JP2016170906A - Luminaire - Google Patents

Luminaire Download PDF

Info

Publication number
JP2016170906A
JP2016170906A JP2015048596A JP2015048596A JP2016170906A JP 2016170906 A JP2016170906 A JP 2016170906A JP 2015048596 A JP2015048596 A JP 2015048596A JP 2015048596 A JP2015048596 A JP 2015048596A JP 2016170906 A JP2016170906 A JP 2016170906A
Authority
JP
Japan
Prior art keywords
led
light
color temperature
white light
duv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015048596A
Other languages
Japanese (ja)
Other versions
JP6544676B2 (en
Inventor
容子 松林
Yoko Matsubayashi
容子 松林
徹 姫野
Toru Himeno
徹 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015048596A priority Critical patent/JP6544676B2/en
Priority to DE102016103712.5A priority patent/DE102016103712A1/en
Priority to US15/062,432 priority patent/US9544968B2/en
Priority to CN201610132884.5A priority patent/CN105972444B/en
Publication of JP2016170906A publication Critical patent/JP2016170906A/en
Application granted granted Critical
Publication of JP6544676B2 publication Critical patent/JP6544676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/278Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S6/00Lighting devices intended to be free-standing
    • F21S6/002Table lamps, e.g. for ambient lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Abstract

PROBLEM TO BE SOLVED: To provide a luminaire for emitting light under which a user hardly has a sense of discomfort and the user can easily read characters in use under a low color temperature environment, and light which relaxes the user.SOLUTION: In an illumination device, a first LED emits white light having as chromaticity deviation of Duv-1.6 to -12 at a correlation color temperature of 1563K to 4500K, and a second LED emits white light having a chromaticity deviation of Duv+10 to -1.6 at a correlation color temperature of 1563K to 4500K. The illumination light has a low correlation color temperature, white light which makes the paper surface look white is emitted from the first LED, and white light having a low awakening degree is emitted from the second LED. Therefore, it is possible to emit light under which a user hardly has a sense of discomfort and the user can easily read characters in use under a low color temperature environment, and light which relaxes the user.SELECTED DRAWING: Figure 6

Description

本発明は、LEDを光源とする照明装置に関し、特に、相関色温度が4500K以下の低色温度環境において文字が読み易い光とユーザをリラックスさせる光とを与える技術に関する。   The present invention relates to an illuminating device using an LED as a light source, and more particularly, to a technique for providing light that allows easy reading of characters and light that relaxes a user in a low color temperature environment with a correlated color temperature of 4500 K or less.

従来、照明装置の開発は、被照明体の本来の色を忠実に再現することを目標に進められてきた。具体的には、種々の被照明体の色の見え方が標準光下での見え方に近いものほど良いとされ、これは平均演色評価数Raを用いて客観的に評価することができる。   Conventionally, the development of lighting devices has been advanced with the goal of faithfully reproducing the original color of the object to be illuminated. Specifically, the color appearance of various objects to be illuminated is closer to the appearance under standard light, and this can be objectively evaluated using the average color rendering index Ra.

しかしながら、このような平均演色評価数Raは、必ずしも紙面に書かれた文字の読み易さを評価する指標として十分ではないことがある。そこで、文字の読み易さと紙面の白さ感との相関関係から、紙面の白さ感を定量的に求める指標としてThe CIE 1997 Interim Color Appearance Model(Simple Version)を用いて算出されるクロマ値が知られている。このようなクロマ値が制御された光を照射する照明装置として、相関色温度5400K〜7000Kの光を照射するものが知られている(例えば、特許文献1参照)。   However, such an average color rendering index Ra may not necessarily be sufficient as an index for evaluating the readability of characters written on paper. Therefore, the chroma value calculated using The CIE 1997 Interim Color Appearance Model (Simple Version) as an index to quantitatively determine the whiteness of the paper based on the correlation between the readability of the characters and the whiteness of the paper. Are known. As an illuminating device that irradiates light whose chroma value is controlled, one that irradiates light having a correlated color temperature of 5400K to 7000K is known (for example, see Patent Document 1).

特開2014−75186号公報JP 2014-75186 A

しかしながら、上述したような照明装置をタスク照明として低色温度環境で使用した場合には、タスク照明光とアンビエント(環境の)照明光との間で相関色温度に大きな差があるので、ユーザが違和感を持つことがある。また、このような照明装置から照射される光は、文字の読み易さを向上するものではあるが、例えば、睡眠前の読書においてユーザを心地よい眠りへと誘うようなリラックス感を与えるものではない。   However, when the lighting device as described above is used as task lighting in a low color temperature environment, there is a large difference in the correlated color temperature between the task lighting light and the ambient (environmental) lighting light. May have a sense of incongruity. Moreover, although the light irradiated from such an illuminating device improves the readability of characters, for example, it does not give a relaxing feeling that invites the user to a comfortable sleep in reading before sleeping. .

本発明は、上記課題を解決するものであって、低色温度環境で使用した場合にユーザが違和感を持ち難く、しかも文字が読み易い光とユーザをリラックスさせる光とを照射することができる照明装置を提供することを目的とする。   The present invention solves the above-described problem, and when used in a low color temperature environment, the user is unlikely to have a sense of incongruity, and can illuminate light that makes it easy to read characters and light that relaxes the user. An object is to provide an apparatus.

本発明の照明装置は、白色光を出射する第1のLEDと、前記第1のLEDからの白色光よりも相関色温度が低く且つ色度偏差Duvが高い白色光を出射する第2のLEDと、前記第1のLEDと前記第2のLEDとの光出力比を変化させる制御部と、を備え、前記第1のLEDは、相関色温度1563K〜4500Kで色度偏差Duv−1.6〜−12の白色光を出射し、前記第2のLEDは、相関色温度1563K〜4500Kで色度偏差Duv+10〜−1.6の白色光を出射することを特徴とする。   The illumination device of the present invention includes a first LED that emits white light, and a second LED that emits white light having a correlated color temperature lower than that of the white light from the first LED and having a high chromaticity deviation Duv. And a controller that changes a light output ratio between the first LED and the second LED, and the first LED has a correlated color temperature of 1563K to 4500K and a chromaticity deviation Duv-1.6. The second LED emits white light having a chromaticity deviation Duv + 10 to −1.6 at a correlated color temperature of 1563K to 4500K.

本発明によれば、照明光が低い相関色温度を有し、且つ第1のLEDから紙面を白く見せる白色光が出射され、第2のLEDから覚醒度の低い白色光が出射される。従って、低色温度環境で使用した場合にユーザが違和感を持ち難く、しかも文字が読み易い光とユーザをリラックスさせる光とを照射することができる。   According to the present invention, the illumination light has a low correlated color temperature, and the first LED emits white light that makes the paper look white, and the second LED emits white light with a low arousal level. Therefore, when used in a low color temperature environment, it is possible to irradiate light that makes it difficult for the user to feel uncomfortable and that makes it easy to read characters and light that relaxes the user.

本発明の一実施形態に係る照明装置が設置された寝室を示す斜視図。The perspective view which shows the bedroom in which the illuminating device which concerns on one Embodiment of this invention was installed. (a)は上記照明装置を構成する光源部の平面図、(b)は(a)のI−I線断面図。(A) is a top view of the light source part which comprises the said illuminating device, (b) is the II sectional view taken on the line of (a). 種々の相関色温度のタスク照明光下におけるDuvと紙面の色みとの関係を示す図。The figure which shows the relationship between Duv under the task illumination light of various correlation color temperature, and the color of a paper surface. 種々の相関色温度のタスク照明光下におけるDuvと文字の読み易さ、紙面の白さ及び好ましさの評価値との関係を示す図。The figure which shows the relationship between Duv under the task illumination light of various correlation color temperature, the readability of a character, the whiteness of a paper surface, and the evaluation value of a preference. (a)乃至(e)は、図4の評価値をまとめた図。(A) thru | or (e) are the figures which put together the evaluation value of FIG. 文字見え白色感向上領域とリラックス領域の分布を示すxy色度図。The xy chromaticity diagram showing the distribution of a character appearance white feeling improvement region and a relaxation region. 照射光の波長とメラトニン分泌抑制度との関係を示す図。The figure which shows the relationship between the wavelength of irradiated light, and a melatonin secretion suppression degree. (a)(b)は、種々の相関色温度及び照度における被験者の平均瞳孔径を示す図。(A) (b) is a figure which shows the test subject's average pupil diameter in various correlation color temperature and illumination intensity. 内因性光感受性網膜神経節細胞(ipRGC)の分光感度曲線を示す図。The figure which shows the spectral sensitivity curve of endogenous photosensitivity retinal ganglion cell (ipRGC). 種々の相関色温度の光の分光分布図。FIG. 6 is a spectral distribution diagram of light having various correlated color temperatures. ipRGC刺激量と平均瞳孔径との関係を示す図。The figure which shows the relationship between ipRGC stimulation amount and an average pupil diameter. 相関色温度とipRGC刺激量との関係を示す図。The figure which shows the relationship between correlation color temperature and ipRGC stimulation amount. 上記光源部を構成する第1のLED及び第2のLED等から出射される光の分光分布図。The spectral distribution map of the light radiate | emitted from 1st LED, 2nd LED, etc. which comprise the said light source part. 上記第1のLEDと第2のLEDとの光出力比の制御例を示すxy色度図。The xy chromaticity diagram showing a control example of the light output ratio between the first LED and the second LED. 上記第1のLEDから出射される光(3ピーク波長)の分光分布図。FIG. 3 is a spectral distribution diagram of light (three peak wavelengths) emitted from the first LED. 上記第1のLEDから出射される光(4ピーク波長)の分光分布図。The spectral distribution figure of the light (4 peak wavelength) radiate | emitted from said 1st LED.

本発明の一実施形態に係る照明装置について図面を参照して説明する。図1に示すように、照明装置1は、例えば、寝室RにおいてベッドBの脇に置かれるベッドサイドランプとして構成され、光を出射する光源部2を備える。   An illumination device according to an embodiment of the present invention will be described with reference to the drawings. As illustrated in FIG. 1, the lighting device 1 is configured as a bedside lamp placed beside a bed B in a bedroom R, for example, and includes a light source unit 2 that emits light.

図2(a)(b)に示すように、光源部2は、配線基板3と、配線基板3の一面に実装された第1のLED4及び第2のLED5と、これら第1のLED4と第2のLED5との光出力比を制御する制御部6と、を有する。配線基板3は、図例では矩形平板状に形成され、その中心部に一つの第1のLED4を実装し、その四隅(周縁部)の各々に第2のLED5を実装している。第1のLED4及び第2のLED5は、それぞれの光軸が配線基板3に直交するように配置され、相関色温度1563K〜4500Kの白色光を出射する白色LEDにより構成される。   As shown in FIGS. 2A and 2B, the light source unit 2 includes a wiring board 3, a first LED 4 and a second LED 5 mounted on one surface of the wiring board 3, and the first LED 4 and the first LED 4. And a control unit 6 that controls a light output ratio with the two LEDs 5. The wiring board 3 is formed in a rectangular flat plate shape in the illustrated example, and one first LED 4 is mounted at the center thereof, and the second LED 5 is mounted at each of the four corners (peripheral edges). 1st LED4 and 2nd LED5 are arrange | positioned so that each optical axis may be orthogonal to the wiring board 3, and are comprised by white LED which radiate | emits white light with correlated color temperature 1563K-4500K.

第1のLED4から1563K〜4500Kという相関色温度の低い光を照射した場合に、どのように色度偏差Duvを制御すれば紙面に書かれた文字を読み易くすることができるのか実験で検証した。なお、ここでいうDuvとは、JIS Z8725:1999「光源の分布温度及び色温度・相関色温度の測定方法」における「5.4 相関色温度の適用範囲」の備考に記載されているものであり、ISO等に記載されているものの1000倍に相当する。   It was verified by experiment how the chromaticity deviation Duv can be controlled to make the characters written on the paper easier to read when the first LED 4 is irradiated with light having a low correlated color temperature of 1563K to 4500K. . The Duv referred to herein is described in the remarks of “5.4 Corresponding Color Temperature Applicable Range” in JIS Z8725: 1999 “Measurement Method of Light Source Distribution Temperature and Color Temperature / Correlated Color Temperature”. Yes, equivalent to 1000 times that described in ISO.

本実験では、基準光及びテスト光を照度500lx、相関色温度3000K、3500K、4000K、5000K又は6200Kで照射し、各々の条件下において被験者に文字の読み易さを検証してもらった。基準光は、各々の相関色温度においてDuv0の光とした。テスト光は、相関色温度が4000K以下の場合にはDuv3、−3、−6、−9、−12又は−15の光とし、相関色温度が5000K以上の場合にはDuv6、3、−3、−6、−9又は−12の光とした。このような基準光及びテスト光は、キセノンランプに液晶フィルタを組み合わせ、この液晶フィルタによりキセノンランプから照射される光の光学特性を調整することで生成された。被験者に読んでもらった文字は、読書視力チャート(MNREAD−J)から引用した30文字とし、平均的な無地コピー用紙の中央に7ポイントの大きさで印刷された。被験者は、24〜51歳の男女12名とした。   In this experiment, the reference light and the test light were irradiated at an illuminance of 500 lx and a correlated color temperature of 3000K, 3500K, 4000K, 5000K, or 6200K, and the subject verified the readability of the characters under each condition. The reference light was Duv0 light at each correlated color temperature. The test light is Duv3, -3, -6, -9, -12, or -15 when the correlated color temperature is 4000K or lower, and Duv6, 3, -3 when the correlated color temperature is 5000K or higher. -6, -9 or -12 light. Such reference light and test light were generated by combining a xenon lamp with a liquid crystal filter and adjusting the optical characteristics of light emitted from the xenon lamp by the liquid crystal filter. The characters read by the subjects were 30 characters quoted from the reading vision chart (MNREAD-J), and were printed in the center of an average plain copy paper with a size of 7 points. Subjects were 12 men and women aged 24 to 51 years.

実験は、被験者が3分間基準光に順応した後、5秒間基準光下で文字を読み、次いで、40秒間テスト光に順応した後、5秒間テスト光下で文字を読んで、文字の読み易さ等を評価することで行われた。最初の評価を行ったあとは、40秒間基準光に順応した後、10秒間基準光下で文字を読み、次いで、40秒間テスト光に順応した後、5秒間テスト光下で文字を読んで評価を行う動作を繰り返した。評価は、テスト光下における文字が書かれた紙面の見えを「白み」と「色み」に分けて評価するカラーネーミング法(絶対評価法)と、基準光下の文字とテスト光下の文字とを一対比較するマグニチュード推定法(相対評価法)と、から成る主観評価により行った。   In the experiment, after the subject had adapted to the reference light for 3 minutes, the text was read under the reference light for 5 seconds, and then the text was adapted to the test light for 40 seconds, and then the text was read under the test light for 5 seconds. It was done by evaluating the etc. After the initial evaluation, the character was acclimated to the reference light for 40 seconds, then the character was read under the reference light for 10 seconds, then the character was adapted to the test light for 40 seconds, and then the character was read under the test light for 5 seconds for evaluation. Repeated the operation to do. The evaluation consists of a color naming method (absolute evaluation method) that evaluates the appearance of the paper on which the letters are written under test light divided into “white” and “color”, and characters under reference light and under test light. It was performed by subjective evaluation consisting of a magnitude estimation method (relative evaluation method) that compares characters with each other.

カラーネーミング法では、基準光下及びテスト光下での紙面の見えを、まず、被験者に「白み」と「色み」の合計が100となるような比率で回答してもらい、次いで、色みを感じた場合には、色相を黄色〜緑色か赤紫色〜青紫色かの二者択一で選択してもらった。このとき、黄色〜緑色を選択した場合には色みの数値を正とし、赤紫色〜青紫色を選択した場合には色みの数値を負とした。   In the color naming method, the appearance of the paper surface under the reference light and the test light is first asked by the subject to answer in a ratio such that the sum of “white” and “color” is 100, then the color In the case where the user feels the color, he / she was asked to select a hue from yellow to green or red purple to blue purple. At this time, when yellow to green was selected, the color value was positive, and when red to purple was selected, the color value was negative.

その結果、図3に示すように、基準光及びテスト光の相関色温度が3000Kのときは、Duv−3とすると色みがゼロになり、被験者が紙面を白く感じることが分かった。また、Duvを−3よりも大きくすると黄緑の色みが増し、逆に、Duvを−3よりも小さくすると赤青紫の色みが増すことが分かった。同様の変化傾向は、他の相関色温度でも観察されたが、相関色温度が低くなるほどDuvに対する色みの変化幅が大きくなり、Duvによる白色感への影響が強くなっていることが分かった。   As a result, as shown in FIG. 3, it was found that when the correlated color temperature of the reference light and the test light is 3000 K, the color becomes zero when Duv-3 is set, and the subject feels the paper white. Further, it was found that when Duv is larger than -3, the yellowish green color increases, and conversely, when Duv is smaller than -3, the red-blue purple color increases. A similar change tendency was observed at other correlated color temperatures, but it was found that the lower the correlated color temperature, the greater the range of color change with respect to Duv, and the stronger the influence of Duv on whiteness. .

また、基準光及びテスト光の相関色温度が3500K、4000K、5000K及び6200Kのときは、それぞれDuv−3、−1.6、0及び0とすると色みがゼロになることが分かった。このように、相関色温度によって色みがゼロになるDuvが異なることが分かった。   Further, when the correlated color temperatures of the reference light and the test light are 3500K, 4000K, 5000K, and 6200K, it is found that the hue becomes zero when Duv-3, -1.6, 0, and 0 are set, respectively. Thus, it was found that Duv at which the tint is zero differs depending on the correlated color temperature.

一方、マグニチュード推定法では、テスト光下での文字の「読み易さ」を、基準光下での読み易さを100として基準光下よりも読み易ければ100より大きい数字で評価し、基準光下よりも読み難ければ100より小さい数字で評価してもらった。また、同様にして、基準光下及びテスト光下において、紙面の「白さ」と紙面の見えの「好ましさ」とを評価してもらった。   On the other hand, in the magnitude estimation method, the “readability” of the character under the test light is evaluated as a number greater than 100 if the readability under the reference light is 100, and the readability is lower than the reference light. If it was harder to read than under light, it was evaluated with a number smaller than 100. Similarly, the “whiteness” of the paper surface and the “preference” of the appearance of the paper surface were evaluated under the reference light and the test light.

その結果、図4に示すように、基準光及びテスト光の相関色温度が3000Kのときは、Duv−9とすると文字の読み易さの評価値が最も高くなり、Duv−6とすると紙面の白さ及び好ましさの評価値が最も高くなった。同様にして、相関色温度3500K、4000K、5000K及び6200Kについても、文字の読み易さ、紙面の白さ及び好ましさの各々について最適なDuvを求めた。   As a result, as shown in FIG. 4, when the correlated color temperature of the reference light and the test light is 3000 K, the evaluation value of the readability of the character is the highest when Duv-9 is set, and when it is Duv-6, The evaluation values of whiteness and preference were the highest. Similarly, for correlated color temperatures of 3500K, 4000K, 5000K, and 6200K, the optimum Duv was obtained for each of the readability of characters, the whiteness of the paper, and the preference.

図5(a)乃至(e)は、図4で得られた結果をまとめたものである。図5(a)に示すように、相関色温度が3000Kのとき、読み易さ、白さ及び好ましさの評価値は、上述のようにそれぞれDuv−9、−6及び−6で最も高くなった(それぞれ丸印で示す)。このとき、各評価項目ごとに最高評価値に対する有意差t検定を行ったところ、すべての評価項目においてDuv−12〜−3の範囲で有意差が無かった(有意差の無かった範囲をドットで示す)。   FIGS. 5A to 5E summarize the results obtained in FIG. As shown in FIG. 5A, when the correlated color temperature is 3000 K, the evaluation values of readability, whiteness, and preference are the highest in Duv-9, -6, and -6, respectively, as described above. (Indicated by circles). At this time, when the significant difference t test for the highest evaluation value was performed for each evaluation item, there was no significant difference in the range of Duv-12 to -3 in all the evaluation items (the range where there was no significant difference was indicated by dots). Show).

また、図5(b)に示すように、相関色温度が3500Kのときは、すべての評価項目がDuv−6で最も高く、読み易さはDuv−15〜−3で有意差が無く、白さ及び好ましさはDuv−12〜−3で有意差が無かった。また、図5(c)に示すように、相関色温度が4000Kのときは、すべての評価項目がDuv−3で最も高く、読み易さはDuv−15〜−3で有意差が無く、白さはDuv−12〜0で有意差が無く、好ましさはDuv−9〜−3で有意差が無かった。また、図5(d)に示すように、相関色温度が5000Kのときは、読み易さ及び白さがDuv−6で最も高く、好ましさがDuv−3で最も高くなり、読み易さはDuv−12〜0で有意差が無く、白さ及び好ましさはDuv−9〜0で有意差が無かった。更に、図5(e)に示すように、相関色温度が6200Kのときは、読み易さがDuv−6で最も高く、白さ及び好ましさがDuv−3で最も高くなり、読み易さはDuv−12〜0で有意差が無く、白さ及び好ましさはDuv−6〜0で有意差が無かった。   Further, as shown in FIG. 5B, when the correlated color temperature is 3500K, all evaluation items are the highest in Duv-6, and the readability is Duv-15 to -3, and there is no significant difference. There was no significant difference between Duv-12 and -3 in terms of taste and preference. Further, as shown in FIG. 5C, when the correlated color temperature is 4000 K, all the evaluation items are the highest in Duv-3, and the readability is not significantly different in Duv-15 to -3. There was no significant difference in Duv-12 to 0, and preference was not significant in Duv-9 to -3. Further, as shown in FIG. 5D, when the correlated color temperature is 5000K, the readability and whiteness are the highest in Duv-6, and the preference is the highest in Duv-3. Was not significantly different in Duv-12 to 0, and whiteness and preference were not significant in Duv-9 to 0. Furthermore, as shown in FIG. 5 (e), when the correlated color temperature is 6200K, the readability is the highest in Duv-6, and the whiteness and the preference are the highest in Duv-3. Was not significantly different in Duv-12 to 0, and whiteness and preference were not significant in Duv-6 to 0.

図6は、xy色度図において上述したカラーネーミング法及びマグニチュード推定法による評価結果を重畳表示したものである。例えば、基準光及びテスト光の相関色温度が3000Kのときを例に説明すると、xy色度図においてDuv3、0、−3、−6、−9、−12、−15に対応する点(丸印で示す)がプロットされている。このうち、Duv−3の点は、カラーネーミング法(図3参照)において、紙面の色みがゼロであったことを示すダイヤ印によりマークされている。一方、マグニチュード推定法(図5(a)参照)から、このDuv−3の場合とDuv−6、−9、−12の場合とでは、「読み易さ」、「白さ」及び「好ましさ」の3評価項目すべてにおいて有意差が無いことが分かっている。この有意差が無い範囲において、最も低いDuvであるDuv−12を逆三角印でマークしている。他の相関色温度についても、同様にしてダイヤ印及び逆三角印がマークされている。   FIG. 6 superimposes and displays the evaluation results by the color naming method and the magnitude estimation method described above in the xy chromaticity diagram. For example, the case where the correlated color temperature of the reference light and the test light is 3000K will be described as an example. Points corresponding to Duv3, 0, −3, −6, −9, −12, −15 in the xy chromaticity diagram (circles) Are plotted). Among these, the point of Duv-3 is marked by a diamond mark indicating that the color of the paper surface is zero in the color naming method (see FIG. 3). On the other hand, from the magnitude estimation method (see FIG. 5 (a)), in the cases of Duv-3 and Duv-6, -9, and -12, “readability”, “whiteness”, and “preferred” It is known that there is no significant difference in all three evaluation items. In the range where there is no significant difference, Duv-12 which is the lowest Duv is marked with an inverted triangle mark. For other correlated color temperatures, diamond marks and inverted triangle marks are similarly marked.

各々の相関色温度におけるダイヤ印を結んだ線を、紙面の色みを感じ難いことを示す「最低色み曲線」とした。最低色み曲線は、下記の式1の近似曲線で表され、この近似曲線によれば相関色温度1563KのときはDuv−1.6であった。また、各々の相関色温度における逆三角印を結んだ線を、最低色み曲線上の点と同様の効果が得られる下限を示す「許容下限値曲線」とした。許容下限値曲線は、下記の式2の近似曲線で表され、この近似曲線によれば相関色温度1563KのときはDuv−12であった。そして、これら最低色み曲線、許容下限値曲線及び相関色温度4500Kを示す線により挟まれた領域(斜線で示す)を、低色温度環境において文字が読み易く、且つ紙面の白さを感じ易い「文字見え白色感向上領域」とした。このような文字見え白色感向上領域内にプロットされるようにDuvを制御することで、第1のLED4は、紙面に書かれた文字を読み易くする白色光を出射することができる。   A line connecting diamond marks at each correlated color temperature was defined as a “minimum color curve” indicating that it is difficult to feel the color on the paper surface. The lowest color curve is represented by the approximate curve of the following formula 1, and according to this approximate curve, it was Duv-1.6 when the correlated color temperature was 1563K. In addition, a line connecting inverted triangle marks at each correlated color temperature was defined as an “allowable lower limit curve” indicating a lower limit at which the same effect as a point on the minimum color curve was obtained. The allowable lower limit value curve is represented by the approximate curve of the following formula 2, and according to this approximate curve, it was Duv-12 when the correlated color temperature was 1563K. A region sandwiched between these minimum color curve, allowable lower limit curve and correlated color temperature 4500K (indicated by diagonal lines) is easy to read characters in a low color temperature environment and to feel the whiteness of the paper surface. It was designated as “character appearance whiteness improvement region”. By controlling Duv so that it is plotted in such a character appearance whiteness enhancement region, the first LED 4 can emit white light that makes it easy to read the characters written on the paper.

(数1)
y=−2.6186x+2.5412x−0.2147・・・・式1
y=−3.1878x+2.8976x−0.2836・・・・式2
(Equation 1)
y = −2.6186x 2 + 2.5412x−0.2147... Formula 1
y = −3.1878x 2 + 2.8976x−0.2836... Formula 2

次に、第2のLED5から1563K〜4500Kという相関色温度の低い光を照射した場合に、どのようにDuvを制御すれば覚醒度を低くしてユーザにリラックス感を与えることができるのか検証した。覚醒度は、脳の松果体から分泌されるホルモンであるメラトニンと深い関わりを有し、メラトニンの分泌は、体温低下や入眠促進等を引き起こして人にリラックス感を与える。図7に示すように、このようなメラトニンの分泌は、波長464nmの光によって強く抑制されることが知られている。そこで、この波長464nm付近の光をカットすることにより、覚醒度を低くしてユーザにリラックス感を与えることができると考えられる。   Next, when light with a low correlated color temperature of 1563K to 4500K was irradiated from the second LED 5, it was verified how Duv can be controlled to lower the arousal level and give the user a sense of relaxation. . The degree of arousal is closely related to melatonin, a hormone secreted from the pineal gland of the brain, and the secretion of melatonin causes a decrease in body temperature, the promotion of falling asleep, and the like, giving a person a sense of relaxation. As shown in FIG. 7, it is known that such secretion of melatonin is strongly suppressed by light having a wavelength of 464 nm. Therefore, it is considered that by cutting the light in the vicinity of the wavelength of 464 nm, the arousal level can be lowered and the user can feel relaxed.

波長464nm付近の光は、相関色温度の高い青色光に相当する。従って、上記のように波長464nm付近の光をカットすることにより、照射光の色温度は低くなり、また、Duvは高くなる。すなわち、ユーザにリラックス感を与えるような光を得たいのであれば、照射光の相関色温度を低くすると共にDuvを高くすればよい。そこで、図6に示した最低色み曲線よりも高いDuvの領域を、ユーザにリラックス感を与える「リラックス領域」とした。リラックス領域の上限Duvは、図例ではDuv+10(太い一点鎖線で示す)とした。このような最低色み曲線とDuv+10を表す曲線とで挟まれたリラックス領域内にプロットされるようにDuvを制御することで、第2のLED5は、覚醒度を低くしてユーザにリラックス感を与える白色光を出射することができる。   Light near a wavelength of 464 nm corresponds to blue light having a high correlated color temperature. Therefore, by cutting light with a wavelength of around 464 nm as described above, the color temperature of the irradiated light is lowered and Duv is raised. That is, if it is desired to obtain light that gives the user a sense of relaxation, the correlated color temperature of the irradiated light may be lowered and Duv may be raised. Therefore, the Duv region higher than the lowest color curve shown in FIG. 6 is set as a “relaxation region” that gives the user a sense of relaxation. The upper limit Duv of the relaxation region is set to Duv + 10 (indicated by a thick alternate long and short dash line) in the illustrated example. By controlling Duv so that it is plotted in a relaxation region sandwiched between such a minimum color curve and a curve representing Duv + 10, the second LED 5 lowers the arousal level and makes the user feel relaxed. The white light to be given can be emitted.

次に、相関色温度及び照度と被験者の瞳孔径変化との関係を調べる実験を行った。瞳孔径は、カメラの絞りと同様な機能を有し、瞳孔を絞ることでピントの合う範囲が広がる(被写界深度が増加する)。本実験では、相関色温度3000KでDuv−3の白色光を出射する白色LEDに、480nmにピーク波長を有する青色光を出射する青色LEDを組み合わせたものを光源とした。照度は、300lx、500lx、750lx、1000lx及び1500lxの5水準とし、相関色温度は、3000K、3500K、4000K、5000K及び6200Kの5水準とした。   Next, an experiment was conducted to investigate the relationship between the correlated color temperature and illuminance and the pupil diameter change of the subject. The pupil diameter has the same function as the diaphragm of a camera, and the focused range is expanded by narrowing the pupil (the depth of field increases). In this experiment, a combination of a white LED that emits white light of Duv-3 at a correlated color temperature of 3000 K and a blue LED that emits blue light having a peak wavelength at 480 nm was used as a light source. The illuminance was set at five levels of 300 lx, 500 lx, 750 lx, 1000 lx and 1500 lx, and the correlated color temperature was set at five levels of 3000K, 3500K, 4000K, 5000K and 6200K.

実験は、所定の照度及び相関色温度の照明光の下、20代及び40代の被験者二人に顎台に顎をのせてもらい、視距離45cmで直径4mmの黒点を凝視してもらった状態で瞳孔径を試行回数3回で測定した。瞳孔径は、ナックイメージテクノロジー社製のアイマークレコーダ(EMR−9)の帽子タイプを用いて計測した。まず、照度を300lxに設定し、相関色温度3000Kの光で3分順応後、15秒間瞳孔径を計測した。次いで、相関色温度3500K、4000K、5000K、6200Kの順で、1分順応後に15秒間瞳孔径を計測する動作を繰り返した。その後、照度300lxの場合と同様にして、照度500lx、750lx、1000lx、1500lxの順に、各相関色温度における瞳孔径を計測した。   In the experiment, two subjects in their 20s and 40s put their jaws on the chin stand under illumination light with a predetermined illuminance and correlated color temperature, and stared at a black spot with a diameter of 4 mm at a viewing distance of 45 cm. The pupil diameter was measured with 3 trials. The pupil diameter was measured using a hat type of an eye mark recorder (EMR-9) manufactured by NAC Image Technology. First, the illuminance was set to 300 lx, and after adjusting for 3 minutes with light having a correlated color temperature of 3000 K, the pupil diameter was measured for 15 seconds. Subsequently, the operation of measuring the pupil diameter for 15 seconds after the adaptation for 1 minute was repeated in the order of the correlated color temperatures of 3500K, 4000K, 5000K, and 6200K. Thereafter, in the same manner as in the case of illuminance of 300 lx, the pupil diameter at each correlated color temperature was measured in the order of illuminance of 500 lx, 750 lx, 1000 lx, and 1500 lx.

図8(a)は、ミレッド(相関色温度の逆数の10倍)に対して平均瞳孔径をプロットしたものであり、図8(b)は、照度の対数値に対して平均瞳孔径をプロットしたものである。平均瞳孔径は、瞬き等の計測エラーを除外し、前後10点(計21点)の移動中央値によりフィルタリングした後、計測開始時を0秒として5〜10秒区間の平均値より算出した。その結果、平均瞳孔径は、相関色温度が高くなるほど、また、照度が高くなるほど小さくなることが分かった。 8 (a) is a plot of the average pupil diameter against mired (10 6 times the reciprocal of the correlated color temperature), Fig. 8 (b), the average pupil diameter against logarithm of the illuminance It is a plot. The average pupil diameter was calculated from the average value of the 5 to 10 second interval after filtering by the moving median value of 10 points before and after (total 21 points) excluding measurement errors such as blinking, with 0 seconds as the measurement start time. As a result, it was found that the average pupil diameter decreases as the correlated color temperature increases and the illuminance increases.

このような瞳孔径の調整に関わる視細胞として、内因性光感受性網膜神経節細胞(intrinsic photosensitive retinal ganglion cell; ipRGC)が知られている。ipRGCは、錐体細胞及び桿体細胞に次ぐ、第3の光受容細胞である。図9に示すように、ipRGCは、波長493nmの光に対して最も効率良く応答することが知られている。   Intrinsic photosensitive retinal ganglion cells (ipRGC) are known as photoreceptor cells involved in such adjustment of pupil diameter. ipRGC is the third photoreceptor cell after cone cells and rod cells. As shown in FIG. 9, it is known that ipRGC responds most efficiently to light with a wavelength of 493 nm.

図10は、本実験に使用した相関色温度3000K、4000K及び6200Kの光の分光分布曲線を示す。相関色温度6200Kの光は、波長493nmの光を多く含み高いipRGC応答度を与える。一方、相関色温度3000Kの光は、同光をあまり含んでおらず低いipRGC応答度しか与えない。これら分光分布曲線とipRGC応答度との積算値を算出し、各々の相関色温度の光によるipRGCの刺激量を求めた。ipRGC刺激量は、標準光源D65から出射された光(照度1000lx)によるipRGC刺激量を100として規格化した。   FIG. 10 shows spectral distribution curves of light having correlated color temperatures of 3000K, 4000K, and 6200K used in this experiment. The light having a correlated color temperature of 6200K contains a lot of light having a wavelength of 493 nm and gives a high ipRGC response. On the other hand, light with a correlated color temperature of 3000 K does not contain much of the same light and gives only a low ipRGC response. The integrated value of these spectral distribution curves and ipRGC responsiveness was calculated, and the amount of stimulation of ipRGC by the light of each correlated color temperature was determined. The ipRGC stimulation amount was normalized by setting the ipRGC stimulation amount by the light (illuminance 1000 lx) emitted from the standard light source D65 as 100.

図11に示すように、上記のように算出されたipRGC刺激量に対して、図8に示した平均瞳孔径をプロットしたところ、平均瞳孔径は、ipRGC刺激量が大きくなるにつれて小さくなることが分かった。すなわち、ipRGC刺激量を大きくして強くipRGCを刺激すれば、平均瞳孔径が小さくなって被写界深度が増加するので、紙面に書かれた文字を読み易くすることができる。   As shown in FIG. 11, when the average pupil diameter shown in FIG. 8 is plotted against the ipRGC stimulation amount calculated as described above, the average pupil diameter decreases as the ipRGC stimulation amount increases. I understood. That is, if ipRGC stimulation amount is increased and ipRGC is stimulated strongly, the average pupil diameter is reduced and the depth of field is increased, so that the characters written on the paper can be easily read.

次に、第1のLED4から出射される光、すなわち、紙面に書かれた文字を読み易くする光について、照度1000lxにおけるipRGC刺激量を算出した。その結果、下記の表1に示すように、相関色温度が略3000KでDuvが−2.8〜−15.3の光は、57〜59のipRGC刺激量を与えた。また、相関色温度が略3500KでDuvが−2.5〜−14.5の光は、62〜64のipRGC刺激量を与えた。更に、相関色温度が略4000KでDuvが−2.8〜−14.9の光は、68〜70のipRGC刺激量を与えた。   Next, the ipRGC stimulation amount at an illuminance of 1000 lx was calculated for the light emitted from the first LED 4, that is, the light that makes it easy to read the characters written on the paper. As a result, as shown in Table 1 below, light having a correlated color temperature of about 3000 K and a Duv of −2.8 to −15.3 gave an ipRGC stimulation amount of 57 to 59. Further, light having a correlated color temperature of approximately 3500 K and a Duv of −2.5 to −14.5 gave an ipRGC stimulation amount of 62 to 64. Furthermore, light having a correlated color temperature of about 4000 K and a Duv of −2.8 to −14.9 gave an ipRGC stimulation amount of 68 to 70.

一方、第2のLED5から出射される光、すなわち、覚醒度を低くしてユーザにリラックス感を与える光についてもipRGC刺激量を算出した。その結果、下記の表2に示すように、相関色温度が略3000KでDuvが0.4〜6.4の光は、55〜56のipRGC刺激量を与えた。また、相関色温度が略3500KでDuvが0.9〜7.8の光は、60〜61のipRGC刺激量を与えた。更に、相関色温度が略4000KでDuvが−0.2〜3.1の光は、67のipRGC刺激量を与えた。   On the other hand, the ipRGC stimulation amount was also calculated for the light emitted from the second LED 5, that is, the light that lowers the arousal level and gives the user a sense of relaxation. As a result, as shown in Table 2 below, light having a correlated color temperature of about 3000 K and a Duv of 0.4 to 6.4 gave an ipRGC stimulation amount of 55 to 56. Further, light having a correlated color temperature of approximately 3500 K and a Duv of 0.9 to 7.8 gave an ipRGC stimulation amount of 60 to 61. Furthermore, light having a correlated color temperature of about 4000 K and a Duv of −0.2 to 3.1 gave 67 ipRGC stimulation amounts.

更に、標準光源D65及び種々の一般光源(一般蛍光ランプ、一般LED及び電球)から出射される光(照度1000lx)のipRGC刺激量を算出した。下記の表3に示すように、標準光源D65からの光(相関色温度6506K)のipRGC刺激量は、上述のように、基準となる100とした。これに対し、一般蛍光ランプからの光(相関色温度3199K〜7204K)は49〜90のipRGC刺激量を与え、ipRGC刺激量は相関色温度が高くなるほど大きくなった。また、一般LEDからの光(相関色温度2882K〜7201K)は42〜101のipRGC刺激量を与え、一般蛍光ランプの場合と同様に、ipRGC刺激量は相関色温度が高くなるほど大きくなった。電球からの光(相関色温度2750K)は、48のipRGC刺激量しか与えなかった。   Furthermore, the ipRGC stimulation amount of light (illuminance: 1000 lx) emitted from the standard light source D65 and various general light sources (general fluorescent lamp, general LED, and light bulb) was calculated. As shown in Table 3 below, the ipRGC stimulation amount of the light from the standard light source D65 (correlated color temperature 6506K) was set to 100 as a reference as described above. On the other hand, light from a general fluorescent lamp (correlated color temperature 3199K to 7204K) gives an ipRGC stimulation amount of 49 to 90, and the ipRGC stimulation amount becomes larger as the correlation color temperature becomes higher. The light from the general LED (correlated color temperature 2882K to 7201K) gave an ipRGC stimulation amount of 42 to 101, and the ipRGC stimulation amount increased as the correlation color temperature increased, as in the case of the general fluorescent lamp. The light from the bulb (correlated color temperature 2750K) gave only 48 ipRGC stimuli.

図12は、上記のように算出されたipRGC刺激量を、相関色温度に対してプロットしたものである。第1のLED4から出射される白色光(ダイヤ印で示す)は、下記の式3で算出される値以上のipRGC刺激量を与えた。一方、第2のLED5から出射される白色光(星印で示す)は、式3で算出される値未満のipRGC刺激量を与えた。これら第1のLED4及び第2のLED5から出射される白色光のipRGC刺激量は、相関色温度4500K以下において一般LED、一般蛍光ランプ又は電球のipRGC刺激量(それぞれ三角印、四角印、×角印で示す)よりも大きかった。従って、第1のLED4及び第2のLED5から出射される白色光は、相関色温度4500K以下において一般LED、一般蛍光ランプ又は電球から出射される光に比べて平均瞳孔径を小さくし、これにより、被写界深度を増加させて文字を読み易くすることができる。   FIG. 12 is a plot of the ipRGC stimulation amount calculated as described above against the correlated color temperature. White light (indicated by a diamond mark) emitted from the first LED 4 gave an ipRGC stimulation amount equal to or greater than the value calculated by the following Equation 3. On the other hand, white light (indicated by an asterisk) emitted from the second LED 5 gave an ipRGC stimulation amount less than the value calculated by Equation 3. The amount of ipRGC stimulation of white light emitted from the first LED 4 and the second LED 5 is the amount of ipRGC stimulation of a general LED, a general fluorescent lamp or a light bulb at a correlated color temperature of 4500 K or less (triangle mark, square mark, x angle, respectively). It was larger than Therefore, the white light emitted from the first LED 4 and the second LED 5 has an average pupil diameter smaller than that of light emitted from a general LED, a general fluorescent lamp, or a light bulb at a correlated color temperature of 4500 K or less. The depth of field can be increased to make characters easier to read.

(数2)
ipRGC刺激量=0.0117×相関色温度[K]+20.9・・・・式3
(Equation 2)
ipRGC stimulation amount = 0.0117 × correlated color temperature [K] +20.9...

図13は、第1のLED4及び第2のLED5の各々から出射される白色光のスペクトル例(2ピーク波長)を示す。下記の4に示すように、第1のLED4から出射される白色光は、例えば、相関色温度3446K、Duv−5.7、ipRGC刺激量66、平均演色評価数Ra89、生体作用強度0.54を与える。ここで、生体作用強度とは、ドイツ規格協会規格の作用量予測モデル(DIN 5031-100)を用いて算出されたメラトニン分泌抑制の作用強度であり、数値が高いほどメラトニンの分泌を抑制することを示している。一方、第2のLED5から出射される白色光は、例えば、相関色温度2882K、Duv3.4、ipRGC刺激量42、平均演色評価数Ra81、生体作用強度0.31を与える。   FIG. 13 shows a spectrum example (two peak wavelengths) of white light emitted from each of the first LED 4 and the second LED 5. As shown in 4 below, the white light emitted from the first LED 4 is, for example, correlated color temperature 3446K, Duv-5.7, ipRGC stimulation amount 66, average color rendering index Ra89, biological action strength 0.54. give. Here, the biological action strength is the action strength of melatonin secretion suppression calculated using the action amount prediction model (DIN 5031-100) of the German Standards Association Standard. The higher the value, the more the melatonin secretion is suppressed. Is shown. On the other hand, the white light emitted from the second LED 5 gives, for example, the correlated color temperature 2882K, Duv3.4, the ipRGC stimulation amount 42, the average color rendering index Ra81, and the biological action intensity 0.31.

また、図13及び上記の表4には、第2のLED5からの白色光よりも更に生体作用強度の低い、すなわち、メラトニンの分泌を抑制し難くリラックス効果の高い白色光を出射する第3のLEDも記載されている。このような第3のLEDは、例えば、相関色温度2006K、Duv2.8、ipRGC刺激量25、平均演色評価数Ra84、生体作用強度0.14を与える。また、参考例として用いた電球は、例えば、相関色温度2750K、Duv0.0、ipRGC刺激量48、平均演色評価数Ra100、生体作用強度0.35を与える。   Further, in FIG. 13 and Table 4 above, the third action is to emit a white light having a lower biological action intensity than the white light from the second LED 5, that is, a white light with a high relaxing effect that hardly suppresses the secretion of melatonin. LEDs are also described. Such 3rd LED gives correlation color temperature 2006K, Duv2.8, ipRGC stimulation amount 25, average color rendering evaluation number Ra84, and biological action intensity | strength 0.14, for example. The light bulb used as a reference example gives, for example, a correlated color temperature of 2750 K, Duv 0.0, an ipRGC stimulation amount of 48, an average color rendering index Ra100, and a biological action strength of 0.35.

次に、就寝前の読書時を例に挙げ、上記の表4に記載の第1のLED4、第2のLED5及び第3のLEDの点灯をどのように制御するのかを説明する。図14に示すように、読書開始時には第1のLED4を100%点灯させた状態(星印で示す、以下、第1の状態という)とし、読書に適した文字の読み易い白色光を出射する。この第1の状態では、ユーザは快適に読書をすることができる。   Next, taking a reading before going to bed as an example, how to control the lighting of the first LED 4, the second LED 5 and the third LED described in Table 4 above will be described. As shown in FIG. 14, at the start of reading, the first LED 4 is turned on 100% (indicated by an asterisk, hereinafter referred to as the first state) and emits white light that is easy to read characters suitable for reading. . In this first state, the user can comfortably read.

次いで、制御部6は、第1のLED4の光出力を第1のLED4の点灯時間の経過と共に徐々に下げ、同時に第2のLED5の光出力を徐々に増やして、第2のLED5を100%点灯させた状態(ダイヤ印で示す、以下、第2の状態という)とする。この第1の状態から第2の状態への移行は、照射光の相関色温度及びDuvが徐々に変化するので、ユーザによって知覚され難く自然な雰囲気で起こる。第2の状態では、LED5からメラトニン分泌を抑制し難い光が照射されるので、ユーザの体内ではメラトニンが分泌され、体温低下や入眠促進等が引き起こされる。   Next, the control unit 6 gradually decreases the light output of the first LED 4 as the lighting time of the first LED 4 elapses, and at the same time, gradually increases the light output of the second LED 5 to make the second LED 5 100%. Let it be a lighted state (indicated by a diamond mark, hereinafter referred to as a second state). The transition from the first state to the second state occurs in a natural atmosphere that is hardly perceived by the user because the correlated color temperature and Duv of the irradiation light gradually change. In the second state, light that hardly suppresses melatonin secretion is emitted from the LED 5, so that melatonin is secreted in the user's body, causing a decrease in body temperature, promotion of falling asleep, and the like.

そして、第2の状態から第3のLEDを100%点灯させた状態(逆三角印で示す、以下、第3の状態という)へと徐々に移行させる。この第3の状態では、第2の状態よりも更に生体作用強度の低い光が照射され、メラトニンの分泌が強く促進される。これにより、ユーザは心地よい睡眠へと誘導される。   Then, the state is gradually shifted from the second state to a state in which the third LED is turned on 100% (indicated by an inverted triangle, hereinafter referred to as a third state). In this third state, light with a lower biological action intensity than in the second state is irradiated, and the secretion of melatonin is strongly promoted. Thereby, the user is guided to a comfortable sleep.

このように、第1の状態から第2の状態を経由して第3の状態へと移行することで、読書に適した照明環境から徐々に睡眠に適した照明環境へとスムーズに移行することができる。なお、移行のパターンは上記のものに限定されず、例えば、第1の状態から第2の状態を経由せず直接に第3の状態へ移行するパターンでもよいし、また、第1の状態から第2の状態に移行して第3の状態には移行しないパターンでもよい。   In this way, the transition from the first state to the third state via the second state makes a smooth transition from the lighting environment suitable for reading to the lighting environment suitable for sleep gradually. Can do. Note that the transition pattern is not limited to the above, and may be, for example, a pattern in which a transition is made directly from the first state to the third state without passing through the second state, or from the first state. The pattern which transfers to a 2nd state and does not transfer to a 3rd state may be sufficient.

上述したように、第1のLED4は、相関色温度1563K〜4500K、Duv−1.6〜−12で紙面を白く見せる作用を持つ白色光を出射する。一方、第2のLED5は、第1のLED4からの白色光よりも相関色温度が低く且つDuvが高い白色光、具体的には、相関色温度1563K〜4500K、Duv+10〜−1.6で覚醒度の低い白色光を出射する。従って、照明装置1によれば、低色温度環境で使用した場合にユーザが違和感を持ち難く、しかも文字が読み易い光とユーザをリラックスさせる光とを照射することができる。   As described above, the first LED 4 emits white light having a correlated color temperature of 1563K to 4500K and Duv-1.6 to -12 to make the paper surface appear white. On the other hand, the second LED 5 wakes up with white light having a correlated color temperature lower and a higher Duv than the white light from the first LED 4, specifically, correlated color temperatures 1563K to 4500K, Duv + 10 to −1.6. A white light with a low degree is emitted. Therefore, according to the lighting device 1, it is possible to irradiate light that makes it difficult for the user to feel uncomfortable when used in a low color temperature environment, and light that makes the user relax, and light that makes the user relax.

なお、第1のLED4から出射される白色光は、図13に示したような2つのピーク波長を有するものに限定されず、例えば、3つのピーク波長を有するものや4つのピーク波長を有するものであってもよい。そこで、ピーク波長420nm〜660nm(10nm刻み)の範囲内で半値幅20、30、40nmの3水準をパラメータとしてシミュレーションを実施し、3つのピーク波長を有する仮想発光スペクトル(ガウス分布)を得た。   Note that the white light emitted from the first LED 4 is not limited to the one having two peak wavelengths as shown in FIG. 13, for example, one having three peak wavelengths or one having four peak wavelengths. It may be. Therefore, a simulation was performed using three levels of half widths 20, 30, and 40 nm as parameters within a peak wavelength range of 420 nm to 660 nm (10 nm increments), and a virtual emission spectrum (Gaussian distribution) having three peak wavelengths was obtained.

図15に示すように、このような3つのピーク波長を有する仮想発光スペクトルは、例えば、波長域420nm〜480nm、520nm〜570nm及び600nm〜660nmにそれぞれピーク波長を有する。例1の光(実線で示す)は、波長420nm、520nm及び600nmにそれぞれピーク波長を有する。例2の光(破線で示す)は、波長480nm、570nm及び660nmにそれぞれピーク波長を有する。   As shown in FIG. 15, the virtual emission spectrum having such three peak wavelengths has peak wavelengths in, for example, wavelength ranges of 420 nm to 480 nm, 520 nm to 570 nm, and 600 nm to 660 nm. The light of Example 1 (shown by the solid line) has peak wavelengths at wavelengths of 420 nm, 520 nm, and 600 nm, respectively. The light of Example 2 (shown by broken lines) has peak wavelengths at wavelengths of 480 nm, 570 nm, and 660 nm, respectively.

また、上記と同様にして、4つのピーク波長を有する仮想発光スペクトルをシミュレーションにより得た。図16に示すように、このような4つのピーク波長を有する仮想発光スペクトルは、例えば、波長域420nm〜450nm、460nm〜540nm、530nm〜580nm及び600nm〜660nmにそれぞれピーク波長を有する。例3の光(実線で示す)は、波長420nm、460nm、530nm及び600nmにそれぞれピーク波長を有する。例4の光(破線で示す)は、波長450nm、540nm、550nm及び620nmにそれぞれピーク波長を有する。例5の光(二点鎖線で示す)は、波長440nm、500nm、580nm及び660nmにそれぞれピーク波長を有する。   Further, in the same manner as described above, a virtual emission spectrum having four peak wavelengths was obtained by simulation. As shown in FIG. 16, the virtual emission spectrum having such four peak wavelengths has peak wavelengths in, for example, wavelength ranges of 420 nm to 450 nm, 460 nm to 540 nm, 530 nm to 580 nm, and 600 nm to 660 nm. The light of Example 3 (shown by a solid line) has peak wavelengths at wavelengths of 420 nm, 460 nm, 530 nm, and 600 nm, respectively. The light of Example 4 (shown by broken lines) has peak wavelengths at wavelengths of 450 nm, 540 nm, 550 nm, and 620 nm, respectively. The light of Example 5 (shown by a two-dot chain line) has peak wavelengths at wavelengths of 440 nm, 500 nm, 580 nm, and 660 nm, respectively.

表5に示すように、上述した例1乃至例5の光は、それぞれipRGC刺激量73、91、73、70及び70を与える。ここで、タスク照明光として一般的に用いられる一般蛍光ランプからの相関色温度5000Kの光は、図12に示したように、ipRGC刺激量略70を与える。すなわち、例1乃至例5の光は、3000K〜4500Kという低い相関色温度にもかかわらず、相関色温度5000Kの一般タスク照明光と同等以上のipRGC刺激量を与える。従って、これら例1乃至例5の光によれば、高いipRGC刺激量を与えることで低い相関色温度においても被写界深度を十分に増加させ、相関色温度5000Kの一般タスク照明光と同等又はそれ以上に文字を読み易くすることができる。   As shown in Table 5, the light of Examples 1 to 5 described above gives ipRGC stimulation amounts 73, 91, 73, 70, and 70, respectively. Here, light having a correlated color temperature of 5000 K from a general fluorescent lamp that is generally used as task illumination light gives an ipRGC stimulation amount of about 70, as shown in FIG. That is, the light of Examples 1 to 5 gives an ipRGC stimulation amount equal to or higher than that of the general task illumination light having a correlated color temperature of 5000K, despite the low correlated color temperature of 3000K to 4500K. Therefore, according to the lights of Examples 1 to 5, the depth of field is sufficiently increased even at a low correlated color temperature by giving a high ipRGC stimulation amount, which is equivalent to the general task illumination light having a correlated color temperature of 5000K or More than that, the characters can be made easier to read.

なお、本発明に係る照明装置は、上記実施形態に限定されず種々の変形が可能である。例えば、照明装置は、ベッドサイドランプに限定されず、机上等に置いて用いられるスタンドライトとして構成されてもよい。また、第1のLED及び第2のLEDは、それぞれ複数設けられ、互いに混在して配線基板上に配置されていてもよい。このように配置することで、第1のLEDから出射された白色光と第2のLEDから出射された白色光とを、互いに混色し易くすることができる。   In addition, the illuminating device according to the present invention is not limited to the above embodiment, and various modifications can be made. For example, the lighting device is not limited to a bedside lamp, and may be configured as a standlight that is used on a desk or the like. A plurality of the first LEDs and the second LEDs may be provided, and may be mixed and arranged on the wiring board. By arranging in this way, it is possible to easily mix the white light emitted from the first LED and the white light emitted from the second LED.

1 照明装置
3 配線基板
4 第1のLED
5 第2のLED
6 制御部
DESCRIPTION OF SYMBOLS 1 Lighting apparatus 3 Wiring board 4 1st LED
5 Second LED
6 Control unit

Claims (8)

白色光を出射する第1のLEDと、
前記第1のLEDからの白色光よりも相関色温度が低く且つ色度偏差Duvが高い白色光を出射する第2のLEDと、
前記第1のLEDと前記第2のLEDとの光出力比を変化させる制御部と、を備え、
前記第1のLEDは、相関色温度1563K〜4500Kで色度偏差Duv−1.6〜−12の白色光を出射し、
前記第2のLEDは、相関色温度1563K〜4500Kで色度偏差Duv+10〜−1.6の白色光を出射することを特徴とする照明装置。
A first LED that emits white light;
A second LED that emits white light having a lower correlated color temperature and a higher chromaticity deviation Duv than white light from the first LED;
A control unit that changes a light output ratio between the first LED and the second LED,
The first LED emits white light with a correlated color temperature of 1563K to 4500K and a chromaticity deviation of Duv-1.6 to -12,
The second LED emits white light having a chromaticity deviation Duv + 10 to −1.6 at a correlated color temperature of 1563K to 4500K.
xy色度図において、
前記第1のLEDから出射される白色光は、下記の式1で表される曲線と下記の式2で表される曲線とで挟まれる領域にプロットされ、
前記第2のLEDから出射される白色光は、前記式1で表される曲線と色度偏差Duv+10を表す曲線とで挟まれる領域にプロットされることを特徴とする請求項1に記載の照明装置。
(数1)
y=−2.6186x+2.5412x−0.2147・・・・式1
y=−3.1878x+2.8976x−0.2836・・・・式2
In the xy chromaticity diagram,
The white light emitted from the first LED is plotted in a region sandwiched between a curve represented by the following formula 1 and a curve represented by the following formula 2.
2. The illumination according to claim 1, wherein the white light emitted from the second LED is plotted in a region sandwiched between the curve represented by the formula 1 and a curve representing the chromaticity deviation Duv + 10. apparatus.
(Equation 1)
y = −2.6186x 2 + 2.5412x−0.2147... Formula 1
y = −3.1878x 2 + 2.8976x−0.2836... Formula 2
D65光源から照射される照度1000lxの光により規格化した値において、
前記第1のLEDから出射される白色光は、下記の式3で算出される値以上の内因性光感受性網膜神経節細胞(ipRGC)刺激量を与え、
前記第2のLEDから出射される白色光は、下記の式3で算出される値未満のipRGC刺激量を与えることを特徴とする請求項1又は請求項2に記載の照明装置。
ipRGC刺激量=0.0117×相関色温度[K]+20.9・・・・式3
In a value normalized by light having an illuminance of 1000 lx emitted from a D65 light source,
The white light emitted from the first LED gives an intrinsic light-sensitive retinal ganglion cell (ipRGC) stimulation amount that is equal to or greater than the value calculated by Equation 3 below.
3. The lighting device according to claim 1, wherein the white light emitted from the second LED gives an ipRGC stimulation amount less than a value calculated by the following Equation 3.
ipRGC stimulation amount = 0.0117 × correlated color temperature [K] +20.9...
前記制御部は、前記第1のLEDの光出力を該第1のLEDの点灯時間の経過と共に下げることを特徴とする請求項1乃至請求項3のいずれか一項に記載の照明装置。   The lighting device according to any one of claims 1 to 3, wherein the control unit lowers the light output of the first LED as the lighting time of the first LED elapses. 前記第1のLEDから出射される白色光は、波長域420nm〜480nm、520nm〜570nm及び600nm〜660nmにそれぞれピーク波長を有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の照明装置。   5. The white light emitted from the first LED has a peak wavelength in a wavelength range of 420 nm to 480 nm, 520 nm to 570 nm, and 600 nm to 660 nm, respectively. The lighting device described. 前記第1のLEDから出射される白色光は、波長域420nm〜450nm、460nm〜540nm、530nm〜580nm及び600nm〜660nmにそれぞれピーク波長を有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の照明装置。   5. The white light emitted from the first LED has peak wavelengths in wavelength ranges of 420 nm to 450 nm, 460 nm to 540 nm, 530 nm to 580 nm, and 600 nm to 660 nm, respectively. The lighting device according to claim 1. 前記第1のLED及び前記第2のLEDは、配線基板の一面に実装され、
前記配線基板は、前記配線基板の中心部に一つの前記第1のLEDを実装し、前記配線基板の周縁部に複数の前記第2のLEDを実装していることを特徴とする請求項1乃至請求項6のいずれか一項に記載の照明装置。
The first LED and the second LED are mounted on one surface of a wiring board,
2. The wiring board according to claim 1, wherein one of the first LEDs is mounted on a central portion of the wiring board, and a plurality of the second LEDs are mounted on a peripheral edge of the wiring board. The lighting device according to claim 6.
前記第1のLED及び前記第2のLEDは、それぞれ複数設けられ、配線基板の一面に互いに混在して実装されていることを特徴とする請求項1乃至請求項6のいずれか一項に記載の照明装置。   The said 1st LED and said 2nd LED are provided with two or more, respectively, and are mutually mixedly mounted in the one surface of the wiring board, The Claim 1 thru | or 6 characterized by the above-mentioned. Lighting equipment.
JP2015048596A 2015-03-11 2015-03-11 Lighting device Active JP6544676B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015048596A JP6544676B2 (en) 2015-03-11 2015-03-11 Lighting device
DE102016103712.5A DE102016103712A1 (en) 2015-03-11 2016-03-02 lighting device
US15/062,432 US9544968B2 (en) 2015-03-11 2016-03-07 Illumination apparatus
CN201610132884.5A CN105972444B (en) 2015-03-11 2016-03-09 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048596A JP6544676B2 (en) 2015-03-11 2015-03-11 Lighting device

Publications (2)

Publication Number Publication Date
JP2016170906A true JP2016170906A (en) 2016-09-23
JP6544676B2 JP6544676B2 (en) 2019-07-17

Family

ID=56801003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048596A Active JP6544676B2 (en) 2015-03-11 2015-03-11 Lighting device

Country Status (4)

Country Link
US (1) US9544968B2 (en)
JP (1) JP6544676B2 (en)
CN (1) CN105972444B (en)
DE (1) DE102016103712A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088374A (en) * 2016-11-29 2018-06-07 パナソニックIpマネジメント株式会社 Lighting device
JP2020136597A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Light emitting device and lighting system
JP2020136619A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Light emitting device and lighting system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628140B2 (en) 2016-03-03 2020-01-08 パナソニックIpマネジメント株式会社 Lighting equipment
JP6655832B2 (en) 2016-03-03 2020-02-26 パナソニックIpマネジメント株式会社 Lighting equipment
CN106322148B (en) * 2016-10-21 2023-06-06 四川省桑瑞光辉标识系统股份有限公司 Dimming system and method for LED lamp panel
JP7016038B2 (en) 2017-07-26 2022-02-04 パナソニックIpマネジメント株式会社 Lighting equipment and lighting control system
US10728976B2 (en) 2018-05-15 2020-07-28 Robern, Inc. LED control method for perceived mixing
JP7389417B2 (en) 2020-08-21 2023-11-30 東芝ライテック株式会社 lighting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113958A (en) * 2010-11-24 2012-06-14 Panasonic Corp Light-emitting device
JP2012209274A (en) * 2012-07-31 2012-10-25 Sharp Corp Lighting system
JP2012221755A (en) * 2011-04-08 2012-11-12 Citizen Electronics Co Ltd Chromaticity control type white light-emitting device
JP2013127853A (en) * 2011-12-16 2013-06-27 Panasonic Corp Illuminating device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670315B2 (en) * 2004-11-09 2011-04-13 ソニー株式会社 Backlight device and display device
JP2008218485A (en) 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
US8333631B2 (en) * 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
JP2009260390A (en) 2009-08-05 2009-11-05 Osram-Melco Ltd Variable color light-emitting diode element
WO2011093395A1 (en) 2010-01-29 2011-08-04 三菱化学株式会社 Light control apparatus for white led light emitting device, and lighting system
JP2011176300A (en) 2010-01-29 2011-09-08 Mitsubishi Chemicals Corp Semiconductor light emitting device, light emitting module, and lighting system
JP2012047019A (en) 2010-08-30 2012-03-08 Mitsubishi Chemicals Corp Pseudo window device
JP5834257B2 (en) * 2011-05-25 2015-12-16 パナソニックIpマネジメント株式会社 Variable color light emitting device and lighting apparatus using the same
JP6581500B2 (en) * 2012-03-19 2019-09-25 シグニファイ ホールディング ビー ヴィ Apparatus, system and method for a multi-channel white light illumination source
JP6064205B2 (en) 2012-10-02 2017-01-25 パナソニックIpマネジメント株式会社 Lighting device
JP2014086271A (en) 2012-10-24 2014-05-12 Panasonic Corp Illumination apparatus and lighting device
NL2011375C2 (en) * 2013-09-03 2015-03-04 Gemex Consultancy B V Spectrally enhanced white light for better visual acuity.
JP6304618B2 (en) 2013-11-05 2018-04-04 パナソニックIpマネジメント株式会社 Lighting device
JP6233572B2 (en) 2013-11-05 2017-11-22 パナソニックIpマネジメント株式会社 Lighting device
JP6369785B2 (en) 2014-09-12 2018-08-08 パナソニックIpマネジメント株式会社 Lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113958A (en) * 2010-11-24 2012-06-14 Panasonic Corp Light-emitting device
JP2012221755A (en) * 2011-04-08 2012-11-12 Citizen Electronics Co Ltd Chromaticity control type white light-emitting device
JP2013127853A (en) * 2011-12-16 2013-06-27 Panasonic Corp Illuminating device
JP2012209274A (en) * 2012-07-31 2012-10-25 Sharp Corp Lighting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088374A (en) * 2016-11-29 2018-06-07 パナソニックIpマネジメント株式会社 Lighting device
JP2020136597A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Light emitting device and lighting system
JP2020136619A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Light emitting device and lighting system

Also Published As

Publication number Publication date
US9544968B2 (en) 2017-01-10
CN105972444B (en) 2019-08-20
JP6544676B2 (en) 2019-07-17
DE102016103712A1 (en) 2016-09-15
CN105972444A (en) 2016-09-28
US20160270180A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6544676B2 (en) Lighting device
JP6735514B2 (en) Lighting equipment
CN104159354B (en) Lighting device
JP6655832B2 (en) Lighting equipment
JP6455817B2 (en) Lighting device
WO2002049721A9 (en) Apparatus and method for alleviation of symptoms by application of tinted light
JP6256689B2 (en) lighting equipment
JP6628140B2 (en) Lighting equipment
Rea et al. The NICU lighted environment
JP6788798B2 (en) Lighting device
JP2015156265A (en) Lighting fixture
CN112255785A (en) White light LED color mixing design method for light health and illumination system thereof
KR20210028167A (en) LED light source with improved cognitive ability and solar characteristics
CN108361606B (en) Lighting device
JP6580378B2 (en) Illumination device and display device
Veitch et al. Chromaticity‐matched but spectrally different light source effects on simple and complex color judgments
Marín-Doñágueda et al. Simultaneous optimization of circadian and color performance for smart lighting systems design
CN108119813A (en) Light-emitting device
JP7150827B2 (en) lighting equipment
JP2013258037A (en) Lighting device
US20170257922A1 (en) Lighting apparatus
La Gennusa et al. An experimental study on relationship between LED lamp characteristics and non image-forming
US11389086B2 (en) Apparatus and methods for assessing the effect of light on a subject's perception of tinnitus
US20170211755A1 (en) Method for producing high-quality light
JP6945154B2 (en) Lighting equipment and lighting control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R151 Written notification of patent or utility model registration

Ref document number: 6544676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151