記成膜工程は、高周波通電またはパルス通電によりなされる工程である請求項7に記載の成膜方法。   The film forming method according to claim 7, wherein the film forming step is a step performed by high-frequency energization or pulse energization.
JP2015058306A 2015-03-20 2015-03-20 Deposition apparatus and deposition method Expired - Fee Related JP6543982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015058306A JP6543982B2 (en) 2015-03-20 2015-03-20 Deposition apparatus and deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058306A JP6543982B2 (en) 2015-03-20 2015-03-20 Deposition apparatus and deposition method

Publications (2)

Publication Number Publication Date
JP2016176127A true JP2016176127A (en) 2016-10-06
JP6543982B2 JP6543982B2 (en) 2019-07-17

Family

ID=57069812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058306A Expired - Fee Related JP6543982B2 (en) 2015-03-20 2015-03-20 Deposition apparatus and deposition method

Country Status (1)

Country Link
JP (1) JP6543982B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118075A (en) * 1986-11-07 1988-05-23 Hitachi Ltd Coating method by glow discharge
JPH0287065U (en) * 1988-12-21 1990-07-10
JP2010270144A (en) * 2010-07-29 2010-12-02 Utec:Kk Microcapsules and process for production of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118075A (en) * 1986-11-07 1988-05-23 Hitachi Ltd Coating method by glow discharge
JPH0287065U (en) * 1988-12-21 1990-07-10
JP2010270144A (en) * 2010-07-29 2010-12-02 Utec:Kk Microcapsules and process for production of the same

Also Published As

Publication number Publication date
JP6543982B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
US20190032205A1 (en) Plasma cvd apparatus, plasma cvd method, and agitating device
US10424465B2 (en) Plasma polymerization coating apparatus
TWI682049B (en) Magnetron sputtering device
JP6209286B2 (en) Film forming apparatus and film forming work manufacturing method
TW201700757A (en) Film forming method and film forming device
CN104004997B (en) Cylindric evaporation source
JP2015119041A (en) Particle backflow prevention member and substrate treatment apparatus
JP2000506226A (en) Vacuum deposition system for bulk materials
RU2486990C1 (en) Device to apply coats on powders
US20050196548A1 (en) Component protected against corrosion and method for the production thereof and device for carrying out the method
KR101724375B1 (en) Nano-structure forming apparatus
JP6543982B2 (en) Deposition apparatus and deposition method
TW201408807A (en) Magnetron sputtering device, magnetron sputtering method, and storage medium
JP2014159623A (en) Coating device and method
JP2021118314A (en) Plasma processing device and plasma processing method
KR101696838B1 (en) Sputtering apparatus for forming nano-structure
JPH09228027A (en) Method for coating sphere with hard carbon film
JP7162483B2 (en) Film forming apparatus and film forming product manufacturing method
JP4019457B2 (en) Arc type evaporation source
TWI720651B (en) Film forming device
JP2020056100A (en) Film deposition apparatus
JP6533913B2 (en) Plasma surface treatment system
WO2019050483A1 (en) A sputtering system and method
JP2003183829A (en) Ion working apparatus
JP7161197B2 (en) Aerosol generator and film deposition apparatus equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6543982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees