JP6969542B2 - Temperature measurement system and temperature measurement method - Google Patents

Temperature measurement system and temperature measurement method Download PDF

Info

Publication number
JP6969542B2
JP6969542B2 JP2018513145A JP2018513145A JP6969542B2 JP 6969542 B2 JP6969542 B2 JP 6969542B2 JP 2018513145 A JP2018513145 A JP 2018513145A JP 2018513145 A JP2018513145 A JP 2018513145A JP 6969542 B2 JP6969542 B2 JP 6969542B2
Authority
JP
Japan
Prior art keywords
optical member
temperature
wavelength band
specific wavelength
electromagnetic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018513145A
Other languages
Japanese (ja)
Other versions
JPWO2017183557A1 (en
Inventor
隆史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017183557A1 publication Critical patent/JPWO2017183557A1/en
Application granted granted Critical
Publication of JP6969542B2 publication Critical patent/JP6969542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Description

本発明は温度計測システム及び温度計測方法に関するものであり、例えば、赤外線カメラで観測対象体の撮像を行うと共に観測対象体付近の気温の測定を行う温度計測システム及び温度計測方法に関するものである。 The present invention relates to a temperature measurement system and the temperature measuring method, for example, to a temperature measurement system and the temperature measuring method for measuring the air temperature in the vicinity of the observation target object performs imaging the observation object with an infrared camera.

近年、各種の測定,診断,検知等には、絶対温度が零度以上の物体表面から絶対温度に応じた強度で放射される電磁波(主に赤外線領域の波長の電磁波)を検知して可視化する技術が用いられている。例えば、建物外壁表面の温度変化に伴ってその表面から放射される電磁波が変化することを利用して、その経時変化を計測することにより、外壁内面の剥離や水漏れの診断が行われている。また、工場における配管等の設備の表面から放射される電磁波の経時変化を計測することにより、設備の異常状態を検知することが行われている。例えば特許文献1や非特許文献1では、ガス状物質によって、その背景の物体表面からの放射電磁波の強度が変化することを利用して、ガス状物質の存在を検知する技術が提案されている。 In recent years, for various measurements, diagnoses, detections, etc., technology for detecting and visualizing electromagnetic waves (mainly electromagnetic waves with wavelengths in the infrared region) radiated from the surface of an object whose absolute temperature is above zero degrees with an intensity corresponding to the absolute temperature. Is used. For example, by utilizing the fact that the electromagnetic wave radiated from the surface of the outer wall of a building changes with the temperature change and measuring the change with time, the peeling of the inner surface of the outer wall and the diagnosis of water leakage are performed. .. Further, the abnormal state of the equipment is detected by measuring the change with time of the electromagnetic wave radiated from the surface of the equipment such as piping in the factory. For example, Patent Document 1 and Non-Patent Document 1 propose a technique for detecting the presence of a gaseous substance by utilizing the fact that the intensity of the radiated electromagnetic wave from the surface of the object in the background changes depending on the gaseous substance. ..

国際公開第2008/135654号International Publication No. 2008/135654

Harig, R., Matz, G., Rusch, P., Gerhard, J.-H., Schafer, K., Jahn, C., Schwengler, P., Beil, A.: "Remote Detection of Methane by Infrared Spectrometry for Airborne Pipeline Surveillance: First Results of Ground-Based Measurements", SPIE 5235, 435-446, 2004.Harig, R., Matz, G., Rusch, P., Gerhard, J.-H., Schafer, K., Jahn, C., Schwengler, P., Beil, A .: "Remote Detection of Methane by Infrared" Spectrometry for Airborne Pipeline Surveillance: First Results of Ground-Based Measurements ", SPIE 5235, 435-446, 2004.

いずれの技術も、観測対象体の温度変化を鋭敏に測定する必要があるが、屋外で実施されることが多いため、外乱の影響を受けやすいという問題がある。特に気温は観測対象体の温度変化に大きな影響を与えるため、外乱排除のために正確な気温情報の測定が必要となる。 Both techniques need to sensitively measure the temperature change of the observation target, but since they are often carried out outdoors, there is a problem that they are easily affected by disturbances. In particular, since the temperature has a great influence on the temperature change of the observation target, it is necessary to measure the accurate temperature information in order to eliminate the disturbance.

物体表面から放射される電磁波は、主に赤外線波長域に感度を持つ赤外線カメラによって、画像の形で取得される。ここで赤外線カメラによって得られるデータは、物体表面から放射される電磁波の強度を表した輝度データである。この輝度データを用いて行う各種の測定,診断,検知等に気温情報を加味するには、気温データに対応する電磁波強度を表す輝度データが必要になる。つまり、気温データを輝度データに変換する必要がある。一般に、気温は気温計を用いて計測され、計測された気温データを輝度データに変換するには変換式が用いられる。 Electromagnetic waves radiated from the surface of an object are acquired in the form of an image by an infrared camera that is mainly sensitive to the infrared wavelength range. Here, the data obtained by the infrared camera is luminance data representing the intensity of the electromagnetic wave radiated from the surface of the object. In order to add temperature information to various measurements, diagnoses, detections, etc. performed using this brightness data, brightness data representing the electromagnetic wave intensity corresponding to the temperature data is required. That is, it is necessary to convert the temperature data into the luminance data. Generally, the air temperature is measured using a thermometer, and a conversion formula is used to convert the measured air temperature data into luminance data.

しかしながら、気温計には一般的な誤差があるため、機体ごとに0.1℃〜0.5℃程度のバラツキが生じる。また、用いる赤外線カメラの特性バラツキも存在するため、気温データから輝度データへの変換式を使った変換工程にも誤差が生じる。このため、従来の技術では気温データを正確に輝度データに変換することができない。 However, since there is a general error in the thermometer, there is a variation of about 0.1 ° C to 0.5 ° C for each aircraft. In addition, since there are variations in the characteristics of the infrared camera used, an error occurs in the conversion process using the conversion formula from the temperature data to the luminance data. Therefore, the conventional technique cannot accurately convert the temperature data into the luminance data.

本発明はこのような状況に鑑みてなされたものであって、その目的は、気温データを高精度に輝度データとして取得することの可能な温度計測システム及び温度計測方法を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a temperature measurement system and a temperature measurement method capable of acquiring temperature data as luminance data with high accuracy.

上記目的を達成するために、第1の発明の温度計測システムは、被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を有し、
前記光学部材における前記特定波長帯の電磁波の透過率が全面にわたって均一であり、
前記撮像装置が、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出し、
前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであることを特徴とする。
In order to achieve the above object, the temperature measurement system of the first invention has sensitivity to electromagnetic waves of a specific wavelength band among the electromagnetic waves radiated or reflected by the surface of the subject, and is composed of the electromagnetic waves of the specific wavelength band. An image pickup device that acquires a subject image as brightness information, and
It has an optical member that can transmit electromagnetic waves in the specific wavelength band and has the same temperature as the air temperature.
The transmittance of electromagnetic waves in the specific wavelength band in the optical member is uniform over the entire surface.
Using the luminance information of the subject image acquired by the image pickup apparatus without passing through the optical member and the luminance information of the subject image acquired through the optical member, a blackbody corresponding to the temperature in the specific wavelength band. to calculate the radiance,
Both luminance information both used to calculate the blackbody radiance, characterized der Rukoto which the electromagnetic wave intensity of a specific wavelength band in the object surface is acquired for each other at least two different measuring points.

第2の発明の温度計測システムは、上記第1の発明において、前記光学部材において前記被写体像を構成する電磁波が透過する光学面の法線が、前記撮像装置の光軸に対して非平行であることを特徴とする。 In the temperature measurement system of the second invention, in the first invention, the normal of the optical surface through which the electromagnetic wave constituting the subject image in the optical member is transmitted is not parallel to the optical axis of the image pickup apparatus. It is characterized by being.

第3の発明の温度計測方法は、被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を用いて行う温度計測方法であって、
前記光学部材における前記特定波長帯の電磁波の透過率が全面にわたって均一であり、
前記撮像装置により、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出することを特徴とする。
The temperature measuring method of the third invention has sensitivity to electromagnetic waves of a specific wavelength band among electromagnetic waves radiated or reflected by the surface of the subject, and acquires a subject image composed of the electromagnetic waves of the specific wavelength band as luminance information. Imaging device and
It is a temperature measurement method performed by using an optical member capable of transmitting electromagnetic waves in the specific wavelength band and having the same temperature as the air temperature.
The transmittance of electromagnetic waves in the specific wavelength band in the optical member is uniform over the entire surface.
With the image pickup apparatus, the luminance information of the subject image acquired without passing through the optical member and the luminance information of the subject image acquired through the optical member for at least two measurement points where the luminance of the electromagnetic wave in the specific wavelength band on the surface of the subject is different from each other. It is characterized in that the blackbody radiance corresponding to the temperature in the specific wavelength band is calculated by using the luminance information of the subject image.

ただし、後述する実施の形態等には以下の特徴的な構成(A1)〜(A4)等も含まれている。
(A1):被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を有し、
前記撮像装置が、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出することを特徴とする温度計測システム。
(A2):前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が同じ測定点について取得したものであることを特徴とする(A1)記載の温度計測システム。
(A3):前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであることを特徴とする(A1)記載の温度計測システム。
(A4):前記光学部材において前記被写体像を構成する電磁波が透過する光学面の法線が、前記撮像装置の光軸に対して非平行であることを特徴とする(A1)〜(A3)のいずれか1項に記載の温度計測システム
However, the following embodiments (A1) to (A4) are also included in the embodiments described later.
(A1): An image pickup device that has sensitivity to electromagnetic waves of a specific wavelength band among electromagnetic waves radiated or reflected by the surface of the subject and acquires a subject image composed of the electromagnetic waves of the specific wavelength band as luminance information.
It has an optical member that can transmit electromagnetic waves in the specific wavelength band and has the same temperature as the air temperature.
Using the luminance information of the subject image acquired by the image pickup apparatus without passing through the optical member and the luminance information of the subject image acquired through the optical member, a blackbody corresponding to the temperature in the specific wavelength band. A temperature measurement system characterized by calculating radiance.
(A2): Both of the luminance information used for calculating the blackbody radiance are obtained for the same measurement point of the electromagnetic wave of the specific wavelength band on the subject surface (A1). Described temperature measurement system.
(A3): Both of the luminance information used for calculating the blackbody radiance are acquired for at least two measurement points where the luminance of the electromagnetic wave in the specific wavelength band on the subject surface is different from each other. The temperature measurement system according to (A1).
(A4): The normal line of the optical surface through which the electromagnetic wave constituting the subject image in the optical member is transmitted is not parallel to the optical axis of the image pickup apparatus (A1) to (A3). The temperature measurement system according to any one of the above items .

本発明によれば、気温計を介さないため、気温計の機体差やデータ変換工程の誤差に起因する気温情報の誤差が生じない。したがって、気温データを高精度に輝度データとして取得することの可能な温度計測システム及び温度計測方法を実現することができる。 According to the present invention, since the air temperature meter is not used, an error in the air temperature information due to an error in the air temperature meter or an error in the data conversion process does not occur. Therefore, it is possible to realize a temperature measurement system and a temperature measurement method capable of acquiring temperature data as luminance data with high accuracy.

温度計測システムの実施の形態を示す概略構成図。The schematic block diagram which shows the embodiment of the temperature measurement system. 温度計測システムの実施の形態による測定手順の具体例1を示すフローチャート。The flowchart which shows the specific example 1 of the measurement procedure by embodiment of a temperature measurement system. 温度計測システムの実施の形態による測定手順の具体例2を示すフローチャート。The flowchart which shows the specific example 2 of the measurement procedure by embodiment of a temperature measurement system. 光学部材移動タイプの温度計測システムの実施の形態を示す概略断面図。The schematic sectional drawing which shows the embodiment of the temperature measurement system of the optical member movement type. 図4の温度計測システムにおいて視野内に光学部材が挿入される前と後の被写体表面と輝度測定点を、撮像装置側から見た状態で示す平面図。FIG. 4 is a plan view showing a subject surface and a luminance measurement point before and after the optical member is inserted into the field of view in the temperature measurement system of FIG. 4 as viewed from the image pickup apparatus side. 光学部材固定タイプの温度計測システムの実施の形態を示す概略断面図。The schematic sectional drawing which shows the embodiment of the temperature measurement system of the optical member fixed type. 図6の温度計測システムにおいて視野内の一部に光学部材が配置された被写体表面と輝度測定点を、撮像装置側から見た状態で示す平面図。FIG. 6 is a plan view showing a subject surface and a luminance measurement point in which an optical member is arranged in a part of the field of view in the temperature measurement system of FIG. 6 as viewed from the image pickup apparatus side. 図4の温度計測システムにおいて視野内に光学部材が挿入される前と後の被写体表面と輝度測定点を、放射輝度の異なる2領域について、撮像装置側から見た状態で示す平面図。FIG. 4 is a plan view showing a subject surface and a luminance measurement point before and after the optical member is inserted into the field of view in the temperature measurement system of FIG. 4 as viewed from the image pickup apparatus side for two regions having different radiances. 図6の温度計測システムにおいて視野内の一部に光学部材が配置された被写体表面と輝度測定点を、放射輝度の異なる2領域について、撮像装置側から見た状態で示す平面図。FIG. 6 is a plan view showing a subject surface in which an optical member is arranged in a part of the field of view and a luminance measurement point in the temperature measurement system of FIG. 6 as viewed from the image pickup apparatus side for two regions having different radiances. 光学部材が斜めに配置された温度計測システムの実施の形態を示す断面図。FIG. 3 is a cross-sectional view showing an embodiment of a temperature measurement system in which optical members are arranged diagonally. 光学部材の上下方向に電磁波遮断部材が配置された温度計測システムの実施の形態を示す断面図。The cross-sectional view which shows the embodiment of the temperature measurement system which arranged the electromagnetic wave blocking member in the vertical direction of an optical member. 光学部材の周囲に電磁波遮断部材が配置された温度計測システムの実施の形態を示す断面図。FIG. 2 is a cross-sectional view showing an embodiment of a temperature measurement system in which an electromagnetic wave blocking member is arranged around an optical member.

以下、本発明を実施した温度計測システム等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。 Hereinafter, the temperature measurement system and the like in which the present invention has been carried out will be described with reference to the drawings. It should be noted that the same parts and corresponding parts of each of the embodiments and the like are designated by the same reference numerals, and duplicate description will be omitted as appropriate.

図1に、本発明の実施の形態に係る温度計測システムT0の概略断面構造を模式的に示す。この温度計測システムT0は、図1に示すように、撮像装置DU,光学部材OE等で構成されている。撮像装置DUは、絶対温度が零度以上の被写体表面(物体表面)HSが放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、特定波長帯の電磁波からなる被写体像を輝度情報として取得するものである。また、撮像装置DUの視野の前方に配置されている光学部材OEは、温度が気温と同じであり、特定波長帯の電磁波を透過可能である(つまり、特定波長帯の電磁波に対する透過率が0%より大きく100%より小さい光学特性を有する。)。 FIG. 1 schematically shows a schematic cross-sectional structure of the temperature measurement system T0 according to the embodiment of the present invention. As shown in FIG. 1, the temperature measurement system T0 includes an image pickup device DU, an optical member OE, and the like. The image pickup device DU has sensitivity to electromagnetic waves in a specific wavelength band among electromagnetic waves radiated or reflected by the subject surface (object surface) HS having an absolute temperature of zero degree or higher, and produces a subject image composed of electromagnetic waves in a specific wavelength band. It is acquired as brightness information. Further, the optical member OE arranged in front of the field of view of the image pickup apparatus DU has the same temperature as the temperature and can transmit electromagnetic waves in a specific wavelength band (that is, the transmittance for electromagnetic waves in a specific wavelength band is 0). Has optical properties greater than% and less than 100%).

上記特定波長帯の電磁波として代表的なものは赤外線であり、撮像装置DUの具体例としては赤外線撮像装置(つまり、赤外線波長域に感度を持つ赤外線カメラ)が挙げられる。より具体的には、波長1〜16μmの波長帯の少なくとも一部の波長を検知できる赤外線撮像装置が挙げられ、例えば、8〜16μmを検知する非冷却型遠赤外線撮像装置、3〜5μmを検知する冷却型中赤外線撮像装置等が挙げられる。つまり、観測対象や利用目的に合わせて特定波長域を設定し、その特定波長域において検知感度がある撮像装置を選択すればよい。 A typical electromagnetic wave in the specific wavelength band is infrared rays, and a specific example of the image pickup device DU is an infrared image pickup device (that is, an infrared camera having sensitivity in the infrared wavelength range). More specifically, an infrared image pickup device capable of detecting at least a part of the wavelength in the wavelength band of 1 to 16 μm can be mentioned. For example, an uncooled far-infrared image pickup device that detects 8 to 16 μm can detect 3 to 5 μm. A cooling type mid-infrared image pickup device and the like can be mentioned. That is, a specific wavelength range may be set according to the observation target and the purpose of use, and an image pickup device having detection sensitivity in the specific wavelength range may be selected.

光学部材OEの例としては、ガラス板,プラスチック板等の電磁波吸収素材が挙げられる。光学部材OEの特定波長帯の電磁波に対する透過率は、0%より大きく100%より小さければよく、特定波長帯の電磁波に対する透過率が例えば50%であることが好ましい。つまり、光学部材OEとして、特定波長帯の電磁波に対する透過率(例えば、赤外線透過率)が50%の半透明板を用いることが好ましい。また、光学部材OEの表面での反射を少なくするために、観測波長よりも小さな凹凸を表面に設けたり無反射コートを施したりすることが好ましい。 Examples of the optical member OE include electromagnetic wave absorbing materials such as glass plates and plastic plates. The transmittance of the optical member OE for electromagnetic waves in a specific wavelength band may be larger than 0% and smaller than 100%, and the transmittance for electromagnetic waves in a specific wavelength band is preferably 50%, for example. That is, it is preferable to use a translucent plate having a transmittance (for example, infrared transmittance) of 50% for electromagnetic waves in a specific wavelength band as the optical member OE. Further, in order to reduce reflection on the surface of the optical member OE, it is preferable to provide unevenness smaller than the observation wavelength on the surface or to apply a non-reflective coating.

撮像装置DUは、被写体表面HSの静止画撮影や動画撮影のために、被写体像を光学的に取り込んで電気的な信号として出力するレンズユニットLUを備えている。レンズユニットLUは、物体(すなわち被写体)側から順に、物体の光学像(すなわち被写体像)を形成する撮像レンズLN(AX:光軸)と、その撮像レンズLNにより形成された光学像を電気的な信号に変換する撮像センサーSRと、を備えている。 The image pickup apparatus DU includes a lens unit LU that optically captures a subject image and outputs it as an electrical signal for shooting a still image or a moving image of the subject surface HS. The lens unit LU electrically forms an image pickup lens LN (AX: optical axis) that forms an optical image (that is, a subject image) of an object and an optical image formed by the image pickup lens LN in order from the object (that is, the subject) side. It is equipped with an image sensor SR that converts various signals.

撮像装置DUは、レンズユニットLUの他に、信号処理部1,演算制御部2,メモリー3,操作部4,表示部5等を備えている。撮像センサーSRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、ケーブルを介したり赤外線信号等に変換されたりして、通信機能により他の機器に伝送される。演算制御部2はマイクロコンピューターからなっており、輝度情報処理機能,撮影機能,画像再生機能等の機能の制御;撮像レンズLNや光学部材OEの移動機構の制御等を集中的に行う。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像センサーSRによって変換された画像信号や記録画像情報を用いて画像表示を行う。操作部4は、操作ボタン等の操作部材を含む部分であり、操作者が操作入力した情報を演算制御部2に伝達する。 In addition to the lens unit LU, the image pickup apparatus DU includes a signal processing unit 1, an arithmetic control unit 2, a memory 3, an operation unit 4, a display unit 5, and the like. The signal generated by the image pickup sensor SR is subjected to predetermined digital image processing, image compression processing, etc. as necessary by the signal processing unit 1, and is recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.). It is transmitted to other devices by the communication function via a cable or converted into an infrared signal or the like. The arithmetic control unit 2 is composed of a microcomputer, and controls functions such as a luminance information processing function, a photographing function, and an image reproduction function; and intensively controls a moving mechanism of an image pickup lens LN and an optical member OE. The display unit 5 is a portion including a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image pickup sensor SR and recorded image information. The operation unit 4 is a part including an operation member such as an operation button, and transmits information input by the operator to the calculation control unit 2.

被写体表面HSから絶対温度に応じた強度で放射される赤外線等の電磁波を検知して可視化する場合、被写体表面HSの温度変化に気温が大きな影響を与えるため、正確な気温情報の測定が必要になる。そこで、温度計測システムT0では、撮像装置DUが、光学部材OEを通さずに取得した被写体像の輝度情報と、光学部材OEを通して取得した被写体像の輝度情報と、を用いて、特定波長帯における気温相当の黒体放射輝度を算出する構成になっている。 When detecting and visualizing electromagnetic waves such as infrared rays radiated from the subject surface HS with an intensity corresponding to the absolute temperature, the temperature has a great influence on the temperature change of the subject surface HS, so accurate temperature information measurement is required. Become. Therefore, in the temperature measurement system T0, the image pickup apparatus DU uses the luminance information of the subject image acquired through the optical member OE and the luminance information of the subject image acquired through the optical member OE in a specific wavelength band. It is configured to calculate the blackbody radiance equivalent to the temperature.

図2,図3に、温度計測システムT0による測定手順の具体例1,2をそれぞれ示す。光学部材OEの温度は気温の測定に大きく影響するため、最初に光学部材OEの温度が気温と同じになるようにする。具体例1(図2)では、測定開始後、所定の時間が経過するまで待機することにより、光学部材OEの温度が気温と同じになるようにする(#10)。この所定の時間は、光学部材OEの熱容量,光学部材OEの表面積等を考慮し、予め計算シミュレーション又は実験により求めておいたものである。具体例2(図3)では、測定開始後、光学部材OEの温度の経時変化が許容範囲内(温度変化ゼロ近傍)に収まるまで待機することにより、光学部材OEの温度が気温と同じになるようにする(#05,#15)。光学部材OEの温度測定(#05)は、例えば、熱電対等の温度計測機を用いて行う。 2 and 3 show specific examples 1 and 2 of the measurement procedure by the temperature measurement system T0, respectively. Since the temperature of the optical member OE greatly affects the measurement of the air temperature, the temperature of the optical member OE is first set to be the same as the air temperature. In Specific Example 1 (FIG. 2), the temperature of the optical member OE is set to be the same as the air temperature by waiting until a predetermined time elapses after the start of measurement (# 10). This predetermined time is obtained in advance by calculation simulation or experiment in consideration of the heat capacity of the optical member OE, the surface area of the optical member OE, and the like. In Specific Example 2 (FIG. 3), after the measurement is started, the temperature of the optical member OE becomes the same as the air temperature by waiting until the change with time of the temperature of the optical member OE falls within the allowable range (near zero temperature change). (# 05, # 15). The temperature measurement (# 05) of the optical member OE is performed using, for example, a temperature measuring device such as a thermoelectric pair.

測定手順の具体例1,2において、光学部材OEが気温と同じ温度になるようになじんだら(#10;#05,#15)、光学部材OEを通さずに被写体像の輝度情報を取得し(#20の工程1)、光学部材OEを通して被写体像の輝度情報を取得し(#30の工程2)、工程1,2で取得した輝度情報を用いて、特定波長帯における気温相当の黒体放射輝度を算出し(#40)、測定を終了する。なお、工程1,工程2は順序が逆になっても構わない。 In Specific Examples 1 and 2 of the measurement procedure, once the optical member OE has become accustomed to the same temperature as the temperature (# 10; # 05, # 15), the luminance information of the subject image is acquired without passing through the optical member OE. (Step 1 of # 20), the luminance information of the subject image is acquired through the optical member OE (step 2 of # 30), and the luminance information acquired in steps 1 and 2 is used to obtain a blackbody equivalent to the temperature in a specific wavelength band. Calculate the radiance (# 40) and end the measurement. The order of steps 1 and 2 may be reversed.

工程1(#20)で光学部材OEを通さずに被写体像の輝度情報を取得し、工程2(#30)で光学部材OEを通して被写体像の輝度情報を取得するために、背景となる被写体表面HSからの電磁波が光学部材OEを通らない光路と通る光路を構成する必要がある。そのための実施の形態の構成を、2つのタイプの温度計測システムT1,T2を挙げて説明する。 In step 1 (# 20), the luminance information of the subject image is acquired without passing through the optical member OE, and in step 2 (# 30), the luminance information of the subject image is acquired through the optical member OE. It is necessary to construct an optical path through which the electromagnetic wave from the HS does not pass through the optical member OE. The configuration of the embodiment for that purpose will be described with reference to two types of temperature measurement systems T1 and T2.

図4に、光学部材移動タイプの温度計測システムT1を示す。この温度計測システムT1は、被写体表面HSを構成する背景部材HEを備えている。図5に、背景部材HEで構成された被写体表面HSとその上の輝度測定点P1,P2を、撮像装置DU側から見た状態で示す。図4(A),図5(A)は工程1で輝度情報を取得するときの状態を示しており、図4(B),図5(B)は工程2で輝度情報を取得するときの状態を示している。 FIG. 4 shows the optical member movement type temperature measurement system T1. The temperature measurement system T1 includes a background member HE constituting the subject surface HS. FIG. 5 shows a subject surface HS composed of a background member HE and luminance measurement points P1 and P2 on the subject surface HS as viewed from the image pickup apparatus DU side. 4 (A) and 5 (A) show the state when the luminance information is acquired in the step 1, and FIGS. 4 (B) and 5 (B) show the state when the luminance information is acquired in the step 2. It shows the state.

この温度計測システムT1は、撮像装置DUの視野外への光学部材OEの退避と(図4(A))、撮像装置DUの視野内への光学部材OEの挿入と(図4(B))、の切り替えを行うための挿抜機構10を備えている。図4(A)に示すように撮像装置DUの視野外へ光学部材OEを退避させると、光学部材OEは撮像装置DUの視野から完全に外れるため、光学部材OEを通さずに被写体像の輝度情報を取得することができる。図4(B)に示すように撮像装置DUの視野内に光学部材OEを挿入すると、光学部材OEは撮像装置DUの視野を完全に覆うため、光学部材OEを通して被写体像の輝度情報を取得することができる。 This temperature measurement system T1 retracts the optical member OE out of the field of view of the image pickup device DU (FIG. 4 (A)) and inserts the optical member OE into the field of view of the image pickup device DU (FIG. 4 (B)). It is provided with an insertion / removal mechanism 10 for switching between. As shown in FIG. 4A, when the optical member OE is retracted out of the field of view of the image pickup apparatus DU, the optical member OE is completely out of the field of view of the image pickup apparatus DU, so that the brightness of the subject image is not passed through the optical member OE. Information can be obtained. When the optical member OE is inserted into the field of view of the image pickup apparatus DU as shown in FIG. 4B, the optical member OE completely covers the field of view of the image pickup apparatus DU, so that the luminance information of the subject image is acquired through the optical member OE. be able to.

挿抜機構10の例としては、光学部材OEを直線状に移動させるものが挙げられる。また、回動部材に光学部材OEを配置し、回動部材を回転させることにより、光学部材OEを撮像装置DUの視野に入れたり視野から外したりするものが挙げられる。 An example of the insertion / removal mechanism 10 is a mechanism for moving the optical member OE linearly. Further, the optical member OE is arranged on the rotating member, and the optical member OE is placed in or out of the field of view of the image pickup apparatus DU by rotating the rotating member.

図6に、光学部材固定タイプの温度計測システムT2を示す。この温度計測システムT2は、被写体表面HSを構成する背景部材HEを備えている。図7に、背景部材HEで構成された被写体表面HSとその上の輝度測定点P1,P2を、撮像装置DU側から見た状態で示す。この温度計測システムT2では、光学部材OEが撮像装置DUの視野の一部を覆うように配置されており、その視野内において、工程1での輝度情報の取得は光学部材OEが無い領域の輝度測定点P1で行われ、工程2での輝度情報の取得は光学部材OEがある領域の輝度測定点P2で行われる。 FIG. 6 shows the temperature measurement system T2 of the optical member fixed type. The temperature measurement system T2 includes a background member HE constituting the subject surface HS. FIG. 7 shows a subject surface HS composed of a background member HE and luminance measurement points P1 and P2 on the subject surface HS as viewed from the image pickup apparatus DU side. In this temperature measurement system T2, the optical member OE is arranged so as to cover a part of the field of view of the image pickup apparatus DU, and in the field of view, the acquisition of the luminance information in the step 1 is the luminance of the region without the optical member OE. It is performed at the measurement point P1, and the acquisition of the luminance information in the step 2 is performed at the luminance measurement point P2 in the region where the optical member OE is located.

次に、工程1,2で取得した輝度情報を用いて、特定波長帯における気温相当の黒体放射輝度を算出する方法(#40)を説明する。撮像装置DUで撮像する被写体表面HSは、温度計測の対象となる空気の背景となる。そして、それを構成する背景部材HEとして、表面放射率が約100%(100%未満)であって温度制御された電磁波放射部材を用いるものとする。背景部材HEを構成する素材の性質を利用したり、凹凸表面の形成,塗料の吹き付け(例えば、黒体スプレー)等の表面処理を背景部材HEに施すことにより、表面放射率を約100%に調整することが可能である。なお、周囲から入射する電磁波の反射量が増えると表面放射率は100%より小さくなるが、表面放射率100%では周囲から電磁波が入射しても反射しない状態になる。 Next, a method (# 40) for calculating the blackbody radiance corresponding to the air temperature in a specific wavelength band will be described using the luminance information acquired in steps 1 and 2. The subject surface HS imaged by the image pickup apparatus DU serves as a background of air to be measured by temperature. Then, as the background member HE constituting the background member HE, an electromagnetic wave radiation member having a surface emissivity of about 100% (less than 100%) and temperature controlled is used. The surface emissivity is reduced to about 100% by utilizing the properties of the materials constituting the background member HE, forming uneven surfaces, and applying surface treatment such as spraying paint (for example, blackbody spray) to the background member HE. It is possible to adjust. When the amount of reflection of electromagnetic waves incident from the surroundings increases, the surface emissivity becomes smaller than 100%, but when the surface emissivity is 100%, even if electromagnetic waves are incident from the surroundings, they are not reflected.

背景部材HEを撮像装置DUの前方に配置し、背景部材HEと撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能とする。特定波長域における光学部材OE(ガラス板等)の透過率は既知とし、前述した測定手順の具体例1又は具体例2(図2又は図3)に従って輝度測定点P1,P2での測定を行う。その際、工程1及び工程2(#20,#30)は、温度計測システムT1又は温度計測システムT2(図4又は図6)を用いて行う。そして、気温相当の黒体放射輝度の算出(#40)は、以下のようにして行う。 The background member HE is arranged in front of the image pickup apparatus DU, and the optical member OE is arranged or can be arranged between the background member HE and the image pickup apparatus DU. The transmittance of the optical member OE (glass plate, etc.) in a specific wavelength range is known, and measurement is performed at the luminance measurement points P1 and P2 according to the specific example 1 or 2 (FIG. 2 or 3) of the above-mentioned measurement procedure. .. At that time, step 1 and step 2 (# 20, # 30) are performed using the temperature measurement system T1 or the temperature measurement system T2 (FIG. 4 or 6). Then, the calculation (# 40) of the blackbody radiance corresponding to the air temperature is performed as follows.

温度計測システムT1(図4)で工程1,2を実施する場合、工程1,2で得られた輝度値をそれぞれI1,I2とする。被写体表面HSにおける特定波長帯の電磁波の輝度が同じであれば、輝度測定点は撮像装置DUの視野内の任意の点でよい。つまり、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が同じ測定点について取得したものであればよい。ただし、ここでは図5に示すように、同じ位置(図4の光軸AX上)の測定点P1,P2を想定している。When steps 1 and 2 are carried out by the temperature measurement system T1 (FIG. 4), the luminance values obtained in steps 1 and 2 are defined as I 1 and I 2 , respectively. As long as the brightness of the electromagnetic wave in the specific wavelength band on the subject surface HS is the same, the brightness measurement point may be any point in the field of view of the image pickup apparatus DU. That is, both of the luminance information used for calculating the blackbody radiance may be acquired at the measurement points where the luminance of the electromagnetic wave in the specific wavelength band on the subject surface HS is the same. However, as shown in FIG. 5, measurement points P1 and P2 at the same position (on the optical axis AX in FIG. 4) are assumed here.

温度計測システムT2(図6)で工程1,2を実施する場合、図7に示すように、撮像装置DUの視野内における光学部材OEの外周近傍において、光学部材OEが被写体表面HSに重なっていない測定点P1と光学部材OEが被写体表面HSに重なっている測定点P2とを選び、測定点P1における工程1で得られた輝度値をI1、測定点P2における工程2で得られた輝度値をI2とする。なお、この場合も、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が同じ測定点について取得したものであればよい。したがって、測定点P1と測定点P2とが近くに位置するように設定するのが好ましい。When steps 1 and 2 are carried out by the temperature measurement system T2 (FIG. 6), as shown in FIG. 7, the optical member OE overlaps the subject surface HS in the vicinity of the outer periphery of the optical member OE in the field of view of the image pickup apparatus DU. Select the measurement point P1 that does not exist and the measurement point P2 in which the optical member OE overlaps the subject surface HS, the brightness value obtained in step 1 at the measurement point P1 is I 1 , and the brightness obtained in step 2 at the measurement point P2. Let the value be I 2 . In this case as well, both of the luminance information used for calculating the blackbody radiance may be obtained at the measurement points where the luminance of the electromagnetic wave in the specific wavelength band on the subject surface HS is the same. Therefore, it is preferable to set the measurement point P1 and the measurement point P2 so as to be located close to each other.

光学部材OEの透過率をTとし、気温相当の黒体放射輝度をIairとすると、
(I1−Iair)・T=I2−Iair
が成り立つ。
air−Iair・T=I2−I1・T
air(1−T)=I2−I1・T
となるので、以下の式(F1)が得られる。
air=(I2−I1・T)/(1−T) …(F1)
上記式(F1)に従って、気温相当の黒体放射輝度Iairを算出する。
Assuming that the transmittance of the optical member OE is T and the blackbody radiance equivalent to the temperature is I air ,
(I 1 −I air ) ・ T = I 2 −I air
Is true.
I air- I air · T = I 2- I 1 · T
I air (1-T) = I 2- I 1 · T
Therefore, the following equation (F1) is obtained.
I air = (I 2- I 1 · T) / (1-T)… (F1)
According to the above equation (F1), the blackbody radiance I air corresponding to the air temperature is calculated.

被写体表面HSを構成する背景部材HEは温度制御がなされているため、放射輝度は安定している。つまり、背景放射輝度の経時変化を少なくすることが可能である。したがって、上記方法を採用すれば、気温相当放射輝度Iairを高い測定精度で得ることができる。Since the background member HE constituting the subject surface HS is temperature-controlled, the radiance is stable. That is, it is possible to reduce the change over time in the background radiance. Therefore, if the above method is adopted, the radiance I air equivalent to the temperature can be obtained with high measurement accuracy.

また、撮像装置DUによって撮像する被写体表面HSを自然背景で構成してもよい。つまり、背景部材HEの代わりに自然背景を用いて、自然背景と撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能としてもよい。この方法を採用すれば、自然背景を利用しているため、背景となる部材の準備が不要となり、測定機材の小型化を図ることができる。また、光学部材OEを自然背景の近傍に配置することで、自然背景近辺の気温を測定でき、より一層測定精度を向上させることができる。 Further, the subject surface HS imaged by the image pickup apparatus DU may be configured with a natural background. That is, the natural background may be used instead of the background member HE, and the optical member OE may be arranged or may be arranged between the natural background and the image pickup apparatus DU. If this method is adopted, since the natural background is used, it is not necessary to prepare the background member, and the measuring equipment can be miniaturized. Further, by arranging the optical member OE in the vicinity of the natural background, the air temperature in the vicinity of the natural background can be measured, and the measurement accuracy can be further improved.

温度計測システムT0,T1,T2によれば、被写体表面HSの輝度情報と気温情報を利用して各種の測定,診断,検知等を行う際、特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置DUを用いて、気温情報が得られるようになっているため、気温計の出力を輝度に変換する工程は不要となる。気温計を介さないため、気温計の機体差やデータ変換工程の誤差に起因する気温情報の誤差は生じない。したがって、気温データを高精度に輝度データとして取得することが可能である。さらに、気温になじんだ光学部材OEを通して被写体表面HSを撮像装置DUで観測し演算することで、より簡単に気温データを直接輝度データとして取得することが可能となる。 According to the temperature measurement systems T0, T1, and T2, when performing various measurements, diagnoses, detections, etc. using the brightness information and temperature information of the subject surface HS, the subject image consisting of electromagnetic waves in a specific wavelength band is used as the brightness information. Since the temperature information can be obtained by using the image pickup device DU to be acquired, the step of converting the output of the thermometer into the luminance becomes unnecessary. Since it does not go through the air temperature meter, there is no error in the air temperature information due to the difference in the airframe of the airframe or the error in the data conversion process. Therefore, it is possible to acquire the temperature data as luminance data with high accuracy. Further, by observing and calculating the subject surface HS with the image pickup apparatus DU through the optical member OE familiar with the air temperature, it becomes possible to more easily acquire the air temperature data as the direct luminance data.

次に、少なくとも2種類の電磁波放射部材からなる背景部材HEを用いて、黒体放射輝度を算出する方法を説明する。撮像装置DUで撮像する背景を構成する背景部材HEとして、表面放射率が約100%(100%未満)であって温度制御された電磁波放射部材を2種類用いるものとし、背景部材HEを構成する2種類の電磁波放射部材は相異なる電磁波放射輝度を有するものとする。相異なる放射輝度を実現する方法としては、相異なる温度に設定する方法(例えば、ペルチェ素子を用いた温度制御)、相異なる放射率に設定する方法等が挙げられる。 Next, a method of calculating the blackbody radiance will be described using a background member HE composed of at least two types of electromagnetic wave radiating members. As the background member HE constituting the background to be imaged by the image pickup apparatus DU, two types of electromagnetic wave radiation members having a surface emissivity of about 100% (less than 100%) and temperature control are used to form the background member HE. It is assumed that the two types of electromagnetic wave radiating members have different electromagnetic wave radiances. Examples of the method of realizing different radiances include a method of setting different temperatures (for example, temperature control using a Pelche element), a method of setting different emissivity, and the like.

上記2種類の電磁波放射部材からなる背景部材HEを撮像装置DUの前方に配置し、背景部材HEと撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能とする。前述した測定手順の具体例1又は具体例2(図2又は図3)に従って、以下に説明する輝度測定点P1A,P1B,P2A,P2Bでの測定を行う。その際、工程1及び工程2(#20,#30)は、温度計測システムT1又は温度計測システムT2(図4又は図6)を用いて行う。 The background member HE composed of the above two types of electromagnetic wave emitting members is arranged in front of the image pickup apparatus DU, and the optical member OE is arranged or can be arranged between the background member HE and the image pickup apparatus DU. According to the specific example 1 or the specific example 2 (FIG. 2 or 3) of the above-mentioned measurement procedure, the measurement is performed at the luminance measurement points P1A, P1B, P2A, and P2B described below. At that time, step 1 and step 2 (# 20, # 30) are performed using the temperature measurement system T1 or the temperature measurement system T2 (FIG. 4 or 6).

図8に、2種類の電磁波放射部材からなる背景部材HEで構成された被写体表面HSとその上の輝度測定点P1A,P1B,P2A,P2Bを、撮像装置DU側から見た状態で示す。図8(A)は工程1で輝度情報を取得するときの状態を示しており、図8(B)は工程2で輝度情報を取得するときの状態を示している。 FIG. 8 shows a subject surface HS composed of a background member HE composed of two types of electromagnetic wave emitting members and luminance measurement points P1A, P1B, P2A, and P2B on the subject surface HS as viewed from the image pickup apparatus DU side. FIG. 8A shows a state when the luminance information is acquired in the step 1, and FIG. 8B shows a state when the luminance information is acquired in the step 2.

図9に、2種類の電磁波放射部材からなる背景部材HEで構成された被写体表面HSとその上の輝度測定点P1A,P1B,P2A,P2Bを、撮像装置DU側から見た状態で示す。この温度計測システムT2では、光学部材OEが撮像装置DUの視野の一部を覆うように配置されており、視野内において、工程1での輝度情報の取得は光学部材OEが無い領域の輝度測定点P1A,P1Bで行われ、工程2での輝度情報の取得は光学部材OEがある領域の輝度測定点P2A,P2Bで行われる。 FIG. 9 shows a subject surface HS composed of a background member HE composed of two types of electromagnetic wave emitting members and luminance measurement points P1A, P1B, P2A, and P2B on the subject surface HS as viewed from the image pickup apparatus DU side. In this temperature measurement system T2, the optical member OE is arranged so as to cover a part of the field of view of the image pickup device DU, and in the field of view, the acquisition of the luminance information in the step 1 is the luminance measurement in the region where the optical member OE is not present. The acquisition of the luminance information in the step 2 is performed at the luminance measurement points P2A and P2B in the region where the optical member OE is located.

気温相当の黒体放射輝度の算出(#40)は、以下のようにして行う。まず、図8,図9に示すように、2種類の電磁波放射部材からなる背景部材HEにおいて、相異なる放射輝度の領域をRA,RBとする。 The calculation of the blackbody radiance equivalent to the air temperature (# 40) is performed as follows. First, as shown in FIGS. 8 and 9, in the background member HE composed of two types of electromagnetic wave emitting members, regions of different radiances are defined as RA and RB.

温度計測システムT1(図4)で工程1,2を実施する場合、領域RA内の任意の点において工程1,2で得られた輝度値をそれぞれI1A,I2Aとし、領域RB内の任意の点において工程1,2で得られた輝度値をそれぞれI1B,I2Bとする。被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なれば、輝度測定点は各領域RA,RB内の任意の点でよい。つまり、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであればよい。ただし、ここでは図8に示すように、領域RA,RBの境界から等距離の位置(図4の光軸AXに関して対称位置)の測定点P1A,P1B,P2A,P2Bを想定している。When steps 1 and 2 are carried out by the temperature measurement system T1 (FIG. 4), the luminance values obtained in steps 1 and 2 at arbitrary points in the region RA are set to I 1A and I 2A , respectively, and are arbitrary in the region RB. In this respect, the luminance values obtained in steps 1 and 2 are I 1B and I 2B , respectively. If the luminance of the electromagnetic wave in the specific wavelength band on the subject surface HS is different from each other, the luminance measurement point may be any point in each region RA, RB. That is, both of the luminance information used for calculating the blackbody radiance may be acquired for at least two measurement points in which the luminance of the electromagnetic wave in the specific wavelength band on the subject surface HS is different from each other. However, as shown in FIG. 8, it is assumed that the measurement points P1A, P1B, P2A, and P2B are equidistant from the boundary of the regions RA and RB (positions symmetrical with respect to the optical axis AX in FIG. 4).

温度計測システムT2(図6)で工程1,2を実施する場合、図9に示すように、撮像装置DUの視野内における光学部材OEの外周近傍において、光学部材OEが被写体表面HSに重なっておらずかつ領域RA内の測定点P1Aと、光学部材OEが被写体表面HSに重なっておりかつ領域RA内の測定点P2Aと、光学部材OEが被写体表面HSに重なっておらずかつ領域RB内の測定点P1Bと、光学部材OEが被写体表面HSに重なっておりかつ領域RB内の測定点P2Bと、を選び、測定点P1Aにおける工程1で得られた輝度値をI1A、測定点P2Aにおける工程2で得られた輝度値をI2A、測定点P1Bにおける工程1で得られた輝度値をI1B、測定点P2Bにおける工程2で得られた輝度値をI2Bとする。なお、この場合も、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであればよい。したがって、測定点P1A,P1B,P2A,P2Bが互いに近くに位置するように設定するのが好ましい。When steps 1 and 2 are carried out by the temperature measurement system T2 (FIG. 6), as shown in FIG. 9, the optical member OE overlaps the subject surface HS in the vicinity of the outer periphery of the optical member OE in the field of view of the image pickup apparatus DU. The measurement point P1A in the region RA and the optical member OE overlap the subject surface HS, and the measurement point P2A in the region RA and the optical member OE do not overlap the subject surface HS and are in the region RB. The measurement point P1B and the measurement point P2B in which the optical member OE overlaps the subject surface HS and are in the region RB are selected, and the brightness value obtained in step 1 at the measurement point P1A is set to I 1A and the step at the measurement point P2A. Let the brightness value obtained in step 2 be I 2A, the brightness value obtained in step 1 at the measurement point P1B be I 1B , and the brightness value obtained in step 2 at the measurement point P2B be I 2B . Also in this case, both of the luminance information used for calculating the blackbody radiance may be acquired for at least two measurement points in which the luminance of the electromagnetic wave in the specific wavelength band on the subject surface HS is different from each other. Therefore, it is preferable to set the measurement points P1A, P1B, P2A, and P2B so as to be located close to each other.

前記式(F1)と同様に、輝度値の関係から以下の式(F2)が得られる。
air=(I1A・I2B−I2A・I1B)/{(I1A−I2A)−(I1B−I2B)} …(F2)
上記の式(F2)に従って、気温相当の黒体放射輝度Iairを算出する。なお、2種類の電磁波放射部材からなる背景温度に対して光学部材OEの有無があることから、得られる4点情報により透過率Tの項は消えることになる。
Similar to the above equation (F1), the following equation (F2) can be obtained from the relationship of the luminance value.
I air = (I 1A・ I 2B −I 2A・ I 1B ) / {(I 1A −I 2A ) − (I 1B −I 2B )}… (F2)
According to the above equation (F2), the blackbody radiance I air corresponding to the air temperature is calculated. Since there is the presence or absence of the optical member OE with respect to the background temperature composed of the two types of electromagnetic wave emitting members, the term of the transmittance T disappears from the obtained four-point information.

被写体表面HSを構成する背景部材HEは温度制御がなされているため、放射輝度は安定している。つまり、背景放射輝度の経時変化を少なくすることが可能である。したがって、上記方法を採用すれば、気温相当放射輝度Iairを高い測定精度で得ることができる。また、上記のように2種類以上の電磁波放射部材からなる背景部材HEで被写体表面HSを構成すれば、光学部材OEの透過率Tを予め知る必要がないため、光学部材OEの経年劣化や汚損による透過率変動があっても精度良く測定することが可能である。背景部材HEとして2種類以上の電磁波放射部材を用いる場合に限らず、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであればよい。Since the background member HE constituting the subject surface HS is temperature-controlled, the radiance is stable. That is, it is possible to reduce the change over time in the background radiance. Therefore, if the above method is adopted, the radiance I air equivalent to the temperature can be obtained with high measurement accuracy. Further, if the subject surface HS is composed of the background member HE composed of two or more types of electromagnetic wave emitting members as described above, it is not necessary to know the transmittance T of the optical member OE in advance, so that the optical member OE is deteriorated over time or soiled. It is possible to measure with high accuracy even if there is a change in transmittance due to. Not limited to the case where two or more types of electromagnetic wave radiant members are used as the background member HE, at least two luminance informations used for calculating the blackbody radiance have different luminancees of electromagnetic waves in a specific wavelength band on the subject surface HS. It suffices as long as it is acquired for the measurement point.

上記のように少なくとも2種類の電磁波放射部材からなる背景部材HEを用いて黒体放射輝度を算出する場合でも、撮像装置DUによって撮像する被写体表面HSを自然背景(相異なる放射輝度の領域RA,RBを有する自然背景)で構成してもよい。つまり、背景部材HEの代わりに自然背景を用いて、自然背景と撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能としてもよい。この方法を採用すれば、自然背景を利用しているため、背景となる部材の準備が不要となり、測定機材の小型化を図ることができる。また、光学部材OEを自然背景の近傍に配置することで、自然背景近辺の気温を測定でき、より一層測定精度を向上させることができる。 Even when the blackbody radiation brightness is calculated using the background member HE composed of at least two types of electromagnetic wave radiation members as described above, the subject surface HS imaged by the image pickup apparatus DU is a natural background (region RA of different radiation brightness). It may be composed of a natural background having RB). That is, the natural background may be used instead of the background member HE, and the optical member OE may be arranged or may be arranged between the natural background and the image pickup apparatus DU. If this method is adopted, since the natural background is used, it is not necessary to prepare the background member, and the measuring equipment can be miniaturized. Further, by arranging the optical member OE in the vicinity of the natural background, the air temperature in the vicinity of the natural background can be measured, and the measurement accuracy can be further improved.

前述した温度計測システムT0,T1,T2を構成している光学部材OEでは、被写体像を構成するための電磁波を透過させる光学面が、撮像装置DUの光軸AXに対して垂直になっている。つまり、光軸AXに対して平行な法線を有する光学面が、光学部材OEに存在している。このため、その光学面での表面反射が気温の測定に悪影響を及ぼすおそれがある。そこで、図10に示すように、光学部材OEを斜めに配置することが好ましい。 In the optical member OE constituting the temperature measurement systems T0, T1, and T2 described above, the optical surface that transmits electromagnetic waves for forming the subject image is perpendicular to the optical axis AX of the image pickup apparatus DU. .. That is, an optical surface having a normal line parallel to the optical axis AX exists in the optical member OE. Therefore, the surface reflection on the optical surface may adversely affect the measurement of air temperature. Therefore, as shown in FIG. 10, it is preferable to arrange the optical member OE diagonally.

図10に示す光学部材OEにおいて、被写体像を構成する電磁波が透過する光学面の法線NLは、撮像装置DUの光軸AXに対して非平行になっている。この配置例によれば、光学部材OEにわずかに存在する表面反射による、撮像装置DU自身の写り込み(いわゆるナルシサス現象)を防ぐことができ、測定精度を上げることができる。 In the optical member OE shown in FIG. 10, the normal NL of the optical surface through which the electromagnetic waves constituting the subject image are transmitted is not parallel to the optical axis AX of the image pickup apparatus DU. According to this arrangement example, it is possible to prevent the image pickup device DU itself from being reflected (so-called narcissus phenomenon) due to the surface reflection slightly present in the optical member OE, and it is possible to improve the measurement accuracy.

光学部材OEが有する光学面のなかでも、撮像装置DUに面している表面は、撮像センサーSR(図1)へと不要光を導きやすいので、その法線NLが光軸AXに対して非平行となるようにするのが好ましい。また、光学部材OE表面の法線NLの向きは、水平線よりも下向きであることが好ましい。そのようにすることで、特に屋外で測定する場合における太陽の写り込みの可能性を避けることができ、測定精度を向上させることが可能となる。 Among the optical surfaces of the optical member OE, the surface facing the image pickup device DU tends to guide unnecessary light to the image pickup sensor SR (FIG. 1), so that the normal NL is not related to the optical axis AX. It is preferable to make them parallel. Further, the direction of the normal line NL on the surface of the optical member OE is preferably downward from the horizontal line. By doing so, it is possible to avoid the possibility of reflection of the sun, especially when measuring outdoors, and it is possible to improve the measurement accuracy.

前述した温度計測システムT0,T1,T2を構成している光学部材OEでは、その周囲から入射してくる電磁波を遮るものが存在しない。そのため、光学部材OEでの表面反射が発生しやすくなっている。そこで、図11や図12に示すように、電磁波遮断部材B1,B2,B3を光学部材OEの周囲に配置することが好ましい。 In the optical member OE constituting the temperature measurement systems T0, T1 and T2 described above, there is nothing that blocks the electromagnetic wave incident from the surroundings. Therefore, surface reflection in the optical member OE is likely to occur. Therefore, as shown in FIGS. 11 and 12, it is preferable to arrange the electromagnetic wave blocking members B1, B2, and B3 around the optical member OE.

図11(A)に示す光学部材OEの下方向には電磁波遮断部材B1が配置されており、図11(B)に示す光学部材OEの上下方向には電磁波遮断部材B1,B2が配置されている。また、図12に示す光学部材OEの周囲には、電磁波遮断部材B3が光学部材OEを囲むように配置されている。電磁波遮断部材B1,B2,B3を単独で又は組み合わせて、光学部材OEの周辺に設けることにより、光学部材OEにわずかに存在する表面反射による周囲電磁波の撮像装置DUへの写り込みを防止することができる。したがって、周囲電磁波が撮像装置DUに混入するのを防ぐことができるので、精度良い測定が可能となる。 The electromagnetic wave blocking member B1 is arranged in the downward direction of the optical member OE shown in FIG. 11A, and the electromagnetic wave blocking members B1 and B2 are arranged in the vertical direction of the optical member OE shown in FIG. 11B. There is. Further, an electromagnetic wave blocking member B3 is arranged around the optical member OE shown in FIG. 12 so as to surround the optical member OE. By providing the electromagnetic wave blocking members B1, B2, and B3 alone or in combination around the optical member OE, it is possible to prevent reflection of ambient electromagnetic waves on the image pickup device DU due to surface reflection slightly present on the optical member OE. Can be done. Therefore, it is possible to prevent ambient electromagnetic waves from being mixed into the image pickup apparatus DU, so that accurate measurement is possible.

電磁波遮断部材B1,B2又はB3の周りを、更に電磁波遮断部材B1,B2又はB3で囲むように、2重の遮断構造にすれば、より一層効果的な高精度の測定が可能となる。また、電磁波遮断部材B1,B2,B3において、光学部材OEに面している側の面の放射率を高くし(内側面の反射を減らす)、その反対側の面の放射率を低くする(外側面の反射を増やす)ことが好ましい。そのようにすれば、電磁波遮断部材B1,B2,B3自体の温度上昇による悪影響を抑えることができる。 If the double blocking structure is formed so as to further surround the electromagnetic wave blocking member B1, B2 or B3 with the electromagnetic wave blocking member B1, B2 or B3, more effective and highly accurate measurement becomes possible. Further, in the electromagnetic wave blocking members B1, B2, and B3, the emissivity of the surface on the side facing the optical member OE is increased (reflection on the inner surface is reduced), and the emissivity of the surface on the opposite side is decreased (). (Increases reflection on the outer surface) is preferable. By doing so, it is possible to suppress the adverse effect of the temperature rise of the electromagnetic wave blocking members B1, B2, and B3 themselves.

T0,T1,T2 温度計測システム
DU 撮像装置
LU レンズユニット
LN 撮像レンズ
SR 撮像センサー
OE 光学部材
HE 背景部材
HS 被写体表面(背景)
AX 光軸
P1,P2,P1A,P1B,P2A,P2B 測定点
RA,RB 領域
NL 法線
B1,B2,B3 電磁波遮断部材
1 信号処理部
2 演算制御部
3 メモリー
4 操作部
5 表示部
10 挿抜機構
T0, T1, T2 Temperature measurement system DU Imaging device LU lens unit LN Imaging lens SR Imaging sensor OE Optical member HE Background member HS Subject surface (background)
AX Optical axis P1, P2, P1A, P1B, P2A, P2B Measurement point RA, RB area NL normal B1, B2, B3 Electromagnetic wave blocking member 1 Signal processing unit 2 Arithmetic control unit 3 Memory 4 Operation unit 5 Display unit 10 Insertion / extraction mechanism

Claims (3)

被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を有し、
前記光学部材における前記特定波長帯の電磁波の透過率が全面にわたって均一であり、
前記撮像装置が、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出し、
前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであることを特徴とする温度計測システム。
An image pickup device that has sensitivity to electromagnetic waves in a specific wavelength band among electromagnetic waves radiated or reflected by the surface of the subject and acquires a subject image composed of the electromagnetic waves in the specific wavelength band as luminance information.
It has an optical member that can transmit electromagnetic waves in the specific wavelength band and has the same temperature as the air temperature.
The transmittance of electromagnetic waves in the specific wavelength band in the optical member is uniform over the entire surface.
Using the luminance information of the subject image acquired by the image pickup apparatus without passing through the optical member and the luminance information of the subject image acquired through the optical member, a blackbody corresponding to the temperature in the specific wavelength band. to calculate the radiance,
Both luminance information used is the calculation of the black body radiance, temperature measurement, characterized in der Rukoto that brightness of the electromagnetic wave of the specific wavelength band in the object surface is acquired for each other at least two different measuring points system.
前記光学部材において前記被写体像を構成する電磁波が透過する光学面の法線が、前記撮像装置の光軸に対して非平行であることを特徴とする請求項記載の温度計測システム。 Temperature measuring system according to claim 1, wherein a normal of the optical surface is non-parallel to the optical axis of the image pickup apparatus electromagnetic waves constituting the object image in the optical member is transmitted. 被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、 An image pickup device that has sensitivity to electromagnetic waves in a specific wavelength band among electromagnetic waves radiated or reflected by the surface of the subject and acquires a subject image composed of the electromagnetic waves in the specific wavelength band as luminance information.
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を用いて行う温度計測方法であって、 It is a temperature measurement method performed by using an optical member capable of transmitting electromagnetic waves in the specific wavelength band and having the same temperature as the air temperature.
前記光学部材における前記特定波長帯の電磁波の透過率が全面にわたって均一であり、 The transmittance of electromagnetic waves in the specific wavelength band in the optical member is uniform over the entire surface.
前記撮像装置により、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出することを特徴とする温度計測方法。 With the image pickup apparatus, the luminance information of the subject image acquired without passing through the optical member and the luminance information of the subject image acquired through the optical member for at least two measurement points where the luminance of the electromagnetic wave in the specific wavelength band on the surface of the subject is different from each other. A temperature measuring method characterized by calculating the blackbody radiance corresponding to the temperature in the specific wavelength band by using the brightness information of the subject image.
JP2018513145A 2016-04-20 2017-04-13 Temperature measurement system and temperature measurement method Active JP6969542B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016084295 2016-04-20
JP2016084295 2016-04-20
PCT/JP2017/015178 WO2017183557A1 (en) 2016-04-20 2017-04-13 Temperature measurement system

Publications (2)

Publication Number Publication Date
JPWO2017183557A1 JPWO2017183557A1 (en) 2019-03-14
JP6969542B2 true JP6969542B2 (en) 2021-11-24

Family

ID=60115969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018513145A Active JP6969542B2 (en) 2016-04-20 2017-04-13 Temperature measurement system and temperature measurement method

Country Status (2)

Country Link
JP (1) JP6969542B2 (en)
WO (1) WO2017183557A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106328A (en) * 1985-11-01 1987-05-16 Tokyo Electric Power Co Inc:The Radiation thermometer
JPH03115820A (en) * 1989-09-28 1991-05-16 Mazda Motor Corp Method for measuring air temperature
JPH07225156A (en) * 1994-02-14 1995-08-22 Nippon Avionics Co Ltd Method of visualizing gas flow
GB2320155B (en) * 1996-12-03 2000-11-01 Chelsea Instr Ltd Method and apparatus for the imaging of gases
JP4209877B2 (en) * 2005-09-01 2009-01-14 ホーチキ株式会社 Gas monitoring device
JP2007183207A (en) * 2006-01-10 2007-07-19 Yamatake Corp Radiation temperature sensor and radiation temperature measuring device
JP5125544B2 (en) * 2008-01-24 2013-01-23 日本電気株式会社 Gas measuring device and gas measuring method
US7939804B2 (en) * 2008-11-26 2011-05-10 Fluke Corporation System and method for detecting gas leaks
US9225915B2 (en) * 2012-07-06 2015-12-29 Providence Photonics, Llc Calibration and quantification method for gas imaging camera
US9501827B2 (en) * 2014-06-23 2016-11-22 Exxonmobil Upstream Research Company Methods and systems for detecting a chemical species
JP6492612B2 (en) * 2014-12-16 2019-04-03 コニカミノルタ株式会社 Leaked gas detection device and leaked gas detection method

Also Published As

Publication number Publication date
JPWO2017183557A1 (en) 2019-03-14
WO2017183557A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
KR101167260B1 (en) Radiometry using an uncooled microbolometer detector
US7422365B2 (en) Thermal imaging system and method
US20210181099A1 (en) Gas imaging system
US20200124525A1 (en) Gas leak emission quantification with a gas cloud imager
US9255846B1 (en) Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager
CN110914670A (en) Gas imaging system and method
US20200080898A1 (en) Infrared imaging detector
KR102220654B1 (en) Correction System of Measurement Temperature
JP6969542B2 (en) Temperature measurement system and temperature measurement method
JP6766671B2 (en) Gas detector
JP6750672B2 (en) Gas observation method
JP2014134402A (en) Infrared sensor and temperature compensation method
CN110050176B (en) Infrared image sensor
RU2727349C1 (en) Method of thermography of a remote object
Nichols et al. Performance characteristics of a submarine panoramic infrared imaging sensor
WO2022023748A1 (en) A thermal imaging system and method
KR102322871B1 (en) Filter array and image sensor and infrared camera comprising the same
Naylor et al. The spectral response of the SCUBA-2 850-and 450-micron photometric bands
Kienitz Thermal imaging as a modern form of pyrometry
Novoselov et al. Study of Temperature Remote Diagnostics Systems of Industrial Electrical Installations
KR101022529B1 (en) Apparatus and method for controlling dynamic range of thermal image detector
Cao et al. Research on NETD test system of medical infrared thermal imager based on CCD imaging technology
Vavilov et al. Infrared Systems
Kreveld Thermal imagers: Taking hot pictures
Dall’O’ et al. Infrared Audit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150