JP2016170093A - Sample holder and x-ray analysis method - Google Patents

Sample holder and x-ray analysis method Download PDF

Info

Publication number
JP2016170093A
JP2016170093A JP2015050661A JP2015050661A JP2016170093A JP 2016170093 A JP2016170093 A JP 2016170093A JP 2015050661 A JP2015050661 A JP 2015050661A JP 2015050661 A JP2015050661 A JP 2015050661A JP 2016170093 A JP2016170093 A JP 2016170093A
Authority
JP
Japan
Prior art keywords
ray
laminate cell
pair
support members
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050661A
Other languages
Japanese (ja)
Other versions
JP6406077B2 (en
Inventor
裕太 窪内
Yuta Kubouchi
裕太 窪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015050661A priority Critical patent/JP6406077B2/en
Publication of JP2016170093A publication Critical patent/JP2016170093A/en
Application granted granted Critical
Publication of JP6406077B2 publication Critical patent/JP6406077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a proper electrical connection state between a positive electrode and a negative electrode in X-ray analysis for a laminate cell even when a gas is generated in the laminate cell.SOLUTION: A sample holder 21 is used for in-situ X-ray analysis which obtains analytical data of a battery element such as a lithium ion secondary battery by irradiating, as a sample, a thin plate-like laminate cell 10 hermetically sealed with electrolyte by a laminate film with an X-ray. The sample holder comprises: a pair of supporting members 22a, 22b holding and supporting the laminate cell 10 from both sides; and means 24 for pressing the pair of supporting members so as not to be separated from each other. Each of the pair of supporting members includes: supporting surfaces 25a, 25b arranged opposite a principal surface of the laminate cell; and X-ray transparent holes 26a, 26b for transmitting an X-ray therethrough. The size of the X-ray transparent hole 26b increases as away from the supporting surface 25b.SELECTED DRAWING: Figure 3

Description

本発明は、充放電過程における二次電池の電子状態や構造変化などを測定するために用いて好適なX線分析用の試料ホルダーとこれを用いたX線分析方法に関する。   The present invention relates to a sample holder for X-ray analysis suitable for measuring an electronic state and a structural change of a secondary battery in a charge / discharge process, and an X-ray analysis method using the same.

二次電池のなかでも、特にリチウムイオン二次電池は、エネルギー密度が高く、作動電圧が高い電池として知られている。このため、リチウムイオン二次電池は、携帯電話やノート型パーソナルコンピュータといった携帯型の電子機器のほか、ハイブリッド自動車や電気自動車の電源などに広く用いられている。   Among secondary batteries, a lithium ion secondary battery is known as a battery having a high energy density and a high operating voltage. For this reason, lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook personal computers, as well as power sources for hybrid vehicles and electric vehicles.

一般に、リチウムイオン二次電池は、正極活物質を主要構成成分とする正極と、負極活物質を主要構成成分とする負極と、正極と負極を分離するセパレータと、非水系電解質などから構成されている。これらの構成材料は、金属缶やアルミラミネートフィルムなどの外装材で封止されている。外装材に金属缶を用いたものはハードパック型と呼ばれ、アルミラミネートフィルムを用いたものはソフトパック型またはラミネートセルとも呼ばれている。   Generally, a lithium ion secondary battery is composed of a positive electrode having a positive electrode active material as a main component, a negative electrode having a negative electrode active material as a main component, a separator separating the positive electrode and the negative electrode, a non-aqueous electrolyte, and the like. Yes. These constituent materials are sealed with an exterior material such as a metal can or an aluminum laminate film. Those using metal cans as exterior materials are called hard pack types, and those using aluminum laminate films are also called soft pack types or laminate cells.

電池材料の開発においては、電池材料を評価するためにX線分析が採用されている。X線分析、特にX線回折(X−ray Diffraction:以下、XRD)測定は、結晶構造、構成元素それぞれの価数や局所構造(配位数、原子間距離)といった情報を与える分析手法であり、電池材料の評価に広く利用されている。   In the development of battery materials, X-ray analysis is employed to evaluate battery materials. X-ray analysis, particularly X-ray diffraction (hereinafter referred to as XRD) measurement, is an analytical method that provides information such as crystal structure, valence of each constituent element and local structure (coordination number, interatomic distance). It is widely used for the evaluation of battery materials.

電池材料の上記X線分析の方法は、大別すると、ex−situ測定と、in−situ測定とに分かれる。ex−situ測定は、充放電を行った電池セルを分解し、正極などの構成材料を取り出してX線分析を行うものである。in−situ測定は、電池を分解せずに充放電を行ったままX線分析を行うものである。リチウムイオン二次電池などの非水系電解質を用いる二次電池の場合、ex−situ測定では、電池の外装材の中から正極などの構成材料を取り出して大気中に暴露すると、正極中の正極活物質の状態が変化してしまう場合がある。このため、近年では、実際の電池反応に近い状態を評価できるin−situ測定が主流になりつつある。   The X-ray analysis methods for battery materials are roughly classified into ex-situ measurement and in-situ measurement. In ex-situ measurement, charged and discharged battery cells are disassembled, and constituent materials such as positive electrodes are taken out and subjected to X-ray analysis. In-situ measurement is to perform X-ray analysis while charging and discharging without disassembling the battery. In the case of a secondary battery using a non-aqueous electrolyte such as a lithium ion secondary battery, in the ex-situ measurement, if the constituent material such as the positive electrode is taken out from the battery outer packaging material and exposed to the atmosphere, the positive electrode activity in the positive electrode is The state of the substance may change. For this reason, in-situ measurement capable of evaluating a state close to an actual battery reaction is becoming mainstream in recent years.

in−situでのX線分析に関しては、たとえば非特許文献1に記載されているように、金属ベリリウムを用いたX線分析用の特殊な電気化学セルが開発され、電池材料の評価に利用されている。金属ベリリウムは、導電性があり、かつ、X線の透過率が高いことから、X線を透過する窓部の材料に用いられている。しかしながら、金属ベリリウムを窓部の材料に用いる場合は、(1)ベリリウムの酸化物が毒物であるため取り扱いが難しい、(2)電気化学セルの構造が複雑であるためセルの作製コストが高くなる、といった問題があった。   Regarding in-situ X-ray analysis, as described in Non-Patent Document 1, for example, a special electrochemical cell for X-ray analysis using metal beryllium has been developed and used for evaluation of battery materials. ing. Metal beryllium is conductive and has a high X-ray transmittance, so it is used as a material for a window portion that transmits X-rays. However, when metal beryllium is used as the material for the window, (1) it is difficult to handle because the oxide of beryllium is a poison, and (2) the cell fabrication cost is high due to the complicated structure of the electrochemical cell. There was a problem such as.

一方、特許文献1に記載されているように、アルミラミネートフィルムなどで外装した薄板状の電池(ラミネートセル)を対象に、直接、X線分析をする手法も採用されている。ラミネートセルは、正極、負極、外装などが十分に薄いため、X線の透過率が高い。このため、ラミネートセルを分解せずに、そのままX線分析を実施することができる。この手法では、ラミネートセルの取り扱いが簡便であり、かつ、セルの作製コストが低いため、複数のセルを容易に作製できるというメリットがある。   On the other hand, as described in Patent Document 1, a method of directly performing X-ray analysis for a thin plate battery (laminate cell) covered with an aluminum laminate film or the like is also employed. The laminate cell has a high X-ray transmittance because the positive electrode, the negative electrode, and the exterior are sufficiently thin. For this reason, X-ray analysis can be carried out as it is without disassembling the laminate cell. This method has an advantage that a plurality of cells can be easily manufactured because the handling of the laminate cell is simple and the manufacturing cost of the cell is low.

特開平11−230919号公報JP-A-11-230919

M. N. Richard et al, J. Electrochem. Soc. 144, 554, (1997)M. N. Richard et al, J. Electrochem. Soc. 144, 554, (1997)

しかしながら、従来においては、in−situでのX線分析に際して、単にラミネートセルを試料台の上に立ててX線を透過させていたため、測定条件によっては次のような不具合が生じることがあった。すなわち、全体的に薄くて形状が変化しやすいラミネートセルを用いて、in−situでのX線分析により二次電池の性能を評価する場合に、たとえば、4.8V程度の高い電圧で充放電を繰り返し行うと、測定の途中で充放電が適切に行えなくなることがあった。   However, in the past, in the in-situ X-ray analysis, the laminate cell was simply placed on the sample stage and allowed to transmit X-rays, so the following problems might occur depending on the measurement conditions. . That is, when the performance of a secondary battery is evaluated by in-situ X-ray analysis using a laminate cell that is thin and easy to change in shape, for example, charging and discharging at a high voltage of about 4.8 V, for example. If the process is repeated, charging and discharging may not be performed properly during the measurement.

そこで本発明者は、測定の途中で充放電が適切に行えなくなったラミネートセルの状態を確認してみた。そうしたところ、測定前にくらべてラミネートセルが全体的に少し膨らんでいることに気づいた。この事実から、本発明者は、高い電圧領域で充放電を行った場合は、電解液の分解や、正極活物質からの酸素の放出などにより、ラミネートセル内にガスが発生し、これにともなう電池内の圧力の上昇によってラミネートセルが膨らみ、その結果、正極と負極の相対的な位置関係が変化したのではないかと考えた。すなわち、本発明者は、ラミネートセルを対象としたin−situでのX線分析において、測定の途中で充放電が適切に行えなくなった原因は、セパレータを間に挟んで近接する正極と負極がガスの発生にともなって分離し、それらの電気的な接続状態が悪化したためである、との考えに基づいて本願発明を想到した。   Then, this inventor tried to confirm the state of the laminate cell which became unable to charge / discharge appropriately in the middle of a measurement. As a result, I noticed that the laminate cell was slightly swollen overall before the measurement. From this fact, when the present inventor performs charge / discharge in a high voltage region, gas is generated in the laminate cell due to decomposition of the electrolytic solution, release of oxygen from the positive electrode active material, and the like. It was thought that the laminate cell swelled due to an increase in the pressure in the battery, and as a result, the relative positional relationship between the positive electrode and the negative electrode changed. That is, in the in-situ X-ray analysis for the laminate cell, the present inventor is unable to charge / discharge properly during the measurement because the positive electrode and the negative electrode adjacent to each other with the separator interposed therebetween. The present invention was conceived on the basis of the idea that the gas was separated as the gas was generated and the electrical connection state thereof deteriorated.

本発明の主な目的は、ラミネートセルを対象としたX線分析において、ラミネートセル内でガスが発生した場合でも正極と負極の電気的な接続状態を良好に保ち、これによって信頼性の高いX線分析を可能とするX線分析用の試料ホルダーとX線分析方法を提供することにある。   The main object of the present invention is to maintain a good electrical connection between the positive electrode and the negative electrode even in the case where gas is generated in the laminate cell in the X-ray analysis for the laminate cell. An object of the present invention is to provide a sample holder and an X-ray analysis method for X-ray analysis that enable X-ray analysis.

本発明の第1の態様は、
セパレータを間に挟んで正極と負極を積層してなる電池要素を、電解液とともにラミネートフィルムにより密封した薄板状のラミネートセルを試料とし、前記ラミネートセルにX線を照射して分析データを得るin−situX線分析に用いられる試料ホルダーであって、
前記ラミネートセルを両側から挟んで支持する一対の支持部材と、
前記一対の支持部材が離間しないように前記一対の支持部材を押さえる押さえ手段とを備え、
前記一対の支持部材の各々は、前記ラミネートセルの主面と対向するように配置される支持面と、前記X線を透過させるX線透過用孔とを有し、
前記一対の支持部材のうち少なくとも一方の支持部材に形成されたX線透過用孔の大きさが、前記支持面から遠ざかるにつれて拡大している
ことを特徴とする試料ホルダーである。
The first aspect of the present invention is:
A battery element formed by laminating a positive electrode and a negative electrode with a separator in between is used as a sample of a thin plate-like laminate cell sealed with a laminate film together with an electrolytic solution, and X-rays are applied to the laminate cell to obtain analysis data A sample holder for use in situ X-ray analysis,
A pair of support members that sandwich and support the laminate cell from both sides;
Pressing means for pressing the pair of support members so that the pair of support members are not separated from each other,
Each of the pair of support members has a support surface disposed so as to face the main surface of the laminate cell, and an X-ray transmission hole that transmits the X-rays,
The sample holder is characterized in that the size of the X-ray transmitting hole formed in at least one of the pair of support members increases as the distance from the support surface increases.

本発明の第2の態様は、
セパレータを間に挟んで正極と負極を積層してなる電池要素を、電解液とともにラミネートフィルムにより密封した薄板状のラミネートセルを試料とし、前記ラミネートセルにX線を照射して分析データを得るin−situX線分析に際して、
前記ラミネートセルを一対の支持部材により両側から挟んで支持し、かつ、前記一対の支持部材が離間しないように前記一対の支持部材を押さえるとともに、前記一対の支持部材にそれぞれX線透過用孔を形成し、かつ、前記一対の支持部材のうち少なくとも一方の支持部材に形成された前記X線透過用孔の大きさを、前記ラミネートセルから遠ざかるにつれて拡大させることにより、当該支持部材とX線との干渉を回避しつつ、前記ラミネートセルのX線分析を行う
ことを特徴とするX線分析方法である。
The second aspect of the present invention is:
A battery element formed by laminating a positive electrode and a negative electrode with a separator in between is used as a sample of a thin plate-like laminate cell sealed with a laminate film together with an electrolytic solution, and X-rays are applied to the laminate cell to obtain analysis data -In situ X-ray analysis,
The laminate cell is supported by being sandwiched by a pair of support members from both sides, and the pair of support members are pressed so that the pair of support members are not separated from each other, and X-ray transmitting holes are respectively formed in the pair of support members. Forming and expanding the size of the X-ray transmitting hole formed in at least one of the pair of support members as the distance from the laminate cell increases. The X-ray analysis method is characterized in that X-ray analysis of the laminate cell is performed while avoiding interference.

本発明によれば、ラミネートセルを対象としたX線分析において、ラミネートセル内でガスが発生した場合でも正極と負極の電気的な接続状態を良好に保持することができる。このため、信頼性の高いX線分析を実現することが可能となる。また本発明によれば、ラミネートセル内で回折したX線と支持部材との干渉を避けることができる。   According to the present invention, in X-ray analysis for a laminate cell, even when gas is generated in the laminate cell, the electrical connection state between the positive electrode and the negative electrode can be favorably maintained. For this reason, it becomes possible to realize highly reliable X-ray analysis. According to the present invention, interference between the X-ray diffracted in the laminate cell and the support member can be avoided.

X線分析装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of a X-ray analyzer. X線分析の対象試料の一例となるラミネートセルの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the lamination cell used as an example of the target sample of X-ray analysis. 本発明の実施の形態に係る試料ホルダーの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the sample holder which concerns on embodiment of this invention. 支持部材22aの構造を示すもので、図中(A)は正面図、(B)は(A)のJ−J断面図である。The structure of the supporting member 22a is shown, (A) is a front view in the figure, (B) is JJ sectional drawing of (A). 支持部材22aの構造を示す斜視図である。It is a perspective view which shows the structure of the supporting member 22a. 支持部材22bの構造を示すもので、図中(A)は正面図、(B)は(A)のK−K断面図である。The structure of the support member 22b is shown, (A) is a front view in the figure, (B) is KK sectional drawing of (A). 支持部材22bの構造を示す斜視図である。It is a perspective view which shows the structure of the supporting member 22b. 押さえ手段の押さえ箇所を示す図であり、図中(A)は一方の支持部材における押さえ箇所、(B)は他方の支持部材における押さえ箇所を示している。It is a figure which shows the pressing location of a pressing means, (A) has shown the pressing location in one support member, and (B) has shown the pressing location in the other support member in the figure. 第1の押さえ手段の構成例を示す図である。It is a figure which shows the structural example of a 1st pressing means. 第2の押さえ手段の構成例を示す図である。It is a figure which shows the structural example of a 2nd pressing means. 第1変形例を示す概略断面図である。It is a schematic sectional drawing which shows a 1st modification. 第2変形例を示す概略断面図である。It is a schematic sectional drawing which shows a 2nd modification. 第2変形例を示す斜視図である。It is a perspective view which shows a 2nd modification.

以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
まず、本発明者は、上記課題を解決すべく、ラミネートセルを両側から挟んで支持する一対の支持部材を備える試料ホルダーとこれを用いたX線分析方法に係る発明を、特願2013−260482にて提案している。ただし、この先願発明では、X線回折測定を行う場合に、ラミネートセル内で回折したX線が支持部材に干渉することがあった。そこで、本発明者は、先願発明に改良を加えた。
本発明の実施の形態においては、次の順序で説明を行う。
1.X線分析装置の構成
2.ラミネートセルの構成
3.試料ホルダーの構成
4.X線分析方法
5.実施の形態の効果
6.変形例等
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, in order to solve the above-mentioned problems, the present inventor proposes an invention relating to a sample holder including a pair of support members that sandwich and support a laminate cell from both sides and an X-ray analysis method using the sample holder. Proposed by However, in the prior invention, when X-ray diffraction measurement is performed, X-rays diffracted in the laminate cell sometimes interfere with the support member. Therefore, the present inventor has improved the invention of the prior application.
In the embodiment of the present invention, description will be given in the following order.
1. 1. Configuration of X-ray analyzer 2. Laminate cell configuration Configuration of sample holder 4. 4. X-ray analysis method Effects of the embodiment 6. Modifications etc.

<1.X線分析装置の構成>
図1はX線分析装置の構成の一例を示す概略図である。
まず、X線分析では、実験室系X線装置または放射光施設から発生するX線をX線源1に用いることができる。X線源1によるX線の出射方向には、試料台2と、X線検出器4とが順に配置されている。試料台2は、X線分析の対象となる試料3がセットされる部分である。本実施の形態においては、一例として、後述するラミネートセルを試料3とする。X線検出器4は、試料3に入射し、かつ、試料3で回折したX線の強度を検出するものである。図1においては、試料3に入射するX線を「入射X線」、試料3で回折したX線を「回折X線」と表記している。X線検出器4は、図示しない移動機構により、試料3を中心に図中矢印方向(掃引方向)に移動可能になっている。図中の「2θ」は、X線の回折角を示している。
<1. Configuration of X-ray analyzer>
FIG. 1 is a schematic diagram showing an example of the configuration of an X-ray analyzer.
First, in the X-ray analysis, X-rays generated from a laboratory X-ray apparatus or a synchrotron radiation facility can be used for the X-ray source 1. A sample stage 2 and an X-ray detector 4 are sequentially arranged in the X-ray emission direction of the X-ray source 1. The sample stage 2 is a part where a sample 3 to be subjected to X-ray analysis is set. In this embodiment, as an example, a laminate cell, which will be described later, is a sample 3. The X-ray detector 4 detects the intensity of the X-ray incident on the sample 3 and diffracted by the sample 3. In FIG. 1, X-rays incident on the sample 3 are expressed as “incident X-rays”, and X-rays diffracted by the sample 3 are expressed as “diffracted X-rays”. The X-ray detector 4 can be moved around the sample 3 in the arrow direction (sweep direction) in the figure by a moving mechanism (not shown). “2θ” in the figure indicates the X-ray diffraction angle.

上記構成からなるX線分析装置においては、試料台2に試料3をセットした後、X線源1からX線を出射すると、このX線が試料3に入射する。このとき、X線検出器4を図中矢印方向に一定の間隔で掃引しながら、試料3を透過して回折したX線をX線検出器4に取り込み、そのX線の強度を測定する。これにより、試料3のX線回折プロファイルを求めることができる。X線回折プロファイルは、縦軸にX線の強度、横軸にX線の回折角(2θ)をとったグラブで表されるものである。   In the X-ray analyzer configured as described above, after setting the sample 3 on the sample stage 2 and emitting X-rays from the X-ray source 1, the X-rays enter the sample 3. At this time, while the X-ray detector 4 is swept at a constant interval in the direction of the arrow in the figure, X-rays transmitted through the sample 3 and diffracted are taken into the X-ray detector 4 and the intensity of the X-ray is measured. Thereby, the X-ray diffraction profile of the sample 3 can be obtained. The X-ray diffraction profile is represented by a grab with the X-ray intensity on the vertical axis and the X-ray diffraction angle (2θ) on the horizontal axis.

<2.ラミネートセルの構成>
図2はX線分析の対象試料の一例となるラミネートセルの構成を示す概略断面図である。図示したラミネートセル10は、正極11と、負極12と、セパレータ13とを含む電池要素14を備えた構成となっている。正極11は、正面視(平面視)矩形のシート状に形成されている。正極11の片面には正極活物質層15が形成されている。正極活物質層15は、たとえば、ニッケル酸リチウムと、導電助剤と、結着剤とを用いて、塗膜形成されている。負極12は、正面視矩形のシート状に形成されている。負極12の片面には負極活物質層16が形成されている。負極活物質層16は、たとえば、グラファイトと、結着剤とを用いて、塗膜形成されている。セパレータ13は、正面視矩形のシート状に形成されている。電池要素14は、セパレータ13を間に挟んで正極11と負極12を積層した構造になっている。この積層構造においては、正極11の正極活物質層15と負極12の負極活物質層16とが、セパレータ13を介して対向する状態に配置されている。
<2. Laminate cell configuration>
FIG. 2 is a schematic cross-sectional view showing a configuration of a laminate cell as an example of a target sample for X-ray analysis. The illustrated laminate cell 10 includes a battery element 14 including a positive electrode 11, a negative electrode 12, and a separator 13. The positive electrode 11 is formed in a rectangular sheet shape in front view (plan view). A positive electrode active material layer 15 is formed on one surface of the positive electrode 11. The positive electrode active material layer 15 is formed with a coating film using, for example, lithium nickelate, a conductive additive, and a binder. The negative electrode 12 is formed in a rectangular sheet shape when viewed from the front. A negative electrode active material layer 16 is formed on one surface of the negative electrode 12. The negative electrode active material layer 16 is formed with a coating film using, for example, graphite and a binder. The separator 13 is formed in a rectangular sheet shape when viewed from the front. The battery element 14 has a structure in which the positive electrode 11 and the negative electrode 12 are stacked with the separator 13 interposed therebetween. In this laminated structure, the positive electrode active material layer 15 of the positive electrode 11 and the negative electrode active material layer 16 of the negative electrode 12 are disposed so as to face each other with the separator 13 therebetween.

また、電池要素14は、図示しない電解液とともにラミネートフィルム17によって密封されている。ただし、正極11につながる端子(不図示)と負極12につながる端子(不図示)は、それぞれ充放電のための端子(不図示)を接続するために、ラミネートフィルム17の外側に引き出される。ラミネートフィルム17は、正面視矩形の袋状に形成されている。ラミネートフィルム17の内部には、非水系電解液からなる適量の電解液が注入されている。これにより、ラミネートセル10は、ラミネートシート型のリチウムイオン二次電池を構成している。また、ラミネートセル10は、X線分析を行うにあたって、できるだけ多くのX線を透過するように、正極11、負極12およびセパレータ13をそれぞれ単一のシートで構成した薄板状の構造になっている。   The battery element 14 is sealed with a laminate film 17 together with an electrolyte solution (not shown). However, a terminal (not shown) connected to the positive electrode 11 and a terminal (not shown) connected to the negative electrode 12 are drawn out to the outside of the laminate film 17 in order to connect terminals for charging / discharging (not shown). The laminate film 17 is formed in a rectangular bag shape when viewed from the front. An appropriate amount of electrolytic solution made of a non-aqueous electrolytic solution is injected into the laminate film 17. Thus, the laminate cell 10 constitutes a laminate sheet type lithium ion secondary battery. In addition, the laminate cell 10 has a thin plate structure in which the positive electrode 11, the negative electrode 12, and the separator 13 are each formed of a single sheet so that as much X-rays as possible can be transmitted when performing X-ray analysis. .

<3.試料ホルダーの構成>
図3本発明の実施の形態に係る試料ホルダーの構成の一例を示す断面図である。
図示した試料ホルダー21は、上述したラミネートセル10を試料としてX線分析を行う際に用いられるものである。ここで記述する「X線分析」とは、ラミネートセル10にX線を入射して分析データを得るin−situX線分析をいう。また、「in−situX線分析」とは、リチウムイオン二次電池を構成するラミネートセル10を分解することなくX線分析を行うことをいう。
<3. Configuration of sample holder>
3 is a cross-sectional view showing an example of the configuration of the sample holder according to the embodiment of the present invention.
The illustrated sample holder 21 is used when performing X-ray analysis using the above-described laminate cell 10 as a sample. The “X-ray analysis” described here refers to in-situ X-ray analysis in which X-rays are incident on the laminate cell 10 to obtain analysis data. Further, “in-situ X-ray analysis” refers to performing X-ray analysis without disassembling the laminate cell 10 constituting the lithium ion secondary battery.

試料ホルダー21は、大きくは、一対の支持部材22a,22bと、一対の窓部材23a,23bと、押さえ手段24と、を備えた構成となっている。   The sample holder 21 generally includes a pair of support members 22a and 22b, a pair of window members 23a and 23b, and a pressing unit 24.

(支持部材)
一対の支持部材22a,22bは、X線分析の試料となるラミネートセル10を両側から挟んで支持するものである。一対の支持部材22a,22bは、ラミネートセル10を中心として、X線入射側(図3の右側)とX線透過側(図3の左側)に分かれて配置されている。すなわち、一方の支持部材22aはX線入射側に配置され、他方の支持部材22bはX線透過側に配置されている。X線入射側とは、ラミネートセル10にX線が入射してくる側をいい、X線透過側とは、ラミネートセル10からX線が透過していく側をいう。上記図1の場合でいうと、試料3の位置を基準にして、X線源1が配置される側(図1の左側)がX線入射側となり、それと反対側(図1の右側)がX線透過側となる。
(Support member)
The pair of support members 22a and 22b support the laminate cell 10 that is a sample for X-ray analysis from both sides. The pair of support members 22a and 22b are arranged separately on the X-ray incident side (right side in FIG. 3) and the X-ray transmission side (left side in FIG. 3) with the laminate cell 10 as the center. That is, one support member 22a is disposed on the X-ray incident side, and the other support member 22b is disposed on the X-ray transmission side. The X-ray incident side refers to the side on which X-rays are incident on the laminate cell 10, and the X-ray transmission side refers to the side on which X-rays are transmitted from the laminate cell 10. In the case of FIG. 1 above, the side on which the X-ray source 1 is arranged (left side in FIG. 1) is the X-ray incident side, and the opposite side (right side in FIG. 1) is based on the position of the sample 3. X-ray transmission side.

各々の支持部材22a,22bは、互いに同じ材料を用いて形成されている。支持部材22aの一方の主面は、ラミネートセル10を押さえる支持面25aとなっている。同様に、支持部材22bの一方の主面は、ラミネートセル10を押さえる支持面25bとなっている。一対の支持部材22a,22bは、支持面25a,25bどうしを対向するように配置される。このため、一対の支持部材22a,22bの間にラミネートセル10を配置した場合は、一方の支持部材22aの支持面25aがラミネートセル10の一方の主面と対向し、かつ、他方の支持部材22bの支持面25bがラミネートセル10の他方の主面と対向するように配置される。   Each support member 22a, 22b is formed using the same material. One main surface of the support member 22 a is a support surface 25 a that holds the laminate cell 10. Similarly, one main surface of the support member 22 b is a support surface 25 b that holds the laminate cell 10. The pair of support members 22a and 22b are arranged so that the support surfaces 25a and 25b face each other. For this reason, when the laminate cell 10 is disposed between the pair of support members 22a and 22b, the support surface 25a of one support member 22a faces one main surface of the laminate cell 10 and the other support member. The support surface 25b of 22b is arrange | positioned so that the other main surface of the lamination cell 10 may be opposed.

各々の支持部材22a,22bは、機械的には高い剛性を有し、電気的には絶縁性を有し、光学的には高い光透過性を有する材料によって構成されている。ここで記述する「高い剛性」とは、一対の支持部材22a,22bでラミネートセル10を挟んで支持した場合に、ラミネートセル10内でのガスの発生に伴う圧力に屈して変形しない程度の剛性をいう。また、「高い光透過性」とは、支持部材22a,22bの厚み方向の一方から他方を透かして見たときに、他方側に存在する物を目視で確認できる程度の光透過性をいう。上記の性質を満足する支持部材22a,22bの構成材料としては、たとえばアクリル樹脂を挙げることができる。   Each of the support members 22a and 22b is made of a material having mechanically high rigidity, electrical insulation, and optically high light transmittance. The “high rigidity” described here is a rigidity that does not yield and deform due to the pressure associated with the generation of gas in the laminate cell 10 when the laminate cell 10 is supported by a pair of support members 22a and 22b. Say. Further, “high light transmission” refers to light transmission enough to visually confirm an object existing on the other side when viewed through the other of the supporting members 22a and 22b in the thickness direction. As a constituent material of the supporting members 22a and 22b satisfying the above properties, for example, an acrylic resin can be cited.

図4は支持部材22aの構造を示すもので、図中(A)は正面図、(B)は(A)のJ−J断面図である。また、図5は支持部材22aの構造を示す斜視図である。
図示のように、支持部材22aは、正面視矩形の板状に形成されている。支持部材22aにはX線透過用孔26aが設けられている。X線透過用孔26aは、X線を透過させるX線透過部として支持部材22aに設けられたものである。X線透過用孔26aは、支持部材22aを厚み方向(板厚方向)に貫通する状態で、支持部材22aの中央部に一つ形成されている。X線透過用孔26aは、正面視円形に形成されている。また、X線透過用孔26aは、支持部材22aの厚み方向全体にわたって同一の直径(孔径)φ1で形成されている。
4A and 4B show the structure of the support member 22a. FIG. 4A is a front view, and FIG. 4B is a sectional view taken along line JJ in FIG. FIG. 5 is a perspective view showing the structure of the support member 22a.
As illustrated, the support member 22a is formed in a plate shape having a rectangular shape when viewed from the front. The support member 22a is provided with an X-ray transmission hole 26a. The X-ray transmission hole 26a is provided in the support member 22a as an X-ray transmission part that transmits X-rays. One X-ray transmission hole 26a is formed at the center of the support member 22a so as to penetrate the support member 22a in the thickness direction (plate thickness direction). The X-ray transmission hole 26a is formed in a circular shape when viewed from the front. The X-ray transmission hole 26a is formed with the same diameter (hole diameter) φ1 over the entire thickness direction of the support member 22a.

また、支持部材22aには4つの連結用孔27aが設けられている。連結用孔27aは、一対の支持部材22a,22bを互いに連結するために設けられたものである。連結用孔27aは、支持部材22aを厚み方向に貫通する状態で、支持部材22aの四隅に一つずつ設けられている。   The support member 22a is provided with four connection holes 27a. The connection hole 27a is provided to connect the pair of support members 22a and 22b to each other. The connection holes 27a are provided one by one at the four corners of the support member 22a so as to penetrate the support member 22a in the thickness direction.

図6は支持部材22bの構造を示すもので、図中(A)は正面図、(B)は(A)のK−K断面図である。また、図7は支持部材22bの構造を示す斜視図である。
図示のように、支持部材22bは、たとえば上述した支持部材22aと同じ外形寸法および厚み寸法で、正面視長方形の板状に形成されている。支持部材22bにはX線透過用孔26bが設けられている。X線透過用孔26bは、X線を透過させるX線透過部として支持部材22bに設けられたものである。X線透過用孔26bは、支持部材22bを厚み方向に貫通する状態で、支持部材22bの中央部に一つ形成されている。X線透過用孔26bは、正面視円形に形成されている。
6A and 6B show the structure of the support member 22b, in which FIG. 6A is a front view, and FIG. 6B is a sectional view taken along line KK in FIG. FIG. 7 is a perspective view showing the structure of the support member 22b.
As shown in the figure, the support member 22b is formed in a plate shape having a rectangular shape when viewed from the front, for example, with the same external dimensions and thickness dimensions as the support member 22a described above. The support member 22b is provided with an X-ray transmission hole 26b. The X-ray transmission hole 26b is provided in the support member 22b as an X-ray transmission part that transmits X-rays. One X-ray transmission hole 26b is formed at the center of the support member 22b so as to penetrate the support member 22b in the thickness direction. The X-ray transmission hole 26b is formed in a circular shape when viewed from the front.

また、X線透過用孔26bは、上述したX線透過用孔26aとは異なり、孔の大きさが徐々に拡大した形状になっている。具体的には、X線透過用孔26bの大きさは、支持部材22bの厚み方向において、支持面25bから遠ざかるにつれて徐々に拡大するように、断面円錐台形状に形成されている。X線透過用孔26bの内面は、支持部材22bの厚み方向全体にわたって一様な傾斜をなすテーパー形状になっている。本実施の形態ではX線透過用孔26bが正面視円形に形成されているため、X線透過用孔26bの大きさを直径で規定することができる。X線透過用孔26bの直径は、支持部材22bの一方の主面である支持面25bの開口縁で最小径φ2になっており、それと反対側の主面の開口縁で最大径φ3になっている。これにより、X線透過用孔26bの大きさは、X線入射側からX線透過側に向かって徐々に拡大している。X線透過用孔26bの最小径φ2は、上述したX線透過用孔26aの直径φ1よりも大きく設定されている。また、X線透過用孔26bの中心軸に対する開き角度は、支持部材22bの厚み寸法と、X線透過用孔26bの最小径φ2および最大径φ3と、によって規定することができる。具体的にX線透過用孔26bの開き角度をどの程度にするかは、X線検出器4で測定しようとするX線の回折角の範囲に応じて適宜設定すればよい。   Further, unlike the X-ray transmission hole 26a described above, the X-ray transmission hole 26b has a shape in which the size of the hole is gradually enlarged. Specifically, the size of the X-ray transmission hole 26b is formed in a truncated cone shape so as to gradually increase as the distance from the support surface 25b increases in the thickness direction of the support member 22b. The inner surface of the X-ray transmission hole 26b has a tapered shape that is uniformly inclined over the entire thickness direction of the support member 22b. In the present embodiment, since the X-ray transmission hole 26b is formed in a circular shape when viewed from the front, the size of the X-ray transmission hole 26b can be defined by the diameter. The diameter of the X-ray transmitting hole 26b has a minimum diameter φ2 at the opening edge of the support surface 25b, which is one main surface of the support member 22b, and a maximum diameter φ3 at the opening edge of the main surface on the opposite side. ing. As a result, the size of the X-ray transmission hole 26b gradually increases from the X-ray incident side toward the X-ray transmission side. The minimum diameter φ2 of the X-ray transmission hole 26b is set larger than the diameter φ1 of the X-ray transmission hole 26a described above. The opening angle of the X-ray transmission hole 26b with respect to the central axis can be defined by the thickness dimension of the support member 22b and the minimum diameter φ2 and the maximum diameter φ3 of the X-ray transmission hole 26b. Specifically, the degree of the opening angle of the X-ray transmission hole 26b may be appropriately set according to the range of the diffraction angle of the X-ray to be measured by the X-ray detector 4.

また、支持部材22bには、上述した支持部材22aと同様に、4つの連結用孔27bが設けられている。4つの連結用孔27bの位置関係は、上述した4つの連結用孔27aの位置関係と同じになっている。連結用孔27bは、一対の支持部材22a,22bを互いに連結するために設けられたものである。連結用孔27bは、支持部材22bを厚み方向に貫通する状態で、支持部材22bの四隅に一つずつ設けられている。   The support member 22b is provided with four connection holes 27b, similar to the support member 22a described above. The positional relationship between the four connecting holes 27b is the same as the positional relationship between the four connecting holes 27a described above. The connection hole 27b is provided to connect the pair of support members 22a and 22b to each other. The connection holes 27b are provided one by one at the four corners of the support member 22b so as to penetrate the support member 22b in the thickness direction.

(窓部材)
一対の窓部材23a,23bは、上述した一対の支持部材22a,22bでラミネートセル10を挟んだ場合に、ラミネートセル10に直接、接触するものである。各々の窓部材23a,23bは、互いに同じ材料を用いて、同じ形状および寸法に形成されている。さらに記述すると、窓部材23a,23bは、支持部材22a,22bよりも薄く、かつ、支持部材22a,22bよりも幅寸法(短手寸法)が小さい平面視矩形のシート状に形成されている。窓部材23a,23bは、所定のX線透過率と剛性とを併せ持つ材料で構成されている。窓部材23a,23bの材料としては、後述する理由により、炭素繊維強化プラスチックを用いることが好ましい。
(Window member)
The pair of window members 23a and 23b are in direct contact with the laminate cell 10 when the laminate cell 10 is sandwiched between the pair of support members 22a and 22b described above. Each of the window members 23a and 23b is formed in the same shape and size using the same material. More specifically, the window members 23a and 23b are formed in a sheet shape having a rectangular shape in plan view, which is thinner than the support members 22a and 22b and smaller in width (shorter dimension) than the support members 22a and 22b. The window members 23a and 23b are made of a material having both predetermined X-ray transmittance and rigidity. As a material of the window members 23a and 23b, it is preferable to use carbon fiber reinforced plastic for the reason described later.

一対の窓部材23a,23bは、それぞれに対応する支持部材22a,22bの支持面25a,25bに貼り付けられている。すなわち、一方の窓部材23aは、X線入射側に配置された支持部材22aの支持面25aに貼り付けられ、他方の窓部材23bは、X線透過側に配置された支持部材22bの支持面25bに貼り付けられている。これにより、支持部材22aのX線透過用孔26aの一端は窓部材23aによって塞がれ、支持部材22bのX線透過用孔26bの一端は窓部材23bによって塞がれている。また、一対の支持部材22a,2bの間にラミネートセル10を配置した場合は、一方の支持部材22aに貼り付けられた窓部材23aがラミネートセル10の一方の主面に対向し、かつ、他方の支持部材22bに貼り付けられた窓部材23bがラミネートセル10の他方の主面に対向するように配置される。   The pair of window members 23a and 23b are attached to the support surfaces 25a and 25b of the corresponding support members 22a and 22b. That is, one window member 23a is attached to the support surface 25a of the support member 22a arranged on the X-ray incident side, and the other window member 23b is a support surface of the support member 22b arranged on the X-ray transmission side. It is affixed to 25b. Thereby, one end of the X-ray transmission hole 26a of the support member 22a is closed by the window member 23a, and one end of the X-ray transmission hole 26b of the support member 22b is closed by the window member 23b. When the laminate cell 10 is disposed between the pair of support members 22a and 2b, the window member 23a attached to one support member 22a faces one main surface of the laminate cell 10, and the other The window member 23b attached to the support member 22b is disposed so as to face the other main surface of the laminate cell 10.

ここで、ラミネートセル10の寸法例とこれに対応する支持部材22a,22bおよび窓部材23a,23bの寸法例について記述する。
ラミネートセル10の寸法は、上記正極および負極につながる端子Tの部分を除いて、たとえば、長手寸法=80mm、短手寸法=60mm、厚み寸法=1mmであるとする。そうした場合、支持部材22a,22bをアクリル板で構成するものとすると、この支持部材22a,22bの各部の寸法は、たとえば、長手寸法=100mm、短手寸法=50mm、厚み寸法=10mmに設定することができる。X線透過用孔26a,26bは、たとえば、2θスキャン(試料であるラミネートセル10に対して垂直にX線を照射し、X線検出器4のみを掃引する手法)で測定を行う場合、X線入射側の支持部材22aには、一様な直径(φ1)=5mmのX線透過用孔26aを設け、X線透過側の支持部材22bには、最小径(φ2)=10mm、最大径(φ3)=45mmのX線透過用孔26bを設けることにより、回折角(2θ)=0〜60度の範囲で測定することが可能となる。また、窓部材23a,23bを炭素繊維強化プラスチックフィルムで構成するものとすると、窓部材23a,23bの各部の寸法は、たとえば、長手寸法=80mm、短手寸法=20mm、厚み寸法=0.2mmに設定することができる。
Here, a dimension example of the laminate cell 10 and a corresponding dimension example of the support members 22a and 22b and the window members 23a and 23b will be described.
The dimensions of the laminate cell 10 are, for example, long dimension = 80 mm, short dimension = 60 mm, and thickness dimension = 1 mm, excluding the portion of the terminal T connected to the positive electrode and the negative electrode. In such a case, assuming that the support members 22a and 22b are made of an acrylic plate, the dimensions of each part of the support members 22a and 22b are set to, for example, the longitudinal dimension = 100 mm, the short dimension = 50 mm, and the thickness dimension = 10 mm. be able to. The X-ray transmitting holes 26a and 26b are, for example, X 2 X scan (a method in which X-rays are irradiated perpendicularly to the laminate cell 10 as a sample and only the X-ray detector 4 is swept). The support member 22a on the line incident side is provided with an X-ray transmission hole 26a having a uniform diameter (φ1) = 5 mm, and the minimum diameter (φ2) = 10 mm and the maximum diameter is provided on the support member 22b on the X-ray transmission side. By providing the X-ray transmitting hole 26b with (φ3) = 45 mm, it becomes possible to measure in the range of diffraction angle (2θ) = 0 to 60 degrees. If the window members 23a and 23b are made of carbon fiber reinforced plastic film, the dimensions of each part of the window members 23a and 23b are, for example, a longitudinal dimension = 80 mm, a short dimension = 20 mm, and a thickness dimension = 0.2 mm. Can be set to

(押さえ手段)
押さえ手段24は、一対の支持部材22a,22bの間にラミネートセル10を挟んで支持する場合に、一対の支持部材22a,22bが離間しないように一対の支持部材22a,22bを押さえるものである。押さえ手段24は、支持部材22a,22bのX線透過用孔26a,26bを通るX線と干渉しないように、X線透過用孔26a,26bの形成部位以外の箇所で一対の支持部材22a,22bを押さえる。ここでは一例として合計6箇所で一対の支持部材22a,22bを押さえる構成について説明する。
(Pressing means)
The pressing means 24 presses the pair of support members 22a and 22b so that the pair of support members 22a and 22b are not separated when the laminate cell 10 is supported between the pair of support members 22a and 22b. . The holding means 24 has a pair of support members 22a, 22a, 22b at positions other than the portions where the X-ray transmission holes 26a, 26b are formed so as not to interfere with the X-rays passing through the X-ray transmission holes 26a, 26b of the support members 22a, 22b. Hold 22b. Here, the structure which hold | suppresses a pair of support member 22a, 22b in a total of six places as an example is demonstrated.

押さえ手段24は、図8(A),(B)に示すように、支持部材22a,22bの四隅(P1,P2,P3,P4)を押さえる第1の押さえ手段と、この第1の押さえ手段よりもX線透過用孔26a,26bに近い箇所(P5,P6)を押さえる第2の押さえ手段とによって構成されている。   As shown in FIGS. 8A and 8B, the pressing means 24 includes a first pressing means for pressing the four corners (P1, P2, P3, P4) of the support members 22a and 22b, and the first pressing means. And a second pressing means for pressing the portions (P5, P6) closer to the X-ray transmitting holes 26a, 26b.

第1の押さえ手段は、支持部材22a,22bの四隅P1,P2,P3,P4でそれぞれ一対の支持部材22a,22bを結合することにより、一対の支持部材22a,22bを押さえる。第1の押さえ手段は、たとえば図9に示すように、支持部材22a,22bに形成された連結用孔27a,27bに挿入されるネジ30と、このネジ30に螺合するナット31とを用いて構成することができる。この構成においては、ネジ30に螺合するナット31を締め付けることにより、一対の支持部材22a,22bを互いに結合(連結)するように押さえることができる。   The first pressing means presses the pair of support members 22a, 22b by connecting the pair of support members 22a, 22b at the four corners P1, P2, P3, P4 of the support members 22a, 22b, respectively. For example, as shown in FIG. 9, the first pressing means uses a screw 30 inserted into the connection holes 27 a and 27 b formed in the support members 22 a and 22 b and a nut 31 screwed into the screw 30. Can be configured. In this configuration, by tightening the nut 31 that is screwed onto the screw 30, the pair of support members 22a and 22b can be pressed so as to be coupled (connected) to each other.

第2の押さえ手段は、支持部材22a,22bのX線透過用孔26a,26bの近傍の2箇所P5,P6でそれぞれ一対の支持部材22a,22bを互いに接近する方向に加圧することにより、一対の支持部材22a,22bを押さえる。第2の押さえ手段は、たとえば図10に示すように、一対の加圧子32a,32bを有する締め付け具を用いて構成することができる。X線透過用孔26a,26bの近傍の2箇所P5,P6は、X線透過用孔26a,26bを中心として、支持部材22a,22bの一方と他方に均等な距離を隔てた位置に設定されている。締め付け具は、たとえば、金属によって構成されるものである。一対の加圧子32a,32bは、たとえば締め付け具が備えるネジ式の操作棒を回転操作することにより、互いに接近又は離間する方向に移動可能になっている。この構成においては、締め付け具の操作棒を適宜回転操作して、一対の加圧子32a,32bをそれぞれに対応する支持部材22a,22bの外側の面に接触させ、その状態でさらに操作棒を回転させるように締め付けることにより、一対の加圧子32a,32bによって一対の支持部材22a,22bを加圧するように押さえることができる。   The second pressing means presses the pair of support members 22a and 22b toward each other at two locations P5 and P6 in the vicinity of the X-ray transmission holes 26a and 26b of the support members 22a and 22b. The supporting members 22a and 22b are pressed. For example, as shown in FIG. 10, the second pressing means can be configured using a fastening tool having a pair of pressors 32 a and 32 b. Two locations P5 and P6 in the vicinity of the X-ray transmission holes 26a and 26b are set at positions that are spaced apart from each other by an equal distance from the support members 22a and 22b with the X-ray transmission holes 26a and 26b as the center. ing. The fastening tool is made of metal, for example. The pair of pressurizers 32a and 32b can be moved in directions toward or away from each other, for example, by rotating a screw-type operation rod included in the fastening tool. In this configuration, the operating rod of the fastening tool is appropriately rotated to bring the pair of pressurizers 32a and 32b into contact with the outer surfaces of the corresponding support members 22a and 22b, and the operating rod is further rotated in this state. By tightening in such a manner, the pair of support members 22a and 22b can be pressed by the pair of pressurizers 32a and 32b.

<4.X線分析方法>
次に、本発明の実施の形態に係る試料ホルダーを用いたX線分析方法について説明する。本実施の形態においては、X線分析方法の一例として、あらかじめ決められた測定条件でラミネートセル10の充放電を繰り返し行うとともに、この充放電を行ったまま、ラミネートセル10で回折するX線(回折X線)の強度を測定することにより、ラミネートセル10のX線回折プロファイルに関する分析データを得る方法について説明する。
<4. X-ray analysis method>
Next, an X-ray analysis method using the sample holder according to the embodiment of the present invention will be described. In the present embodiment, as an example of the X-ray analysis method, charging / discharging of the laminate cell 10 is repeatedly performed under predetermined measurement conditions, and X-rays diffracted by the laminate cell 10 while performing this charge / discharge ( A method of obtaining analysis data related to the X-ray diffraction profile of the laminate cell 10 by measuring the intensity of (diffracted X-rays) will be described.

まず、試料ホルダー21にラミネートセル10をセットする。このとき、一対の窓部材23a,23bをそれぞれに対応するラミネートセル10の主面に接触させるようにして、一対の支持部材22a,22bの間にラミネートセル10を挟む。また、X線入射側に支持部材22aを、X線透過側に支持部材22bを配置する。また、一対の窓部材23a,23bの相対向する面が、それぞれに対応するラミネートセル10の主面の主要部を覆うように、ラミネートセル10と窓部材23a,23bの位置を合わせる。このとき、光透過性を有する材料(典型的には透明な材料)で支持部材22a,22bを構成しておけば、一対の支持部材22a,22bの間にラミネートセル10を挟んだ状態でも、支持部材22a,22bの外側からラミネートセル10と窓部材23a,23bの位置関係を把握することができる。   First, the laminate cell 10 is set in the sample holder 21. At this time, the laminate cell 10 is sandwiched between the pair of support members 22a and 22b so that the pair of window members 23a and 23b are brought into contact with the main surfaces of the corresponding laminate cells 10 respectively. A support member 22a is disposed on the X-ray incident side, and a support member 22b is disposed on the X-ray transmission side. In addition, the positions of the laminate cell 10 and the window members 23a and 23b are aligned so that the opposing surfaces of the pair of window members 23a and 23b cover the main part of the main surface of the corresponding laminate cell 10. At this time, if the support members 22a and 22b are made of a light-transmitting material (typically a transparent material), even when the laminate cell 10 is sandwiched between the pair of support members 22a and 22b, The positional relationship between the laminate cell 10 and the window members 23a and 23b can be grasped from the outside of the support members 22a and 22b.

次に、第1の押さえ手段で一対の支持部材22a,22bを押さえる。具体的には、各々の支持部材22a,22bの四隅P1,P2,P3,P4に、それぞれネジ30とナット31を装着する(図9を参照)。このとき、各々の支持部材22a,22bの四隅にそれぞれにネジ30とナット31を取り付けて仮締めしてから、4つのナット31を徐々に締め付けて本締めする。これにより、一対の支持部材22a,22bの四隅を均等な力で締め付けることができる。また、各々の支持部材22a,22bの支持面25a,25bに貼り付けられた窓部材23a,23bでラミネートセル10全体を挟み込むことができる。なお、ナット31による締め付け力は、少なくとも、一対の支持部材22a,22bの間に挟んだラミネートセル10が落下しない程度の大きさで、かつ、支持部材22a,22bが歪まない程度の大きさとする。   Next, the pair of supporting members 22a and 22b are pressed by the first pressing means. Specifically, screws 30 and nuts 31 are respectively attached to the four corners P1, P2, P3, and P4 of the support members 22a and 22b (see FIG. 9). At this time, screws 30 and nuts 31 are attached to the four corners of the respective support members 22a and 22b and temporarily tightened, and then the four nuts 31 are gradually tightened and finally tightened. Thereby, the four corners of the pair of support members 22a and 22b can be tightened with an equal force. Further, the entire laminate cell 10 can be sandwiched between the window members 23a and 23b attached to the support surfaces 25a and 25b of the respective support members 22a and 22b. Note that the tightening force by the nut 31 is at least large enough to prevent the laminate cell 10 sandwiched between the pair of support members 22a and 22b from dropping and not large enough to distort the support members 22a and 22b. .

次に、第2の押さえ手段で一対の支持部材22a,22bを押さえる。具体的には、各々の支持部材22a,22bの2箇所P5,P6に、それぞれ一対の加圧子32a,32bを接触させ、その状態で締め付け具の操作棒を回転させて締め付けることにより、一対の加圧子32a,32bで一対の支持部材22a,22bを両側から挟み込む(図10を参照)。その際、支持部材22a,22bのX線透過用孔26a,26bから均等な距離を隔てた位置に加圧子32a,32bを接触させて、一対の支持部材22a,22bを押さえるようにする。また、各々の箇所P5,P6では、それぞれに対応する一対の加圧子32a,32bにより、均等な力で一対の支持部材22a,22bを締め付けるようにする。このとき、支持部材22a,22bの外側の面に、加圧子32a,32bで押さえるべき箇所P5,P6を示す目印を付しておき、この目印の位置に合わせて加圧子32a,32bを接触させる構成としてもよい。   Next, the pair of supporting members 22a and 22b are pressed by the second pressing means. Specifically, a pair of pressurizers 32a and 32b are brought into contact with the two places P5 and P6 of each support member 22a and 22b, respectively, and in this state, the operation rod of the tightening tool is rotated and tightened to thereby form a pair of The pair of support members 22a and 22b are sandwiched between the pressurizers 32a and 32b (see FIG. 10). At that time, the pressure members 32a and 32b are brought into contact with the support members 22a and 22b at positions spaced apart from the X-ray transmitting holes 26a and 26b by an equal distance so as to hold the pair of support members 22a and 22b. Further, at each of the locations P5 and P6, the pair of support members 22a and 22b are tightened with an equal force by the pair of pressurizers 32a and 32b corresponding thereto. At this time, marks indicating the places P5 and P6 to be pressed by the pressurizers 32a and 32b are attached to the outer surfaces of the support members 22a and 22b, and the pressurizers 32a and 32b are brought into contact with the positions of the marks. It is good also as a structure.

このように試料ホルダー21にラミネートセル10をセットしたら、これをX線分析装置の試料台2に載せてin−situX線分析を行う。このとき、ラミネートセル10の外側に引き出されている端子Tに、充放電のための端子を接続する。そして、あらかじめ決められた条件でラミネートセル10の充放電を繰り返す。また、ラミネートセル10の厚み方向の一方からX線を入射して所望の分析データを得る。その際、X線源1から出射されたX線は、X線入射側に配置された支持部材22aのX線透過用孔26aを通過した後、窓部材23aを通してラミネートセル10に入射する。また、ラミネートセル10を通過したX線は、X線透過側に配置された支持部材22bのX線透過用孔26bに窓部材23bを通して進入する。本実施の形態では、X線透過用孔16bの大きさがラミネートセル10から遠ざかるにしたがって拡大している。このため、ラミネートセル10で回折したX線と支持部材22bとの干渉を回避しつつ、そのX線をX線検出器4に取り込むことができる。X線検出器4は、上記図1に示す矢印方向(掃引方向)に一定間隔で掃引しながら、各々の回折角(2θ)に対応する位置で回折X線を取り込み、そのX線の強度を検出する。これにより、ラミネートセル10のX線回折プロファイルを示す分析データ(測定データ)を得ることができる。   When the laminate cell 10 is set in the sample holder 21 in this way, it is placed on the sample stage 2 of the X-ray analyzer and in-situ X-ray analysis is performed. At this time, a terminal for charging / discharging is connected to the terminal T drawn out of the laminate cell 10. And charging / discharging of the lamination cell 10 is repeated on the conditions decided beforehand. Further, X-rays are incident from one side in the thickness direction of the laminate cell 10 to obtain desired analysis data. At that time, the X-rays emitted from the X-ray source 1 pass through the X-ray transmitting hole 26a of the support member 22a disposed on the X-ray incident side, and then enter the laminate cell 10 through the window member 23a. The X-rays that have passed through the laminate cell 10 enter the X-ray transmission hole 26b of the support member 22b disposed on the X-ray transmission side through the window member 23b. In the present embodiment, the size of the X-ray transmission hole 16b increases as the distance from the laminate cell 10 increases. For this reason, the X-ray can be taken into the X-ray detector 4 while avoiding interference between the X-ray diffracted by the laminate cell 10 and the support member 22b. The X-ray detector 4 captures diffracted X-rays at positions corresponding to the respective diffraction angles (2θ) while sweeping at regular intervals in the arrow direction (sweep direction) shown in FIG. To detect. Thereby, analysis data (measurement data) indicating the X-ray diffraction profile of the laminate cell 10 can be obtained.

このようなX線回折測定に基づく分析データによれば、たとえば、リチウムイオン二次電池の充放電にともなう正極活物質の結晶構造の変化(結晶の面間隔の変化など)を、六方晶(003)ピークの低角側へのシフト等により把握し、これに基づいて電池材料の評価を行うことが可能となる。ちなみに、リチウムイオン二次電池を構成するラミネートセル10を対象にX線回折測定を行うと、これによって得られるX線回折プロファイルでは2θ=60度以内の範囲に主たるピークが現れる。このため、電池材料の評価を適切に行うには、X線回折測定によって2θ=60度までの分析データが得られれば十分であると思われる。   According to the analytical data based on such X-ray diffraction measurement, for example, a change in the crystal structure of the positive electrode active material (change in crystal spacing, etc.) accompanying charging / discharging of a lithium ion secondary battery is represented by hexagonal (003 ) The battery material can be evaluated based on the shift to the low angle side of the peak. Incidentally, when X-ray diffraction measurement is performed on the laminate cell 10 constituting the lithium ion secondary battery, a main peak appears in the range of 2θ = 60 degrees or less in the X-ray diffraction profile obtained by this. For this reason, it is considered sufficient to obtain analytical data up to 2θ = 60 degrees by X-ray diffraction measurement in order to appropriately evaluate battery materials.

<5.実施の形態の効果>
本発明の実施の形態によれば、次のような効果が得られる。
最初に、本発明の実施の形態に係る試料ホルダー21を用いてラミネートセル10を支持した場合と、試料ホルダー21を用いずに単にラミネートセル10を立てて支持した場合で、充放電の繰り返しによるX線分析の分析データにどのような違いが生じるかという観点から効果を述べる。
<5. Effects of the embodiment>
According to the embodiment of the present invention, the following effects can be obtained.
First, when the laminate cell 10 is supported by using the sample holder 21 according to the embodiment of the present invention, and when the laminate cell 10 is simply supported by standing without using the sample holder 21, charge / discharge is repeated. The effect is described from the viewpoint of what kind of difference occurs in the analysis data of the X-ray analysis.

まず、単にラミネートセル10を立てて支持した場合は、たとえば通常の電圧(たとえば、4.2V)よりも高い電圧(たとえば、4.8V)で充放電を繰り返したときに、ラミネートセル10内に発生するガスによって電池内の圧力が上昇し、ラミネートセル10が膨らむ可能性がある。このとき、セパレータ13を間に挟んで近接する正極11と負極12がガスの発生にともなって分離し、それらの電気的な接続状態が悪化すると、ラミネートセル10の充放電が適切に行われなくなる。その結果、ラミネートセル10のX線分析によって得られる分析データが、ラミネートセル10の充放電の状態を正しく反映したものとならず、信頼性の高いX線分析を行うことができなくなる。さらに、上記ガスの発生によってラミネートセル10が膨らんだ場合は、当該セル内の電極等を含めてセル自体の位置が動いてしまって偏心誤差が生じ、回折角が本来の値からずれてしまう。   First, when the laminate cell 10 is simply supported upright, for example, when charging / discharging is repeated at a voltage (for example, 4.8 V) higher than a normal voltage (for example, 4.2 V), There is a possibility that the pressure in the battery rises due to the generated gas and the laminate cell 10 swells. At this time, if the positive electrode 11 and the negative electrode 12 which are adjacent to each other with the separator 13 interposed therebetween are separated as the gas is generated, and their electrical connection state deteriorates, the laminate cell 10 is not properly charged / discharged. . As a result, the analysis data obtained by the X-ray analysis of the laminate cell 10 does not correctly reflect the state of charge / discharge of the laminate cell 10, and it becomes impossible to perform highly reliable X-ray analysis. Further, when the laminate cell 10 swells due to the generation of the gas, the position of the cell itself including the electrode in the cell moves, resulting in an eccentric error, and the diffraction angle deviates from the original value.

これに対して、ラミネートセル10を試料ホルダー21で支持した場合は、充放電の繰り返しによってラミネートセル10内にガスが発生しても、ラミネートセル10の両面を一対の支持部材22a,22bによって押さえているため、ラミネートセル10の膨らみが抑制される。したがって、正極11と負極12の相対的な位置関係がほとんど変化せず、両者の電気的な接続状態が良好に保たれる。これにより、測定中にラミネートセル10内にガスが発生するような条件であっても、ラミネートセル10の充放電を適切に行うことができる。したがって、ラミネートセル10のX線分析によって得られる分析データが、ラミネートセル10の充放電の状態を正しく反映したものとなる。その結果、ガス発生後においても、その影響をほとんど受けることなく、信頼性の高いX線分析を行うことが可能となる。また、試料ホルダー21は、低コストで、かつ、簡便に作製することができるため、工業的価値が非常に高いという利点も得られる。   On the other hand, when the laminate cell 10 is supported by the sample holder 21, even if gas is generated in the laminate cell 10 due to repeated charge and discharge, both surfaces of the laminate cell 10 are pressed by the pair of support members 22a and 22b. Therefore, the swelling of the laminate cell 10 is suppressed. Therefore, the relative positional relationship between the positive electrode 11 and the negative electrode 12 hardly changes, and the electrical connection state between the two is kept good. Thereby, even if it is the conditions which gas generate | occur | produces in the lamination cell 10 during a measurement, the charging / discharging of the lamination cell 10 can be performed appropriately. Therefore, the analysis data obtained by the X-ray analysis of the laminate cell 10 correctly reflects the charge / discharge state of the laminate cell 10. As a result, it is possible to perform highly reliable X-ray analysis with almost no influence even after gas generation. Moreover, since the sample holder 21 can be easily manufactured at low cost, an advantage that the industrial value is very high can be obtained.

また、本発明の実施の形態においては、一方(X線透過側)の支持部材22bに形成されたX線透過用孔26bの大きさを、支持面25b側から遠ざかるにつれて拡大させている。このため、X線回折測定を行う場合に、ラミネートセル10内で回折したX線と支持部材22bとの干渉を避けることができる。これにより、ラミネートセル10内で回折したX線の強度を極力低下させることなく、そのX線をX線検出器4に取り込むことができる。したがって、X線回折測定に際して精度の高い分析データが得られる。   Further, in the embodiment of the present invention, the size of the X-ray transmission hole 26b formed in one (X-ray transmission side) support member 22b is increased as the distance from the support surface 25b side increases. For this reason, when X-ray diffraction measurement is performed, interference between the X-rays diffracted in the laminate cell 10 and the support member 22b can be avoided. Thereby, the X-ray can be taken into the X-ray detector 4 without reducing the intensity of the X-ray diffracted in the laminate cell 10 as much as possible. Therefore, highly accurate analysis data can be obtained in X-ray diffraction measurement.

また、本発明の実施の形態においては、試料ホルダー21の構成上、一対の支持部材22a,22bで直接ラミネートセル10を挟むのではなく、各々の支持部材22a,22bの支持面25a,25bに貼り付けた窓部材23a,23bで直接ラミネートセル10を挟むようにしている。このため、支持部材22a,22bのX線透過用孔26a,26bを塞ぐ窓部材23a,23bがラミネートセル10の主面に接触し、この窓部材23a,23bを介してラミネートセル10が挟み込まれる。したがって、窓部材23a,23bを設けない場合は、ラミネートセル10内で発生したガスがX線透過用孔26の部分に溜まり、ラミネートセル10が局所的に膨れるおそれがあるのに対して、窓部材23a,23bを設けた場合は、そのようなおそれがなくなる。このため、ラミネートセル10の局所的な膨らみにともなう充放電の異常を防止することができる。   Further, in the embodiment of the present invention, due to the configuration of the sample holder 21, the laminate cell 10 is not directly sandwiched between the pair of support members 22a and 22b, but on the support surfaces 25a and 25b of the respective support members 22a and 22b. The laminated cell 10 is directly sandwiched between the pasted window members 23a and 23b. For this reason, the window members 23a and 23b that close the X-ray transmitting holes 26a and 26b of the support members 22a and 22b come into contact with the main surface of the laminate cell 10, and the laminate cell 10 is sandwiched between the window members 23a and 23b. . Therefore, when the window members 23a and 23b are not provided, the gas generated in the laminate cell 10 accumulates in the X-ray transmitting hole 26 and the laminate cell 10 may locally swell. When the members 23a and 23b are provided, such a fear is eliminated. For this reason, the abnormality of charging / discharging accompanying the local swelling of the laminate cell 10 can be prevented.

また、窓部材23a,23bでラミネートセル10の局所的な膨れを抑制するうえでは、窓部材23a,23bの剛性を高めるために、たとえば、窓部材23a,23bを金属で構成する、あるいは窓部材23a,23bの厚み寸法を大きくする、などの手法が考えられる。しかし、X線分析を行う場合は、窓部材23a,23bにX線を透過させる必要があるため、前述のような手法を採用すると、窓部材23a,23bのX線透過率が著しく低下してしまう。その結果、X線分析そのものが不可能になるおそれがある。そのため、窓部材23a,23bの構成材料としては、X線の透過率が高く、かつ、高い剛性を持つものでなければならない。そのような性質を有する窓部材23a,23bの構成材料としては、上述した炭素繊維強化プラスチックが挙げられる。炭素繊維強化プラスチックは、X線の窓材の一種であるカプトンフィルムと比べた場合、同じ厚みでも高い剛性を有しており、かつ、同等のX線透過率を有する。また、炭素繊維強化プラスチックは、金属ベリリウムのような取り扱い上の難点もない。   In order to suppress local swelling of the laminate cell 10 with the window members 23a and 23b, in order to increase the rigidity of the window members 23a and 23b, for example, the window members 23a and 23b are made of metal, or the window member. A technique such as increasing the thickness dimension of 23a and 23b is conceivable. However, when X-ray analysis is performed, it is necessary to transmit X-rays to the window members 23a and 23b. Therefore, when the above-described method is employed, the X-ray transmittance of the window members 23a and 23b is significantly reduced. End up. As a result, the X-ray analysis itself may be impossible. Therefore, the constituent materials of the window members 23a and 23b must have high X-ray transmittance and high rigidity. Examples of the constituent material of the window members 23a and 23b having such properties include the above-described carbon fiber reinforced plastic. The carbon fiber reinforced plastic has high rigidity even at the same thickness and has the same X-ray transmittance as compared with a Kapton film which is a kind of X-ray window material. Moreover, the carbon fiber reinforced plastic does not have the handling difficulty like metal beryllium.

窓部材23a,23bの厚み寸法に関しては、X線分析に用いるX線のエネルギーによって適切な寸法が変わってくる。たとえば、一般的なX線分析に用いられる8000eV付近のエネルギーを持つX線を使用し、かつ、窓部材23a,23bを炭素繊維強化プラスチックで構成する場合は、窓部材23a,23bの厚み寸法が0.2mmであることが望ましい。ちなみに、8000eV付近のエネルギーを持つX線を、厚さ0.2mmの炭素繊維強化プラスチック製の窓部材23a,23bに入射したときのX線透過率は80%以上となる。このため、X線透過用孔26a,26bを塞ぐように支持部材22a,22bの支持面25a,25bに窓部材23a,23bを貼り付けた構成にしても、ラミネートセル10のX線分析を行うことが可能である。また、炭素繊維強化プラスチック製の窓部材23a,23bは十分な剛性を有しているため、高電圧での充放電によってガスが発生してもラミネートセル10の膨らみを抑制し、信頼性の高いX線分析を行うことが可能である。   As for the thickness dimensions of the window members 23a and 23b, appropriate dimensions vary depending on the energy of X-rays used for X-ray analysis. For example, when the X-ray having an energy of about 8000 eV used for general X-ray analysis is used and the window members 23a and 23b are made of carbon fiber reinforced plastic, the thickness dimension of the window members 23a and 23b is It is desirable to be 0.2 mm. Incidentally, the X-ray transmittance when an X-ray having an energy of about 8000 eV is incident on the window members 23a and 23b made of carbon fiber reinforced plastic having a thickness of 0.2 mm is 80% or more. Therefore, the X-ray analysis of the laminate cell 10 is performed even when the window members 23a and 23b are attached to the support surfaces 25a and 25b of the support members 22a and 22b so as to close the X-ray transmission holes 26a and 26b. It is possible. Moreover, since the window members 23a and 23b made of carbon fiber reinforced plastic have sufficient rigidity, even if gas is generated by charging and discharging at a high voltage, the swelling of the laminate cell 10 is suppressed, and the reliability is high. X-ray analysis can be performed.

また、本発明の実施の形態においては、支持部材22a,22bの四隅を押さえる第1の押さえ手段(30,31)と、支持部材22a,22bのX線透過用孔26a,26bの近傍を押さえる第2の押さえ手段(32a,32b)とによって、押さえ手段24を構成している。このため、次のような効果が得られる。
すなわち、第1の押さえ手段だけで一対の支持部材22a,22bを押さえた場合は、支持部材22a,22bの四隅P1〜P4から離れた支持部材22a,22bの中央部(X線透過用孔26a,26bが形成されている部分)に十分な押さえ力が作用せず、そこで押さえ力の不足が生じるおそれがある。特に、X線透過用孔26a,26bが形成された部分では、窓部材23a,23bが支持部材22a,22bによって裏打ちされないため、押さえ力の不足が起こりやすくなる。一方、第2の押さえ手段だけで一対の支持部材22a,22bを押さえた場合は、X線透過用孔26a,26bから離れた支持部材22a,22bの四隅に十分な押さえ力が作用せず、そこで押さえ力の不足が生じるおそれがある。
In the embodiment of the present invention, the first pressing means (30, 31) for pressing the four corners of the support members 22a, 22b and the vicinity of the X-ray transmitting holes 26a, 26b of the support members 22a, 22b are pressed. The holding means 24 is constituted by the second holding means (32a, 32b). For this reason, the following effects are acquired.
That is, when the pair of support members 22a and 22b are pressed only by the first pressing means, the central portions (X-ray transmitting holes 26a) of the support members 22a and 22b apart from the four corners P1 to P4 of the support members 22a and 22b. , 26b) is not applied with sufficient pressing force, and there is a risk of insufficient pressing force. In particular, in the portions where the X-ray transmission holes 26a and 26b are formed, the window members 23a and 23b are not backed by the support members 22a and 22b, so that the pressing force is likely to be insufficient. On the other hand, when the pair of supporting members 22a and 22b is pressed only by the second pressing means, sufficient pressing force does not act on the four corners of the supporting members 22a and 22b apart from the X-ray transmitting holes 26a and 26b, There is therefore a risk that the holding force will be insufficient.

これに対して、第1の押さえ手段と第2の押さえ手段の両方で一対の支持部材22a,22bを同時に押さえた場合は、上述した押さえ力の不足が相互に補われる。このため、一対の支持部材22a,22bを介してラミネートセル10全体をバランス良く押さえることができる。また、支持部材22a,22bを厚くしてその剛性を必要以上に高くしなくても済む。また、第2の押さえ手段による押さえ箇所を、X線透過用孔26a,26bの形成部位から均等な距離を隔てた2箇所P5,P6に設定すれば、X線透過用孔26a,26bの近傍を均一な力でバランス良く押さえることができる。   On the other hand, when the pair of support members 22a and 22b are simultaneously pressed by both the first pressing means and the second pressing means, the above-described lack of pressing force is compensated for each other. For this reason, the whole lamination cell 10 can be pressed down with good balance via a pair of supporting members 22a and 22b. Further, it is not necessary to increase the rigidity of the support members 22a and 22b to be thicker than necessary. In addition, if the pressing points by the second pressing means are set at two points P5 and P6 spaced apart from the X-ray transmitting holes 26a and 26b, the vicinity of the X-ray transmitting holes 26a and 26b. Can be pressed in a balanced manner with a uniform force.

また、一対の支持部材22a,22bをそれぞれ絶縁性の材料によって構成しておけば、たとえば、充放電のための端子をラミネートセル10に接続する作業中に、万一、この端子が支持部材22a,22bに接触してもショートするおそれがない。このため、作業の安全性を確保することができる。   Further, if the pair of support members 22a and 22b is made of an insulating material, for example, during the operation of connecting the terminals for charging and discharging to the laminate cell 10, the terminals should be supported by the support member 22a. , 22b does not cause a short circuit. For this reason, work safety can be ensured.

<6.変形例等>
本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
<6. Modified example>
The technical scope of the present invention is not limited to the above-described embodiments, and includes various modifications and improvements as long as the specific effects obtained by the constituent elements of the invention and combinations thereof can be derived.

たとえば、上記実施の形態においては、好ましい態様として、押さえ手段24を、第1の押さえ手段(30,31)と第2の押さえ手段(32a,32b)とによって構成したが、これに限らず、第1の押さえ手段又は第2の押さえ手段だけで押さえ手段24を構成してもかまわない。また、第2の押さえ手段による押さえ箇所を2箇所としたが、これに限らず、3箇所以上であってもよい。また、押さえ手段24で一対の支持部材22a,22bを押さえる場合の押さえ力は、ラミネートセル10内にガスが発生した場合でも、一対の支持部材22a,22bの離間を制限し、ラミネートセル10の膨らみを抑制し得る大きさであればよい。   For example, in the above embodiment, as a preferred mode, the pressing means 24 is constituted by the first pressing means (30, 31) and the second pressing means (32a, 32b). The pressing means 24 may be configured by only the first pressing means or the second pressing means. Moreover, although the press part by the 2nd press means was made into two places, it is not restricted to this, Three or more places may be sufficient. Further, the pressing force when pressing the pair of support members 22a and 22b with the pressing means 24 restricts the separation of the pair of support members 22a and 22b even when gas is generated in the laminate cell 10, and Any size may be used as long as the swelling can be suppressed.

また、上記実施の形態においては、好ましい態様として、一対の支持部材22a,22bの支持面25a,25bにそれぞれ窓部材23a,23bを貼り付け、この窓部材23a,23bを介してラミネートセル10を両側から挟み込む構成としたが、本発明はこれに限らず、一対の支持部材22a,22bの支持面25a,25bで直接、ラミネートセル10を挟み込む構成としてもよい。   Moreover, in the said embodiment, as a preferable aspect, the window members 23a and 23b are affixed on the support surfaces 25a and 25b of a pair of support members 22a and 22b, respectively, and the laminate cell 10 is attached via these window members 23a and 23b. However, the present invention is not limited to this, and the laminate cell 10 may be directly sandwiched between the support surfaces 25a and 25b of the pair of support members 22a and 22b.

また、上記実施の形態においては、X線透過側の支持部材22bに形成されたX線透過用孔26bの大きさを、支持面25bから遠ざかるにつれて拡大させたが、本発明はこれに限らず、図11に示すように、X線入射側の支持部材22aも同様に、X線透過用孔26aの大きさを、支持面25aから遠ざかるにつれて拡大させてもよい。その場合は、X線透過用孔26aとX線透過用孔26bを互いに同一の寸法および形状に設定してもよいし、互いに異なる寸法および形状に設定してもよい。
上記図11に示す構成を採用した場合は、先述した実施の形態(図3)に比べて、X線入射側でX線の入射角度を振ることができるため、より広角にX線回折測定を行うことができる。また、同じ回折角の範囲(たとえば、2θ=60度まで)であれば、X線透過用孔26a,26bの開き角度を相対的に小さくすることができる。
In the above embodiment, the size of the X-ray transmission hole 26b formed in the support member 22b on the X-ray transmission side is increased as the distance from the support surface 25b increases. However, the present invention is not limited to this. As shown in FIG. 11, the support member 22a on the X-ray incident side may similarly increase the size of the X-ray transmission hole 26a as the distance from the support surface 25a increases. In that case, the X-ray transmission hole 26a and the X-ray transmission hole 26b may be set to the same size and shape, or may be set to different sizes and shapes.
When the configuration shown in FIG. 11 is adopted, the X-ray incident angle can be varied on the X-ray incident side as compared with the above-described embodiment (FIG. 3), so that X-ray diffraction measurement can be performed at a wider angle. It can be carried out. Further, if the diffraction angle is within the same range (for example, up to 2θ = 60 degrees), the opening angle of the X-ray transmission holes 26a and 26b can be made relatively small.

また、各々の支持部材22a,22bの形態としては、たとえば図12および図13に示すように、各々の支持部材22a,22bに取付片28a,28bを一体に設けることにより、各々の支持部材22a,22bをL字形のプレート構造にしてもよい。取付片28a,28bは、上述した試料台2(図1参照)の上に支持部材22a,22bを用いてラミネートセル10をセットするときに、試料台2に据え付けてネジ止め等により固定される部分となる。   Further, as the form of each support member 22a, 22b, for example, as shown in FIG. 12 and FIG. 13, by attaching mounting pieces 28a, 28b integrally to each support member 22a, 22b, each support member 22a. 22b may have an L-shaped plate structure. The mounting pieces 28a and 28b are installed on the sample table 2 and fixed by screwing or the like when the laminate cell 10 is set on the sample table 2 (see FIG. 1) using the support members 22a and 22b. Part.

また、上記実施の形態においては、支持部材22bのX線透過用孔26bを正面視円形に形成したが、X線検出器4で測定すべき回折角の範囲内で回折X線との干渉を回避し得る形状であれば、どのような形状でX線透過用孔26bを形成してもかまわない。   Further, in the above embodiment, the X-ray transmitting hole 26b of the support member 22b is formed in a circular shape when viewed from the front. However, interference with the diffracted X-rays within the range of the diffraction angle to be measured by the X-ray detector 4 occurs. As long as the shape can be avoided, the X-ray transmitting hole 26b may be formed in any shape.

10…ラミネートセル
21…試料ホルダー
22a,22b…支持部材
23a,23b…窓部材
24…押さえ手段
25a,25b…支持面
26a,26b…X線透過用孔
DESCRIPTION OF SYMBOLS 10 ... Laminate cell 21 ... Sample holder 22a, 22b ... Support member 23a, 23b ... Window member 24 ... Holding means 25a, 25b ... Support surface 26a, 26b ... X-ray transmission hole

Claims (4)

セパレータを間に挟んで正極と負極を積層してなる電池要素を、電解液とともにラミネートフィルムにより密封した薄板状のラミネートセルを試料とし、前記ラミネートセルにX線を照射して分析データを得るin−situX線分析に用いられる試料ホルダーであって、
前記ラミネートセルを両側から挟んで支持する一対の支持部材と、
前記一対の支持部材が離間しないように前記一対の支持部材を押さえる押さえ手段とを備え、
前記一対の支持部材の各々は、前記ラミネートセルの主面と対向するように配置される支持面と、前記X線を透過させるX線透過用孔とを有し、
前記一対の支持部材のうち少なくとも一方の支持部材に形成されたX線透過用孔の大きさが、前記支持面から遠ざかるにつれて拡大している
ことを特徴とする試料ホルダー。
A battery element formed by laminating a positive electrode and a negative electrode with a separator in between is used as a sample of a thin plate-like laminate cell sealed with a laminate film together with an electrolytic solution, and X-rays are applied to the laminate cell to obtain analysis data A sample holder for use in situ X-ray analysis,
A pair of support members that sandwich and support the laminate cell from both sides;
Pressing means for pressing the pair of support members so that the pair of support members are not separated from each other,
Each of the pair of support members has a support surface disposed so as to face the main surface of the laminate cell, and an X-ray transmission hole that transmits the X-rays,
The sample holder, wherein the size of the X-ray transmitting hole formed in at least one of the pair of support members increases as the distance from the support surface increases.
前記少なくとも一方の支持部材に形成されたX線透過用孔は、断面円錐台形状に形成されている
ことを特徴とする請求項1に記載の試料ホルダー。
The sample holder according to claim 1, wherein the X-ray transmission hole formed in the at least one support member is formed in a truncated cone shape.
前記少なくとも一方の支持部材に形成されたX線透過用孔の内面は、当該支持部材の厚み方向全体にわたって一様な傾斜をなすテーパー形状に形成されている
ことを特徴とする請求項1または2に記載の試料ホルダー。
The inner surface of the hole for X-ray transmission formed in said at least one support member is formed in the taper shape which makes a uniform inclination over the whole thickness direction of the said support member. The sample holder described in 1.
セパレータを間に挟んで正極と負極を積層してなる電池要素を、電解液とともにラミネートフィルムにより密封した薄板状のラミネートセルを試料とし、前記ラミネートセルにX線を照射して分析データを得るin−situX線分析に際して、
前記ラミネートセルを一対の支持部材により両側から挟んで支持し、かつ、前記一対の支持部材が離間しないように前記一対の支持部材を押さえるとともに、前記一対の支持部材にそれぞれX線透過用孔を形成し、かつ、前記一対の支持部材のうち少なくとも一方の支持部材に形成された前記X線透過用孔の大きさを、前記ラミネートセルから遠ざかるにつれて拡大させることにより、当該支持部材とX線との干渉を回避しつつ、前記ラミネートセルのX線分析を行う
ことを特徴とするX線分析方法。
A battery element formed by laminating a positive electrode and a negative electrode with a separator in between is used as a sample of a thin plate-like laminate cell sealed with a laminate film together with an electrolytic solution, and X-rays are applied to the laminate cell to obtain analysis data -In situ X-ray analysis,
The laminate cell is supported by being sandwiched by a pair of support members from both sides, and the pair of support members are pressed so that the pair of support members are not separated from each other, and X-ray transmitting holes are respectively formed in the pair of support members. Forming and expanding the size of the X-ray transmitting hole formed in at least one of the pair of support members as the distance from the laminate cell increases. An X-ray analysis method, wherein X-ray analysis of the laminate cell is performed while avoiding interference.
JP2015050661A 2015-03-13 2015-03-13 Sample holder and X-ray analysis method Active JP6406077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050661A JP6406077B2 (en) 2015-03-13 2015-03-13 Sample holder and X-ray analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050661A JP6406077B2 (en) 2015-03-13 2015-03-13 Sample holder and X-ray analysis method

Publications (2)

Publication Number Publication Date
JP2016170093A true JP2016170093A (en) 2016-09-23
JP6406077B2 JP6406077B2 (en) 2018-10-17

Family

ID=56983513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050661A Active JP6406077B2 (en) 2015-03-13 2015-03-13 Sample holder and X-ray analysis method

Country Status (1)

Country Link
JP (1) JP6406077B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049002A (en) * 2016-09-16 2018-03-29 住友金属鉱山株式会社 Sample holder and X-ray analysis method
WO2020222413A1 (en) * 2019-04-30 2020-11-05 주식회사 엘지화학 Battery measurement apparatus using x-rays
WO2020230971A1 (en) * 2019-05-15 2020-11-19 주식회사 엘지화학 Stage device for xrd measurement of battery
JP2020534512A (en) * 2017-09-21 2020-11-26 ヘルムホルツ−ツェントルム ゲーストハハト ツェントルム フュアー マテリアル ウント キュステンフォルシュンク ゲーエムベーハー A device for controlling the temperature by sandwiching a flat sample for X-ray diffraction measurement
JP2021530682A (en) * 2019-04-30 2021-11-11 エルジー・ケム・リミテッド Battery measuring device using X-rays
RU2790441C1 (en) * 2022-11-16 2023-02-21 Федеральное государственное бюджетное учреждение науки Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук (ИФВД РАН) X-ray collimator manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602377A (en) * 1984-03-30 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Diamond-anvil high-pressure cell with improved X-ray collimation system
JPH11230919A (en) * 1998-02-18 1999-08-27 Yuasa Corp Nondestructive analytical method for electrochemical state of battery
JP2008064463A (en) * 2006-09-04 2008-03-21 Nagoya Industrial Science Research Inst Structure analyzing method of soft material due to beam irradiation and soft material holding device used therein
JP2012159311A (en) * 2011-01-29 2012-08-23 Rigaku Corp X-ray measurement battery structure and support device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602377A (en) * 1984-03-30 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Diamond-anvil high-pressure cell with improved X-ray collimation system
JPH11230919A (en) * 1998-02-18 1999-08-27 Yuasa Corp Nondestructive analytical method for electrochemical state of battery
JP2008064463A (en) * 2006-09-04 2008-03-21 Nagoya Industrial Science Research Inst Structure analyzing method of soft material due to beam irradiation and soft material holding device used therein
JP2012159311A (en) * 2011-01-29 2012-08-23 Rigaku Corp X-ray measurement battery structure and support device therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049002A (en) * 2016-09-16 2018-03-29 住友金属鉱山株式会社 Sample holder and X-ray analysis method
JP2020534512A (en) * 2017-09-21 2020-11-26 ヘルムホルツ−ツェントルム ゲーストハハト ツェントルム フュアー マテリアル ウント キュステンフォルシュンク ゲーエムベーハー A device for controlling the temperature by sandwiching a flat sample for X-ray diffraction measurement
JP7025527B2 (en) 2017-09-21 2022-02-24 ヘルムホルツ-ツェントルム ヘレオン ゲーエムベーハー A device for controlling the temperature by sandwiching a flat sample for X-ray diffraction measurement
WO2020222413A1 (en) * 2019-04-30 2020-11-05 주식회사 엘지화학 Battery measurement apparatus using x-rays
JP2021530682A (en) * 2019-04-30 2021-11-11 エルジー・ケム・リミテッド Battery measuring device using X-rays
JP7152071B2 (en) 2019-04-30 2022-10-12 エルジー エナジー ソリューション リミテッド Battery measuring device using X-ray
WO2020230971A1 (en) * 2019-05-15 2020-11-19 주식회사 엘지화학 Stage device for xrd measurement of battery
KR20200132028A (en) * 2019-05-15 2020-11-25 주식회사 엘지화학 Stage apparatus for xrd measurement of cell
JP2021532346A (en) * 2019-05-15 2021-11-25 エルジー・ケム・リミテッド Battery XRD measurement stage device
JP7156623B2 (en) 2019-05-15 2022-10-19 エルジー・ケム・リミテッド Stage device for battery XRD measurement
KR102470128B1 (en) 2019-05-15 2022-11-22 주식회사 엘지화학 Stage apparatus for xrd measurement of cell
RU2790441C1 (en) * 2022-11-16 2023-02-21 Федеральное государственное бюджетное учреждение науки Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук (ИФВД РАН) X-ray collimator manufacturing method

Also Published As

Publication number Publication date
JP6406077B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6406077B2 (en) Sample holder and X-ray analysis method
JP6221723B2 (en) X-ray analyzer and X-ray analysis method
US9022652B2 (en) Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations
CN104425792B (en) Battery pack
Liu et al. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices
KR200462183Y1 (en) In-situ cell for measuring x-ray diffraction of battery
US10439172B2 (en) Coin cell battery analyzed with in-situ X-ray analysis, method of manufacturing the same, and method of analyzing the same using X-ray
WO2021038943A1 (en) Structure for battery analysis and x-ray diffraction device
JP2018049002A (en) Sample holder and X-ray analysis method
US11658355B2 (en) Method and system for analyzing swelling behavior of lithium secondary battery
CN111656171A (en) Chemical state analysis device and method for battery material
KR20200035594A (en) Non-destructive method for detecting disconnection of battery cell using pressing force
Jahrman et al. Laboratory-based X-ray absorption spectroscopy on a working pouch cell battery at industrially-relevant charging rates
JP2015232546A (en) X-ray analysis system and program
JP6507742B2 (en) Sample switching device
JP2017139089A (en) Secondary battery evaluation method, secondary battery evaluation device, and secondary battery evaluation program
JP6897411B2 (en) How to manufacture a secondary battery
Li et al. Stress state characterization of Li-ion batteries based on a membrane sensor
JP7152071B2 (en) Battery measuring device using X-ray
JP2018133199A (en) Battery module
Liang et al. In Situ energy dispersive x-ray diffraction study of prototype LiMnO4-and LiFePO4-based coin cell batteries
JP2021532346A (en) Battery XRD measurement stage device
Ladpli Multifunctional energy storage composites with built-in health monitoring capabilities
KR20200076433A (en) In-situ optical and electrochemical analysis methods and battery cell cross-section measurement modules for the same
US20230083153A1 (en) Battery cell jig that bolt-fastens through uniform pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6406077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150