JP2016174480A - Lightning protection system of power conditioner - Google Patents

Lightning protection system of power conditioner Download PDF

Info

Publication number
JP2016174480A
JP2016174480A JP2015053537A JP2015053537A JP2016174480A JP 2016174480 A JP2016174480 A JP 2016174480A JP 2015053537 A JP2015053537 A JP 2015053537A JP 2015053537 A JP2015053537 A JP 2015053537A JP 2016174480 A JP2016174480 A JP 2016174480A
Authority
JP
Japan
Prior art keywords
lightning
power conditioner
protection system
information
lightning protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015053537A
Other languages
Japanese (ja)
Other versions
JP6529294B2 (en
Inventor
裕也 荻澤
Hironari Ogisawa
裕也 荻澤
聡 石田
Satoshi Ishida
聡 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Kogyo Co Ltd
Original Assignee
Nitto Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Kogyo Co Ltd filed Critical Nitto Kogyo Co Ltd
Priority to JP2015053537A priority Critical patent/JP6529294B2/en
Publication of JP2016174480A publication Critical patent/JP2016174480A/en
Application granted granted Critical
Publication of JP6529294B2 publication Critical patent/JP6529294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/14Protecting elements, switches, relays or circuit breakers

Abstract

PROBLEM TO BE SOLVED: To provide a lightning protection system of power conditioner, capable of protecting a power conditioner from an indirect lightning stroke.SOLUTION: The lightning protection system of power conditioner includes: a power conditioner 3 for performing an inverse load flow of electric power generated by a solar panel 1 to a system; a distribution board 4 with a breaker 8 connected with the power conditioner 3; a lightning arrester 9 for performing a ground fault of a lightning current; a detection unit 11 for detecting an operation of the lightning arrester 9; and a controller 12 for transmitting an interruption signal to the breaker 8 on the basis of the detected operation of the lightning arrester 9.SELECTED DRAWING: Figure 2

Description

本発明は、太陽光発電システムのパワーコンディショナを落雷事故から保護するパワーコンディショナの雷保護システムに関するものである。   The present invention relates to a lightning protection system for a power conditioner that protects a power conditioner of a photovoltaic power generation system from a lightning accident.

太陽光発電システムは、太陽光パネルと、太陽光パネルにより発電された電力を系統に逆潮流させるためのパワーコンディショナとを備えている。パワーコンディショナは太陽光パネルにより発電された直流電力を所定電圧の交流電力に変換する機能を持つ高価な設備である。このためパワーコンディショナを落雷事故から保護することが強く要求され、従来から避雷器を設けて雷サージを大地に逃がし、内部機器を保護することが行われている。しかし避雷器を設けても避雷器自体が雷サージによって焼損することもあり、パワーコンディショナを雷撃から完全に保護できないのが実情である。   The solar power generation system includes a solar panel and a power conditioner for causing the power generated by the solar panel to flow backward through the system. A power conditioner is an expensive facility having a function of converting DC power generated by a solar panel into AC power having a predetermined voltage. For this reason, it is strongly required to protect the power conditioner from a lightning strike. Conventionally, a lightning arrester is provided to release a lightning surge to the ground and protect internal devices. However, even if a lightning arrester is provided, the lightning arrester itself may be burned down by a lightning surge, and the current situation is that the power conditioner cannot be completely protected from lightning strikes.

そこで特許文献1には、太陽光パネルが設置された住宅の屋根に雷光及び雷鳴のセンサを取付けて雷雲の位置を特定し、雷雲が所定距離以内に接近したときに開閉器を開いてパワーコンディショナを解列し、直撃雷から保護することが提案されている。解列により送・配電系統からパワーコンディショナは切り離されるので、直撃雷による雷撃を避けることができる。   Therefore, in Patent Document 1, a lightning and thunder sensor is attached to the roof of a house where a solar panel is installed, and the position of the thundercloud is specified. When the thundercloud approaches within a predetermined distance, the switch is opened and the power condition is opened. It has been proposed to remove na and protect it from direct lightning strikes. Since the inverter is disconnected from the transmission / distribution system by disconnection, lightning strikes caused by direct lightning strikes can be avoided.

しかし落雷事故は直撃雷のみならず誘導雷によっても発生する。誘導雷は直撃雷とは異なり、雷雲が数km以上離れた位置にあっても送・配系統を通じて伝播する。従って特許文献1に記載のような雷雲が所定距離以内に接近したときに開閉器を開く方法を採用しても、遠方の雷雲に起因する誘導雷による損害を受ける可能性がある。   However, lightning strikes occur not only with direct lightning strikes but also with induced lightning strikes. Guided lightning is different from direct lightning, even though thunderclouds are several kilometers away, they can propagate through the transmission and distribution system. Therefore, even if the method of opening the switch when a thundercloud as described in Patent Document 1 approaches within a predetermined distance is adopted, there is a possibility of being damaged by induced thunder caused by a distant thundercloud.

また、同一地域に多数の太陽光発電システムが設置されている場合には、各太陽光発電システムは発電された電力を同一の配電系統に逆潮流させている。このため、雷雲が接近したと判断して各太陽光発電システムが一斉に解列されると、その系統の電圧が一時的に大きく変動するおそれがある。   Moreover, when many photovoltaic power generation systems are installed in the same area, each photovoltaic power generation system makes the generated electric power flow backward to the same distribution system. For this reason, when it is determined that thunderclouds have approached and the solar power generation systems are disconnected all at once, there is a risk that the voltage of the system will fluctuate significantly.

特開2011−101557号公報JP 2011-101557 A

従って本発明の主な目的は、誘導雷からパワーコンディショナを保護することができるパワーコンディショナの雷保護システムを提供することである。また本発明の他の目的は、雷雲接近時における系統電圧の変動を抑制することができるパワーコンディショナの雷保護システムを提供することである。   Accordingly, a main object of the present invention is to provide a lightning protection system for a power conditioner that can protect the power conditioner from induced lightning. Another object of the present invention is to provide a lightning protection system for a power conditioner that can suppress fluctuations in system voltage when a thundercloud approaches.

上記の課題を解決するためになされた本発明は、太陽光パネルにより発電された電力を系統に逆潮流させるためのパワーコンディショナと、このパワーコンディショナが接続されるブレーカを備えた配電盤と、雷電流を地絡させる避雷器と、避雷器の動作を検出する検出ユニットと、検出された避雷器の動作に基づいて前記ブレーカに遮断信号を送る制御装置とを備えたことを特徴とするものである。   The present invention made to solve the above problems, a power conditioner for causing the power generated by the solar panel to reversely flow into the system, and a switchboard including a breaker to which the power conditioner is connected, A lightning arrester that grounds a lightning current, a detection unit that detects the operation of the lightning arrester, and a control device that sends a cut-off signal to the breaker based on the detected operation of the lightning arrester.

請求項2の発明は、請求項1記載の雷保護システムを複数システム連携させ、ネットワークを介してサーバに接続したパワーコンディショナの雷保護システムであって、各雷保護システムは、検出された避雷器の動作を雷情報としてサーバに通信する機能と、雷情報に場所情報を付加する機能とを備え、サーバは、通信された場所情報と雷情報との記憶手段と、この記憶手段に記憶された情報に基づいて雷発生地域を演算する特定手段と、特定された雷発生地域の制御装置に対して警報情報を出力する警報手段とを備えることを特徴とするものである。   The invention of claim 2 is a lightning protection system of a power conditioner in which a plurality of lightning protection systems according to claim 1 are linked to each other and connected to a server via a network, each lightning protection system including a detected lightning arrester The server has a function of communicating the operation of the server as lightning information and a function of adding the location information to the lightning information. The server stores the communication location information and the lightning information, and the storage unit stores the information. It is characterized by comprising specifying means for calculating a lightning occurrence area based on the information, and alarm means for outputting alarm information to a control device in the specified lightning occurrence area.

請求項3の発明は、請求項2の発明において、サーバの警報手段は、雷発生地域を複数に分割したうえ時間差を設けて警報情報を出力し、各雷保護システムの制御装置は、警報情報に基づきパワーコンディショナが接続されるブレーカに遮断信号を送ることを特徴とするものである。   The invention according to claim 3 is the invention according to claim 2, wherein the alarm means of the server divides the lightning occurrence area into a plurality of areas and outputs alarm information with a time difference, and the control device of each lightning protection system Based on the above, a cutoff signal is sent to the breaker to which the power conditioner is connected.

本発明のパワーコンディショナの雷保護システムによれば、数km以上の遠方から伝播する誘導雷を検出した場合にも、その検出状況に応じて制御装置がブレーカに遮断信号を送り、パワーコンディショナを解列することができる。このように本発明のシステムは雷雲が接近する前にパワーコンディショナを解列することができるので、誘導雷からパワーコンディショナを保護することができる。   According to the lightning protection system for a power conditioner of the present invention, even when an induced lightning propagating from a distance of several kilometers or more is detected, the control device sends a cut-off signal to the breaker according to the detection situation, and the power conditioner Can be disconnected. Thus, since the system of the present invention can disconnect the power conditioner before the thundercloud approaches, the power conditioner can be protected from the induced lightning.

また請求項2の発明のように複数システムを連携させ、サーバが雷発生地域の制御装置に対して警報情報を出力するようにしておけば、より確実にパワーコンディショナを保護することができる。しかも請求項3の発明のように、雷発生地域を複数に分割したうえ時間差を設けて警報情報を出力するようにしておけば、同一の配電系統に接続された太陽光発電システムの解列のタイミングをずらすことができ、解列時における系統電圧の変動を抑制することができる。   Further, if a plurality of systems are linked as in the invention of claim 2 and the server outputs alarm information to the control device in the lightning occurrence area, the power conditioner can be protected more reliably. Moreover, if the lightning occurrence area is divided into a plurality of times and a time difference is provided to output the alarm information as in the invention of claim 3, the disconnection of the photovoltaic power generation systems connected to the same distribution system is possible. The timing can be shifted, and fluctuations in the system voltage at the time of disconnection can be suppressed.

請求項1の発明の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of invention of Claim 1. 請求項2の発明の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of invention of Claim 2. 雷発生地域の地図である。It is a map of the thunder occurrence area.

以下に本発明の実施形態を説明する。
図1は請求項1の発明の実施形態を示す説明図であり、1は太陽光発電システムの太陽光パネル、2は各太陽光パネル1で発電された電力を集める接続箱、3は発電された電力を系統に逆潮流させるためのパワーコンディショナである。
Embodiments of the present invention will be described below.
FIG. 1 is an explanatory view showing an embodiment of the invention of claim 1, wherein 1 is a solar panel of a solar power generation system, 2 is a junction box for collecting electric power generated by each solar panel 1, and 3 is generated. It is a power conditioner to reverse the power flow to the grid.

4は太陽光発電システムが設置された家屋の配電盤であり、主幹ブレーカ5の二次側に接続された母線バー6に、多数の分岐ブレーカ7が接続されている。パワーコンディショナ3はパワコン用のブレーカ8を介して系統に接続されており、このブレーカ8を遮断することによりパワーコンディショナ3を系統から解列できるようになっている。   4 is a switchboard of a house where a solar power generation system is installed, and a number of branch breakers 7 are connected to a bus bar 6 connected to the secondary side of the main breaker 5. The power conditioner 3 is connected to the system via a power conditioner breaker 8. By disconnecting the breaker 8, the power conditioner 3 can be disconnected from the system.

この配電盤4には、系統から母線バー6に雷サージが侵入したときに雷サージを地絡させる避雷器9が組み込まれている。避雷器9としては、商用電圧に対しては絶縁体であるが高電圧に対しては導体として機能する公知の避雷器を用いることができる。避雷器9の地絡線10にはCT等の検出ユニット11が取付けられている。この検出ユニット11は避雷器9の動作を検出し、避雷器9が動作して地絡電流が検出されたときには、制御装置12は雷情報(誘導雷の発生)として判定する。この制御装置12はEMS(エネルギマネジメントシステム)13に接続されている。本実施形態では、避雷器9、検出ユニット11、制御装置12は全て配電盤4の内部に設けられているが、配電盤の外部に設けても差し支えない。   The switchboard 4 incorporates a lightning arrester 9 for grounding a lightning surge when a lightning surge enters the bus bar 6 from the system. As the lightning arrester 9, a known lightning arrester that is an insulator for a commercial voltage but functions as a conductor for a high voltage can be used. A detection unit 11 such as a CT is attached to the ground fault wire 10 of the lightning arrester 9. The detection unit 11 detects the operation of the lightning arrester 9, and when the lightning arrester 9 operates and a ground fault current is detected, the control device 12 determines as lightning information (occurrence of induced lightning). The control device 12 is connected to an EMS (energy management system) 13. In this embodiment, the lightning arrester 9, the detection unit 11, and the control device 12 are all provided inside the switchboard 4, but may be provided outside the switchboard.

前記したように雷雲が遠方にあるときにも系統を通じて誘導雷が伝播するが、伝播した誘導雷は検出ユニット11により検出される。制御装置12は所定時間内に所定回数の雷情報を判定したとき、例えば10分間に3回以上の雷情報を判定したとき、雷雲が接近したものと判断して前記のブレーカ8に遮断信号を送り、ブレーカ8を遮断する。好ましくはブレーカ8を外部信号引外し機構を備えたブレーカとしておき、遮断信号としてパルス信号を用いることができる。これによってパワーコンディショナ3を系統から解列することができ、誘導雷からパワーコンディショナ3を保護することができる。なお、パワーコンディショナ3とともに雷サージに弱いコンピュータ等の特定機器も外部信号引外し機構を備えたブレーカを制御することによって、同時に系統から解列させるようにしてもよい。   As described above, the induced lightning propagates through the grid even when the thundercloud is far away, but the propagated induced lightning is detected by the detection unit 11. When the control device 12 determines lightning information a predetermined number of times within a predetermined time, for example, when lightning information is determined three times or more in 10 minutes, it determines that a thundercloud has approached and sends a breaking signal to the breaker 8. Feed and breaker 8 is shut off. Preferably, the breaker 8 is a breaker provided with an external signal trip mechanism, and a pulse signal can be used as a cutoff signal. As a result, the power conditioner 3 can be disconnected from the system, and the power conditioner 3 can be protected from induced lightning. Note that a specific device such as a computer that is vulnerable to lightning surges as well as the power conditioner 3 may be simultaneously disconnected from the system by controlling a breaker having an external signal trip mechanism.

制御装置12は所定時間以上、例えば30分以上にわたり避雷器9の動作がなければ雷の影響はなくなったものと判断する。ブレーカ8が自動投入機構を備えておらず手動で再投入しなければならない場合には、EMS13にブレーカ8の再投入が必要であるとの表示をさせる。しかしブレーカ8として自動投入機構を備えたブレーカを用いた場合には、制御装置12からの投入信号によって再投入を行わせることができる。   If the lightning arrester 9 is not operated for a predetermined time or more, for example, 30 minutes or more, the control device 12 determines that the influence of lightning has been eliminated. When the breaker 8 is not provided with an automatic loading mechanism and must be manually turned on again, the EMS 13 is displayed that the breaker 8 needs to be turned on again. However, when a breaker equipped with an automatic loading mechanism is used as the breaker 8, it can be turned on again by a loading signal from the control device 12.

上記した図1の実施形態はブレーカ8の解列を分電盤に内蔵した制御装置12で単独制御する雷保護システムであるが、図2に示す第2の実施形態では、図1に示した雷保護システムが複数連携されている。各雷保護システムは、検出された避雷器9の動作を雷情報としてサーバに通信する機能と、雷情報に場所情報を付加する機能とを備える。具体的には、各雷保護システムのEMS13がネットワーク14を介してサーバ15と接続されており、複数のEMS13からの雷情報はサーバ15に集められる。また各EMS13の場所情報はIPアドレスとともに予めサーバ15に登録されている。   The above-described embodiment of FIG. 1 is a lightning protection system in which disconnection of the breaker 8 is independently controlled by the control device 12 built in the distribution board. In the second embodiment shown in FIG. 2, the embodiment shown in FIG. Multiple lightning protection systems are linked. Each lightning protection system has a function of communicating the detected operation of the lightning arrester 9 to the server as lightning information, and a function of adding location information to the lightning information. Specifically, the EMS 13 of each lightning protection system is connected to the server 15 via the network 14, and lightning information from a plurality of EMSs 13 is collected in the server 15. The location information of each EMS 13 is registered in advance in the server 15 together with the IP address.

サーバ1には、通信されてきた場所情報と雷情報とを関連付けて記憶する記憶手段17が設けられており、各雷保護システムから送られてきた雷情報を蓄積する。   The server 1 is provided with storage means 17 for storing the location information and the lightning information associated with each other, and accumulates the lightning information transmitted from each lightning protection system.

サーバ15の特定手段18は、記憶手段17に記憶された雷情報の発生位置、発生時刻、発生回数等に基づいて、誘導雷の影響を受けている雷発生地域を特定する。例えば、10分間に誘導雷が3回以上検出された場所を雷発生地域とする。雷発生地域は雷情報が出力された位置と、雷情報が出力されなかった位置に基づいて特定される。例えば図3において、●印が雷情報が出力された位置、×印が雷情報が出力されなかった位置であるとすると、その中間に引いた直線ABCDで囲まれる地域を雷発生地域とする。なお、雷情報が出力された位置から所定距離だけ外側に引いた直線によって雷発生地域を特定することもできる。   The specifying unit 18 of the server 15 specifies the lightning occurrence area affected by the induced lightning based on the generation position, generation time, number of generations, etc. of the lightning information stored in the storage unit 17. For example, a place where induced lightning is detected three times or more in 10 minutes is set as a lightning occurrence area. The lightning occurrence area is specified based on the position where the lightning information is output and the position where the lightning information is not output. For example, in FIG. 3, if the mark ● is the position where the lightning information is output and the mark X is the position where the lightning information is not output, the area surrounded by the straight line ABCD drawn between them is the lightning occurrence area. It is also possible to identify the lightning occurrence area by a straight line drawn outward by a predetermined distance from the position where the lightning information is output.

サーバ15の警報手段19は、特定された雷発生地域のEMS13に警報情報を出力する。EMS13は誘導雷が発生したことを画面に表示する。警報情報はEMS13を介して雷保護システムの制御装置12に送られ、制御装置12は遮断信号を発してブレーカ8を遮断し、パワーコンディショナ3を系統から解列する。   The alarm means 19 of the server 15 outputs alarm information to the EMS 13 in the specified lightning occurrence area. The EMS 13 displays on the screen that induced lightning has occurred. The alarm information is sent to the control device 12 of the lightning protection system via the EMS 13, and the control device 12 issues a shut-off signal to shut off the breaker 8, and disconnects the power conditioner 3 from the system.

このようなパワーコンディショナ3の解列を雷発生地域内の全部の太陽光発電システムで同時に行った場合には、系統への電力供給量が急激に減少するため、系統電圧の低下を招くことがある。このため図3に示すように雷発生地域を複数に分割し、時間差を持たせて警報情報を出力し、解列のタイミングをずらすことが好ましい。この時間差は系統が電圧回復するのに要する時間、例えば15秒程度とすることができる。   When such a disconnection of the power conditioner 3 is performed simultaneously in all the photovoltaic power generation systems in the lightning occurrence area, the power supply amount to the system is drastically decreased, which causes a decrease in the system voltage. There is. For this reason, as shown in FIG. 3, it is preferable to divide the lightning occurrence area into a plurality of areas, output the alarm information with a time difference, and shift the timing of disconnection. This time difference can be set to a time required for the system to recover the voltage, for example, about 15 seconds.

図3では4つの地域に分割したが、分割数は対象地域の発電量によって定めることができる。各太陽光発電システムの発電量はEMS13からサーバ15に随時送信されているため、サーバ15の特定手段18は分割数を適宜決定することができる。具体的には発電量に閾値を設定しておき、発電量の多い場合(例えば閾値の200%以上)には8分割、発電量の少ない場合(例えば閾値の150%以下)は4分割する等の決定が可能である。   Although divided into four regions in FIG. 3, the number of divisions can be determined by the amount of power generation in the target region. Since the power generation amount of each solar power generation system is transmitted from the EMS 13 to the server 15 as needed, the specifying unit 18 of the server 15 can appropriately determine the number of divisions. Specifically, a threshold value is set for the power generation amount, and when the power generation amount is large (for example, 200% or more of the threshold value), it is divided into 8 parts. Can be determined.

このようにしてパワーコンディショナ3を解列すれば、雷雲が更に接近して直撃雷を受けた場合にもパワーコンディショナ3を雷害から保護することができる。また誘導雷の初期段階において解列させることによって、誘導雷からの保護も可能である。   If the power conditioner 3 is disconnected in this way, it is possible to protect the power conditioner 3 from lightning damage even when a thundercloud approaches further and receives a direct lightning strike. In addition, it is possible to protect against induced lightning by disconnecting it at the initial stage of induced lightning.

サーバ15の特定手段18は、雷発生地域において所定時間(例えば30分)以上にわたり雷情報を受信しなければ、雷雲が去ったものと判断して雷発生地域の指定を解除する。この解除も同時に行なうと系統の電圧上昇を引き起こすので、上記と同様に分割して順次行なうことが好ましい。解除情報はサーバ15から各EMS13に対して行われ、EMS13はその旨を画面に表示し、ブレーカ8の手動投入を行わせる。ブレーカ8が自動投入機構を備えている場合には、EMS13からに指示により自動的に再投入を行ない、平常状態に復帰させる。   If the lightning information is not received for a predetermined time (for example, 30 minutes) or more in the lightning occurrence area, the specifying unit 18 of the server 15 determines that the thundercloud has left and cancels the designation of the lightning occurrence area. If this release is also performed at the same time, the voltage of the system is increased, so that it is preferable to divide and sequentially perform the same as described above. The release information is sent from the server 15 to each EMS 13, and the EMS 13 displays that fact on the screen and causes the breaker 8 to be manually turned on. When the breaker 8 is provided with an automatic loading mechanism, it is automatically turned on again by an instruction from the EMS 13 to return to a normal state.

以上に説明したように、本発明によれば、直撃雷のみならず誘導雷からもパワーコンディショナ3を保護することができる。   As described above, according to the present invention, it is possible to protect the power conditioner 3 from not only direct lightning but also induced lightning.

1 太陽光パネル
2 接続箱
3 パワーコンディショナ
4 配電盤
5 主幹ブレーカ
6 母線バー
7 分岐ブレーカ
8 パワコン用のブレーカ
9 避雷器
10 地絡線
11 検出ユニット
12 制御装置
13 EMS(エネルギマネジメントシステム)
14 ネットワーク
15 サーバ
16 通信ユニット
17 記憶手段
18 特定手段
19 警報手段
DESCRIPTION OF SYMBOLS 1 Solar panel 2 Connection box 3 Power conditioner 4 Power distribution board 5 Master breaker 6 Bus bar 7 Branch breaker 8 Power conditioner breaker 9 Lightning arrester 10 Ground fault 11 Detection unit 12 Controller 13 EMS (energy management system)
14 Network 15 Server 16 Communication unit 17 Storage means 18 Identification means 19 Alarm means

Claims (3)

太陽光パネルにより発電された電力を系統に逆潮流させるためのパワーコンディショナと、このパワーコンディショナが接続されるブレーカを備えた配電盤と、雷電流を地絡させる避雷器と、避雷器の動作を検出する検出ユニットと、検出された避雷器の動作に基づいて前記ブレーカに遮断信号を送る制御装置とを備えたことを特徴とするパワーコンディショナの雷保護システム。   Detects power conditioners that reversely flow power generated by solar panels to the grid, switchboards equipped with breakers to which the power conditioners are connected, lightning arresters that cause lightning current to ground, and the operation of lightning arresters A power conditioner lightning protection system, comprising: a detection unit that performs the operation, and a control device that sends a cut-off signal to the breaker based on the detected operation of the lightning arrester. 請求項1記載の雷保護システムを複数システム連携させ、ネットワークを介してサーバに接続したパワーコンディショナの雷保護システムであって、各雷保護システムは、検出された避雷器の動作を雷情報としてサーバに通信する機能と、雷情報に場所情報を付加する機能とを備え、
サーバは、通信された場所情報と雷情報との記憶手段と、この記憶手段に記憶された情報に基づいて雷発生地域を特定する特定手段と、特定された雷発生地域の制御装置に対して警報情報を出力する警報手段とを備えることを特徴とするパワーコンディショナの雷保護システム。
A lightning protection system for a power conditioner in which a plurality of lightning protection systems according to claim 1 are linked to each other and connected to a server via a network, wherein each lightning protection system uses a detected lightning arrester operation as a lightning information server. With the function to communicate with the lightning and the function to add the location information to the lightning information,
The server has a storage means for communicating the location information and lightning information, a specifying means for specifying a lightning occurrence area based on the information stored in the storage means, and a control device for the specified lightning occurrence area. A lightning protection system for a power conditioner comprising alarm means for outputting alarm information.
サーバの警報手段は、雷発生地域を複数に分割したうえ時間差を設けて警報情報を出力し、各雷保護システムの制御装置は、警報情報に基づきパワーコンディショナが接続されるブレーカに遮断信号を送ることを特徴とする請求項2記載のパワーコンディショナの雷保護システム。   The alarm means of the server divides the lightning occurrence area into a plurality of times and outputs alarm information with a time difference, and the control device of each lightning protection system sends a cut-off signal to the breaker to which the power conditioner is connected based on the alarm information. The lightning protection system for a power conditioner according to claim 2, wherein the lightning protection system is sent.
JP2015053537A 2015-03-17 2015-03-17 Lightning protection system of power conditioner Active JP6529294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053537A JP6529294B2 (en) 2015-03-17 2015-03-17 Lightning protection system of power conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053537A JP6529294B2 (en) 2015-03-17 2015-03-17 Lightning protection system of power conditioner

Publications (2)

Publication Number Publication Date
JP2016174480A true JP2016174480A (en) 2016-09-29
JP6529294B2 JP6529294B2 (en) 2019-06-12

Family

ID=57009257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053537A Active JP6529294B2 (en) 2015-03-17 2015-03-17 Lightning protection system of power conditioner

Country Status (1)

Country Link
JP (1) JP6529294B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165092A (en) * 1988-12-19 1990-06-26 Kyushu Electric Power Co Inc Forecasting of thunderbolt by distribution line thunderbolt surge information
JPH10197652A (en) * 1997-01-13 1998-07-31 Tokyo Electric Power Co Inc:The Thunder observation system for distribution line
JP2000131458A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Observation system for thundercloud
JP2000166079A (en) * 1998-11-30 2000-06-16 Nec Corp Lightning surge protective circuit
JP2001286079A (en) * 2000-03-31 2001-10-12 Nippon Telegraph & Telephone East Corp Lightning trouble protection network system
WO2007048421A2 (en) * 2005-10-24 2007-05-03 Conergy Ag Switch-fuse with control management for solar cells
JP2009019915A (en) * 2007-07-10 2009-01-29 Chugoku Electric Power Co Inc:The Induction lightning information generation device, induction lightning information generation method, induction lightning information generation program, and induction lightning information transmission system
JP2009165275A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Interconnection power conditioner
JP2009168604A (en) * 2008-01-16 2009-07-30 Enesaabu Kk Momentary power failure prediction device and system
JP2011101557A (en) * 2009-11-09 2011-05-19 Chugoku Electric Power Co Inc:The Power conditioner protection device and power conditioner protection method
US20110211290A1 (en) * 2010-02-26 2011-09-01 Fife John M Solar power inverters, including solar power inverters having surge protective devices, and associated methods
JP2013070476A (en) * 2011-09-21 2013-04-18 Nec Saitama Ltd Surge protection system, server, lightning scale determination method, and program

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165092A (en) * 1988-12-19 1990-06-26 Kyushu Electric Power Co Inc Forecasting of thunderbolt by distribution line thunderbolt surge information
JPH10197652A (en) * 1997-01-13 1998-07-31 Tokyo Electric Power Co Inc:The Thunder observation system for distribution line
JP2000131458A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Observation system for thundercloud
JP2000166079A (en) * 1998-11-30 2000-06-16 Nec Corp Lightning surge protective circuit
JP2001286079A (en) * 2000-03-31 2001-10-12 Nippon Telegraph & Telephone East Corp Lightning trouble protection network system
WO2007048421A2 (en) * 2005-10-24 2007-05-03 Conergy Ag Switch-fuse with control management for solar cells
JP2009019915A (en) * 2007-07-10 2009-01-29 Chugoku Electric Power Co Inc:The Induction lightning information generation device, induction lightning information generation method, induction lightning information generation program, and induction lightning information transmission system
JP2009165275A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Interconnection power conditioner
JP2009168604A (en) * 2008-01-16 2009-07-30 Enesaabu Kk Momentary power failure prediction device and system
JP2011101557A (en) * 2009-11-09 2011-05-19 Chugoku Electric Power Co Inc:The Power conditioner protection device and power conditioner protection method
US20110211290A1 (en) * 2010-02-26 2011-09-01 Fife John M Solar power inverters, including solar power inverters having surge protective devices, and associated methods
JP2013070476A (en) * 2011-09-21 2013-04-18 Nec Saitama Ltd Surge protection system, server, lightning scale determination method, and program

Also Published As

Publication number Publication date
JP6529294B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
CN106786425B (en) It is a kind of to be overlapped formula failure separation method and system on the spot
US11451047B2 (en) Protection of electrical devices based on electromagnetic pulse signal
US20150338472A1 (en) Method And Device For Detection Of A Fault In A Protected Unit
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
Bakar et al. Directional overcurrent and earth-fault protections for a biomass microgrid system in Malaysia
CN103354352B (en) A kind of power distribution network safety protection method based on distributed intelligence
GB2578339A (en) Open PEN detection and shut down system
US20240106208A1 (en) High voltage overhead electric transmission line equipped with switchgear unit
CN103683225B (en) Nuclear power station low-voltage distribution system full supply district earth-fault protection method
CN101170249B (en) A lighting over-voltage protection method and system for remote computer room AC power input
CN101582581A (en) Electricity leakage-prevention and overcurrent protection device
JP2020028200A (en) Distribution board and distribution board function expansion method
JP2016220265A (en) Power distribution board
Papaspiliotopoulos et al. Adverse impact of distributed generation on protection of the Hellenic MV network–recommendations for protection scheme upgrade
CN203617704U (en) Equipotential cutoff anti-thunder multifunctional power-source-protecting circuit
JP6701019B2 (en) Overcurrent prevention device and power supply device
JP6529294B2 (en) Lightning protection system of power conditioner
JP5317797B2 (en) Distributed power shutoff system and supervisory control device
CN103683187A (en) Nuclear plant two-stage electric leakage fault protection method
KR102613905B1 (en) Relay
CN207184030U (en) The small base station distribution box for preventing switch trip that there is self-recovering function
CN105515166A (en) Voltage configuration scheme for switchable maintenance of busbar merging unit of double-busbar connection mode 110kV system of intelligent substation
CN203398544U (en) Perfect incoming line synchronous grid-connected detection signal device
JP4540621B2 (en) Line selection relay device with electrical premises protection function and line selection relay system with electrical premises protection function
JP2018098873A (en) Power transmission line ground fault protection system and power transmission line ground fault protection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150