JP2016170105A - Infrared sensing element, radiation thermometer, and human body detector - Google Patents

Infrared sensing element, radiation thermometer, and human body detector Download PDF

Info

Publication number
JP2016170105A
JP2016170105A JP2015050996A JP2015050996A JP2016170105A JP 2016170105 A JP2016170105 A JP 2016170105A JP 2015050996 A JP2015050996 A JP 2015050996A JP 2015050996 A JP2015050996 A JP 2015050996A JP 2016170105 A JP2016170105 A JP 2016170105A
Authority
JP
Japan
Prior art keywords
infrared
temperature
human body
plan
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050996A
Other languages
Japanese (ja)
Other versions
JP6482912B2 (en
Inventor
勉 庄司
Tsutomu Shoji
勉 庄司
秀之 水戸
Hideyuki Mito
秀之 水戸
正康 滝口
Masayasu Takiguchi
正康 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2015050996A priority Critical patent/JP6482912B2/en
Publication of JP2016170105A publication Critical patent/JP2016170105A/en
Application granted granted Critical
Publication of JP6482912B2 publication Critical patent/JP6482912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared sensing element capable of reliably sensing temperature changes of an infrared transmissive member caused by external factors, and to provide a radiation thermometer and human body detector.SOLUTION: A radiation thermometer includes an infrared detection unit 11 comprising; a measurement infrared sensing element 11a configured to detect infrared rays radiating from a measurement target object M via a Fresnel lens L; and temperature-correction infrared sensing element 11b having an infrared sensing surface thereof covered with an optical filter 11c that allows detection of only infrared rays of wavelengths in a dead band of the Fresnel lens L, and being configured to detect infrared rays originating from temperature changes of the Fresnel lens L itself caused by external factors. Infrared energy sensed by the measurement infrared sensing element 11a is corrected using infrared energy originating from temperature changes of the Fresnel lens L itself sensed by the temperature-correction infrared sensing element 11b, which allows for accurately sensing temperature of the measurement target object M.SELECTED DRAWING: Figure 3

Description

本発明は、焦電素子やサーモパイルなどの物体から放射される赤外線を検出する赤外線検出素子、赤外線検出素子を用いて検知対象(物体や領域)の温度を検知する赤外線検知装置である放射温度計並びに人体検知器に関するものである。   The present invention relates to an infrared detecting element that detects infrared rays emitted from an object such as a pyroelectric element or a thermopile, and a radiation thermometer that is an infrared detecting device that detects the temperature of a detection target (object or region) using the infrared detecting element. In addition, the present invention relates to a human body detector.

下記特許文献1には、検知対象物が放射する赤外線を検出する赤外線検出素子としてサーモパイルを使用して検知対象物から放射された赤外線の強度を非接触で測定して温度値を検知する赤外線検知装置である放射温度計について開示されている。   In the following Patent Document 1, an infrared detector that uses a thermopile as an infrared detecting element for detecting infrared rays radiated from a detection object and measures the intensity of infrared rays radiated from the detection object in a non-contact manner to detect a temperature value. A radiation thermometer as an apparatus is disclosed.

この放射温度計は、使用者が測定対象物の実際の温度及び測定対象物の温度が所定の条件を満たしているか否かの判定結果を知得するため、赤外線エネルギーを検出する第1温度センサ(サーモパイル)と周囲温度を検出する第3の温度センサ(サーミスタ)との間に、第1温度センサより放射される赤外線エネルギーを検出する第2温度センサ(サーモパイル)を設け、各センサから出力される第1、第2及び第3の温度情報から温度補正された被測定対象の温度情報を取得している。   This radiation thermometer is a first temperature sensor that detects infrared energy in order for the user to know the determination result of whether the actual temperature of the measurement object and the temperature of the measurement object satisfy a predetermined condition ( A second temperature sensor (thermopile) for detecting infrared energy radiated from the first temperature sensor is provided between the thermopile) and a third temperature sensor (thermistor) for detecting the ambient temperature, and output from each sensor. Temperature information of the measurement target that has been temperature-corrected is acquired from the first, second, and third temperature information.

また、下記特許文献2には、物体から放射される赤外線の変化量を検出して監視領域内に侵入した物体が人体であるか否かを温度変化によって検知する赤外線検知装置である人体検知器について開示されている。   Patent Document 2 listed below discloses a human body detector that is an infrared detection device that detects a change in infrared rays emitted from an object and detects whether or not the object that has entered the monitoring region is a human body based on a temperature change. Is disclosed.

この人体検知器は、例えば人体検知器のカバー自体にガムテープなどの遮蔽物を貼り付ける行為や、カバーと同系色の塗料や赤外線を透過し難い透明な液体をカバー表面に塗布又はカバー内部に注入する行為のように、人体検知器のカバーに細工をして人体を検出できないようにする行為(所謂、「画策行為」)を検知するため、カバー内面側の所定箇所にカバー表面の温度変化を検出するため熱放射率や熱伝導率の高い材質で形成した表面温度検出面を設け、この検出面の温度変化によって画策の有無を判断している。   This human body detector is, for example, an act of attaching a shielding material such as gummed tape to the cover of the human body detector, or applying a paint of the same color as the cover or a transparent liquid that does not easily transmit infrared rays to the cover surface or injecting it into the cover. In order to detect an action that prevents the human body from being detected by crafting the cover of the human body detector (the so-called “planning action”), the temperature change of the cover surface is applied to a predetermined location on the inner surface side of the cover. In order to detect, a surface temperature detection surface made of a material having high thermal emissivity and thermal conductivity is provided, and the presence or absence of a plan is determined by the temperature change of the detection surface.

特開平7−280650号公報JP 7-280650 A 特許第4260341号Japanese Patent No. 4260341

ところで、特許文献1に開示される放射温度計を含む従来の放射温度計は、測定対象物から放射される赤外線をサーモパイルに集光するフレネルレンズは周囲温度若しくは測定対象の温度により温度変化の影響を受けやすいため、図9に示すようにフレネルレンズの端部近傍に温度補正用のサーミスタが配置されている。   By the way, the conventional radiation thermometer including the radiation thermometer disclosed in Patent Document 1 is a Fresnel lens for condensing infrared rays radiated from a measurement object on a thermopile. As shown in FIG. 9, a thermistor for temperature correction is arranged near the end of the Fresnel lens.

このフレネルレンズは、特にレンズ中央部が最も影響を受けやすいため、本来であればレンズ中央部付近にサーミスタを配置するのが理想的であるが、レンズ中央付近に配置してしまうと測定対象物から検出される赤外線の光路を遮ってしまうため、図9に示すようにレンズ端部近傍に配置されている。   This Fresnel lens is particularly susceptible to the center of the lens, so it would be ideal to place a thermistor near the center of the lens. 9 is disposed in the vicinity of the lens end as shown in FIG.

しかしながら、サーミスタは接触式の感熱素子であるため、レンズ端部に設置した場合は下記に示す問題1〜3が起きることでレンズ端部とレンズ中央部との温度差により正確な温度補正ができないという問題があった。
(問題1)
レンズ端部では赤外線集光による直接的な温度変化の影響を受けないため、レンズ中央部よりも温度変化が小さくなるという問題がある。
(問題2)
レンズ端部はフレネルレンズが取り付けられる筒部と接触しているため熱容量が大きくなり温度変化が小さくなるという問題がある。
(問題3)
フレネルレンズの材質がアクリルやポリエチレンなどの合成樹脂で形成されるため熱伝動性が低く温度がレンズ端部まで伝わりにくく、温度変化が小さくなるという問題がある。
However, since the thermistor is a contact-type thermal element, when it is installed at the lens end, the following problems 1 to 3 occur, so that accurate temperature correction cannot be performed due to the temperature difference between the lens end and the lens center. There was a problem.
(Problem 1)
Since the lens end portion is not affected by a direct temperature change due to infrared condensing, there is a problem that the temperature change is smaller than that of the lens center portion.
(Problem 2)
Since the lens end portion is in contact with the cylindrical portion to which the Fresnel lens is attached, there is a problem that the heat capacity increases and the temperature change becomes small.
(Problem 3)
Since the material of the Fresnel lens is formed of a synthetic resin such as acrylic or polyethylene, there is a problem that the thermal conductivity is low and the temperature is not easily transmitted to the end of the lens, and the temperature change is small.

また、上述した問題は、下記事例1、2に示すように、特に高温の測定対象物を測定するときや測定環境の温度が極端に変化することで起こりやすいため、レンズの温度変化による測定対象物の温度検知誤差を改善する方法が求められている。
(事例1)
例えば、周囲温度が約20℃、測定対象物が250℃に熱した金属であった場合、図10(a)に示すように検出直後から所定時間は高温に熱された金属からの強い熱放射(あぶり)によりレンズの温度が上昇して実際の温度(250℃)よりも高めの温度(256℃)で検出されてしまい、約6℃の誤差が生じてしまう。
(事例2)
例えば、周囲温度が約40℃から20℃に変化し、測定対象が0℃の氷であった場合、図10(b)に示すように検出直後から所定時間はレンズが周囲温度の影響で冷えていくため、実際の温度(0℃)よりも低めの温度(−2.2℃)で検出され、約2℃の誤差が生じてしまう。
In addition, as shown in Examples 1 and 2 below, the above-mentioned problems are likely to occur when measuring a high-temperature measurement object or when the temperature of the measurement environment changes extremely. There is a need for a method for improving the temperature detection error of an object.
(Case 1)
For example, when the ambient temperature is about 20 ° C. and the object to be measured is a metal heated to 250 ° C., strong heat radiation from the metal heated to a high temperature for a predetermined time immediately after detection as shown in FIG. The lens temperature rises due to (fogging) and is detected at a temperature (256 ° C.) higher than the actual temperature (250 ° C.), and an error of about 6 ° C. occurs.
(Case 2)
For example, when the ambient temperature changes from about 40 ° C. to 20 ° C. and the object to be measured is 0 ° C. ice, the lens cools for a predetermined time immediately after detection as shown in FIG. Therefore, it is detected at a temperature (−2.2 ° C.) lower than the actual temperature (0 ° C.), and an error of about 2 ° C. occurs.

また、特許文献1の放射温度計では、第1温度センサと第3温度センサとの間に第2温度センサを設け、第1温度センサから放射される赤外線を検出して温度補償しているが、やはり上述したようなフレネルレンズのレンズ中央部における温度変化に起因する温度誤差までは補償することができない。   Moreover, in the radiation thermometer of patent document 1, although the 2nd temperature sensor is provided between the 1st temperature sensor and the 3rd temperature sensor, the infrared rays radiated | emitted from a 1st temperature sensor are detected, and temperature compensation is carried out. Also, it is impossible to compensate for the temperature error caused by the temperature change in the central portion of the Fresnel lens as described above.

さらに、特許文献2に開示される人体検知器では、人体検知処理の妨げにならないようにするため、監視領域全体を監視できるように設定した赤外線受光ゾーンを外したカバー内面に表面温度検出面を設けているが、監視領域の大きさや形状は監視する場所毎に全て異なるため、機器設計者は、人体検出用多角ミラーや表面温度検出用ミラーの角度調整をするにあたり幾度も実験を繰り返して赤外線受光ゾーンから外れた位置に表面温度検出面を設定しなければならず煩雑であった。   Furthermore, in the human body detector disclosed in Patent Document 2, a surface temperature detection surface is provided on the inner surface of the cover from which the infrared light receiving zone set so as to be able to monitor the entire monitoring area is removed so as not to hinder human body detection processing. Although the size and shape of the monitoring area are all different for each location to be monitored, the equipment designer repeats experiments several times to adjust the angle of the human body detection polygon mirror and surface temperature detection mirror. The surface temperature detection surface must be set at a position outside the light receiving zone, which is complicated.

これは、表面温度検出面の設置箇所がカバー内の何処でも良いわけではなく、画策行為を高精度に検出するため、人体検知器において画策行為されやすい部分(特にカバー表面における監視領域と対向する箇所)に表面温度検出面を設ける必要があるためである。   This is because the installation location of the surface temperature detection surface may not be anywhere in the cover, and in order to detect the planning action with high accuracy, the human body detector is easily subjected to the planning action (particularly facing the monitoring area on the cover surface). This is because it is necessary to provide a surface temperature detection surface at a location).

また、監視領域が比較的広く、赤外線受光ゾーンを広範囲に設定しなければならないような場合、適切な位置に表面温度検出面を設けることができない可能性があるため、赤外線受光ゾーンの位置を考慮せずにカバーの画策検知ができる新規の人体検知器の開発が望まれている。   Also, if the monitoring area is relatively wide and the infrared light receiving zone must be set to a wide range, the surface temperature detection surface may not be provided at an appropriate position, so consider the position of the infrared light receiving zone. The development of a new human body detector that can detect the plan of the cover without using it is desired.

以上のように、上述した赤外線検知装置である放射温度計や人体検知器に共通する問題点は、赤外線を透過する部材(放射温度計であればフレネルレンズ、人体検知器であれば赤外線透過カバー)が外部の熱的作用(例えば測定対象物からの熱放射、測定環境の温度変化、カバー表面が受ける画策行為など)の影響により赤外線透過部材自体に温度変化が生じ、検出結果(検出した赤外線量に応じた温度値や温度変化)に誤差が生じてしまうことである。   As described above, the problems common to the infrared thermometer and human body detector described above are members that transmit infrared rays (a Fresnel lens for a radiation thermometer, an infrared transmission cover for a human body detector). ) Due to the influence of external thermal action (for example, thermal radiation from the measurement object, temperature change in the measurement environment, and the act of planning on the cover surface), the infrared transmission member itself changes in temperature, and the detection result (detected infrared ray) An error occurs in the temperature value or temperature change according to the amount.

そこで、本発明は、上記課題を鑑みてなされたものであり、赤外線透過部材が何らかの外的要因によって生じた温度変化を検出するため、赤外線透過部材の温度変化に起因する赤外線のみを検出することのできる赤外線検出素子を提供することを目的としている。
また、この赤外線検出素子を利用して測定対象物から放射された赤外線強度に応じた温度値を補正する機能を有する放射温度計並びに赤外線透過部材に対する画策行為を検知する機能を有する人体検知器を提供することを目的としている。
Therefore, the present invention has been made in view of the above problems, and in order to detect a temperature change caused by some external factor, the infrared transmitting member detects only infrared rays caused by the temperature change of the infrared transmitting member. It is an object of the present invention to provide an infrared detecting element that can be used.
Further, a radiation thermometer having a function of correcting a temperature value according to the infrared intensity radiated from a measurement object using the infrared detection element and a human body detector having a function of detecting a plan action for the infrared transmitting member are provided. It is intended to provide.

上記した目的を達成するために、請求項1記載の赤外線検出素子は、赤外線を透過する赤外線透過部材を介して測定対象から放射される赤外線を検出する赤外線検出素子であって、
前記赤外線透過部材における赤外線透過率が極端に低くなる不感帯域と同域の波長の赤外線のみを透過させる光学フィルタが赤外線検出面を覆うように設けられていることを特徴とする。
In order to achieve the above-described object, the infrared detection element according to claim 1 is an infrared detection element that detects infrared rays emitted from a measurement object via an infrared transmission member that transmits infrared rays.
An optical filter that transmits only infrared light having a wavelength in the same range as the dead band where the infrared transmittance of the infrared transmitting member is extremely low is provided so as to cover the infrared detection surface.

また、請求項2記載の赤外線検出素子は、請求項1記載の赤外線検出素子において、前記赤外線検出素子は、サーモパイルであることを特徴とする。   The infrared detection element according to claim 2 is the infrared detection element according to claim 1, wherein the infrared detection element is a thermopile.

また、請求項3記載の赤外線検出素子は、請求項1記載の赤外線検出素子において、前記赤外線検出素子は、焦電素子であることを特徴とする。   An infrared detection element according to claim 3 is the infrared detection element according to claim 1, wherein the infrared detection element is a pyroelectric element.

また、請求項4記載の放射温度計は、測定対象物から放射された赤外線を、赤外線透過部材からなるフレネルレンズを介して検出する測定用赤外線検出素子と、
前記フレネルレンズが外的要因によって温度変化したときに生じた赤外線のうち、前記フレネルレンズにおける赤外線透過率が極端に低くなる不感帯域と同域の波長の赤外線のみを透過する光学フィルタが赤外線検出面を覆うように設けられた温度補正用赤外線検出素子と、
を備える赤外線検出部と、
前記測定用赤外線検出素子で検出した前記測定対象物が放射する赤外線の強度に応じた温度値を、前記温度補正用赤外線検出素子で検出した前記フレネルレンズが放射する赤外線の強度に応じた温度値を用いて温度補正処理を行う演算部と、
を備えたことを特徴とする。
Further, the radiation thermometer according to claim 4 is an infrared detecting element for measurement that detects infrared rays radiated from a measurement object via a Fresnel lens made of an infrared transmitting member;
Among the infrared rays generated when the temperature of the Fresnel lens is changed due to an external factor, an optical filter that transmits only infrared rays having the same wavelength as the dead band where the infrared transmittance of the Fresnel lens is extremely low is an infrared detection surface. An infrared detecting element for temperature correction provided to cover
An infrared detector comprising:
The temperature value according to the intensity of infrared rays emitted from the measurement object detected by the measurement infrared detection element, the temperature value according to the intensity of infrared rays emitted from the Fresnel lens detected by the temperature correction infrared detection element. An arithmetic unit for performing temperature correction processing using
It is provided with.

また、請求項5記載の人体検知器は、赤外線を透過するカバーを介して監視領域内に侵入した人体から放射される赤外線を検出してこの赤外線の変化量に基づき人体の有無を検知する人体検知部と、
前記カバーが画策行為されたか否かを判定する画策検知部と、
を備える人体検知器であって、
前記画策検知部は、
前記カバーにおける赤外線透過率が極端に低くなる不感帯域と同域の波長の赤外線のみを透過する光学フィルタが赤外線検出面を覆うように設けられた画策検出用素子を有する画策検知用赤外線受光部と、
前記画策検出用素子に入力される赤外線受光量に応じて発生する受光信号と、予め設定された画策判定用閾値とを比較して画策行為の有無を判定する画策判定部と、
と備えたことを特徴とする。
Further, the human body detector according to claim 5 detects an infrared ray radiated from a human body that has entered the monitoring area through a cover that transmits infrared rays, and detects the presence or absence of the human body based on a change amount of the infrared rays. A detection unit;
A plan detecting unit for determining whether or not the cover has been planned,
A human body detector comprising:
The plan detection unit
An infrared light receiving unit for detecting a plan having an image detecting element provided so that an optical filter that transmits only infrared rays having a wavelength in the same range as the dead band where the infrared transmittance in the cover is extremely low is provided to cover the infrared detection surface; ,
A plan determination unit that determines the presence or absence of a plan action by comparing a light reception signal generated according to the amount of received infrared light input to the plan detection element and a preset plan judgment threshold;
It is characterized by having prepared.

本発明の赤外線検出素子は、赤外線透過部材における赤外線透過率が極端に低くなる不感帯域と同域波長の赤外線のみを透過させる光学フィルタが赤外線検出面を覆うよう設けているため、例えばこの素子を放射温度計に採用した場合、赤外線透過部材であるフレネルレンズが何らかの外的要因によってフレネルレンズ自体に温度変化が生じたときは、フレネルレンズを透過する測定対象物の赤外線を検出せず、フレネルレンズの温度変化に起因する不感帯域と同域の波長の赤外線のみを検出することができる。よって、測定対象物から検出した赤外線の強度に応じた温度値に誤差が生じたとしても、光学フィルタを設けた赤外線検出素子で検出した赤外線の強度からフレネルレンズ自体の温度値を知得することができるため、測定対象物の温度値を正しい値に補正することができる。   In the infrared detecting element of the present invention, an optical filter that transmits only infrared light having the same wavelength as the dead band where the infrared transmittance of the infrared transmitting member is extremely low is provided so as to cover the infrared detecting surface. When employed in a radiation thermometer, if the Fresnel lens, which is an infrared transmitting member, changes in temperature due to some external factor, the Fresnel lens does not detect the infrared light of the measurement object that passes through the Fresnel lens. It is possible to detect only infrared rays having a wavelength in the same range as the dead band due to the temperature change. Therefore, even if an error occurs in the temperature value according to the infrared intensity detected from the measurement object, the temperature value of the Fresnel lens itself can be obtained from the infrared intensity detected by the infrared detection element provided with the optical filter. Therefore, the temperature value of the measurement object can be corrected to a correct value.

また、本発明の赤外線検出素子を人体検知器に採用した場合、監視領域内に人体が侵入したときの赤外線は検出せず、カバーが画策されたときに生じるカバーの温度変化に起因する赤外線における不感帯域の波長域の赤外線のみを検出することができるので、画策行為を確実に検知することができる。   In addition, when the infrared detector of the present invention is employed in a human body detector, infrared rays when a human body enters the monitoring area are not detected, and infrared rays caused by the temperature change of the cover that occurs when the cover is planned Since only the infrared rays in the dead band wavelength range can be detected, the plan action can be detected reliably.

(a)は赤外線検知装置である人体検知器のカバーの赤外線透過率と赤外線波長との関係を示すグラフであり、(b)は実施形態2における人体検知の画策検知部で検出される不感帯域と同域の波長の赤外線波形を示す図である。(A) is a graph which shows the relationship between the infrared transmittance | permeability of the cover of the human body detector which is an infrared detector, and an infrared wavelength, (b) is a dead zone detected by the plan detection part of the human body detection in Embodiment 2. It is a figure which shows the infrared waveform of the wavelength of the same region. 本発明に係る赤外線検知装置の実施形態1となる放射温度計の概略断面図である。It is a schematic sectional drawing of the radiation thermometer used as Embodiment 1 of the infrared detecting device concerning the present invention. 同放射温度計の機能ブロック図である。It is a functional block diagram of the radiation thermometer. 本発明に係る赤外線検知装置の実施形態2となる人体検知器の概略断面図である。It is a schematic sectional drawing of the human body detector used as Embodiment 2 of the infrared rays detection device concerning the present invention. 同人体検知器の機能ブロック図である。It is a functional block diagram of a human body detector. 同人体検知器の人体判定部と画策判定部の回路構成の一例を示す図The figure which shows an example of the circuit structure of the human body determination part and plan determination part of a human body detector (a)は人体検知時における赤外線の検出状態を示す模式図であり、(b)は画策検知時における赤外線の検出状態を示す模式図である。(A) is a schematic diagram which shows the detection state of the infrared rays at the time of human body detection, (b) is a schematic diagram which shows the detection state of the infrared rays at the time of plan detection. 同人体検知器の人体検知処理と画策検知処理の赤外線検出時における出力波形を示す図である。It is a figure which shows the output waveform at the time of the infrared detection of the human body detection process and plan measure detection process of the same human body detector. 従来の赤外線検知装置である放射温度計の概略断面図である。It is a schematic sectional drawing of the radiation thermometer which is the conventional infrared rays detection apparatus. (a)は放射温度計を用いて高温の測定対象物を測定したときの温度変化を示すグラフであり、(b)は温度が極端に変化する測定環境で放射温度計による測定をしたときの測定対象物の温度変化を示すグラフである。(A) is a graph which shows the temperature change when a high-temperature measuring object is measured using a radiation thermometer, (b) is when a measurement is performed with a radiation thermometer in a measurement environment where the temperature changes extremely. It is a graph which shows the temperature change of a measuring object.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、この形態に基づいて当業者などによりなされる実施可能な他の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the present invention is not limited by this embodiment, and all other forms, examples, operation techniques, etc. that can be implemented by those skilled in the art based on this form are included in the scope of the present invention. .

本発明に係る赤外線検知装置1である放射温度計10や人体検知器20は、測定対象物Mや監視領域内に侵入する人体から放射される赤外線を検出する際に、各機器に搭載される赤外線検出素子が赤外線を透過する材料で形成された赤外線透過部材(放射温度計10であればフレネルレンズL、人体検知器20であればカバー20b)を透過する赤外線を赤外線検出素子(サーモパイル、焦電素子)で検出している。   The radiation thermometer 10 and the human body detector 20 which are the infrared detectors 1 according to the present invention are mounted on each device when detecting infrared rays radiated from the measurement object M or a human body entering the monitoring area. The infrared detecting element is formed of a material that transmits infrared rays (in the case of the radiation thermometer 10, the Fresnel lens L is used for the radiation thermometer 10, and the cover 20b is used for the human body detector 20). It is detected by the electric element).

そして、本願出願人は、〔発明が解決しようとする課題〕の項でも記載した赤外線検知装置の赤外線透過部材が外部の熱的作用の影響による当該透過部材自体の温度変化によって起こる問題点を解決するべく鋭意研究を進めた結果、赤外線透過部材には赤外線透過率が極端に低い波長域(以下「不感帯域」という)が存在することを知得した。   The applicant of the present application solved the problem that the infrared transmitting member of the infrared detecting device described in the section of [Problems to be solved by the invention] is caused by the temperature change of the transmitting member itself due to the influence of external thermal action. As a result of intensive studies, it was found that the infrared transmitting member has a wavelength region (hereinafter referred to as “dead band”) having extremely low infrared transmittance.

図1(a)は、赤外線検知装置1である人体検知器20のポリエチレン製のカバー20bにおける赤外線の波長(μm)と透過率(%T)との関係を示すグラフである。
図示のように、カバー20bには、赤外線透過率が極端に低い波長域(図中では、特に約3.5μm付近、約6.8μm付近及び13.8μm付近)が幾つか存在することが確認できる。つまり、本願発明者が知得した「不感帯域」とは、この赤外線透過率が極端に低い波長域のことであり、人体から放射される赤外線がカバー20bを透過しないため人体検知用として利用できない波長域のことである。
FIG. 1A is a graph showing a relationship between infrared wavelength (μm) and transmittance (% T) in a polyethylene cover 20 b of the human body detector 20 that is the infrared detector 1.
As shown in the figure, it is confirmed that the cover 20b has several wavelength regions (in particular, about 3.5 μm, about 6.8 μm, and 13.8 μm in the figure) with extremely low infrared transmittance. it can. In other words, the “dead band” known by the inventors of the present application is a wavelength region in which the infrared transmittance is extremely low, and the infrared ray emitted from the human body does not pass through the cover 20b and cannot be used for human body detection. It is the wavelength range.

なお、図1(a)のグラフはあくまで一例を示しており、使用するカバー20bの材質や厚さによって赤外線の透過率や不感帯域の波長域は変化するが、不感帯域の定義としては、少なくとも赤外線の透過率が極端に低く人体検知に影響の及ぼさない波長域であればよい。   Note that the graph of FIG. 1A is merely an example, and the infrared transmittance and the wavelength band of the dead band change depending on the material and thickness of the cover 20b to be used. Any wavelength region that has an extremely low infrared transmittance and does not affect human body detection may be used.

ところで、赤外線検知装置として人体検知器20を例にすると、人体検知器20に対する画策検知は、画策行為によってカバー20bに生じる温度変化に起因する赤外線量の変化を検出しているが、上述した不感帯域以外の波長域の赤外線を検出してしまうと、検出した赤外線が監視領域内で人体の移動に伴う温度変化に起因する赤外線なのか、或いは画策行為の影響で生じた温度変化に起因する赤外線なのか判断が難しくなってしまう。   By the way, when the human body detector 20 is taken as an example of the infrared detector, the plan detection for the human body detector 20 detects a change in the amount of infrared rays due to a temperature change that occurs in the cover 20b due to the plan action. If infrared rays in a wavelength range other than the band are detected, the detected infrared rays are infrared rays caused by temperature changes caused by the movement of the human body in the monitoring region, or infrared rays caused by temperature changes caused by the action of the plan. Judgment is difficult.

しかしながら、上述した不感帯域を画策検出時における赤外線検出用波長域として利用し、図1(a)に示すように画策行為によって生じた温度変化に起因する赤外線のうち、不感帯域の波長域の赤外線のみを検出することで、画策行為対策として特許文献1のようにカバー20bに表面温度検出面を設けることなく、カバー20bに対する画策行為で生じたカバー20bの温度変化に起因する赤外線量の変化と、監視領域内で生じた人体侵入に起因する赤外線量の変化とが区別できることを見出したのである。   However, the above-described dead band is used as an infrared detection wavelength region at the time of plan detection, and among the infrared rays caused by temperature changes caused by the plan action as shown in FIG. By detecting only the change in the amount of infrared rays caused by the temperature change of the cover 20b caused by the plan action on the cover 20b without providing a surface temperature detection surface on the cover 20b as in the case of Patent Document 1 as a measure for the plan action. It was found that the change in the amount of infrared rays caused by the human body intrusion that occurred in the monitoring area can be distinguished.

これは、赤外線検知装置1である放射温度計10における赤外線透過部材であるフレネルレンズLも同様であり、測定対象物Mの熱放射や測定環境によってフレネルレンズLの中央部が温度変化してしまうが、フレネルレンズL自体の不感帯域を利用してフレネルレンズLの中央部で生じた温度変化に起因する赤外線量を検出することで、測定対象物Mから放射された赤外線量と区別することができ、フレネルレンズLの不感帯域を通過した赤外線の強度に応じたフレネルレンズLの中央部の温度値で、測定対象物Mから検出した赤外線の強度に応じた温度値を補正することで、測定対象物Mの正確な温度値を知得することができる。   The same applies to the Fresnel lens L that is an infrared transmitting member in the radiation thermometer 10 that is the infrared detection device 1, and the temperature of the central portion of the Fresnel lens L changes depending on the thermal radiation of the measurement object M and the measurement environment. However, it is possible to distinguish from the amount of infrared rays emitted from the measuring object M by detecting the amount of infrared rays caused by the temperature change generated at the center of the Fresnel lens L using the dead zone of the Fresnel lens L itself. Measurement is possible by correcting the temperature value according to the intensity of the infrared ray detected from the measuring object M with the temperature value of the center part of the Fresnel lens L according to the intensity of the infrared ray that has passed through the dead zone of the Fresnel lens L. An accurate temperature value of the object M can be obtained.

以下、上述した新規の技術思想に基づき開発を進めた本発明に係る赤外線検知装置1(実施形態1として放射温度計10、実施形態2として人体検知器20)における各構成要件及び処理動作について説明する。   Hereinafter, each component requirement and processing operation in the infrared detection device 1 (the radiation thermometer 10 as the first embodiment and the human body detector 20 as the second embodiment) according to the present invention that has been developed based on the above-described new technical concept will be described. To do.

[1. 実施形態1]
まず、本発明に係る赤外線検知装置1の第1の実施形態となる放射温度計10について説明する。
実施形態1で説明する放射温度計10は、接触式での測定が困難な各種物体の表面温度を非接触で測定する場合に用いられるもので、測定対象物Mの表面から放出される赤外線の強度を測定することで、その測定対象物Mの表面温度を計測する装置である。
[1. Embodiment 1]
First, the radiation thermometer 10 used as 1st Embodiment of the infrared rays detection apparatus 1 which concerns on this invention is demonstrated.
The radiation thermometer 10 described in the first embodiment is used when measuring the surface temperature of various objects that are difficult to measure in a contact type without contact. The infrared thermometer 10 emitted from the surface of the measurement object M is used. It is an apparatus that measures the surface temperature of the measurement object M by measuring the strength.

<1−1.機器構成について>
図2又は図3に示すように、実施形態1に係る放射温度計10は、赤外線検出部11と、補償用温度検出部12と、増幅部13と、A/D変換部14と、演算部15と、温度表示部16とを備えている。
<1-1. About equipment configuration>
As shown in FIG. 2 or FIG. 3, the radiation thermometer 10 according to the first embodiment includes an infrared detection unit 11, a compensation temperature detection unit 12, an amplification unit 13, an A / D conversion unit 14, and a calculation unit. 15 and a temperature display unit 16.

赤外線検出部11は、測定対象物Mから放射された赤外線をポリエチレンなどの赤外線透過性を有する合成樹脂(赤外線透過部材)で形成されるフレネルレンズLの不感帯域以外の波長の赤外線を検出する測定用赤外線検出素子11aと、フレネルレンズLが何らかの外部要因によって温度変化したときに生じた赤外線のうちフレネルレンズLの不感帯域と同域の赤外線を検出する温度補正用赤外線検出素子11bとで構成される。   The infrared detection unit 11 detects infrared rays having wavelengths other than the dead band of the Fresnel lens L formed of a synthetic resin (infrared transmitting member) having infrared transparency such as polyethylene. Infrared detecting element 11a for temperature correction, and infrared correcting element 11b for temperature correction for detecting infrared light in the same region as the dead band of Fresnel lens L among infrared rays generated when the temperature of Fresnel lens L changes due to some external factor. The

測定用赤外線検出素子11aは、赤外線検出素子であるサーモパイル素子で構成され、フレネルレンズLを介して測定対象物Mから放射された赤外線を入射して受光し、この受光した赤外線の強度に起因する熱エネルギーを光電変換した電気信号(アナログ信号)を測定温度信号として増幅部13に出力する。   The infrared detecting element 11a for measurement is composed of a thermopile element, which is an infrared detecting element, and receives infrared light emitted from the measurement object M via the Fresnel lens L, and is caused by the intensity of the received infrared light. An electric signal (analog signal) obtained by photoelectrically converting the heat energy is output to the amplifying unit 13 as a measurement temperature signal.

つまり、測定用赤外線検出素子11aは、測定対象物Mから放射された赤外線を、フレネルレンズLにおける不感帯域以外の波長の赤外線を検出するための素子である。   That is, the measurement infrared detection element 11a is an element for detecting infrared rays emitted from the measurement object M and having wavelengths other than the dead band in the Fresnel lens L.

温度補正用赤外線検出素子11bは、赤外線検出素子であるサーモパイル素子で構成され、外部要因(測定対象物Mからの熱放射、測定位置の移動などに伴う測定環境の温度変化など)によってフレネルレンズL自体に生じた温度変化に起因する赤外線のうち、フレネルレンズLの不感帯域と同域の波長の赤外線のみを受光し、この受光した赤外線の強度に起因する熱エネルギーを光電変換した電気信号(アナログ信号)を補正用温度信号として増幅部13に出力する。   The infrared correction element 11b for temperature correction is composed of a thermopile element that is an infrared detection element, and the Fresnel lens L depends on external factors (thermal radiation from the measurement object M, temperature change in the measurement environment caused by movement of the measurement position, etc.). Of the infrared rays caused by the temperature change occurring in itself, only an infrared ray having a wavelength in the same region as the dead zone of the Fresnel lens L is received, and an electric signal (analogue) obtained by photoelectrically converting the thermal energy caused by the intensity of the received infrared ray Signal) is output to the amplifying unit 13 as a correction temperature signal.

また、温度補正用赤外線検出素子11bの赤外線検出面には、フレネルレンズLの不感帯域に含まれる波長の赤外線のみを検出させるようにする光学フィルタ11cが該検出面を覆うように設けられている。   Further, an optical filter 11c for detecting only infrared rays having a wavelength included in the dead band of the Fresnel lens L is provided on the infrared detection surface of the temperature correction infrared detection element 11b so as to cover the detection surface. .

光学フィルタ11cは、フレネルレンズLの不感帯域に含まれる波長の赤外線のみを温度補正用赤外線検出素子11bに検出させ、不感帯域以外の波長域の赤外線を検出させないようにする、所謂バンドパスフィルタの役目を担う光学部品であり、温度補正用赤外線検出素子11bの赤外線検出面の前面に設けられている。よって、光学フィルタ11cの赤外線通過帯域は、使用するフレネルレンズLの赤外線透過率により決定される不感帯域に含まれる波長の赤外線のみが通過するように設定されている。   The optical filter 11c is a so-called band-pass filter that allows the temperature-correcting infrared detection element 11b to detect only infrared light having a wavelength included in the dead band of the Fresnel lens L and not to detect infrared light in a wavelength band other than the dead band. It is an optical component that plays a role, and is provided in front of the infrared detection surface of the temperature correction infrared detection element 11b. Therefore, the infrared pass band of the optical filter 11c is set so that only infrared rays having a wavelength included in the dead band determined by the infrared transmittance of the Fresnel lens L to be used pass.

なお、光学フィルタ11cの赤外線通過帯域幅は、少なくとも使用するフレネルレンズLの不感帯域と同域となるように設定され、フレネルレンズLが温度変化に起因する外部要因を考慮して予め実験などを行うことで、フレネルレンズLの温度変化に起因する赤外線が検出できるような波長域で設定される。従って、使用するフレネルレンズLによって不感帯域が複数存在する場合は、上記実験に基づき外部要因よる温度変化に起因する赤外線の波長域に応じて適切な不感帯域を選択し、その波長域のみを通過するように光学フィルタ11cを設計すればよい。   Note that the infrared pass band width of the optical filter 11c is set to be at least the same as the dead band of the Fresnel lens L to be used, and an experiment or the like is performed in advance in consideration of external factors caused by the temperature change of the Fresnel lens L. By doing so, it is set in a wavelength range where infrared rays caused by the temperature change of the Fresnel lens L can be detected. Therefore, when there are a plurality of dead bands depending on the Fresnel lens L to be used, an appropriate dead band is selected according to the wavelength range of infrared rays caused by temperature changes due to external factors based on the above experiment, and only that wavelength band is passed. What is necessary is just to design the optical filter 11c so that it may.

つまり、温度補正用赤外線検出素子11bは、光学フィルタ11cを介することで、何らかの外部要因によってフレネルレンズLが温度変化したときに放射される赤外線のうち、フレネルレンズLにおける不感帯域と同域の波長の赤外線のみを検出できるようになっている。   That is, the infrared ray detecting element 11b for temperature correction has a wavelength in the same region as the dead band in the Fresnel lens L among infrared rays radiated when the temperature of the Fresnel lens L changes due to some external factor through the optical filter 11c. Only infrared rays can be detected.

補償用温度検出部12は、サーミスタ等の温度センサで構成され、赤外線検出部11近傍に設置される。補償用温度検出部12は、測定用赤外線検出素子11a及び温度補正用赤外線検出素子11b自体の温度の変化を抵抗値の変化として検出し、この検出した抵抗値(アナログ信号)を補償用温度信号としてA/D変換部14に出力する。なお、機器の設計上、測定用赤外線検出素子11aと温度補正用赤外線検出素子11bの設置距離が離れてしまう場合は、各素子の近傍にそれぞれ補償用温度検出部12を設置することが好ましい。   The compensation temperature detection unit 12 is composed of a temperature sensor such as a thermistor and is installed in the vicinity of the infrared detection unit 11. The compensation temperature detector 12 detects a change in temperature of the measurement infrared detection element 11a and the temperature correction infrared detection element 11b itself as a change in resistance value, and uses the detected resistance value (analog signal) as a compensation temperature signal. Is output to the A / D converter 14. If the installation distance between the measurement infrared detection element 11a and the temperature correction infrared detection element 11b is increased due to the design of the device, it is preferable to install the compensation temperature detection unit 12 in the vicinity of each element.

増幅部13は、測定用赤外線検出素子11aから出力されたアナログ信号である測定温度信号や、温度補正用赤外線検出素子11bから出力されたアナログ信号である補正用温度信号を受けて、これら信号をA/D変換部14において変換可能な信号レベルまで増幅した後、A/D変換部14に出力する。 The amplifying unit 13 receives a measurement temperature signal that is an analog signal output from the measurement infrared detection element 11a and a correction temperature signal that is an analog signal output from the temperature correction infrared detection element 11b, and outputs these signals. The signal is amplified to a signal level that can be converted by the A / D converter 14 and then output to the A / D converter 14.

A/D変換部14は、増幅部13から出力されたアナログ信号や補償用温度検出部12から出力された抵抗値を示すアナログ信号をA/D変換してディジタル信号化した後、演算部15に出力している。   The A / D converter 14 A / D converts the analog signal output from the amplifier 13 and the analog signal indicating the resistance value output from the compensation temperature detector 12 into a digital signal, and then the arithmetic unit 15 Is output.

つまり、A/D変換部14は、増幅部13から所定の信号レベルに増幅されたアナログ信号である測定用温度信号をディジタル信号に変換した後、このディジタル信号化した測定用温度信号を演算部15に出力する。また、A/D変換部14は、増幅部13から所定の信号レベルに増幅されたアナログ信号である補正用温度信号をディジタル信号に変換した後、このディジタル信号化された補正用温度信号を演算部15に出力する。さらに、A/D変換部14は、補償用温度検出部12から出力された抵抗値を示すアナログ信号をディジタル信号に変換し、このディジタル信号化した補償用温度信号を演算部15に出力する。   That is, the A / D conversion unit 14 converts the measurement temperature signal, which is an analog signal amplified to a predetermined signal level from the amplification unit 13, into a digital signal, and then converts the measurement temperature signal into a digital signal. 15 is output. The A / D conversion unit 14 converts the correction temperature signal, which is an analog signal amplified to a predetermined signal level from the amplification unit 13, into a digital signal, and then calculates the digital temperature correction signal. To the unit 15. Further, the A / D conversion unit 14 converts the analog signal indicating the resistance value output from the compensation temperature detection unit 12 into a digital signal, and outputs the digital temperature compensation signal to the calculation unit 15.

演算部15は、例えばCPU(Central Processing Unit )などのプロセッサで構成され、A/D変換部14でディジタル信号に変換された各種信号(測定用温度信号、補正用温度信号、補償用温度信号)を用いて、赤外線検出部11の各素子11a、11bの温度補償を補償用温度検出部12で検出した補償用温度信号を用いて温度補償処理や、測定用温度信号及び補正用温度信号から測定対象物Mの温度値(絶対値)の補正処理及び温度値算出処理を行う。   The arithmetic unit 15 is constituted by a processor such as a CPU (Central Processing Unit), for example, and various signals (measurement temperature signal, correction temperature signal, compensation temperature signal) converted into digital signals by the A / D conversion unit 14. Is used to measure the temperature compensation of each element 11a, 11b of the infrared detection unit 11 using the compensation temperature signal detected by the compensation temperature detection unit 12, and from the temperature signal for measurement and the temperature signal for correction. A correction process of the temperature value (absolute value) of the object M and a temperature value calculation process are performed.

測定用赤外線検出素子11aがフレネルレンズLを介して検出した赤外線エネルギーには、測定対象物Mから放射された赤外線エネルギーに加えてフレネルレンズLから放射されたフレネルレンズL自体から放射される赤外線エネルギーも含まれている。
そのため、演算部15では、測定温度信号が示す測定用赤外線検出素子11aが検出する赤外線エネルギーである「測定対象物Mから放射された赤外線エネルギー+フレネルレンズLから放射された赤外線エネルギー」から、温度補正用赤外線検出素子11bが検出した「フレネルレンズLから放射された赤外線エネルギー」を減算することで、フレネルレンズLから放射された赤外線エネルギーを相殺され、測定用赤外線検出素子11aが検出した赤外線エネルギーが測定対象物Mから放射された赤外線エネルギーのみに補正される。
Infrared energy detected by the measurement infrared detecting element 11a through the Fresnel lens L includes infrared energy emitted from the Fresnel lens L itself radiated from the Fresnel lens L in addition to infrared energy emitted from the measurement object M. Is also included.
Therefore, the calculation unit 15 calculates the temperature from “the infrared energy radiated from the measurement object M + the infrared energy radiated from the Fresnel lens L”, which is the infrared energy detected by the measurement infrared detecting element 11a indicated by the measurement temperature signal. By subtracting the “infrared energy radiated from the Fresnel lens L” detected by the correction infrared detecting element 11b, the infrared energy radiated from the Fresnel lens L is offset, and the infrared energy detected by the measuring infrared detecting element 11a Is corrected only to the infrared energy radiated from the measuring object M.

例えば、測定対象物Mの温度を「150℃」、測定対象物Mの輻射の影響を受けたフレネルレンズLの温度を「35℃」としたとき、測定用赤外線検出素子11aは、測定対象物Mの温度である「150℃」に相当する赤外線エネルギーと、フレネルレンズLから放射されるフレネルレンズL自体の温度である「35℃」に相当する赤外線エネルギーを同時に検出するため、合計で「185℃」に相当する赤外線エネルギーを検出してしまい実際の測定対象物Mの温度と誤差が生じてしまう。
しかしながら、測定用赤外線検出素子11aで検出した「185℃」に相当する赤外線エネルギーから、温度補正用赤外線検出素子11bで検出したフレネルレンズL自体の温度である「35℃」に相当する赤外線エネルギーを減算することで、実際の測定対象物Mの温度である「150℃」に相当する赤外線エネルギーを温度値に換算することができる。よって、測定対象物Mの正確な温度値を取得することができる。
For example, when the temperature of the measurement object M is “150 ° C.” and the temperature of the Fresnel lens L affected by the radiation of the measurement object M is “35 ° C.”, the measurement infrared detection element 11 a is the measurement object. Infrared energy corresponding to “150 ° C.” that is the temperature of M and infrared energy corresponding to “35 ° C.” that is the temperature of the Fresnel lens L itself radiated from the Fresnel lens L are simultaneously detected, so that “185” in total is detected. The infrared energy corresponding to “° C.” is detected, and the actual temperature and error of the measurement object M are generated.
However, infrared energy corresponding to “35 ° C.”, which is the temperature of the Fresnel lens L itself detected by the temperature correcting infrared detection element 11b, from infrared energy corresponding to “185 ° C.” detected by the measurement infrared detection element 11a. By subtracting, infrared energy corresponding to “150 ° C.”, which is the actual temperature of the measuring object M, can be converted into a temperature value. Therefore, an accurate temperature value of the measurement object M can be acquired.

温度表示部16は、ディスプレイ装置(LCD(liquid crystal display)など)で構成され、演算部15で算出された温度値を数値表示する。   The temperature display unit 16 includes a display device (LCD (liquid crystal display) or the like), and displays the temperature value calculated by the calculation unit 15 as a numerical value.

<1−2.処理動作について>
次に、上述した放射温度計10の処理動作について説明する。
<1-2. About processing operations>
Next, the processing operation of the radiation thermometer 10 described above will be described.

まず、測定対象物Mの温度測定を開始すると、測定用赤外線検出素子11aは、フレネルレンズLを介して測定対象物Mから放射された赤外線を検出し、温度補正用赤外線検出素子11bは、フレネルレンズL自体から放射される赤外線を検出する。また、これと平行して、補償用温度検出部12は、赤外線検出部11の各素子11a、11bの素子自体の温度の変化を抵抗値の変化として検出し、この検出した抵抗値(アナログ信号)を補償用温度信号としてA/D変換部14に出力する。   First, when temperature measurement of the measurement object M is started, the measurement infrared detection element 11a detects infrared rays radiated from the measurement object M via the Fresnel lens L, and the temperature correction infrared detection element 11b Infrared rays emitted from the lens L itself are detected. In parallel with this, the compensation temperature detector 12 detects a change in temperature of each element 11a, 11b of the infrared detector 11 as a change in resistance value, and detects the detected resistance value (analog signal). ) To the A / D converter 14 as a compensation temperature signal.

このとき、温度補正用赤外線検出素子11bは、光学フィルタ11cを介して赤外線を検出するため、フレネルレンズLを通過する測定対象物Mからの赤外線は検出せず、フレネルレンズL自体から放射される赤外線のうちフレネルレンズLの不感帯域と同域の波長の赤外線のみを検出する。   At this time, since the temperature correction infrared detecting element 11b detects infrared rays via the optical filter 11c, the infrared rays from the measuring object M passing through the Fresnel lens L are not detected, but are emitted from the Fresnel lens L itself. Of the infrared rays, only the infrared rays having the same wavelength as the dead zone of the Fresnel lens L are detected.

次に、測定用赤外線検出素子11aで検出した測定対象物Mの赤外線の強度に起因する熱エネルギーを光電変換した電気信号(アナログ信号)を測定温度信号として増幅部13に出力する。また、温度補正用赤外線検出素子11bは、外部要因によってフレネルレンズL自体に生じた温度変化に起因する赤外線のうち、フレネルレンズLの不感帯域と同域の波長の赤外線のみを受光し、この受光した赤外線の強度に起因する熱エネルギーを光電変換した電気信号(アナログ信号)を補正用温度信号として増幅部13に出力する。   Next, an electrical signal (analog signal) obtained by photoelectrically converting thermal energy caused by the infrared intensity of the measurement object M detected by the measurement infrared detection element 11a is output to the amplification unit 13 as a measurement temperature signal. Also, the temperature correcting infrared detecting element 11b receives only infrared rays having a wavelength in the same region as the dead band of the Fresnel lens L among infrared rays caused by temperature changes caused in the Fresnel lens L itself due to external factors. An electric signal (analog signal) obtained by photoelectrically converting the thermal energy resulting from the intensity of the infrared light is output to the amplifying unit 13 as a correction temperature signal.

次に、増幅部13は、測定用赤外線検出素子11aから出力された測定温度信号や、温度補正用赤外線検出素子11bから出力された補正用温度信号をA/D変換部14において変換可能な信号レベルまで増幅した後、A/D変換部14に出力する。そして、A/D変換部14は、増幅部13から出力されたアナログ信号である測定温度信号や補正用温度信号、補償用温度検出部12から出力された抵抗値を示すアナログ信号をA/D変換してディジタル信号化した後、演算部15に出力する。   Next, the amplification unit 13 is a signal that can be converted by the A / D conversion unit 14 from the measurement temperature signal output from the measurement infrared detection element 11a and the correction temperature signal output from the temperature correction infrared detection element 11b. After being amplified to the level, it is output to the A / D converter 14. Then, the A / D conversion unit 14 converts an analog signal indicating the measurement temperature signal and the correction temperature signal, which are analog signals output from the amplification unit 13, and the resistance value output from the compensation temperature detection unit 12, into A / D. After being converted into a digital signal, it is output to the arithmetic unit 15.

演算部15では、赤外線検出部11の各素子11a、11bの温度補償を補償用温度検出部12で検出した補償用温度信号を用いて温度補償処理を行うとともに、A/D変換部14から出力された測定用温度信号及び補正用温度信号から測定対象物Mの温度値(絶対値)の算出処理を行う。すなわち、測定温度信号が示す測定用赤外線検出素子11aが検出する赤外線エネルギーから、補正用温度信号が示す温度補正用赤外線検出素子11bが検出したフレネルレンズLから放射された赤外線エネルギー分を減算することで、フレネルレンズLから放射された赤外線エネルギーを相殺し、測定対象物Mから放射された赤外線エネルギーのみを取得する。   The calculation unit 15 performs temperature compensation processing using the compensation temperature signal detected by the compensation temperature detection unit 12 for temperature compensation of the elements 11 a and 11 b of the infrared detection unit 11 and outputs from the A / D conversion unit 14. The temperature value (absolute value) of the measuring object M is calculated from the measured temperature signal and correction temperature signal. That is, the infrared energy radiated from the Fresnel lens L detected by the temperature correction infrared detection element 11b indicated by the correction temperature signal is subtracted from the infrared energy detected by the measurement infrared detection element 11a indicated by the measurement temperature signal. Thus, the infrared energy emitted from the Fresnel lens L is canceled out, and only the infrared energy emitted from the measurement object M is acquired.

その後、演算部15において、補正処理によって取得した測定対象物Mから放射された赤外線エネルギーを温度値に換算し、この温度値の情報を温度表示部16にして温度表示させる。   Thereafter, the calculation unit 15 converts the infrared energy radiated from the measurement object M acquired by the correction process into a temperature value, and the temperature display unit 16 displays the temperature information as a temperature display.

<1−3.実施形態1の効果>
以上説明したように、上述した実施形態1に係る放射温度計10は、フレネルレンズLを介して測定対象物Mから放射された赤外線を検出する測定用赤外線検出素子11aと、フレネルレンズLの不感帯域に含まれる波長の赤外線のみを検出させるようにする光学フィルタ11cが赤外線検出面を覆うように設けて外的要因によるフレネルレンズL自体の温度変化に起因する赤外線を検出する温度補正用赤外線検出素子11bとを有する赤外線検出部11を備えている。
<1-3. Effect of Embodiment 1>
As described above, the radiation thermometer 10 according to the first embodiment described above is insensitive to the measurement infrared detection element 11a that detects the infrared rays radiated from the measurement object M via the Fresnel lens L and the Fresnel lens L. An optical filter 11c that detects only infrared rays having a wavelength included in the band is provided so as to cover the infrared detection surface, and detects infrared rays due to temperature changes of the Fresnel lens L itself due to external factors. An infrared detector 11 having an element 11b is provided.

これにより、赤外線検出部11において測定対象物Mから放射された赤外線を検出する際に、温度補正用赤外線検出素子11bにおいて外的要因によってフレネルレンズL自体の温度変化したときに生じる赤外線のみを検出しているため、測定用赤外線検出素子11aで検出した赤外線エネルギーを、温度補正用赤外線検出素子11bで検出したフレネルレンズL自体の温度変化に起因する赤外線エネルギーで補正することができ、結果として測定対象物Mの正確な温度検出が可能となる。   Thereby, when detecting the infrared ray radiated from the measuring object M in the infrared detecting unit 11, only the infrared ray generated when the temperature of the Fresnel lens L itself is changed by an external factor in the temperature correcting infrared detecting element 11b is detected. Therefore, the infrared energy detected by the infrared detecting element 11a for measurement can be corrected with the infrared energy caused by the temperature change of the Fresnel lens L itself detected by the infrared detecting element 11b for temperature correction. Accurate temperature detection of the object M is possible.

[2.実施形態2]
次に、本発明に係る赤外線検知装置の第2の実施形態となる人体検知器20について説明する。
[2. Second Embodiment]
Next, the human body detector 20 which becomes 2nd Embodiment of the infrared rays detection apparatus which concerns on this invention is demonstrated.

<2−1.機器構成について>
図4又は図5に示すように、本例の人体検知器20は、検知対象となる人体の移動に伴う赤外線の変化量により監視領域内における人体の有無を検知する機能と、主にカバー20bの表面に例えばスプレーやペンキ、その他赤外線を吸収・遮断する液体、テープなどを噴射・塗布して人体検知器20による人体検知ができないようにする画策行為によってカバー20bが遮蔽されたか否かを検知する機能を実現するため、筐体20a内に人体検知部21と、画策検知部22と、制御部23と、出力部24と、電源部25とを具備する。
<2-1. About equipment configuration>
As shown in FIG. 4 or FIG. 5, the human body detector 20 of the present example has a function of detecting the presence or absence of a human body in a monitoring region based on a change amount of infrared rays accompanying movement of a human body to be detected, and mainly a cover 20b. Detect whether the cover 20b has been shielded by the act of spraying or applying, for example, spray or paint, other liquids that absorb or block infrared rays, tape, etc. to prevent human detection by the human detector 20 In order to realize the function to perform, a human body detection unit 21, an image plan detection unit 22, a control unit 23, an output unit 24, and a power supply unit 25 are provided in the housing 20a.

また、人体検知部21、画策検知部22、制御部23、出力部24及び電源部25が外部に露出しないようにするため、これらを覆うカバー20bが筐体20aに取り付けられている。   Further, in order to prevent the human body detection unit 21, the plan measure detection unit 22, the control unit 23, the output unit 24, and the power supply unit 25 from being exposed to the outside, a cover 20b that covers them is attached to the housing 20a.

カバー20bは、例えばポリエチレンやポリプロピレンのような監視領域内に侵入する人体から放射される赤外線が透過しやすい素材(赤外線透過部材)で形成されている。また、カバー20bは、赤外線以外の外乱光の受光を避けるフィルタの役目と悪戯防止を目的として、内部部品が外部から視認できないように白濁色や明度が比較的低い色となるように色調調整されている。   The cover 20b is formed of a material (infrared transmitting member) that easily transmits infrared rays radiated from a human body entering the monitoring area, such as polyethylene or polypropylene. In addition, the cover 20b is color-adjusted so as to have a cloudy color or a relatively low brightness so that the internal components cannot be visually recognized from the outside for the purpose of preventing the mischief of the ambient light other than infrared rays and preventing mischief. ing.

人体検知部21は、監視領域内に設定した赤外線受光ゾーンE1から赤外線を受光する人体検知用赤外線受光部21Aと、人体検知用赤外線受光部21Aで受光した赤外線量に応じて監視領域内の人体の有無を判断する人体判定部21Bとを備えている。   The human body detection unit 21 is configured to receive a human body detection infrared light receiving unit 21A that receives infrared light from the infrared light receiving zone E1 set in the monitoring region, and the human body in the monitoring region according to the amount of infrared light received by the human body detection infrared light receiving unit 21A. And a human body determination unit 21B for determining the presence or absence.

人体検知用赤外線受光部21Aは、監視領域内での人体の移動に伴う赤外線の変化量を検出しており、赤外線受光ミラー21Aa、人体検出用素子21Abを有している。   The human body detecting infrared light receiving unit 21A detects the amount of change in infrared light accompanying the movement of the human body within the monitoring region, and includes an infrared light receiving mirror 21Aa and a human body detecting element 21Ab.

赤外線受光ミラー21Aaは、人体検出用素子21Abとにより、所望の監視領域内に赤外線受光ゾーンE1を形成するように、上下左右方向に複数の領域に分割された多角ミラーで構成される。赤外線受光ミラー21Aaは、監視領域内に設定した赤外線受光ゾーンE1に侵入した人体の移動に伴う赤外線を受け、この赤外線を光軸上の焦点に位置する人体検出用素子21Abの検出面に導いている。   The infrared light receiving mirror 21Aa is composed of a polygonal mirror divided into a plurality of regions in the vertical and horizontal directions so as to form an infrared light receiving zone E1 in a desired monitoring region by the human body detecting element 21Ab. The infrared light receiving mirror 21Aa receives infrared rays accompanying the movement of the human body that has entered the infrared light receiving zone E1 set in the monitoring area, and guides the infrared rays to the detection surface of the human body detecting element 21Ab located at the focal point on the optical axis. Yes.

人体検出用素子21Abは、焦電素子やサーモパイルなどの赤外線検出素子であって、筐体20a内の回路基板20c上に固設される。人体検出用素子21Abは、太陽光などの外乱による誤検出を防止するため、極性の異なる2個の検出素子を差動接続して構成される。人体検出用素子21Abは、赤外線受光ミラー21Aaにより反射されて導かれる赤外線受光ゾーンE1からの赤外線を受光し、この受光した赤外線の受光量に応じて発生する受光信号を人体判定部21Bに出力している。   The human body detecting element 21Ab is an infrared detecting element such as a pyroelectric element or a thermopile, and is fixed on the circuit board 20c in the housing 20a. The human body detection element 21Ab is configured by differentially connecting two detection elements having different polarities in order to prevent erroneous detection due to disturbance such as sunlight. The human body detecting element 21Ab receives the infrared light from the infrared light receiving zone E1 reflected and guided by the infrared light receiving mirror 21Aa, and outputs a received light signal generated according to the received light amount of the received infrared light to the human body determination unit 21B. ing.

人体判定部21Bは、人体検知用赤外線受光部21Aの人体検出用素子21Abに入力される赤外線受光量に応じて発生する受光信号と、予め実験で定めた閾値(人体判定用閾値)とを比較し人体の有無を判定している。   The human body determination unit 21B compares a light reception signal generated according to the amount of received infrared light input to the human body detection element 21Ab of the human body detection infrared light reception unit 21A with a threshold value (human body determination threshold value) determined in advance in an experiment. The presence or absence of a human body is determined.

詳述すると、人体判定部21Bは、例えば図6に示すように、増幅器21Ba、比較器21Bb,21Bcを備えている。増幅器21Baには人体検出用素子21Abの受光信号が入力され、比較器21Bbには増幅器21Baの出力と閾値Vref1+が入力される。また、比較器21Bcには増幅器21Baの出力と閾値Vref1−が入力される。   Specifically, the human body determination unit 21B includes an amplifier 21Ba and comparators 21Bb and 21Bc, as shown in FIG. 6, for example. A light reception signal of the human body detecting element 21Ab is input to the amplifier 21Ba, and an output of the amplifier 21Ba and a threshold value Vref1 + are input to the comparator 21Bb. Further, the output of the amplifier 21Ba and the threshold value Vref1- are input to the comparator 21Bc.

よって、人体判定部21Bには、予め算出された人体の有無を判定するために適当な閾値として、上限閾値Vref1+と下限閾値Vref1−がそれぞれ設定入力されている。そして、増幅器21Baにて増幅された人体検出用素子21Abからの受光信号が、人体判定時間T1以内に上記閾値Vref1+又はVref1−を所定回数(1回以上)超えたときに人体有りと判定し、そうでないときに人体無しと判定する。また、人体有りと判定したときのみ、人体検知信号を制御部23に出力している。   Therefore, the upper limit threshold value Vref1 + and the lower limit threshold value Vref1- are set and input as appropriate threshold values for determining the presence or absence of a human body calculated in advance in the human body determination unit 21B. Then, when the light reception signal from the human body detecting element 21Ab amplified by the amplifier 21Ba exceeds the threshold value Vref1 + or Vref1- within the human body determination time T1, it is determined that there is a human body, Otherwise, it is determined that there is no human body. In addition, the human body detection signal is output to the control unit 23 only when it is determined that there is a human body.

なお、人体判定時間T1は、制御部23により人体検出用素子21Abから受光信号を入力したときの入力タイミングをトリガとして計時が開始され、所定時間計時するリセットされる。   The human body determination time T <b> 1 is started by using the input timing when the light receiving signal is input from the human body detecting element 21 </ b> Ab by the control unit 23 as a trigger, and is reset to measure a predetermined time.

画策検知部22は、画策行為によってカバー20bに生じた温度変化に起因する赤外線を受光する画策検知用赤外線受光部22Aと、画策検知用赤外線受光部22Aで受光した赤外線量に応じてカバー20bに対する画策の有無を判断する画策判定部22Bとを備えている。   The plan detecting unit 22 receives the infrared rays for detecting the infrared rays due to the temperature change caused in the cover 20b due to the plan action, and the cover 20b according to the amount of infrared light received by the plan detecting infrared receiving unit 22A. A plan determining unit 22B that determines the presence or absence of the plan.

画策検知用赤外線受光部22Aは、画策行為によるカバー20bの温度変化に起因する赤外線を検出する画策検出用素子22Aaと、画策検出用素子22Aaの赤外線検出面を覆うように設けられる光学フィルタ22Abとを備え、筐体20a内の回路基板20dに固設される。   The plan-detecting infrared light receiving unit 22A includes a plan-detecting element 22Aa that detects an infrared ray caused by a temperature change of the cover 20b due to a plan action, and an optical filter 22Ab provided so as to cover the infrared detection surface of the plan-detecting element 22Aa. And is fixed to the circuit board 20d in the housing 20a.

画策検出用素子22Aaは、焦電素子などの赤外線検出素子で構成される。画策検出用素子22Aaは、カバー20bの裏面に設定した画策検出ゾーンE2から画策行為により生じたカバー20bの放射熱に含まれる赤外線を受光し、この受光した赤外線の受光量に応じて発生する受光信号を画策判定部22Bに出力している。なお、画策検出ゾーンE2は、例えば図1に示すように、カバー20bにおいて画策行為がされやすい部分(特に監視領域と対向するカバー20b表面の裏側)が含まれるように設定するのが好ましい。   The scheme detection element 22Aa is configured by an infrared detection element such as a pyroelectric element. The design detection element 22Aa receives infrared rays included in the radiant heat of the cover 20b generated by the plan action from the design detection zone E2 set on the back surface of the cover 20b, and receives light generated according to the received amount of the received infrared rays. The signal is output to the scheme determination unit 22B. Note that the plan detection zone E2 is preferably set so as to include a portion where the plan action is likely to be performed in the cover 20b (particularly the back side of the cover 20b facing the monitoring area) as shown in FIG.

光学フィルタ22Abは、使用するカバー20bの不感帯域に含まれる波長の赤外線のみを画策検出用素子22Aaに検出させ、不感帯域以外の波長域の赤外線を検出させないようにする、所謂バンドパスフィルタの役目を担う光学部品であり、画策検出用素子22Aaの赤外線検出面と重なるように設けられている。よって、光学フィルタ22Abの赤外線通過帯域は、使用するカバー20bの赤外線透過率により決定される不感帯域に含まれる波長の赤外線のみが通過するように設定されている。   The optical filter 22Ab serves as a so-called band-pass filter that causes the image detection element 22Aa to detect only infrared light having a wavelength included in the dead band of the cover 20b to be used, and prevents detection of infrared light in a wavelength band other than the dead band. Is provided so as to overlap the infrared detection surface of the image detection element 22Aa. Therefore, the infrared pass band of the optical filter 22Ab is set so that only infrared rays having a wavelength included in the dead band determined by the infrared transmittance of the cover 20b to be used pass.

なお、光学フィルタ22Abの赤外線通過帯域幅は、少なくとも使用するカバー20bの不感帯域と同域となるように設定され、さらに使用するカバー20bの状態(材質や厚さ)、人体検知器20の設置環境(設置高さ、温度、天候による環境変化の有無など)、想定される画策行為(例えば、遮光シールの貼着、スプレーによる液体噴射、刷毛による液体塗布、注射器による液体注入など)などの種々の要因を考慮して予め実験などを行うことで、人体検知器20が画策されたときに生じるカバー20bの温度変化に起因する赤外線が検出できるような波長域で設定される。従って、使用するカバー20bによって不感帯域が複数存在する場合は、上記実験に基づき知得される画策行為による温度変化に起因する赤外線の波長域に応じて適切な不感帯域を選択し、その波長域のみを通過するように光学フィルタ22Abを設計すればよい。   The infrared pass band width of the optical filter 22Ab is set so as to be at least the same as the dead band of the cover 20b to be used, and the state (material and thickness) of the cover 20b to be used and the installation of the human body detector 20 Environment (installation height, temperature, presence / absence of environmental change due to weather, etc.), various planned actions (for example, sticking a light-shielding seal, spraying liquid with spray, applying liquid with brush, injecting liquid with syringe, etc.) By performing an experiment in advance in consideration of the above factors, the wavelength range is set such that infrared rays caused by the temperature change of the cover 20b generated when the human body detector 20 is planned can be detected. Therefore, when there are a plurality of dead bands depending on the cover 20b to be used, an appropriate dead band is selected in accordance with the infrared wavelength band resulting from the temperature change caused by the plan action obtained based on the experiment, and the wavelength band It is only necessary to design the optical filter 22Ab so as to pass only through.

このように、本例の人体検知器20に具備される画策検知部22は、図1(b)に示すように、設定した不感帯域(図例では、不感帯域を3.3μm〜3.8μmに設定)と同域の波長の赤外線(図中の実線波形)のみを通過させる光学フィルタ22Abを、画策検出用素子22Aaの赤外線検出面を覆うように設けているため、監視領域内に人体が侵入したときの赤外線は検出されず、カバー20bに画策されたときに生じるカバー20bの温度変化に起因する赤外線のみを検出することができるため、画策行為を確実に検出することができる。   As described above, the plan detecting unit 22 included in the human body detector 20 of the present example has a set dead band (in the illustrated example, the dead band is 3.3 μm to 3.8 μm, as shown in FIG. 1B). Since an optical filter 22Ab that passes only infrared rays having a wavelength in the same region (solid line waveform in the figure) is provided so as to cover the infrared detection surface of the design detection element 22Aa, the human body is within the monitoring region. Infrared rays when entering are not detected, and only infrared rays caused by a temperature change of the cover 20b generated when the cover 20b is planned can be detected, so that the planning action can be reliably detected.

画策判定部22Bは、画策検知用赤外線受光部22Aの画策検出用素子22Aaに入力される赤外線受光量に応じて発生する受光信号と、予め実験で定めた閾値(画策判定用閾値)とを比較し画策の有無を判定している。   The plan determination unit 22B compares a light reception signal generated according to the amount of received infrared light input to the plan detection element 22Aa of the plan detection infrared light receiving unit 22A and a threshold (plan determination threshold) determined in advance by experiment. The presence or absence of a plan is determined.

詳述すると、画策判定部22Bは、例えば図6に示すように、増幅器22Ba、比較器22Bb,22Bc、論理和(オア)回路22Bdを備えている。増幅器22Baには画策検出用素子22Aaの受光信号が入力され、比較器22Bbには増幅器22Baの出力と閾値Vref2+が入力され、比較器22Bcには増幅器22Baの出力と閾値Vref2−が入力される。 More specifically, the plan determining unit 22B includes an amplifier 22Ba, comparators 22Bb and 22Bc, and a logical sum (OR) circuit 22Bd, as shown in FIG. 6, for example. The amplifier 22Ba receives the light reception signal of the scheme detection element 22Aa, the comparator 22Bb receives the output of the amplifier 22Ba and the threshold value Vref2 +, and the comparator 22Bc receives the output of the amplifier 22Ba and the threshold value Vref2-.

すなわち、画策判定部22Bには、予め算出されたカバー20bの温度変化の有無を判定するために適当な閾値として、上限閾値Vref2+と下限閾値Vref2−がそれぞれ設定入力されている。そして、増幅器22Baにて増幅された画策検出用素子22Aaからの受光信号が、画策判定時間T2以内に上記閾値Vref2+又はVref2−を所定回数(1回以上)超えたときカバー20bの画策有りと判定し、そうでないときにカバー20bの画策変化無しと判定する。そして、画策有りを判定すると、画策検知信号を制御部23に出力している。   That is, the upper limit threshold Vref2 + and the lower limit threshold Vref2- are set and input as appropriate thresholds for determining whether or not the temperature change of the cover 20b is calculated in advance in the plan determination unit 22B. Then, when the light reception signal from the design detection element 22Aa amplified by the amplifier 22Ba exceeds the threshold value Vref2 + or Vref2- within a design determination time T2, the determination is made that the cover 20b is planned. If not, it is determined that there is no plan change of the cover 20b. When it is determined that there is a plan, the plan detection signal is output to the control unit 23.

なお、画策判定時間T2は、画策検出用素子22Aaから受光信号を入力したときの入力タイミングをトリガとして制御部23により計時が開始され、所定時間計時するリセットされる。   The plan determination time T2 is started by the control unit 23 using the input timing when the received light signal is input from the plan detection element 22Aa as a trigger, and reset for a predetermined time.

以上のように、本例の人体検知器20では、図7(a)に示すように、監視領域内に設定した赤外線受光ゾーンE1から受光した人体の移動に伴う赤外線は、カバー20bを透過して人体検知用赤外線受光部21Aで受光されるが、画策検知用赤外線受光部22Aには光学フィルタ22Abが設けられているためカバー20bを透過する赤外線が受光されることはない。   As described above, in the human body detector 20 of the present example, as shown in FIG. 7A, the infrared light accompanying the movement of the human body received from the infrared light receiving zone E1 set in the monitoring region is transmitted through the cover 20b. The human body detecting infrared light receiving unit 21A receives the light, but the plan detecting infrared light receiving unit 22A is provided with the optical filter 22Ab so that the infrared light transmitted through the cover 20b is not received.

一方、図7(b)に示すように、画策検知用赤外線受光部22Aは、スプレーなどによるカバー20bの画策行為によって生じた温度変化に起因する赤外線のうち、カバー20bの不感帯域と同じ波長域の赤外線のみが検出されるように画策検出用素子22Aaの赤外線検出面に光学フィルタ22Abが設けられているため、不感帯域以外の波長域の赤外線は検出されることがない。よって、人体から放射される赤外線を画策行為として誤検知することがなく、画策行為による温度変化のみを検出することができる。   On the other hand, as shown in FIG. 7B, the infrared detection unit 22A for detecting the plan is the same wavelength range as the dead band of the cover 20b among the infrared rays caused by the temperature change caused by the plan action of the cover 20b by spraying or the like. Since the optical filter 22Ab is provided on the infrared detection surface of the design detecting element 22Aa so that only the infrared rays are detected, infrared rays in a wavelength region other than the dead zone are not detected. Therefore, the infrared rays radiated from the human body are not erroneously detected as the plan action, and only the temperature change due to the plan action can be detected.

制御部23は、例えばCPU(Central Processing Unit )やROM(Read Only Memory),RAM(Random Access Memory)又はこれらの機能を具備するMPU(Micro-Processing Unit )等のプロセッサで構成され、人体判定部21Bからの人体検知信号や、画策判定部22Bからの画策検知信号に基づいて出力部24から出力先に対する異常信号(人体検知に伴う異常信号、画策検知に伴う異常信号)の出力制御をしている。   The control unit 23 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), or a processor such as an MPU (Micro-Processing Unit) having these functions. Based on the human body detection signal from 21B and the plan detection signal from the plan determination unit 22B, the output unit 24 controls the output of the abnormal signal (the abnormal signal accompanying the human body detection, the abnormal signal accompanying the plan detection) to the output destination. Yes.

また、制御部23は、タイマーなどの計時手段23aを備えており、人体検知処理時には人体判定時間T1の計時処理(計時開始処理や計時時間リセット処理)、画策検知処理時は画策判定時間T2の計時処理(計時開始処理や計時時間リセット処理)を行う。そして、制御部23は、人体判定時間T1又は画策判定時間T2を計時後、出力部24を介して出力先に所定の異常信号を出力する。   Further, the control unit 23 includes a timer 23a such as a timer. The human body determination time T1 is measured at the time of human body detection processing (time measurement start processing and timekeeping time reset processing), and the plan determination time T2 at the time of plan detection processing. Performs timekeeping processing (timekeeping start processing and timekeeping time reset processing). And the control part 23 outputs a predetermined | prescribed abnormal signal to an output destination via the output part 24, after measuring the human body determination time T1 or the plan determination time T2.

出力部24は、人体検知の有無や画策行為の有無を示す異常信号を、制御部23の制御により出力先に出力する。   The output unit 24 outputs an abnormal signal indicating the presence / absence of human body detection or the presence / absence of a plan action to the output destination under the control of the control unit 23.

異常信号の出力先としては、例えばブザーなどの鳴動機器、LEDなどの表示機器、監視領域を監視する警備会社のPC(personal computer )などがあり、これらに対して異常を示す異常信号を出力する。これにより、出力先となる各機器では、入力した異常信号に基づき、所定の警報動作(鳴動処理、点灯/点滅処理、表示画面における文字表示処理など)により異常発生を通知する。   The output destination of the abnormal signal includes, for example, a sounding device such as a buzzer, a display device such as an LED, and a PC (personal computer) of a security company that monitors the monitoring area, and outputs an abnormal signal indicating an abnormality to these. . Thereby, each device as the output destination notifies the occurrence of an abnormality by a predetermined alarm action (ringing process, lighting / flashing process, character display process on the display screen, etc.) based on the input abnormality signal.

なお、出力先となる鳴動機器や表示機器を人体検知器20に具備させ、人体検知や画策検知したときに人体検知器20自身が警報動作するような構成としてもよい。   In addition, it is good also as a structure which makes the human body detector 20 equip the human body detector 20 with the sounding device and display apparatus used as an output destination, and when the human body detector 20 detects a plan, the human body detector 20 itself carries out an alarm operation.

電源部25は、一般的な商用電源ユニット、ボタン電池や乾電池(一次電池、二次電池を問わず)などの各種電池が着脱交換可能な電源ユニット若しくは光起電力効果を利用して太陽光や照明光などの光エネルギーを直接電力に変換する光電池モジュールの何れかで構成され、人体検知器20を構成する各部の駆動電源を適宜供給している。   The power supply unit 25 is a general commercial power supply unit, a power supply unit in which various batteries such as a button battery and a dry battery (regardless of a primary battery or a secondary battery) can be attached and detached, or solar power or solar power using a photovoltaic effect. It is composed of any photovoltaic module that directly converts light energy, such as illumination light, into electric power, and appropriately supplies driving power to each part of the human body detector 20.

<2−2.処理動作について>
次に、上述した人体検知器20の処理動作について、図8を参照しながら説明する。なお、本例の人体検知器20における処理動作としては、大別して監視領域内に侵入した人体を検知する人体検知処理に関する処理動作と、カバー20bに対する画策行為の有無を検知する画策検知処理に関する処理動作がある。
<2-2. About processing operations>
Next, the processing operation of the human body detector 20 described above will be described with reference to FIG. The processing operation in the human body detector 20 of the present example is roughly divided into processing operations related to human body detection processing for detecting a human body that has entered the monitoring area, and processing related to plan detection processing for detecting the presence or absence of a planning action on the cover 20b. There is movement.

(人体検知に基づく処理動作)
本例の人体検知器20による人体検知処理は、監視領域内に設定した赤外線受光ゾーンE1に人体が侵入すると、人体の移動に伴って赤外線受光ゾーンE1内に温度変化が生じる。そして、この温度変化に起因する赤外線がカバー20bを透過して人体検知用赤外線受光部21Aに受光される。
(Processing based on human body detection)
In the human body detection process by the human body detector 20 of this example, when a human body enters the infrared light receiving zone E1 set in the monitoring area, a temperature change occurs in the infrared light receiving zone E1 as the human body moves. And the infrared rays resulting from this temperature change permeate | transmit the cover 20b, and are received by the infrared detection part 21A for human body detection.

次に、人体検知用赤外線受光部21Aは、赤外線を受光すると、図8に示すように受光した赤外線の赤外線量に応じた受光信号(図例では5回)を人体判定部21Bに出力する。このとき、制御部23によって人体判定時間T1のカウントが開始される。   Next, when receiving infrared rays, the human body detecting infrared light receiving unit 21A outputs a received light signal (five times in the example) to the human body determining unit 21B according to the amount of infrared rays received as shown in FIG. At this time, the controller 23 starts counting the human body determination time T1.

人体判定部21Bは、入力した受光信号と、予め設定された人体判定用閾値とを比較し、人体検知用赤外線受光部21Aから入力した受光信号が、人体判定時間T1以内に人体判定用閾値を所定回数超えたか否かを判定する。例えば、受信信号が人体判定用閾値を超える回数を3回と設定した場合、図8の例ではその回数を超えているため、人体有りと判定されることになる。   The human body determination unit 21B compares the received light reception signal with a preset human body determination threshold, and the light reception signal input from the human body detection infrared light reception unit 21A sets the human body determination threshold within the human body determination time T1. It is determined whether or not a predetermined number of times has been exceeded. For example, when the number of times that the received signal exceeds the human body determination threshold is set to 3, the number of times exceeds the number in the example of FIG.

そして、人体判定部21Bは、人体有りと判定したときのみ、人体検知信号を制御部23に出力する。制御部23は、人体検知に伴う異常信号を、出力部24を介して出力先に出力する。
これにより、出力先において監視領域内に人体が侵入したことが通知される。
The human body determination unit 21B outputs a human body detection signal to the control unit 23 only when it is determined that there is a human body. The control unit 23 outputs an abnormal signal accompanying human body detection to the output destination via the output unit 24.
Thereby, it is notified that a human body has entered the monitoring area at the output destination.

(画策検知に基づく処理動作)
本例の人体検知器20による画策検知処理は、カバー20bに何らかの画策行為がなされると、カバー20bに温度変化が生じる。そして、画策検知用赤外線受光部22Aは、光学フィルタ22Abを介して画策検出ゾーンE2内における温度変化に起因する赤外線のうち、不感帯域と同域の波長の赤外線のみをカバー20bの裏面から受光する。
(Processing based on plan detection)
In the plan detection process by the human body detector 20 in this example, when any plan action is performed on the cover 20b, a temperature change occurs in the cover 20b. Then, the infrared detecting unit 22A for detecting the scheme detects only infrared rays having a wavelength in the same region as the dead band from the back surface of the cover 20b among the infrared rays caused by the temperature change in the scheme detecting zone E2 via the optical filter 22Ab. .

次に、画策検知用赤外線受光部22Aは、赤外線を受光すると、図8に示すように受光した赤外線の赤外線量に応じた受光信号(図例では2回)を画策判定部22Bに出力する。このとき、制御部23によって画策判定時間T2のカウントが開始される。   Next, when the infrared rays receiving unit 22A for detecting the plan is received, the received light signal (twice in the example) according to the amount of received infrared rays is output to the plan determining unit 22B as shown in FIG. At this time, the control unit 23 starts counting the plan determination time T2.

画策判定部22Bは、入力した受光信号と、予め設定され画策判定用閾値とを比較し、画策検知用赤外線受光部22Aから入力した受光信号が、画策判定時間T2以内に画策判定用閾値を所定回数超えたか否かを判定する。例えば、受信信号が画策判定用閾値を超える回数を2回と設定した場合、図8の例ではその回数を超えているため、画策有りと判定されることになる。   The plan determination unit 22B compares the received light reception signal with a preset plan determination threshold, and the light reception signal input from the plan detection infrared light reception unit 22A sets the plan determination threshold within the plan determination time T2. It is determined whether or not the number of times has been exceeded. For example, when the number of times that the received signal exceeds the plan determination threshold is set to two, the number of times exceeds the number in the example of FIG.

そして、画策判定部22Bは、画策有りと判定したときのみ、画策検知信号を制御部23に出力する。制御部23は、画策検知に伴う異常信号を、出力部24を介して出力先に出力する。これにより、出力先においてカバー20bに何らかの画策行為がなされたことが通知される。 Then, the plan determination unit 22B outputs a plan detection signal to the control unit 23 only when it is determined that there is a plan. The control unit 23 outputs an abnormal signal associated with the plan detection to the output destination via the output unit 24. This notifies the cover 20b that some planning action has been performed at the output destination.

<2−3.実施形態2の効果>
以上説明したように、上述した人体検知器20は、監視領域内に侵入した人体を検知する人体検知部21と、カバー20bに画策行為がなされたか否かを判断する画策検知部22とを備え、画策検知部22には、カバー20bの不感帯域と同域の波長の赤外線のみを通過させる光学フィルタ22Abが画策検出用素子22Aaの赤外線検出面を覆うように設けられている。
<2-3. Effects of Embodiment 2>
As described above, the human body detector 20 includes the human body detection unit 21 that detects a human body that has entered the monitoring area, and the plan detection unit 22 that determines whether or not a plan action has been performed on the cover 20b. The image detection unit 22 is provided with an optical filter 22Ab that allows only infrared light having a wavelength in the same region as the dead band of the cover 20b to pass over the infrared detection surface of the image detection element 22Aa.

これにより、画策検知部22において監視領域内に人体が侵入したときの赤外線は検出されず、カバー20bが画策されたときに生じるカバー20bの温度変化に起因する赤外線のみを検出することができるため、画策行為を確実に検出することができる。   As a result, the infrared rays when the human body enters the monitoring area are not detected in the plan detection unit 22, and only the infrared rays caused by the temperature change of the cover 20b that occurs when the cover 20b is planned can be detected. It is possible to reliably detect the plan action.

1…赤外線検知装置(10…放射温度計、20…人体検知器)
11…赤外線検出部(11a…測定温度用赤外線検出素子、11b温度補正用赤外線検出素子)
12…補償用温度検出部
13…増幅部
14…A/D変換部
15…演算部
16…温度表示部
20a…筐体
20b…カバー
20c、20d…回路基板
21…人体検知部
21A…人体検知用赤外線受光部(21Aa…赤外線受光ミラー、21Ab…人体検出用素子)
21B…人体判定部
22…画策検知部
22A…画策検知用赤外線受光部(22Aa…画策検出用素子、22Ab…光学フィルタ)
22B…画策判定部
23…制御部(23a…計時手段)
24…出力部
25…電源部
E1…赤外線受光ゾーン
E2…画策検出ゾーン
1 ... Infrared detector (10 ... Radiation thermometer, 20 ... Human body detector)
11 ... Infrared detector (11a ... Infrared detector for measurement temperature, 11b Infrared detector for temperature correction)
DESCRIPTION OF SYMBOLS 12 ... Compensation temperature detection part 13 ... Amplification part 14 ... A / D conversion part 15 ... Operation part 16 ... Temperature display part 20a ... Case 20b ... Cover 20c, 20d ... Circuit board 21 ... Human body detection part 21A ... For human body detection Infrared light receiving part (21Aa ... infrared receiving mirror, 21Ab ... human body detecting element)
21B ... Human body determination unit 22 ... Plane detection unit 22A ... Infrared light receiving unit for plan detection (22Aa ... Plane detection element, 22Ab ... Optical filter)
22B ... Planning determination part 23 ... Control part (23a ... Time measuring means)
24 ... Output unit 25 ... Power supply unit E1 ... Infrared light receiving zone E2 ... Plant detection zone

Claims (5)

赤外線を透過する赤外線透過部材を介して測定対象から放射される赤外線を検出する赤外線検出素子であって、
前記赤外線透過部材における赤外線透過率が極端に低くなる不感帯域と同域の波長の赤外線のみを透過させる光学フィルタが赤外線検出面を覆うように設けられていることを特徴とする赤外線検出素子。
An infrared detection element that detects infrared rays emitted from a measurement object via an infrared transmission member that transmits infrared rays,
An infrared detection element, wherein an optical filter that transmits only infrared rays having a wavelength in the same range as the dead band where the infrared transmittance of the infrared transmission member is extremely low is provided so as to cover the infrared detection surface.
前記赤外線検出素子は、サーモパイルであることを特徴とする請求項1記載の赤外線検出素子。 The infrared detection element according to claim 1, wherein the infrared detection element is a thermopile. 前記赤外線検出素子は、焦電素子であることを特徴とする請求項1記載の赤外線検出素子。 The infrared detection element according to claim 1, wherein the infrared detection element is a pyroelectric element. 測定対象物から放射された赤外線を、赤外線透過部材からなるフレネルレンズを介して検出する測定用赤外線検出素子と、
前記フレネルレンズが外的要因によって温度変化したときに生じた赤外線のうち、前記フレネルレンズにおける赤外線透過率が極端に低くなる不感帯域と同域の波長の赤外線のみを透過する光学フィルタが赤外線検出面を覆うように設けられた温度補正用赤外線検出素子と、
を備える赤外線検出部と、
前記測定用赤外線検出素子で検出した前記測定対象物が放射する赤外線の強度に応じた温度値を、前記温度補正用赤外線検出素子で検出した前記フレネルレンズが放射する赤外線の強度に応じた温度値を用いて温度補正処理を行う演算部と、
を備えたことを特徴とする放射温度計。
An infrared detection element for measurement that detects infrared rays emitted from the measurement object via a Fresnel lens made of an infrared transmission member;
Among the infrared rays generated when the temperature of the Fresnel lens is changed due to an external factor, an optical filter that transmits only infrared rays having the same wavelength as the dead band where the infrared transmittance of the Fresnel lens is extremely low is an infrared detection surface. An infrared detecting element for temperature correction provided to cover
An infrared detector comprising:
The temperature value according to the intensity of infrared rays emitted from the measurement object detected by the measurement infrared detection element, the temperature value according to the intensity of infrared rays emitted from the Fresnel lens detected by the temperature correction infrared detection element. An arithmetic unit for performing temperature correction processing using
A radiation thermometer characterized by comprising:
赤外線を透過するカバーを介して監視領域内に侵入した人体から放射される赤外線を検出してこの赤外線の変化量に基づき人体の有無を検知する人体検知部と、
前記カバーが画策行為されたか否かを判定する画策検知部と、
を備える人体検知器であって、
前記画策検知部は、
前記カバーにおける赤外線透過率が極端に低くなる不感帯域と同域の波長の赤外線のみを透過する光学フィルタが赤外線検出面を覆うように設けられた画策検出用素子を有する画策検知用赤外線受光部と、
前記画策検出用素子に入力される赤外線受光量に応じて発生する受光信号と、予め設定された画策判定用閾値とを比較して画策行為の有無を判定する画策判定部と、
と備えたことを特徴とする人体検知器。
A human body detection unit that detects infrared rays emitted from a human body that has entered the monitoring area through a cover that transmits infrared rays, and detects the presence or absence of a human body based on the amount of change in the infrared rays;
A plan detecting unit for determining whether or not the cover has been planned,
A human body detector comprising:
The plan detection unit
An infrared light receiving unit for detecting a plan having an image detecting element provided so that an optical filter that transmits only infrared rays having a wavelength in the same range as the dead band where the infrared transmittance in the cover is extremely low is provided to cover the infrared detection surface; ,
A plan determination unit that determines the presence or absence of a plan action by comparing a light reception signal generated according to the amount of received infrared light input to the plan detection element and a preset plan judgment threshold;
A human body detector characterized by comprising
JP2015050996A 2015-03-13 2015-03-13 Infrared detector, radiation thermometer and human body detector Active JP6482912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050996A JP6482912B2 (en) 2015-03-13 2015-03-13 Infrared detector, radiation thermometer and human body detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050996A JP6482912B2 (en) 2015-03-13 2015-03-13 Infrared detector, radiation thermometer and human body detector

Publications (2)

Publication Number Publication Date
JP2016170105A true JP2016170105A (en) 2016-09-23
JP6482912B2 JP6482912B2 (en) 2019-03-13

Family

ID=56983559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050996A Active JP6482912B2 (en) 2015-03-13 2015-03-13 Infrared detector, radiation thermometer and human body detector

Country Status (1)

Country Link
JP (1) JP6482912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513318A (en) * 2019-08-21 2019-11-29 广东乐美智家环境科技股份有限公司 A kind of intelligent fan of microwave radar induction and infrared induction control system and the application system
WO2022139410A1 (en) * 2020-12-21 2022-06-30 엘에스일렉트릭 주식회사 Temperature measurement apparatus for battery cell and method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123234U (en) * 1990-03-28 1991-12-16
JPH1114451A (en) * 1997-06-25 1999-01-22 Secom Co Ltd Detecting device
JP2001330683A (en) * 2000-05-23 2001-11-30 Secom Co Ltd Human body detector
US6375350B1 (en) * 2000-08-08 2002-04-23 Quantum Logic Corp Range pyrometer
JP2005017150A (en) * 2003-06-27 2005-01-20 Daikin Ind Ltd Temperature measuring device and air conditioner using it
US20150062346A1 (en) * 2013-09-04 2015-03-05 Jacob Fraden Mobile thermal imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123234U (en) * 1990-03-28 1991-12-16
JPH1114451A (en) * 1997-06-25 1999-01-22 Secom Co Ltd Detecting device
JP2001330683A (en) * 2000-05-23 2001-11-30 Secom Co Ltd Human body detector
US6375350B1 (en) * 2000-08-08 2002-04-23 Quantum Logic Corp Range pyrometer
JP2005017150A (en) * 2003-06-27 2005-01-20 Daikin Ind Ltd Temperature measuring device and air conditioner using it
US20150062346A1 (en) * 2013-09-04 2015-03-05 Jacob Fraden Mobile thermal imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513318A (en) * 2019-08-21 2019-11-29 广东乐美智家环境科技股份有限公司 A kind of intelligent fan of microwave radar induction and infrared induction control system and the application system
WO2022139410A1 (en) * 2020-12-21 2022-06-30 엘에스일렉트릭 주식회사 Temperature measurement apparatus for battery cell and method therefor

Also Published As

Publication number Publication date
JP6482912B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
US10467874B2 (en) Fire detector having a photodiode for sensing ambient light
EP3407034B1 (en) Intelligent flame detection device and method using infrared thermography
CN105103205B (en) Hazard detectors with the contactless thermal radiation sensor for establishing environment temperature
US4471221A (en) Infra-red flame detector
BR112012033698B1 (en) optically redundant fire detector for false alarm rejection
JP4277927B2 (en) Induction heating cooker
KR101193492B1 (en) An infrared fiber-optic probe for measuring the temperature of coolant system of nuclear power plant and the temperature measurement system using the same
US20150148683A1 (en) Device and method for detecting respiratory movements
JP6482912B2 (en) Infrared detector, radiation thermometer and human body detector
US9251683B2 (en) Flame detector using a light guide for optical sensing
JP6755105B2 (en) Flame detector
CN113396080A (en) Accumulator with monitoring device
KR101164640B1 (en) Apparatus of thermal infrared camera with identical visibility and visual image
US11774282B2 (en) Pyranometer dome soiling detection with light sensors
CN214793503U (en) Temperature measuring device
KR20180061996A (en) Wrist watch
KR20170004039U (en) Apparatus for thermal imaging overlay monitoring
JP4260341B2 (en) Human body detector
Furukawa A study on thermal detection based on support vector machine using dynamic time warping and application to optical fiber sensor
CN215262101U (en) Non-contact temperature measuring device
JP2011192245A (en) Heat and smoke compound type fire sensor
CN202631115U (en) Thermal infrared temperature measurement signal processing system
GB2097120A (en) Flame detector
JP6969542B2 (en) Temperature measurement system and temperature measurement method
KR102003224B1 (en) Apparatus for measuring temperature of glass transmission type and induction range having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6482912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250