JP2016170117A - Catalyst life prediction method and catalyst life analyzer - Google Patents

Catalyst life prediction method and catalyst life analyzer Download PDF

Info

Publication number
JP2016170117A
JP2016170117A JP2015051237A JP2015051237A JP2016170117A JP 2016170117 A JP2016170117 A JP 2016170117A JP 2015051237 A JP2015051237 A JP 2015051237A JP 2015051237 A JP2015051237 A JP 2015051237A JP 2016170117 A JP2016170117 A JP 2016170117A
Authority
JP
Japan
Prior art keywords
catalyst
change
activation energy
amount
δea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015051237A
Other languages
Japanese (ja)
Other versions
JP6572570B2 (en
Inventor
森 嘉彦
Yoshihiko Mori
嘉彦 森
知一 大橋
Tomokazu Ohashi
知一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015051237A priority Critical patent/JP6572570B2/en
Publication of JP2016170117A publication Critical patent/JP2016170117A/en
Application granted granted Critical
Publication of JP6572570B2 publication Critical patent/JP6572570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst life prediction method and a catalyst life analyzer for analyzing catalytic performance at each position and predicting catalyst life, even when deterioration in catalytic performance is not uniform and varies with each position in the catalyst layer, like a chemical reaction process using a catalyst comprising a fixed bed circulation type catalytic reaction tower.SOLUTION: Provided are a catalyst life prediction method and a catalyst life analyzer that, in a chemical reaction process using a catalyst comprising a fixed bed circulation type reaction tower, calculate change in catalytic performance as a change amount of activation energy on the basis of a total amount of a target product within a use period of a catalyst, and that analyze temporal change of the catalytic performance from the change amount of the activation energy in order to predict catalyst life.SELECTED DRAWING: Figure 1

Description

本発明は、触媒を用いる化学反応プロセスにおける、触媒使用期間内の目的とする生成物の総量を基に触媒性能の変化を活性化エネルギーの変化量として算出し、触媒性能の経時変化を解析することにより触媒寿命が予測できる触媒寿命予測方法および触媒寿命解析装置に関する。   In the present invention, in a chemical reaction process using a catalyst, a change in catalyst performance is calculated as a change in activation energy based on the total amount of target products within the catalyst use period, and a change in catalyst performance with time is analyzed. The present invention relates to a catalyst life prediction method and a catalyst life analyzer that can predict the catalyst life.

塩化ビニルモノマー(VCM)の製造法のうち、バランスド・オキシクロリネーション・プロセスと呼ばれる方法、即ち、(1)エチレンの直接塩素化反応による1,2−ジクロロエタン(EDC)の製造、(2)EDCの熱分解反応によるVCMの製造、および(3)エチレンのオキシ塩素化反応によるEDCの製造、からなるプロセスが石油化学工業で広く採用されている。   Among the methods for producing vinyl chloride monomer (VCM), a method called a balanced oxychlorination process, that is, (1) production of 1,2-dichloroethane (EDC) by direct chlorination of ethylene, (2) A process comprising VCM production by EDC thermal decomposition reaction and (3) EDC production by ethylene oxychlorination reaction is widely adopted in the petrochemical industry.

このうち、エチレンのオキシ塩素化反応によるEDCの製造法は触媒を用いた触媒を用いる化学反応プロセスであり、反応に使用する酸素原料として空気を用いる空気法、空気に少量の分子状酸素を用いる酸素富化法、および酸素原料として分子状酸素を用いる酸素法が知られている。   Among these, the method for producing EDC by the oxychlorination reaction of ethylene is a chemical reaction process using a catalyst using a catalyst, an air method using air as an oxygen raw material used for the reaction, and using a small amount of molecular oxygen for air. An oxygen enrichment method and an oxygen method using molecular oxygen as an oxygen source are known.

一般的に触媒は時間経過に伴いその性能(活性)が低下する。従って、固定床流通式反応塔からなる触媒を用いる化学反応プロセスでは、触媒の活性が必要最低限のレベルにまで低下した段階が触媒寿命と判断し、触媒を全て交換する必要がある。   In general, the performance (activity) of a catalyst decreases with time. Therefore, in a chemical reaction process using a catalyst consisting of a fixed bed flow type reaction tower, it is necessary to replace the catalyst by judging that the stage where the activity of the catalyst has been reduced to a necessary minimum level is the catalyst life.

通常、触媒交換時期は予め決められており、計画した生産期間中は触媒交換を行うことなく、性能低下した触媒によって生産を継続する。これは計画外で触媒交換することは交換作業に要する経費および労力、装置停止中の減産による損金が非常に大きいためである。従って、触媒寿命を予め見積もっておき、次回の交換時期を計画し、それまでの期間は触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように生産計画を立てることが重要な技術課題となっている。   Usually, the catalyst replacement time is determined in advance, and the production is continued with the catalyst whose performance has deteriorated without performing the catalyst replacement during the planned production period. This is because unplanned catalyst replacement is very costly and labor-intensive for replacement work, and the loss due to production cuts while the equipment is stopped. Therefore, the catalyst life is estimated in advance, the next replacement period is planned, and the production plan is made so that the catalyst activity does not decrease to the minimum necessary level and the maximum catalyst performance is exhibited until that time. Establishing is an important technical issue.

この課題に対してシミュレーション技術を利用することが開示されている。
たとえば水素化脱硫反応に対してシミュレーションによる方法が開示されている(特許文献1参照。)。しかし、この方法では、触媒の劣化については実験的にファクターを決めているため、運転条件が変化するような場合に触媒寿命を高い精度で予測できない。
It is disclosed that a simulation technique is used for this problem.
For example, a simulation method for hydrodesulfurization reaction is disclosed (see Patent Document 1). However, in this method, since a factor is experimentally determined for the deterioration of the catalyst, the life of the catalyst cannot be predicted with high accuracy when the operating conditions change.

また、改質装置のシミュレーターが開示されている(特許文献2参照。)。この方法は触媒の寿命劣化を考慮したシミュレーターとなっているが、このシミュレーターは運転員のトレーニングのためのものであり、実際の装置の運転状態を予測するものではない。   Also, a reformer simulator is disclosed (see Patent Document 2). This method is a simulator that takes into account the deterioration of the life of the catalyst, but this simulator is for training the operator and does not predict the actual operating state of the apparatus.

精製処理に対してシミュレーションによる方法が開示されている(特許文献3〜4。)。この方法は水素化精製反応における触媒細孔中の炭素質および金属の堆積による触媒の劣化現象に着目して精製条件を最適化する方法である。しかし、炭素質および金属の体積が触媒の劣化の原因ではない反応については全く有効ではない。   A method by simulation is disclosed for the purification process (Patent Documents 3 to 4). This method is a method for optimizing the purification conditions by paying attention to the deterioration phenomenon of the catalyst due to the deposition of carbon and metal in the catalyst pores in the hydrorefining reaction. However, it is not effective at all for reactions where the volume of carbonaceous and metal is not responsible for catalyst degradation.

オキシ塩素化触媒反応は発熱反応であるため、発熱に伴い触媒層の温度が上昇し、特に温度が上昇したホットスポットでは急速な触媒性能の低下が起きる。   Since the oxychlorination catalyst reaction is an exothermic reaction, the temperature of the catalyst layer increases with the generation of heat, and a rapid decrease in catalyst performance occurs particularly at hot spots where the temperature has increased.

熱劣化を解析する方法としては、自動車の排気ガス浄化触媒に対してシミュレーションによる方法が開示されている(特許文献5〜6。)。これらは触媒の熱劣化を解析するため、触媒が高温に曝された時間と劣化の度合いを予め関連づけ、触媒の劣化速度として解析する方法である。この方法で得られる劣化速度は入口から出口までの全体の触媒性能の低下を一括解析した平均値である。   As a method of analyzing thermal degradation, a method by simulation is disclosed for an exhaust gas purification catalyst of an automobile (Patent Documents 5 to 6). In order to analyze the thermal deterioration of the catalyst, these are methods in which the time during which the catalyst is exposed to a high temperature and the degree of deterioration are correlated in advance and analyzed as the deterioration rate of the catalyst. The deterioration rate obtained by this method is an average value obtained by collectively analyzing the decrease in the overall catalyst performance from the inlet to the outlet.

オキシ塩素化触媒を用いる化学反応プロセスのような固定床流通反応塔では、反応床入口から出口まで発熱によって触媒層に温度分布が発生するため一様ではない。従って、触媒の性能低下も入口から出口まで一様でない。そのような触媒層の位置によって性能低下が異なる触媒を用いて、シミュレーション技術により運転条件の最適化を行い生産調整することは、触媒性能の平均値の情報では全くその要求に応えることはできない。   In a fixed bed flow reaction tower such as a chemical reaction process using an oxychlorination catalyst, temperature distribution is generated in the catalyst layer due to heat generation from the reaction bed inlet to the outlet, which is not uniform. Therefore, the performance degradation of the catalyst is not uniform from the inlet to the outlet. Using such a catalyst whose performance deterioration varies depending on the position of the catalyst layer and optimizing the production by performing simulation technology to optimize the operating conditions cannot meet the requirement at all with the information on the average value of the catalyst performance.

このような固定床流通式反応塔からなる触媒を用いる化学反応プロセスのように、触媒の性能低下が触媒層の位置で異なった場合でも、精度良く各位置にある触媒の性能を解析でき、生産計画に従って運転条件の最適化を行うことができるような触媒寿命予測方法および触媒寿命解析装置が望まれている。   Like the chemical reaction process using a catalyst consisting of a fixed bed flow-type reaction tower, the performance of the catalyst at each position can be analyzed accurately and produced even when the catalyst performance declines at the position of the catalyst layer. There is a demand for a catalyst life prediction method and a catalyst life analysis apparatus that can optimize operating conditions according to a plan.

米国特許第5,341,313号US Pat. No. 5,341,313 特公平7−108372号公報Japanese Examined Patent Publication No. 7-108372 特許第3,931,083号公報Japanese Patent No. 3,931,083 特許第4,612,006号公報Japanese Patent No. 4,612,006 特許第3,135,499号公報Japanese Patent No. 3,135,499 特許第4,747,984号公報Japanese Patent No. 4,747,984

固定床流通式反応塔からなる触媒を用いる化学反応プロセスのように、触媒の性能低下が触媒層の位置で一様でなく、位置毎に異なった場合でも、各位置の触媒性能を解析して触媒寿命を予測し、次回の交換時期を計画しておき、交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように生産計画に従って運転条件の最適化を行うことができる触媒寿命予測方法および触媒寿命解析装置を提供するものである。   Even if the catalyst performance degradation is not uniform at the position of the catalyst layer and varies from position to position, as in the case of chemical reaction processes using a catalyst consisting of a fixed bed flow reaction tower, the catalyst performance at each position is analyzed. Predict the catalyst life, plan the next replacement time, and operate according to the production plan so that the catalyst activity does not decrease to the minimum necessary level until the replacement time is reached and the maximum catalyst performance is exhibited. The present invention provides a catalyst life prediction method and a catalyst life analysis apparatus capable of optimizing conditions.

本発明者らは、上記の課題を解決するため鋭意検討を行った結果、触媒を用いる化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に触媒性能の変化を活性化エネルギーの変化量として算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析して触媒寿命を予測できる触媒寿命予測方法および触媒寿命解析装置を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors activated changes in catalyst performance based on the total amount of target products within the catalyst use period in a chemical reaction process using a catalyst. The present inventors have found a catalyst life prediction method and a catalyst life analysis apparatus that can calculate the amount of change in energy and analyze the change in catalyst performance over time from the amount of change in activation energy to predict the catalyst life, thereby completing the present invention. .

即ち、本発明は触媒を用いる化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に触媒性能の変化を活性化エネルギーの変化量として算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析して触媒寿命を予測できる触媒寿命予測方法および触媒寿命解析装置に関するものである。   That is, according to the present invention, in a chemical reaction process using a catalyst, a change in the catalyst performance is calculated as a change amount of the activation energy based on the total amount of the target product within the catalyst use period, and the change amount of the activation energy is calculated. The present invention relates to a catalyst life prediction method and a catalyst life analysis apparatus that can predict a catalyst life by analyzing changes in catalyst performance over time.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の触媒寿命の予測方法および触媒寿命解析装置は固定床流通式反応塔からなる触媒を用いる化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析し、触媒性能の経時変化から触媒層温度を予測することにより触媒寿命を予測する方法および触媒寿命解析装置であることを特徴とする。   The catalyst life prediction method and the catalyst life analysis apparatus according to the present invention are used in a chemical reaction process using a catalyst comprising a fixed bed flow type reaction tower, and a change in activation energy based on the total amount of the target product within the catalyst use period. A method for predicting catalyst life and a catalyst life analyzer by calculating the amount of catalyst, analyzing the change in catalyst performance with time from the amount of change in the activation energy, and predicting the catalyst layer temperature from the change in catalyst performance with time It is characterized by.

本発明者は触媒の性能低下現象を反応速度論に基づいて整理し、性能低下は活性化エネルギーの変化に起因するものであることを見出した。すなわち、使用期間が異なる触媒の活性化エネルギーを反応管の位置毎に区別して測定したところ、図1のような変化を確認した。これは触媒の経時変化に基づく変化であり、その変化をモデル化した。このモデルに基づいて触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出し、該活性化エネルギーの変化量を反応速度論に基づいて整理することで、触媒性能の経時変化を解析することができる。得られた活性化エネルギーの変化量は触媒層の位置で一様でなく、位置毎に異なった値で算出できるため、位置毎の触媒性能の経時変化を解析できる。   The present inventor has organized the catalyst performance degradation phenomenon based on the reaction kinetics, and found that the performance degradation is caused by a change in activation energy. That is, when the activation energy of the catalyst having different use periods was measured separately for each position of the reaction tube, a change as shown in FIG. 1 was confirmed. This is a change based on the change over time of the catalyst, and the change was modeled. Based on this model, the amount of change in activation energy is calculated based on the total amount of the target product within the catalyst use period, and the amount of change in activation energy is arranged based on the reaction kinetics, thereby obtaining a catalyst. Changes in performance over time can be analyzed. Since the amount of change in the obtained activation energy is not uniform at the position of the catalyst layer and can be calculated with a different value for each position, it is possible to analyze the change in the catalyst performance with time for each position.

前記活性化エネルギーの変化量ΔEaは、触媒の使用期間内の目的とする生成物の総量をW、触媒の劣化度合を示す定数をK、反応塔内で触媒が充填された反応管の入口から出口までの長さをL、反応管の入口からの位置をLとすると、L、Wの関数として式(1);
ΔEa(L,W)=KW ×(L−L) (1)
(ここでnは0より大きく1より小さい値である、)
で表される。式(1)のKWは図1の傾きを持つ直線の傾きに相当する値である。
The amount of change ΔEa of the activation energy is the total amount of the target product within the period of use of the catalyst, W is a constant indicating the degree of deterioration of the catalyst, and the reaction tube is filled with the catalyst in the reaction tower. Equation (1) as a function of L and W, where L 0 is the length to the outlet and L is the position from the inlet of the reaction tube;
ΔEa (L, W) = KW n × (L−L 0 ) (1)
(Where n is greater than 0 and less than 1)
It is represented by KW n in equation (1) is a value corresponding to the slope of a straight line having the slope of FIG.

図1のように、傾きをWの関数として表されるとして、手順1:触媒の使用開始とともに未使用のEaの線(図1の破線)上をL方向に始点Mが進み、Mから入口方向へ直線を引き、手順2:入口からMまではΔEaが上昇し式(1)を用いて、Mから出口まではΔEaは不変(即ちΔEa=0)としてΔEaを求める。得られた傾きとWとの関係を調べることで傾きのWに対する変化を関数として与えることができる。図2のように傾きをプロットしてWとの関係を求めるとKWと近似することができ、nは0より大きく1未満であり、図2に示した例のnは0.5であった。また、Mの移動はWを変数とする関数で表すことができ、Dを定数とすると、通常DWと近似することができ、mは0から1である。 As shown in FIG. 1, assuming that the slope is expressed as a function of W, Procedure 1: The start point M advances in the L direction on the unused Ea line (dashed line in FIG. 1) along with the start of use of the catalyst. A straight line is drawn in the direction. Procedure 2: ΔEa rises from the entrance to M, and ΔEa is obtained from Equation (1), assuming that ΔEa remains unchanged (ie, ΔEa = 0) from M to the exit. By examining the relationship between the obtained inclination and W, the change of the inclination with respect to W can be given as a function. When the slope is plotted as shown in FIG. 2 to obtain the relationship with W, it can be approximated to KW n , where n is greater than 0 and less than 1, and n in the example shown in FIG. 2 is 0.5. It was. The movement of M can be expressed by a function having W as a variable. When D is a constant, it can be approximated to DW m , where m is 0 to 1.

該活性化エネルギーの変化量を用いて触媒性能の経時変化を解析する場合には、一般にアレニウス式による反応速度定数を用いることができる。使用期間経過後の反応速度定数をkとして、頻度因子をA、初期の活性化エネルギーをEa、気体定数をR、触媒層温度をT(L,W)とすると、L、Wの関数として式(2);
k(L,W)=Aexp(−(Ea+ΔEa(L,W))/RT(L,W)) (2)
で表される。
When analyzing the change in the catalyst performance with time using the change amount of the activation energy, a reaction rate constant according to the Arrhenius equation can be generally used. Assuming that the reaction rate constant after the period of use is k, the frequency factor is A, the initial activation energy is Ea 0 , the gas constant is R, and the catalyst layer temperature is T (L, W), it is a function of L and W. Formula (2);
k (L, W) = Aexp (− (Ea 0 + ΔEa (L, W)) / RT (L, W)) (2)
It is represented by

前記反応速度定数kと初期の反応速度定数kと比較することによって触媒性能の経時変化を解析できる。 It can be analyzed the time course of catalyst performance by comparing with the reaction rate constant k and the initial reaction rate constant k 0.

反応管入口にある触媒層において、算出される反応速度によって反応原料が反応生成物を生成する際、その反応量に従って反応熱が生じる。この反応熱は反応管外へ除熱され、あるいは次の触媒層に流通ガスとともに移動する。この熱収支および物質収支によって次の触媒層の温度が決定し、反応速度を計算することができる。従って、これを繰り返すことによって反応管入口から出口までの触媒層温度分布として触媒性能の経時変化を表示することができる。   In the catalyst layer at the inlet of the reaction tube, when the reaction raw material generates a reaction product at the calculated reaction rate, reaction heat is generated according to the reaction amount. This reaction heat is removed from the reaction tube, or moves to the next catalyst layer together with the flowing gas. The temperature of the next catalyst layer is determined by this heat balance and mass balance, and the reaction rate can be calculated. Therefore, by repeating this, it is possible to display the change in the catalyst performance with time as the catalyst layer temperature distribution from the inlet to the outlet of the reaction tube.

さらに運転条件の変更及び触媒性能の将来的な変化を加味して計算することで予測される触媒層温度の分布を寿命予測の判断に用いることができる。   Furthermore, the distribution of the catalyst layer temperature predicted by calculating taking into account the change in operating conditions and the future change in catalyst performance can be used for judgment of life prediction.

前記のような活性化エネルギーの変化量から触媒性能の経時変化を解析して触媒寿命を予測する触媒寿命予測方法を利用した触媒寿命解析装置は、触媒の使用期間内の目的とする生成物の総量を積算する手段、触媒使用時の触媒層温度を検出する触媒層温度検出手段、前記触媒使用期間内の目的とする生成物の総生産量を基に触媒性能の変化量を活性化エネルギーの変化量として算出する演算手段及び触媒層温度を予測する演算手段を備える。さらに、解析に当たって必要な情報を入力する手段、解析結果を出力する手段および解析結果を記録する手段を備えていても良い。   The catalyst life analysis apparatus using the catalyst life prediction method that analyzes the change in the catalyst performance with time from the amount of change in the activation energy and predicts the catalyst life is as follows. Means for integrating the total amount, catalyst layer temperature detecting means for detecting the catalyst layer temperature when the catalyst is used, and the amount of change in the catalyst performance based on the total production amount of the target product within the catalyst use period. An arithmetic means for calculating the amount of change and an arithmetic means for predicting the catalyst layer temperature are provided. Furthermore, a means for inputting information necessary for the analysis, a means for outputting the analysis result, and a means for recording the analysis result may be provided.

以下、固定床流通式反応塔からなる触媒を用いる化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量と使用期間経過後の触媒層温度を基に触媒性能の変化量を活性化エネルギーの変化量として算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析して触媒寿命を予測する触媒寿命予測方法を用いた触媒寿命解析装置を構成する前記手段および前記演算部について説明する。   Hereinafter, in a chemical reaction process using a catalyst consisting of a fixed-bed flow reaction tower, the amount of change in catalyst performance is activated based on the total amount of target products within the catalyst use period and the catalyst layer temperature after the use period has elapsed. The means constituting the catalyst life analysis device using the catalyst life prediction method that calculates the change in energy and analyzes the change in the catalyst performance with time from the change in the activation energy to predict the catalyst life Will be described.

触媒の使用時の触媒層温度を検出する触媒層温度検出手段は、固定床流通式反応塔に設置した触媒層の温度を測定するための装置である。測定された触媒層の温度は触媒層の位置毎および経過時間毎に記録される。   The catalyst layer temperature detection means for detecting the catalyst layer temperature when the catalyst is used is an apparatus for measuring the temperature of the catalyst layer installed in the fixed bed flow type reaction tower. The measured temperature of the catalyst layer is recorded for each position of the catalyst layer and every elapsed time.

触媒の使用期間内の目的とする生成物の総量を測定する手段は、固定床流通式反応塔の出口から流出する生成物量を分析することによって求めるための装置である。測定された生成物量を単位時間毎に記録し、使用期間内の生成物量を積算することで、使用期間内の目的とする生成物の総量を求めることができる。   The means for measuring the total amount of the target product within the period of use of the catalyst is an apparatus for determining by analyzing the amount of product flowing out from the outlet of the fixed bed flow type reaction tower. By recording the measured product amount every unit time and integrating the product amount within the use period, the total amount of the target product within the use period can be obtained.

触媒使用期間内の目的とする生成物の総生産量を基に触媒性能の変化量を活性化エネルギーの変化量として算出する演算手段は、前記使用期間内の目的とする生成物の総量を測定する手段で測定された目的とする生成物の総量を基に活性化エネルギーの変化量を算出する演算部、活性化エネルギーの変化量から触媒性能の経時変化を解析する演算部から構成される。   The calculation means for calculating the change amount of the catalyst performance as the change amount of the activation energy based on the total production amount of the target product within the catalyst use period measures the total amount of the target product within the use period. A calculation unit that calculates the change amount of the activation energy based on the total amount of the target product measured by the means, and a calculation unit that analyzes the change in the catalyst performance with time from the change amount of the activation energy.

触媒性能の経時変化を解析するために必要な情報を入力する手段は、活性化エネルギーの変化量を算出する演算手段へ、算出する際に使用する固定床流通式反応塔を制御する運転条件、運転中の触媒層温度、使用期間内の目的とする生成物の総量、触媒の物性や性状の情報を入力するための装置である。   The means for inputting information necessary for analyzing the change in the catalyst performance with time is an operating condition for controlling the fixed-bed flow reaction tower used for the calculation to the calculation means for calculating the change amount of the activation energy, It is an apparatus for inputting information on the temperature of the catalyst layer during operation, the total amount of the target product within the period of use, and the physical properties and properties of the catalyst.

前記使用期間内の目的とする生成物の総量を測定する装置で測定された目的とする生成物の総量を基に活性化エネルギーの変化量を算出する演算部によって活性化エネルギーの変化量を、式(1)を用いて触媒層の位置毎に算出する。活性化エネルギーの変化量から触媒性能の経時変化を解析する演算装置によって算出した触媒層の各位置における活性化エネルギーの変化量から触媒層の各位置における触媒性能の経時変化をアレニウス式による反応速度定数の式(2)を用いて解析する。   The amount of change in activation energy is calculated by a calculation unit that calculates the amount of change in activation energy based on the total amount of the target product measured by a device that measures the total amount of the target product within the period of use. It calculates for every position of a catalyst layer using Formula (1). The change rate of the catalyst performance at each position of the catalyst layer from the change amount of the activation energy at each position of the catalyst layer calculated by the arithmetic unit that analyzes the change of the catalyst performance with time from the change amount of the activation energy. Analysis is performed using the constant equation (2).

反応管入口にある触媒層において、算出される反応速度によって反応原料が反応生成物を生成する際、その反応量に従って反応熱が生じる。この反応熱は反応管外へ除熱され、あるいは次の触媒層に流通ガスとともに移動する。この熱収支および物質収支によって次の触媒層の温度が決定し、反応速度を計算することができる。これを繰り返すことによって触媒性能の経時変化を反応管入口から出口までの触媒層温度の分布として表示することができる。   In the catalyst layer at the inlet of the reaction tube, when the reaction raw material generates a reaction product at the calculated reaction rate, reaction heat is generated according to the reaction amount. This reaction heat is removed from the reaction tube, or moves to the next catalyst layer together with the flowing gas. The temperature of the next catalyst layer is determined by this heat balance and mass balance, and the reaction rate can be calculated. By repeating this, the change in the catalyst performance with time can be displayed as the distribution of the catalyst layer temperature from the inlet to the outlet of the reaction tube.

触媒性能の経時変化から触媒層温度を予測する演算部では、運転条件の変更及び触媒性能の将来的な変化を加味して計算した活性化エネルギーの変化量から触媒性能の経時変化を解析する演算装置によって算出したアレニウス式による反応速度定数を用いて前記熱収支および物質収支に従って計算することにより、触媒層温度の予測を行う。予測した触媒層温度の分布から、触媒性能の低下による反応塔への影響を解析することができる。算出した触媒層温度の予測値と触媒の使用時の触媒層温度を検出する触媒層温度検出手段によって後日測定された実測温度を比較することで、この触媒寿命を予測するための触媒寿命予測方法およびこの予測方法を用いた触媒寿命解析装置の精度を知ることができる。   In the calculation unit that predicts the catalyst layer temperature from the change in catalyst performance over time, the calculation that analyzes the change in catalyst performance over time from the amount of change in activation energy calculated taking into account changes in operating conditions and future changes in catalyst performance The temperature of the catalyst layer is predicted by calculating according to the heat balance and the mass balance using the reaction rate constant calculated by the apparatus according to the Arrhenius equation. From the predicted distribution of the catalyst layer temperature, it is possible to analyze the influence on the reaction tower due to a decrease in catalyst performance. A catalyst life prediction method for predicting the catalyst life by comparing the predicted value of the calculated catalyst layer temperature with the actual temperature measured at a later date by the catalyst layer temperature detecting means for detecting the catalyst layer temperature when the catalyst is used. And the accuracy of the catalyst life analysis apparatus using this prediction method can be known.

以上のことから、この触媒寿命予測方法およびこの予測方法を用いた触媒寿命解析装置では、予め計画した交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮する運転条件の探索と最適化を行うために、触媒層温度の将来予測を行うことができる。   From the above, in this catalyst life prediction method and the catalyst life analysis apparatus using this prediction method, the activity of the catalyst does not decrease to the necessary minimum level until the planned replacement time is reached, and the maximum catalyst is obtained. Future search of catalyst bed temperature can be made to search for and optimize operating conditions that demonstrate performance.

反応塔が可能な運転条件の探索を行い、触媒層温度の将来予測を行うとともに、生産計画に従った生産量を得ることができないと判断された場合には運転条件を再設定し直して触媒性能の経時変化を解析するために必要な情報を入力する装置に再入力して再計算させる。このようにして再計算させても、もはや反応塔が可能な運転条件の範囲では生産計画に従った生産量を得ることができないと判断された場合、触媒寿命と判断することになる。   Search for possible operating conditions for the reaction tower, predict the catalyst layer temperature in the future, and if it is judged that the production amount according to the production plan cannot be obtained, reset the operating conditions and reset the catalyst. The information necessary for analyzing the change with time of the performance is re-inputted into the device for inputting information, and recalculated. Even if recalculation is performed in this manner, if it is determined that it is no longer possible to obtain a production amount according to the production plan within the range of operating conditions in which the reaction column is possible, the catalyst life is determined.

従って、前記のように触媒寿命と判断された時期を次回交換時期に設定すれば、それまでの期間は触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように生産計画を立てることが可能になる。   Therefore, if the time determined to be the catalyst life as described above is set as the next replacement time, the catalyst activity will not be reduced to the minimum required level until that time and the maximum catalyst performance will be exhibited. It is possible to make a production plan.

解析結果を出力する手段は前記解析によって得られた触媒層の各位置における触媒性能の経時変化および触媒性能の経時変化から予測される触媒層温度を出力するための装置である。   The means for outputting the analysis result is an apparatus for outputting the catalyst layer temperature predicted from the time-dependent change of the catalyst performance and the time-dependent change of the catalyst performance at each position of the catalyst layer obtained by the analysis.

解析結果を記録する手段は前記解析に必要な情報および前記解析によって得られた触媒層の各位置における触媒性能の経時変化および触媒性能の経時変化から予測される触媒層温度を触媒寿命解析プログラムを格納したコンピューター読み取り可能な記録媒体に記録するための装置である。   The means for recording the analysis result is a catalyst life analysis program for the information necessary for the analysis and the catalyst layer temperature obtained from the change in the catalyst performance at each position of the catalyst layer obtained by the analysis and the change in the catalyst performance with time. An apparatus for recording on a stored computer-readable recording medium.

ここでいう「記録媒体」とはプログラムを記録することができるコンピューターで読み取り可能な媒体を意味する。例えば、半導体メモリ、ICカード、光ディスク、磁気ディスク、光磁気ディスク、磁気テープ、デジタルビデオディスクなどを含む。   As used herein, “recording medium” means a computer-readable medium capable of recording a program. For example, a semiconductor memory, an IC card, an optical disk, a magnetic disk, a magneto-optical disk, a magnetic tape, a digital video disk, and the like are included.

本発明による触媒寿命の予測方法および触媒寿命解析装置は、特にエチレン、塩化水素および酸素を反応させて1,2−ジクロロエタンを製造するプロセスに好適に用いることができる。   The catalyst life prediction method and the catalyst life analysis apparatus according to the present invention can be suitably used particularly for a process for producing 1,2-dichloroethane by reacting ethylene, hydrogen chloride and oxygen.

本発明による触媒寿命の予測方法および触媒寿命解析装置を用いることで、次回の触媒交換時期の計画を効率よく決定でき、その交換時期に達するまで触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように運転条件の最適化を行うことができる。   By using the catalyst life prediction method and the catalyst life analyzer according to the present invention, the plan for the next catalyst replacement time can be determined efficiently, and the activity of the catalyst does not decrease to the minimum necessary level until the replacement time is reached. In addition, the operating conditions can be optimized so as to exhibit the maximum catalyst performance.

図1は使用期間が異なる触媒の反応管の位置毎に区別して測定した活性化エネルギーの変化を示した図である。FIG. 1 is a diagram showing a change in activation energy measured separately for each position of a reaction tube of a catalyst having a different use period. 図2は図1から得られる傾きを使用期間内の目的とする生成物の総量Wに対してプロットした図である。FIG. 2 is a graph in which the slope obtained from FIG. 1 is plotted against the total amount W of the target product within the period of use. 図3は本発明に従うオキシ塩素化反応装置の触媒寿命解析装置から出力される反応管内温度分布と反応管内の実測温度とを比較した図である。FIG. 3 is a diagram comparing the temperature distribution in the reaction tube output from the catalyst life analyzer of the oxychlorination reactor according to the present invention and the actually measured temperature in the reaction tube. 図4は図3の運転条件を1年間継続した後の本発明に従うオキシ塩素化反応装置の触媒寿命解析装置から出力される反応管内温度分布と反応管内の実測温度とを比較した図である。FIG. 4 is a diagram comparing the temperature distribution in the reaction tube output from the catalyst life analysis device of the oxychlorination reactor according to the present invention after continuing the operation conditions of FIG. 3 for one year with the actually measured temperature in the reaction tube. 図5は図3の運転条件を2年間継続した後、図3と図4と同じ生産量を得るため、運転条件を変更したときの本発明に従うオキシ塩素化反応装置の触媒寿命解析装置から出力される反応管内温度分布と運転上限温度の図である。FIG. 5 shows the output from the catalyst life analyzer of the oxychlorination reactor according to the present invention when the operating conditions are changed in order to obtain the same production volume as in FIGS. It is a figure of the temperature distribution in a reaction tube and the operation upper limit temperature.

本発明に従うオキシ塩素化反応装置により触媒寿命解析装置について実際の使用例を基に説明する。   The catalyst life analysis apparatus using the oxychlorination reaction apparatus according to the present invention will be described based on an actual use example.

オキシ塩素化反応装置は固定床流通式反応塔を装備し、その反応塔内に触媒が充填されている。この触媒を解析するため反応管の入口から出口までを100分割して表示する。   The oxychlorination reactor is equipped with a fixed bed flow type reaction tower, and the catalyst is packed in the reaction tower. In order to analyze this catalyst, the area from the inlet to the outlet of the reaction tube is divided into 100 and displayed.

エチレン、塩化水素および酸素原料として空気を含む原料ガスは反応管入口より全量供給し、原料ガスが触媒層を通過する際に反応によって原料転化量に見合う反応熱が発生し、触媒層および流通ガス温度を変化させながら、出口から未反応原料および生成物が流出する方法で反応させる。式(1)および式(2)を用いて100分割した各区間の反応速度を求め、その区間の反応量から反応熱を計算し、触媒層の温度を算出する。このようにして予測した100区間の触媒層の温度分布は図3に示したようになる。図3に示した実測温度はシミュレーションによって得られた温度分布曲線と良く一致していることがわかる。その後、継続運転し一年経過後の実測温度とシミュレーションによって得られた温度分布曲線を図4に示す。図4のように一年経過後も実測温度はシミュレーションによって得られた温度分布曲線と良く一致していることが分かる。このように実測値とシミュレーションの結果がよい一致を示していることは式(1)と式(2)のモデルが適切であることを示している。さらに継続運転を仮定して二年経過後のシミュレーションによって得られた温度分布曲線を図5に示す。図3および図4と同じ生産量を維持できるように運転条件を変更したにもかかわらず運転上限温度を下回ることはなく触媒寿命は二年と判断した。   The raw material gas containing air as ethylene, hydrogen chloride, and oxygen raw material is supplied in its entirety from the inlet of the reaction tube, and when the raw material gas passes through the catalyst layer, reaction heat corresponding to the raw material conversion amount is generated by the reaction. The reaction is carried out in such a way that unreacted raw materials and products flow out from the outlet while changing the temperature. The reaction rate of each section divided by 100 using the formula (1) and the formula (2) is obtained, the reaction heat is calculated from the reaction amount in the section, and the temperature of the catalyst layer is calculated. The temperature distribution of the 100 catalyst layers predicted in this way is as shown in FIG. It can be seen that the measured temperature shown in FIG. 3 is in good agreement with the temperature distribution curve obtained by simulation. Thereafter, the measured temperature after one year of continuous operation and the temperature distribution curve obtained by simulation are shown in FIG. As shown in FIG. 4, it can be seen that the measured temperature is in good agreement with the temperature distribution curve obtained by simulation even after one year. Thus, the fact that the actual measurement value and the result of the simulation are in good agreement indicates that the models of the equations (1) and (2) are appropriate. Further, FIG. 5 shows a temperature distribution curve obtained by simulation after two years, assuming continuous operation. Although the operating conditions were changed so that the same production amount as in FIGS. 3 and 4 could be maintained, the operating upper limit temperature was not lowered and the catalyst life was determined to be two years.

このように温度解析情報を積極的に活用することにより触媒寿命を予め見積もっておき、次回の触媒交換時期を計画し、それまでの期間は触媒の活性が必要最低限のレベルまで低下せず、かつ最大限の触媒性能を発揮するように生産計画を立て触媒を有効活用することができる。   In this way, by actively utilizing the temperature analysis information, the catalyst life is estimated in advance, the next catalyst replacement period is planned, and the activity of the catalyst does not decrease to the minimum necessary level until that time, In addition, the production plan can be made so that the maximum catalyst performance can be exhibited, and the catalyst can be used effectively.

Claims (10)

触媒を用いる化学反応プロセスにおいて、触媒使用期間内の目的とする生成物の総量を基に活性化エネルギーの変化量を算出するにあたり、前記活性化エネルギーの変化量ΔEa、触媒の使用期間内の目的とする生成物の総量をW、触媒の劣化度合を示す定数をK、反応管の長さをL、反応管入口からの位置をLとすると、ΔEaをL、Wの関数として式(1);
ΔEa(L,W)=KW×(L−L) (1)
(ここでnは0より大きく1より小さい値である、)
を用いて算出し、該活性化エネルギーの変化量から触媒性能の経時変化を解析し、触媒性能の経時変化から触媒層温度を予測することにより触媒寿命を予測することを特徴とする触媒寿命予測方法。
In the chemical reaction process using a catalyst, when calculating the amount of change in activation energy based on the total amount of the target product within the catalyst use period, the change amount of activation energy ΔEa, the purpose within the catalyst use period Assuming that the total amount of the product is W, the constant indicating the degree of deterioration of the catalyst is K, the length of the reaction tube is L 0 , and the position from the reaction tube inlet is L, ΔEa is a function of L and W (1 );
ΔEa (L, W) = KW n × (L−L 0 ) (1)
(Where n is greater than 0 and less than 1)
The catalyst life prediction is characterized in that the catalyst life is calculated by analyzing the change in the catalyst performance over time from the amount of change in the activation energy and predicting the catalyst layer temperature from the change in the catalyst performance over time. Method.
活性化エネルギーの変化量ΔEaから使用期間経過後の反応速度定数kを算出し、初期の反応速度定数kと比較することにより触媒性能の経時変化を解析することを特徴とする請求項1に記載の触媒寿命予測方法。 2. The change in catalyst performance with time is analyzed by calculating a reaction rate constant k after the period of use from the change amount ΔEa of activation energy and comparing it with an initial reaction rate constant k 0. The catalyst life prediction method as described. 頻度因子をA、初期の活性化エネルギーをEa、気体定数をR、触媒層温度をT(L,W)とすると、反応速度乗数kがL、Wの関数として式(2);
k(L,W)=Aexp(−(Ea+ΔEa(L,W))/RT(L,W)) (2)
で表されることを特徴とする請求項2に記載の触媒寿命予測方法。
Assuming that the frequency factor is A, the initial activation energy is Ea 0 , the gas constant is R, and the catalyst layer temperature is T (L, W), the reaction rate multiplier k is a function of L and W (2);
k (L, W) = Aexp (− (Ea 0 + ΔEa (L, W)) / RT (L, W)) (2)
The catalyst life prediction method according to claim 2, wherein
運転条件と触媒性能の変化から予測される触媒層温度を寿命予測の判断に用いる請求項1〜3のいずれかに記載の触媒寿命予測方法。   The catalyst life prediction method according to any one of claims 1 to 3, wherein a catalyst layer temperature predicted from a change in operating conditions and catalyst performance is used for judgment of life prediction. 触媒を用いる化学反応プロセスが、エチレン、塩化水素および酸素を反応させて1,2−ジクロロエタンを製造するプロセスである請求項1〜4のいずれかに記載の触媒寿命予測方法。   The catalyst life prediction method according to any one of claims 1 to 4, wherein the chemical reaction process using a catalyst is a process for producing 1,2-dichloroethane by reacting ethylene, hydrogen chloride and oxygen. 触媒を用いる化学反応プロセスにおいて、目的とする生成物の総量を積算する手段、触媒使用時の触媒層温度を検出する手段、触媒使用期間内の総生産量を基に触媒性能の変化量を活性化エネルギーの変化量として算出する手段及び触媒層温度を予測する演算手段を備え、前記触媒使用期間経過後の活性化エネルギーの変化量ΔEaは、触媒の使用期間内の目的とする生成物の総量をW、触媒の劣化度合いを示す定数をK、反応管の長さをL、反応管入口からの位置をLとすると、ΔEaがL、Wの関数として式(1);
ΔEa(L,W)=KW ×(L−L) (1)
(ここでnは0より大きく1より小さい値である、)
で表されることを特徴とする触媒を用いた化学反応プロセス用触媒寿命解析装置。
In chemical reaction processes using catalysts, means to integrate the total amount of target products, means to detect the temperature of the catalyst layer when using the catalyst, and activate the amount of change in catalyst performance based on the total production during the catalyst usage period Means for calculating the change amount of the activation energy and a calculation means for predicting the catalyst layer temperature, and the change amount ΔEa of the activation energy after the catalyst use period has elapsed is the total amount of the target product within the use period of the catalyst Is a constant indicating the degree of deterioration of the catalyst, K is a constant of the reaction tube, L 0 is a length from the reaction tube inlet, and L is a position from the reaction tube inlet.
ΔEa (L, W) = KW n × (L−L 0 ) (1)
(Where n is greater than 0 and less than 1)
A catalyst life analyzer for a chemical reaction process using a catalyst characterized by the following.
活性化エネルギーの変化量ΔEaから使用期間経過後の反応速度定数kを算出し、初期の反応速度定数kと比較することにより触媒性能の経時変化を解析することを特徴とする請求項6に記載の触媒を用いた化学反応プロセス用触媒寿命解析装置。 7. The change in catalyst performance with time is analyzed by calculating a reaction rate constant k after the period of use from the change amount ΔEa of activation energy and comparing it with the initial reaction rate constant k 0. Catalyst life analyzer for chemical reaction process using the described catalyst. 頻度因子をA、初期の活性化エネルギーをEa、気体定数をR、触媒層温度をT(L,W)とすると、使用期間経過後の反応速度定数kが、L、Wの関数として式(2);
k(L,W)=Aexp(−(Ea+ΔEa(L,W))/RT(L,W)) (2)
で表されることを特徴とする請求項7に記載の触媒を用いた化学反応プロセス用触媒寿命解析装置。
Assuming that the frequency factor is A, the initial activation energy is Ea 0 , the gas constant is R, and the catalyst layer temperature is T (L, W), the reaction rate constant k after the period of use is a function of L and W. (2);
k (L, W) = Aexp (− (Ea 0 + ΔEa (L, W)) / RT (L, W)) (2)
The catalyst life analysis apparatus for chemical reaction processes using the catalyst of Claim 7 characterized by the above-mentioned.
運転条件と触媒性能の変化から予測される触媒層温度を寿命予測の判断に用いる請求項6〜8のいずれかに記載の触媒を用いる化学反応プロセス用触媒寿命解析装置。   9. A catalyst life analysis apparatus for a chemical reaction process using a catalyst according to claim 6, wherein the catalyst layer temperature predicted from changes in operating conditions and catalyst performance is used for judgment of life prediction. 触媒を用いた化学反応プロセスが、エチレン、塩化水素および酸素を反応させて1,2−ジクロロエタンを製造するプロセスである請求項6〜9のいずれかに記載の触媒を用いた化学反応プロセス用触媒寿命解析装置。   The catalyst for a chemical reaction process using the catalyst according to any one of claims 6 to 9, wherein the chemical reaction process using the catalyst is a process for producing 1,2-dichloroethane by reacting ethylene, hydrogen chloride and oxygen. Life analysis device.
JP2015051237A 2015-03-13 2015-03-13 Catalyst life prediction method and catalyst life analyzer Active JP6572570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051237A JP6572570B2 (en) 2015-03-13 2015-03-13 Catalyst life prediction method and catalyst life analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051237A JP6572570B2 (en) 2015-03-13 2015-03-13 Catalyst life prediction method and catalyst life analyzer

Publications (2)

Publication Number Publication Date
JP2016170117A true JP2016170117A (en) 2016-09-23
JP6572570B2 JP6572570B2 (en) 2019-09-11

Family

ID=56983572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051237A Active JP6572570B2 (en) 2015-03-13 2015-03-13 Catalyst life prediction method and catalyst life analyzer

Country Status (1)

Country Link
JP (1) JP6572570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256057A1 (en) * 2019-06-19 2020-12-24 三井化学株式会社 Use condition setting method for polymerization catalyst, polymerization condition setting method, and method for producing optical material
KR20230029118A (en) 2021-08-23 2023-03-03 주식회사 엘지화학 catalysts deactivation estimation method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460699A (en) * 1982-08-04 1984-07-17 Conoco Inc. Fixed bed catalyst for oxychlorination
JPH0925248A (en) * 1995-07-12 1997-01-28 Sumitomo Chem Co Ltd Production of 1,2-dichloroethane
JP2002372507A (en) * 2001-06-14 2002-12-26 Sumitomo Chem Co Ltd Method and program for estimating service life of fixed bed catalyst
JP2005105981A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Device for determining degree of deterioration of catalyst
WO2014061678A1 (en) * 2012-10-15 2014-04-24 宇部興産株式会社 Method of manufacturing diethyl carbonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460699A (en) * 1982-08-04 1984-07-17 Conoco Inc. Fixed bed catalyst for oxychlorination
JPH0925248A (en) * 1995-07-12 1997-01-28 Sumitomo Chem Co Ltd Production of 1,2-dichloroethane
JP2002372507A (en) * 2001-06-14 2002-12-26 Sumitomo Chem Co Ltd Method and program for estimating service life of fixed bed catalyst
JP2005105981A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Device for determining degree of deterioration of catalyst
WO2014061678A1 (en) * 2012-10-15 2014-04-24 宇部興産株式会社 Method of manufacturing diethyl carbonate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256057A1 (en) * 2019-06-19 2020-12-24 三井化学株式会社 Use condition setting method for polymerization catalyst, polymerization condition setting method, and method for producing optical material
JP6872086B1 (en) * 2019-06-19 2021-05-19 三井化学株式会社 Method for setting usage conditions of polymerization catalyst, method for setting polymerization conditions, method for manufacturing optical materials
CN113993905A (en) * 2019-06-19 2022-01-28 三井化学株式会社 Method for setting use condition of polymerization catalyst, method for setting polymerization condition, and method for producing optical material
CN113993905B (en) * 2019-06-19 2023-03-31 三井化学株式会社 Method for setting use condition of polymerization catalyst, method for setting polymerization condition, and method for producing optical material
KR20230029118A (en) 2021-08-23 2023-03-03 주식회사 엘지화학 catalysts deactivation estimation method and system

Also Published As

Publication number Publication date
JP6572570B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
Dong et al. What happens in a catalytic fixed-bed reactor for n-butane oxidation to maleic anhydride? Insights from spatial profile measurements and particle resolved CFD simulations
KR101665351B1 (en) Reactor temperature control using probability distribution
JP6572570B2 (en) Catalyst life prediction method and catalyst life analyzer
CN109002681B (en) Method for simulating/predicting catalytic activity of catalyst in surface catalytic reaction and application thereof
JP2011099666A5 (en)
CN113272748A (en) Analysis system and analysis method
JP6492814B2 (en) Catalytic reaction production system with catalyst life analyzer
JP6565237B2 (en) Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time
JP6206368B2 (en) Blast furnace state estimation apparatus and blast furnace state estimation method
JP6421442B2 (en) Catalyst life prediction method and catalyst life analysis apparatus
JP6421443B2 (en) Catalytic reaction production system with catalyst life analyzer
JP6340895B2 (en) Method for analyzing catalyst performance over time and device for analyzing catalyst performance over time
CN116911621B (en) Intelligent assessment method and system for resin production safety risk based on data driving
JP5549909B2 (en) Carburizing analysis method and carburizing analysis apparatus
EP4004150A1 (en) Forecasting the progress of coking and fouling for improved production planning in chemical production plants
JP3669573B2 (en) Life prediction method and life prediction program for fixed bed catalyst
JP5223154B2 (en) Temperature control method, temperature control device, and temperature control program
Birtill et al. Application of Parallel Difference Tests to Resolve the Axial Activation–Deactivation Profile of Copper–Zinc Oxide Catalyst During Hydrogenation of Methyl Acetate
JP4834988B2 (en) Continuous process control method and continuous process control system
Yablonsky et al. Kinetic Measurements in Heterogeneous Catalysis
KR20230167759A (en) Optimization of modifier and catalyst performance for epoxidation of ethylene
JP2019133486A (en) Plant operation state prediction system, plant operation state prediction method, and program
JP4316421B2 (en) Blast furnace hot metal temperature prediction model identification method and program thereof, blast furnace hot metal temperature prediction method and program thereof
Zhu et al. Activation of catalysts in commercial scale fixed-bed reactors: Dynamic modelling and guidelines for avoiding undesired temperature excursions
JP2019171339A (en) Catalyst regeneration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R151 Written notification of patent or utility model registration

Ref document number: 6572570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151