JP2008064463A - Structure analyzing method of soft material due to beam irradiation and soft material holding device used therein - Google Patents

Structure analyzing method of soft material due to beam irradiation and soft material holding device used therein Download PDF

Info

Publication number
JP2008064463A
JP2008064463A JP2006239164A JP2006239164A JP2008064463A JP 2008064463 A JP2008064463 A JP 2008064463A JP 2006239164 A JP2006239164 A JP 2006239164A JP 2006239164 A JP2006239164 A JP 2006239164A JP 2008064463 A JP2008064463 A JP 2008064463A
Authority
JP
Japan
Prior art keywords
sample
hole
holding
solution
soft material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239164A
Other languages
Japanese (ja)
Other versions
JP5028588B2 (en
Inventor
Ichiro Hatta
一郎 八田
Giichi Wakui
義一 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Industrial Science Research Institute
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to JP2006239164A priority Critical patent/JP5028588B2/en
Publication of JP2008064463A publication Critical patent/JP2008064463A/en
Application granted granted Critical
Publication of JP5028588B2 publication Critical patent/JP5028588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure analyzing method of soft material due to beam irradiation capable of simply fixing a sample of the soft material subjected to beam irradiation to a measuring instrument so as not to move the same and simply keeping a state that a solution is allowed to uniformly flow to the sample, and a soft material holding device. <P>SOLUTION: The skin 1 of the soft material is inserted in the sample housing hole 23 of a plate shaped sample housing member 22 having solution permeability, the sample housing member 22 is held in the holding hole 27a of holding metal fittings 25, both sides of the holding metal fittings 25 as covered with a thin-walled cover material 38 and a pair of case metal fittings 41 and 42 are fixed to the holding metal fittings 25 to fix the skin 1 in an immovable state in the sample housing hole 23. Further, the solution is allowed to flow through the holding hole in a predetermined ratio by a Perista pump device 55 to allow the solution to uniformly flow to the skin 1 through the sample housing member 22. The skin 1 is irradiated with X rays through a beam passing hole 47 to perform measurement by an X-ray diffraction device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セルロース等の繊維構造、皮膚等の膜構造、食品等の三次元構造等の軟質材料の構造を、X線回折・散乱、赤外線吸収等のビーム照射による計測装置を用いた軟質材料の構造解析方法及びそれに用いる軟質材料保持装置に関する。   The present invention relates to a soft material using a measuring device using a beam structure such as X-ray diffraction / scattering or infrared absorption for the structure of a soft material such as a fiber structure such as cellulose, a film structure such as skin, or a three-dimensional structure such as food. The present invention relates to a structural analysis method and a soft material holding device used therefor.

この種の軟質材料として、例えば動物の皮膚における皮膚角層中にある細胞間脂質は皮膚のバリアー機能において重要な働きをしており、その分子レベルでの機構を明らかにすることが従来から課題となっている。この場合、X線回折装置による構造解析が採用されるが、動物の皮膚から採取した皮膚角層を用いる実験において個体差を避けることができないという問題がある。例えば、溶液としてグリセロールを用いて皮膚角層に作用させることにより細胞間脂質の構造変化を観測しようとするとき、X線回折により観測される構造の差がグリセロールの寄与によるものなのかあるいは試料の個体差によるものなのかを区別することが個体による構造のバラツキが大きいために難しく、さらにグリセロールによる構造変化が大きくない場合にその構造変化を検出することはさらに難しくなる。このような困難な問題を解決するには、まず試料である皮膚角層を動かないように固定する必要があり、さらに皮膚角層にグリセロールを均一に浸透させるようにするために、グリセロールを流した状態にする必要がある。   As a soft material of this kind, for example, intercellular lipids in the stratum corneum of animal skin play an important role in the barrier function of the skin, and it has been a challenge to clarify the mechanism at the molecular level. It has become. In this case, structural analysis using an X-ray diffractometer is employed, but there is a problem that individual differences cannot be avoided in experiments using the stratum corneum collected from the skin of animals. For example, when glycerol is used as a solution to affect the stratum corneum by observing structural changes in intercellular lipids, the difference in structure observed by X-ray diffraction is due to the contribution of glycerol, or It is difficult to distinguish between individual differences due to large variations in structure among individuals, and it is even more difficult to detect structural changes when the structural change due to glycerol is not large. In order to solve such difficult problems, it is necessary to fix the sample of the skin stratum corneum so that it does not move. It is necessary to be in the state.

従来は、例えば特許文献1に示すようなガラスキャピラリを用いて試料を挿入する方法が用いられていた。しかし、ガラスキャピラリでは試料を固定して動かないようにすることが困難である。さらに、ガラスキャピラリ内に溶液を均一に供給することもできないので、試料に溶液を含ませないものと含ませたものを別個にキャピラリに挿入して、個々にデータ解析を行わなければならなかった。そのため、試料の個体差をなくした計測は無理であった。
特開2002−277356号公報
Conventionally, for example, a method of inserting a sample using a glass capillary as shown in Patent Document 1 has been used. However, it is difficult to fix the sample so that it does not move with a glass capillary. Furthermore, since the solution cannot be uniformly supplied into the glass capillary, it was necessary to individually analyze the data by inserting the sample without the solution and the sample with the solution into the capillary. . For this reason, measurement without individual differences in the samples was impossible.
JP 2002-277356 A

本発明は、上記した問題を解決しようとするもので、ビーム照射を行う軟質材料の試料を測定装置に動かないように簡易に固定することができ、さらに試料に溶液を均一になるように流した状態を簡易に維持して計測を行うことが可能であるビーム照射による軟質材料の構造解析方法及びそれに用いる軟質材料保持装置を提供することを目的とする。   The present invention is intended to solve the above-described problems. A soft material sample to be irradiated with a beam can be easily fixed so as not to move to a measuring apparatus, and the solution can be flowed uniformly on the sample. It is an object of the present invention to provide a structure analysis method for a soft material by beam irradiation and a soft material holding device used therefor, which can perform measurement while maintaining a simple state.

上記目的を達成するために本発明の構成上の特徴は、試料収容孔を設けた溶液透過性を有する板状の試料収容部材の試料収容孔に軟質材料の試料を挿入し、保持孔を有すると共に、外周の2箇所に保持孔に繋がる溶液流通孔を有する板状の保持金具の保持孔に試料収容部材を挿入し、保持金具の両面に薄肉の被覆材を被せて試料収容孔を液密状態で被覆し、試料収容孔を囲んで配置されるビーム通過孔を設けた一対のケース金具で被覆材を介して保持金具を両面側から挟持して締付手段により保持金具に固定し、溶液流通手段によって溶液流通孔を通して試料収容孔内に溶液を流通させ、ビーム計測装置によってビーム通過孔を通して試料に計測用ビームを照射することにより計測を行うことにある。なお、ビーム計測装置としては、X線回折・散乱、中性子回折・散乱、赤外線吸収、紫外可視吸収スペクトル、円偏光二色性、ラマンスペクトル、電子スピン共鳴、核磁気共鳴、蛍光分光等によるものがある。また、軟質材料としては、繊維構造ではセルロース、ケラチン、コラーゲン、高分子、繊維等があり、膜状構造としては、皮膚、神経、腸壁等があり、三次元構造としてはデンプン,多糖、粉末、細胞、生体組織、食品等がある。   In order to achieve the above object, a structural feature of the present invention is that a sample of a soft material is inserted into a sample storage hole of a plate-shaped sample storage member having a sample storage hole and has a holding hole. At the same time, the sample storage member is inserted into the holding holes of the plate-shaped holding metal fittings having the solution flow holes connected to the holding holes at two locations on the outer periphery, and the sample holding holes are made liquid-tight by covering the both sides of the holding metal fittings with thin coating materials. The holding metal fittings are clamped from both sides with a pair of case metal fittings provided with a beam passage hole arranged so as to surround the sample accommodation hole, and fixed to the holding metal fittings by tightening means. The measurement is performed by circulating the solution through the solution flow hole into the sample accommodation hole by the flow means and irradiating the sample with the measurement beam through the beam passage hole by the beam measuring device. In addition, as a beam measuring device, those using X-ray diffraction / scattering, neutron diffraction / scattering, infrared absorption, ultraviolet-visible absorption spectrum, circular dichroism, Raman spectrum, electron spin resonance, nuclear magnetic resonance, fluorescence spectroscopy, etc. is there. Soft materials include cellulose, keratin, collagen, polymer, fiber, etc. in the fiber structure, skin, nerve, intestinal wall, etc. in the film structure, starch, polysaccharide, powder as the three-dimensional structure , Cells, living tissues, foods, etc.

本発明においては、軟質材料の試料が溶液透過性を有する板状の試料収容部材の試料収容孔に挿入され、試料収容部材が保持金具の保持孔に保持され、保持金具の両面に薄肉の被覆材を被せられ、さらに一対のケース金具が被覆材を介して保持金具を両面側から挟持して締付手段によって締め付けて保持金具に固定されることにより、試料が試料収容孔内に動かない状態で固定される。さらに、溶液流通手段によって溶液流通孔を通して保持孔内に溶液を所定の割合で流通させることにより、溶液透過性を有する試料収容部材を溶液が流れてその試料収容孔に収容された軟質試料を均一に溶液が流れる。この状態で、ビーム計測装置によってビーム通過孔を通して試料に計測用ビームを照射することにより安定した状態で計測を行うことができる。その結果、本発明においては、溶液を流しながら皮膚の細胞間脂質の構造変化のような微細な変化を観測するときでも、観測される構造の差が溶液の寄与によるものなのかあるいは個体差によるものなのかを区別することができる。   In the present invention, a soft material sample is inserted into a sample accommodation hole of a plate-like sample accommodation member having a solution permeability, the sample accommodation member is held in a holding hole of a holding fitting, and both sides of the holding fitting are covered with a thin wall In addition, a pair of case fittings are clamped from both sides by a pair of case fittings, and are clamped by fastening means to be fixed to the holding fixture, so that the sample does not move into the sample receiving hole. It is fixed with. Furthermore, the solution flows through the solution circulation hole into the holding hole at a predetermined rate by the solution circulation means, so that the solution flows through the sample-containing member having the solution permeability, and the soft sample stored in the sample-receiving hole is made uniform. The solution flows through. In this state, the measurement can be performed in a stable state by irradiating the sample with a measurement beam through the beam passage hole by the beam measurement device. As a result, in the present invention, even when a minute change such as a structural change of the intercellular lipids in the skin is observed while flowing the solution, the observed difference in structure is due to the contribution of the solution or due to individual differences. It can be distinguished whether it is a thing.

また、本発明において、試料収容部材としてろ紙を用いることができる。これにより、試料収容孔においてろ紙のけばが生じ、このけばによって軟質試料が動かないように確実に支持される。   In the present invention, a filter paper can be used as the sample storage member. As a result, the filter paper is crushed in the sample-receiving hole, and the soft sample is reliably supported so as not to move.

また、本発明において、試料収容孔内に溶液を導入しない状態と導入した状態でのビーム計測装置による計測結果の差分を得ることができる。これにより、溶液による構造変化が大きくない場合でも、溶液を流通させない状態と流通させた状態での計測結果の差分をとることにより、構造変化を詳しく分析することができる。   Moreover, in this invention, the difference of the measurement result by the beam measuring device in the state which does not introduce | transduce a solution in a sample accommodation hole, and the state which introduce | transduced can be obtained. Thereby, even when the structural change due to the solution is not large, the structural change can be analyzed in detail by taking the difference between the measurement results in the state where the solution is not circulated and the state where the solution is circulated.

また、本発明の他の特徴は、軟質材料の構造解析に用いる軟質材料保持装置として、軟質材料の試料が挿入される試料収容孔を設けた溶液透過性を有する板状の試料収容部材と、試料収容部材が収容される保持孔を有すると共に、外周の2箇所に保持孔に繋がる溶液流通孔を有する板状の保持金具と、保持金具の両面側に密着して配置されて試料収容孔を液密状態で被覆する一対の薄肉の被覆材と、保持金具を両面側に被覆材を介して配置されて試料収容孔を囲んで配置されるビーム通過孔を設け、保持金具を挟持して締付手段により保持金具に締付け固定される一対のケース金具と、溶液流通孔を通して試料収容孔内に溶液を流通させる溶液流通手段とを設けたことにある。この軟質材料保持装置により、試料が試料収容孔内に動かない状態で確実に固定され、さらに、溶液流通手段によって試料収容孔に収容された軟質試料に均一に溶液が供給される。   Another feature of the present invention is a plate-like sample accommodation member having a solution permeability provided with a sample accommodation hole into which a sample of a soft material is inserted as a soft material holding device used for structural analysis of the soft material, A plate-shaped holding metal fitting having a holding hole for holding the sample holding member and having a solution flow hole connected to the holding hole at two positions on the outer periphery, and a sample holding hole arranged in close contact with both sides of the holding metal fitting A pair of thin coating materials that are coated in a liquid-tight state and a beam passage hole that is disposed on both sides of the holding fixture via the coating material and surrounds the sample receiving hole are provided, and the holding fixture is sandwiched and tightened. A pair of case fittings fastened and fixed to the holding fitting by the attaching means and a solution circulation means for circulating the solution through the solution circulation hole and into the sample accommodation hole are provided. By this soft material holding device, the sample is securely fixed in a state where it does not move into the sample accommodation hole, and the solution is uniformly supplied to the soft sample accommodated in the sample accommodation hole by the solution circulation means.

本発明によれば、軟質材料の試料が、溶液透過性を有する板状の試料収容部材の試料収容孔に挿入され、保持金具と被覆材と一対のケース金具によって試料収容孔内に動かない固定された状態で、試料に溶液を流しながら微細な構造変化を観測するときでも、観測される構造の差が溶液の寄与によるものなのかあるいは個体差によるものなのかを区別することができる。また、試料収容部材としてはろ紙を用いることが好ましく、ろ紙のけばによって試料が動かないように簡易かつ確実に支持される。また、本発明において、試料収容孔内を溶液を流通させない状態と流通させた状態でのビーム計測装置による計測結果の差分を得ることができる。これにより、溶液による構造変化が大きくない場合でも、溶液を流通させない状態と流通させた状態での計測結果の差分をとることにより、構造変化を詳しく分析することができる。   According to the present invention, a soft material sample is inserted into a sample accommodation hole of a plate-like sample accommodation member having a solution permeability, and is fixed in a sample accommodation hole by a holding metal fitting, a covering material, and a pair of case metal fittings. In this state, even when a minute structural change is observed while flowing the solution through the sample, it is possible to distinguish whether the observed difference in structure is due to the contribution of the solution or due to individual differences. Moreover, it is preferable to use a filter paper as the sample storage member, and the sample storage member is simply and reliably supported so that the sample does not move by the filter paper. Moreover, in this invention, the difference of the measurement result by the beam measuring device in the state which did not distribute | circulate the solution in the sample accommodation hole, and the state distribute | circulated can be obtained. Thereby, even when the structural change due to the solution is not large, the structural change can be analyzed in detail by taking the difference between the measurement results in the state where the solution is not circulated and the state where the solution is circulated.

以下、本発明の実施の形態について説明する。図1,図2は、実施例であるX線回折装置を使用した軟質材料である皮膚の構造解析に使用する軟質材料保持装置を平面図及び一部破断正面図により示したものであり、図3は、軟質材料保持装置の装置本体を拡大一部破断正面図により示したものである。軟質材料保持装置10は、ケース部11と、それに取り付けられた装置本体21と、溶液流通手段であるぺリスタポンプ装置55とを設けている。   Embodiments of the present invention will be described below. 1 and 2 are a plan view and a partially cutaway front view of a soft material holding device used for structural analysis of skin, which is a soft material using an X-ray diffractometer as an embodiment. 3 is an enlarged partially cutaway front view of the apparatus main body of the soft material holding apparatus. The soft material holding device 10 includes a case portion 11, a device main body 21 attached thereto, and a peristaltic pump device 55 that is a solution circulation means.

ケース部11は、長方形の金属板を組み合わせて形成されたもので、長方形の平坦な基板部12と、その両短辺12aと一方の長辺12bにおいて同一方向に垂直に固定された一対の側板部13と横板部14とを設けている。基板部12は、中央に板を貫通したX線が透過する透過孔12dを有している。両側板部13には、長手方向中央の基板部12側に貫通ねじ孔13aを設けており、貫通ねじ孔13aにはそれぞれ調整ねじ15が螺合されている。調整ねじ15は、先端側で基板部12上に載置された一対の位置決め片16を押して、位置決め片16に挟まれた装置本体21を位置決めするようになっている。また、基板部12の他方の長辺12cにおいて両端側の2箇所には、それぞれブロック状の連結部17が基板部12の中央に向けて互いに90°の中心角をなすように配置されて基板部12に固定されている。各連結部17には、基板部12の中央に向けて水平に延びた貫通孔である連結小孔17aが設けられている。横板部14の外面中央には取付棒18が固定されて垂直に延びており、取付棒18の先端には長方形の取付板19が取付棒18に対して垂直に固定されている。取付板19の四隅には、取付孔19aが設けられている。   The case portion 11 is formed by combining rectangular metal plates, and is a rectangular flat substrate portion 12 and a pair of side plates fixed vertically in the same direction on both short sides 12a and one long side 12b. A portion 13 and a horizontal plate portion 14 are provided. The substrate portion 12 has a transmission hole 12d at the center through which X-rays that penetrate the plate pass. Each side plate 13 is provided with a through screw hole 13a on the side of the substrate portion 12 at the center in the longitudinal direction, and an adjustment screw 15 is screwed into each of the through screw holes 13a. The adjustment screw 15 presses a pair of positioning pieces 16 placed on the substrate portion 12 on the distal end side to position the apparatus main body 21 sandwiched between the positioning pieces 16. Further, at two locations on both ends of the other long side 12c of the substrate part 12, block-like connecting parts 17 are arranged so as to form a central angle of 90 ° toward the center of the substrate part 12, respectively. It is fixed to the part 12. Each connecting portion 17 is provided with a connecting small hole 17 a that is a through hole extending horizontally toward the center of the substrate portion 12. A mounting rod 18 is fixed and extends vertically at the center of the outer surface of the horizontal plate portion 14, and a rectangular mounting plate 19 is fixed vertically to the mounting rod 18 at the tip of the mounting rod 18. At the four corners of the mounting plate 19, mounting holes 19a are provided.

装置本体21は、中央に軟質試料が挿入される試料収容孔23を設けた溶液透過性を有する板状の試料収容部材22と、試料収容部材22が収容される保持孔27aを中央に有すると共に、外周の2箇所に保持孔27aに繋がる溶液流通孔29,36を有する板状の保持金具25と、保持金具25の両面側に密着して配置されて試料収容孔23を液密状態で被覆する一対の薄肉の被覆材38と、保持金具25を両面側に被覆材38を介して配置される一対のケース金具41,42とを設けている。   The apparatus main body 21 has a plate-like sample accommodation member 22 having solution permeability provided with a sample accommodation hole 23 into which a soft sample is inserted at the center, and a holding hole 27a in which the sample accommodation member 22 is accommodated in the center. The plate-like holding metal fitting 25 having solution flow holes 29 and 36 connected to the holding hole 27a at two places on the outer periphery, and the sample containing hole 23 covered in a liquid-tight state are disposed in close contact with both sides of the holding metal fitting 25. A pair of thin-walled covering members 38 and a pair of case fittings 41 and 42 in which the holding fitting 25 is disposed on both sides via the covering member 38 are provided.

試料収容部材22は、溶液透過性を有するろ紙製の円板状であって中央に軟質材料である皮膚が挿入される円形の小孔である試料収容孔23を設けている。なお、ろ紙の他に溶液透過性を有する多孔性の無機材料、羊毛,ラシャのような厚手の布、不織布等を用いることも可能である。保持金具25は、中央の薄板製の中央金具部26と、中央金具26を取り囲む環状の外環状金具部31とにより構成されている。中央金具部26は、扁平な円形の中央部27と、中央部27の外周縁に沿って中央部27の両面側に突出した環状のリング部28を一体で設けている。中央部27の中心には試料収容部材22が挿入される保持孔27aを設けている。さらに、中央金具部26の外周側の90°離れた2箇所に保持孔27aに繋がる一対の溶液流通孔29が形成されている。   The sample accommodation member 22 is a disc-like disk made of filter paper having solution permeability, and is provided with a sample accommodation hole 23 which is a circular small hole into which a skin made of a soft material is inserted in the center. In addition to the filter paper, it is also possible to use a porous inorganic material having solution permeability, a thick cloth such as wool or Rasha, a non-woven fabric, or the like. The holding metal fitting 25 is composed of a central metal fitting portion 26 made of a thin plate and an annular outer annular fitting portion 31 surrounding the central fitting 26. The central metal part 26 is integrally provided with a flat circular central part 27 and an annular ring part 28 projecting on both sides of the central part 27 along the outer peripheral edge of the central part 27. A holding hole 27 a into which the sample storage member 22 is inserted is provided at the center of the central portion 27. Furthermore, a pair of solution flow holes 29 connected to the holding holes 27a are formed at two locations 90 ° apart on the outer peripheral side of the central metal fitting 26.

外環状金具部31は、互いに分離可能な上下一対の円環形状の上下部32,33を設けている。上下部32,33は、内周面と互いの対向面の境界において全周に沿って断面長方形に切り欠かれた環状の凹部34,35を設けている。また、上下部32,33の外周側の90°離れた2箇所において上記一対の溶液流通孔29に繋がる一対の溶液流通孔36が上下部32,33にまたがって形成されている。さらに、外環状金具部31は、外周近傍の周方向に等間隔な8箇所に板を貫通する取付孔37を設けている。中央金具部26の外周側が上下部32,33で挟まれ、リング部28が凹部34,35に挟まれて、外環状金具部31と中央金具部26が一体にされる。薄肉の被覆材38は、保持金具25の中央部27の両面側にそれぞれ密着して配置されて保持孔27aを液密状態で被覆するものであり、フレキシブルで絶縁性と耐蝕性を有する例えばポリイミド膜が用いられる。   The outer annular metal part 31 is provided with a pair of upper and lower annular parts 32 and 33 that can be separated from each other. The upper and lower portions 32 and 33 are provided with annular recesses 34 and 35 cut out in a rectangular cross section along the entire circumference at the boundary between the inner peripheral surface and the opposing surfaces. In addition, a pair of solution circulation holes 36 connected to the pair of solution circulation holes 29 are formed across the upper and lower parts 32 and 33 at two positions 90 ° apart on the outer peripheral side of the upper and lower parts 32 and 33. Furthermore, the outer annular metal part 31 is provided with mounting holes 37 that penetrate the plate at eight equally spaced positions in the circumferential direction near the outer periphery. The outer peripheral side of the central metal part 26 is sandwiched between the upper and lower parts 32 and 33, the ring part 28 is sandwiched between the concave parts 34 and 35, and the outer annular metal part 31 and the central metal part 26 are integrated. The thin covering material 38 is disposed in close contact with both sides of the central portion 27 of the holding metal fitting 25 to cover the holding hole 27a in a liquid-tight state, and is flexible and has insulation and corrosion resistance, for example, polyimide A membrane is used.

上下一対ケース金具41,42は、保持金具25に対する重ね面において、中央部に円形に突出した中央凸部43,44を設けている。中央凸部43,44は、外径が上記上下部32,33の内径よりわずかに小さくなっており、上下部32,33の中央空間に挿入可能にされている。中央凸部43,44の平坦面の外周近傍位置には、環状の凹部43a,44aが同軸状に設けられており、凹部43a,44aにはOリング45,46が装着されている。上側のケース金具42は、中央に中央凸部43側で小径になるように円錐状に傾斜したX線が入射するビーム通過孔47を設けている。ビーム通過孔47の中央凸部43側の開口径は上記試料収容孔23の径より大きくなっている。また、下側のケース金具43は、中央にストレートな円形の貫通孔であるX線が透過するビーム通過孔48を設けている。ビーム通過孔48の径は、ビーム通過孔47の小径部分と略同一である。ケース金具41,42は、上記外環状金具部31の取付孔37に対応する周方向に等間隔な8箇所に板を貫通する取付孔49を設けている。   The pair of upper and lower case metal parts 41 and 42 are provided with center convex parts 43 and 44 projecting in a circular shape at the center part on the overlapping surface with respect to the holding metal part 25. The central protrusions 43 and 44 have an outer diameter slightly smaller than the inner diameters of the upper and lower parts 32 and 33 and can be inserted into the central space of the upper and lower parts 32 and 33. In the vicinity of the outer periphery of the flat surface of the central protrusions 43 and 44, annular recesses 43a and 44a are coaxially provided, and O-rings 45 and 46 are mounted in the recesses 43a and 44a. The upper case fitting 42 is provided with a beam passage hole 47 into which X-rays inclined in a conical shape are incident so as to have a small diameter on the central convex portion 43 side at the center. The opening diameter of the beam passage hole 47 on the central convex portion 43 side is larger than the diameter of the sample accommodation hole 23. Further, the lower case fitting 43 is provided with a beam passage hole 48 through which X-rays, which are straight circular through holes, are transmitted at the center. The diameter of the beam passage hole 48 is substantially the same as the small diameter portion of the beam passage hole 47. The case metal fittings 41 and 42 are provided with attachment holes 49 penetrating the plate at eight positions equally spaced in the circumferential direction corresponding to the attachment holes 37 of the outer annular metal fitting part 31.

装置本体21は、試料収容部材22の試料収容孔23に軟質試料である皮膚1を挿入し、保持金具25の中央金具部26の保持孔29に試料収容部材22を挿入し、中央金具部26の両面に外環状金具部31を挟む。保持金具25の中央部27両面にポリイミド膜である被覆材38を被せて、被覆材38を介して保持金具25の両面側に凹部43a,44aにOリング45,46を装着した上下のケース金具41,42を中央凸部43,44側を合わせて挟み付ける。そして、ケース金具41,42の取付孔49と外環状金具部31の取付孔37を通して、ボルト及びナット51で締め付けて固定させる。これにより、皮膚1は、試料収容部材22としてろ紙を用いたことにより、ろ紙のけばによって動かないように簡易かつ確実に支持される。   The apparatus main body 21 inserts the skin 1 which is a soft sample into the sample accommodation hole 23 of the sample accommodation member 22, inserts the sample accommodation member 22 into the holding hole 29 of the central fitting portion 26 of the holding fitting 25, and the central fitting portion 26. The outer annular metal fitting 31 is sandwiched between the two surfaces. Upper and lower case metal fittings in which a covering material 38 made of a polyimide film is covered on both surfaces of the central portion 27 of the holding metal fitting 25, and O-rings 45 and 46 are mounted on the recesses 43 a and 44 a on both surface sides of the holding metal fitting 25. 41 and 42 are clamped with the center convex portions 43 and 44 side aligned. Then, the bolts and nuts 51 are tightened and fixed through the attachment holes 49 of the case fittings 41 and 42 and the attachment holes 37 of the outer annular fitting 31. Thereby, the skin 1 is supported simply and reliably so as not to move due to the flaking of the filter paper by using the filter paper as the sample storage member 22.

さらに、連結部17の連結小孔17aに溶液流通手段であるぺリスタポンプ装置55の溶液供給排出パイプ56を液密状態で挿嵌させることにより、装置本体21が得られる。なお、ぺリスタポンプ装置55の代わりに一対の注射器を用いることも可能である。この装置本体21をケース部11の基板部12に載置させ、連結部17に位置合わせすると共に調整ねじ15で基板部12上に載置された一対の位置決め片16を押して位置合わせを行って締め付けて固定する。装置本体21が固定されたケース部11について、取付板19によってX線回折装置の規定の試料取付部Bにボルト19bによって固定される。   Furthermore, the apparatus main body 21 is obtained by inserting the solution supply / discharge pipe 56 of the peristaltic pump device 55 as the solution circulation means into the connection small hole 17a of the connection portion 17 in a liquid-tight state. A pair of syringes can be used in place of the peristaltic pump device 55. The apparatus main body 21 is placed on the substrate part 12 of the case part 11, aligned with the connecting part 17, and aligned by pressing the pair of positioning pieces 16 placed on the substrate part 12 with the adjusting screw 15. Tighten and fix. The case portion 11 to which the apparatus main body 21 is fixed is fixed to the prescribed sample mounting portion B of the X-ray diffractometer by the mounting plate 19 with bolts 19b.

この状態で、ぺリスタポンプ装置55によって溶液流通孔29,36を通して保持孔27a内に溶液を所定の割合で流通させることにより、溶液透過性を有する試料収容部材22を溶液が流れてその試料収容孔23に収容された軟質試料である皮膚1を均一に溶液が流れる。そのため、試料収容孔23内において溶液に溶けている化学物質の濃度が一定に保たれ、皮膚1からの脂質の抽出が一定条件で行われる。このように、皮膚1が保持金具25と被覆材38と一対のケース金具41,42によって試料収容孔23内に動かないように固定され、試料収容孔23内に溶液を流した状態で、X線回折装置によってビーム通過孔47を通して皮膚1にX線を照射することにより、安定した計測条件で計測を行うことができる。その結果、本実施例においては、グリセロールのような溶液を流しながら皮膚1の細胞間脂質の構造変化のような微細な変化を観測するときでも、観測される構造の差がグリセロールの寄与によるものなのかあるいは皮膚1の個体差によるものなのかを区別することができる。   In this state, the peristaltic pump device 55 causes the solution to flow in the holding hole 27a through the solution flow holes 29 and 36 at a predetermined ratio, so that the solution flows through the sample storage member 22 having solution permeability and the sample storage hole. The solution flows uniformly through the skin 1 which is a soft sample accommodated in 23. Therefore, the concentration of the chemical substance dissolved in the solution is kept constant in the sample accommodation hole 23, and the lipid extraction from the skin 1 is performed under a constant condition. As described above, the skin 1 is fixed so as not to move into the sample accommodation hole 23 by the holding metal fitting 25, the covering material 38, and the pair of case metal fittings 41 and 42, and the solution is allowed to flow into the sample accommodation hole 23. By irradiating the skin 1 with X-rays through the beam passage hole 47 by the line diffractometer, measurement can be performed under stable measurement conditions. As a result, in this example, even when a minute change such as the structural change of the intercellular lipid of the skin 1 is observed while flowing a solution such as glycerol, the difference in the observed structure is due to the contribution of glycerol. It is possible to distinguish whether it is due to individual differences of the skin 1 or not.

つぎに、上記実施例の具体例1,2について説明する。X線回折で,X線の波長は0.1nm、カメラ長は400mmであり、散乱ベクトルS=(2/λ)sinθで0〜3nm−1の範囲で観測が行われた。ただし、2θは散乱角である。試料は、へアレスマウス角層を用い、装置本体21内に試料を閉じ込め、試料の周りを溶液で満たし、溶液を注入してから、X線回折像の時間変化を2〜3時間にわたって300秒毎に露光時間30秒で観測した。観測したSの範囲で、各層中の細胞間脂質のラメラ構造による回折像と炭化水素鎖の充填の格子定数による回折像を同時に求めることができた。 Next, specific examples 1 and 2 of the above embodiment will be described. In X-ray diffraction, the wavelength of X-ray was 0.1 nm, the camera length was 400 mm, and the scattering vector S = (2 / λ) sin θ was observed in the range of 0 to 3 nm −1 . However, 2θ is a scattering angle. The sample uses a hairless mouse stratum corneum, the sample is confined in the apparatus main body 21, the sample is filled with the solution, and the solution is injected. Then, the time change of the X-ray diffraction image is changed to 300 seconds over 2 to 3 hours. Observation was performed at an exposure time of 30 seconds every time. Within the observed S range, a diffraction image by the lamellar structure of the intercellular lipid in each layer and a diffraction image by the lattice constant of the hydrocarbon chain filling could be obtained simultaneously.

具体例1.クロロホルム・メタノール(2:1)に脂質の抽出による構造変化
図4−1,図4−2は、皮膚にクロロホルム・メタノールを作用したときの小角回折像,広角回折像の時間変化を示すグラフである。なお、図において時間経過は上の曲線から下の曲線へ変化している。また、図5−1,図5−2は、皮膚にクロロホルム・メタノールを作用したときの広角回折2.44nm−1,2.70nm−1の積分強度の時間変化を示すグラフである。
Specific Example 1 Fig. 4-1 and Fig. 4-2 are graphs showing the time changes of small-angle and wide-angle diffraction images when chloroform / methanol is applied to the skin. is there. In the figure, the passage of time changes from the upper curve to the lower curve. Furthermore, Figure 5-1, Figure 5-2, the wide-angle diffraction 2.44Nm -1 when the action of chloroform-methanol to the skin, is a graph showing the time variation of the integrated intensity of 2.70 nm -1.

図4−1及び図4−2に示すように、散乱ベクトルSが0〜0.40nm−1の小角回折像及び散乱ベクトルSが2.0〜3.0nm−1の広角回折像共に、時間と共に減少している。広角回折像の格子定数(散乱ベクトルSの逆数)0.41nmの積分強度の時間変化は図5−1に示すように変化している。また、広角回折像の格子定数0.37nmの積分強度の時間変化は図5−2に示すように変化している。図5−1,2より、いずれも約2000秒の緩和時間で減衰していることがわかる。これは皮膚からの脂質の抽出に要する時間を与えていることになる。図4−2の回折像からわかるように、0.41nmも0.37nmのいずれの回折ピーク幅がほとんど変化しないことから、0.41nmのドメインも0.37nmのドメインも時間と共にドメイン内の構造を大きく変えること無しにドメインの領域が収縮していると考えることができる。炭化水素鎖の充填構造には六方晶と斜方晶があり、六方晶の格子定数は0.41nmであり、斜方晶の格子定数は0.41nmと0.37nmであり、格子定数0.41nmでは2つの構造の回折ピークが重畳しており、両者を区別することができない。図4−1の0.12〜0.24nm−1の範囲の小角回折強度がほぼ一様に減衰していることから、両炭化水素鎖の充填構造で脂質がほぼ同じように抽出されていると考えることができる。 Figure 4-1 and FIG. 4-2, scattering vector S is small-angle diffraction image and the scattering vector S of 0~0.40Nm -1 are both wide-angle diffraction pattern of 2.0~3.0Nm -1, time It decreases with. The time variation of the integrated intensity of the lattice constant (reciprocal of the scattering vector S) of 0.41 nm of the wide-angle diffraction image changes as shown in FIG. Further, the change over time in the integrated intensity of the lattice constant of 0.37 nm in the wide-angle diffraction image changes as shown in FIG. 5-1 and 2 show that both decay with a relaxation time of about 2000 seconds. This gives time to extract lipids from the skin. As can be seen from the diffraction image in FIG. 4-2, the 0.41 nm and 0.37 nm diffraction peak widths hardly change, so that the 0.41 nm domain and the 0.37 nm domain have a structure within the domain over time. It can be considered that the domain region has shrunk without significantly changing. The packing structure of the hydrocarbon chain includes hexagonal crystal and orthorhombic crystal, the lattice constant of hexagonal crystal is 0.41 nm, and the lattice constant of orthorhombic crystal is 0.41 nm and 0.37 nm. At 41 nm, the diffraction peaks of the two structures are superimposed, and the two cannot be distinguished. Since the small-angle diffraction intensity in the range of 0.12 to 0.24 nm −1 in FIG. 4-1 is almost uniformly attenuated, lipids are extracted almost in the same manner in the packing structure of both hydrocarbon chains. Can be considered.

具体例2.各層中の水分量とグリセロール溶液の効果
図6−1,6−2,6−3は、それぞれ水分量10重量%の角層にグリセロール溶液を作用したときの小角回折像の時間変化、小角回折像の差分の時間、広角回折(2.44nm−1)の時間変化を示すグラフである。また、図7−1,7−2,7−3は、それぞれ水分量30重量%の角層にグリセロール溶液を作用したときの小角回折像の時間変化、小角回折像の差分の時間、広角回折(2.44nm−1)の時間変化を示すグラフである。なお、図6−1,2において時間経過は下の曲線から上の曲線へ、図7−1,2においては時間経過は上の曲線から下の曲線へ変化している。
Specific Example 2 The amount of water in each layer and the effect of the glycerol solution FIGS. 6-1, 6-2 and 6-3 show the time change and the small angle diffraction of the small angle diffraction image when the glycerol solution is applied to the horny layer having the water content of 10% by weight. It is a graph which shows the time of the difference of an image, and the time change of wide angle diffraction (2.44nm < -1 >). FIGS. 7-1, 7-2, and 7-3 show the time change of the small-angle diffraction image, the time difference of the small-angle diffraction image, and the wide-angle diffraction when the glycerol solution is applied to the stratum corneum having a water content of 30% by weight. It is a graph which shows the time change of (2.44nm < -1 >). In FIGS. 6A and 6B, the passage of time changes from the lower curve to the upper curve, and in FIGS. 7A and 7B, the passage of time changes from the upper curve to the lower curve.

濃度10%のグリセロール溶液を水分量10重量%と30重量%の角層に作用させ、細胞間脂質の構造変化の観測を行った。角層中の水分量は約20重量%のときほぼ自然の状態に近く、それより水分量が少なくても多くても細胞間脂質の作る構造が不安定になることが知られている。ここでは、保湿作用があるといわれているグリセロールをその前後の水分量の角層に与えたときの構造変化を観測することにより、グリセロールの効果を検討した。グリセロール溶液を入れてからの水分量10重量%の場合の小角領域の回折像の変化は、図6−1に示すように大きくないが、図6−2の初期回折像との差分の変化から小角回折像の強度が増大していることがわかる。一方、グリセロール溶液を入れてからの水分量30重量%の場合の小角領域の回折像の変化は、図7−1に示すように大きくないが、図7−2の初期回折像との差分の変化から小角回折像の強度は減少あるいはほぼ不変であることがわかる。また、広角回折像も同様な変化であった。   A glycerol solution having a concentration of 10% was allowed to act on the stratum corneum having a water content of 10% by weight and 30% by weight, and the structural change of the intercellular lipid was observed. It is known that when the water content in the stratum corneum is about 20% by weight, the structure is almost natural, and the structure formed by intercellular lipids becomes unstable even if the water content is smaller or larger. Here, the effect of glycerol was examined by observing the structural change when glycerol, which is said to have a moisturizing action, was applied to the stratum corneum of the moisture content before and after that. The change in the diffraction pattern in the small-angle region when the water content is 10% by weight after adding the glycerol solution is not large as shown in FIG. 6-1, but from the change in the difference from the initial diffraction image in FIG. It can be seen that the intensity of the small angle diffraction image is increased. On the other hand, the change in the diffraction pattern in the small-angle region when the water content is 30% by weight after the glycerol solution is added is not large as shown in FIG. 7-1, but the difference from the initial diffraction image in FIG. From the change, it can be seen that the intensity of the small-angle diffraction image is reduced or almost unchanged. The wide-angle diffraction image was the same change.

さらに、格子定数0.41nmの広角回折像の積分強度の時間変化については、図6−3に示すように水分量10重量%の場合は積分強度が時間と共に増大するのに対して、図7−3に示すように水分量30重量%の場合は積分強度は時間と共に減少するかあるいはほとんど変化しないことがわかる。このことから、水分量の少ない角層にグリセロールを作用させると細胞間脂質の構造が安定して水分量20重量%の場合の状態に近づこうとし、水分量の多い角層にグリセロールを作用させたときは、細胞間脂質の構造はあまり変化せず水分量20重量%の場合の状態を保ち続けると考えられる。従って、これらの構造変化の実験から、グリセロールは分子レベルで角層中の水分保持において重要な働きをしていることがわかった。   Furthermore, with respect to the change over time of the integrated intensity of the wide-angle diffraction image with a lattice constant of 0.41 nm, the integrated intensity increases with time when the water content is 10% by weight as shown in FIG. As shown in -3, when the water content is 30% by weight, the integrated intensity decreases with time or hardly changes. For this reason, when glycerol was allowed to act on the stratum corneum with a small amount of water, the structure of the intercellular lipid was stabilized, and the state in the case where the water content was 20% by weight was tried to approach. In some cases, the structure of intercellular lipids does not change so much, and it is considered that the state in the case of 20% by weight of water is maintained. Therefore, from these structural change experiments, it was found that glycerol plays an important role in water retention in the stratum corneum at the molecular level.

以上の具体例1,2では典型的な測定例を示したが、本発明の利用により、各種の溶液を入れて角層のX線回折実験を行うことにより高感度で化粧品材料や経皮吸収促進剤の効果を分子レベルで検討することが可能である。なお、上記実施例においては、X線回折装置により皮膚の構造を解析したものであるが、これに限らず、赤外線吸収等のビーム計測装置を用いてセルロース等の繊維構造、皮膚等の膜構造、食品等の三次元構造等の軟質材料の構造を解析する場合に本発明を適用することもできる。その他、上記実施例に示したものは一例であり、本発明の趣旨を逸脱しない範囲で種々変更して実施することも可能である。   In the above specific examples 1 and 2, typical measurement examples have been shown. By using the present invention, the X-ray diffraction experiment of the stratum corneum with various solutions is carried out with high sensitivity for cosmetic materials and transdermal absorption. It is possible to examine the effect of the accelerator at the molecular level. In addition, in the said Example, although the structure of skin was analyzed with the X-ray-diffraction apparatus, it is not restricted to this, Fiber structures, such as cellulose, and film structures, such as skin, using beam measuring devices, such as infrared rays absorption The present invention can also be applied when analyzing the structure of a soft material such as a three-dimensional structure of food. In addition, what was shown in the said Example is an example, It is also possible to implement in various changes in the range which does not deviate from the meaning of this invention.

本発明は、軟質材料の試料が、溶液透過性を有する板状の試料収容部材の試料収容孔に挿入され、保持金具と被覆材と一対のケース金具によって試料収容孔内に動かない固定された状態で、試料に溶液を流しながら微細な構造変化を観測するときでも、観測される構造の差が溶液の寄与によるものなのかあるいは個体差によるものなのかを区別することができるので、有用である。   In the present invention, a soft material sample is inserted into a sample accommodation hole of a plate-shaped sample accommodation member having solution permeability, and fixed in a sample accommodation hole by a holding metal fitting, a covering material, and a pair of case metal fittings. Even when observing minute structural changes while flowing the solution through the sample in the state, it is possible to distinguish whether the observed structural difference is due to the contribution of the solution or due to individual differences. is there.

本発明の一実施例である皮膚の構造解析に使用する軟質材料保持装置を示す平面図である。It is a top view which shows the soft material holding | maintenance apparatus used for the structural analysis of the skin which is one Example of this invention. 軟質材料保持装置を示す図1のII−II線方向の一部破断正面図である。FIG. 2 is a partially cutaway front view in the II-II line direction of FIG. 1 showing a soft material holding device. 軟質材料保持装置の装置本体を拡大して示す一部破断正面図である。It is a partially broken front view which expands and shows the apparatus main body of a soft material holding | maintenance apparatus. 皮膚にクロロホルム・メタノールを作用したときの小角回折像の時間変化を示すグラフである。It is a graph which shows the time change of a small angle diffraction image when chloroform methanol is acted on skin. 皮膚にクロロホルム・メタノールを作用したときの広角回折像の時間変化を示すグラフである。It is a graph which shows the time change of the wide-angle diffraction image when chloroform methanol acts on skin. 皮膚にクロロホルム・メタノールを作用したときの広角回折2.44nm−1の積分強度の時間変化を示すグラフである。It is a graph which shows the time change of the integrated intensity | strength of the wide angle diffraction 2.44nm- 1 when chloroform methanol acts on skin. 皮膚にクロロホルム・メタノールを作用したときの広角回折2.70nm−1の積分強度の時間変化を示すグラフである。It is a graph which shows the time change of the integrated intensity | strength of wide-angle diffraction 2.70nm- 1 when chloroform methanol acts on skin. 水分量10重量%の角層にグリセロール溶液を作用したときの小角回折像の時間変化を示すグラフである。It is a graph which shows the time change of a small angle diffraction image when a glycerol solution is made to act on a stratum corneum with a moisture amount of 10 weight%. 水分量10重量%の角層にグリセロール溶液を作用したときの小角回折像の差分の時間変化を示すグラフである。It is a graph which shows the time change of the difference of a small angle diffraction image when a glycerol solution acts on the stratum corneum of 10 weight% of water | moisture contents. 水分量10重量%の角層にグリセロール溶液を作用したときの広角回折(2.44nm−1)の時間変化を示すグラフである。It is a graph which shows the time change of wide angle diffraction (2.44nm < -1 >) when a glycerol solution acts on the stratum corneum of 10 weight% of moisture. 水分量30重量%の角層にグリセロール溶液を作用したときの小角回折像の時間変化を示すグラフである。It is a graph which shows the time change of a small angle diffraction image when a glycerol solution is made to act on a stratum corneum with a moisture amount of 30 weight%. 水分量30重量%の角層にグリセロール溶液を作用したときの小角回折像の差分の時間変化を示すグラフである。It is a graph which shows the time change of the difference of a small angle diffraction image when a glycerol solution is made to act on a stratum corneum with a moisture amount of 30 weight%. 水分量30重量%の角層にグリセロール溶液を作用したときの広角回折(2.44nm−1)の時間変化を示すグラフである。It is a graph which shows the time change of wide angle diffraction (2.44 nm < -1 >) when a glycerol solution is made to act on a stratum corneum with a moisture amount of 30 weight%.

符号の説明Explanation of symbols

10…軟質材料保持装置、11…ケース部、12…基板部、17…連結部、21…装置本体、22…試料収容部材、23…試料収容孔、25…保持金具、26…中央金具部、27a…保持孔、29…溶液流通孔、31…外環状金具部、32,33…上下部、36…溶液流通孔、38…被覆材、41,42…ケース金具、43,44…中央凸部、47,48…ビーム通過孔、55…ぺリスタポンプ装置、56…溶液供給排出パイプ。 DESCRIPTION OF SYMBOLS 10 ... Soft material holding device, 11 ... Case part, 12 ... Board | substrate part, 17 ... Connection part, 21 ... Apparatus main body, 22 ... Sample accommodation member, 23 ... Sample accommodation hole, 25 ... Holding metal fitting, 26 ... Central metal fitting part, 27a ... Holding hole, 29 ... Solution flow hole, 31 ... Outer ring metal fitting part, 32, 33 ... Upper and lower part, 36 ... Solution flow hole, 38 ... Cover material, 41, 42 ... Case metal fitting, 43, 44 ... Central convex part , 47, 48 ... beam passage holes, 55 ... perista pump device, 56 ... solution supply / discharge pipe.

Claims (5)

試料収容孔を設けた溶液透過性を有する板状の試料収容部材の該試料収容孔に軟質材料の試料を挿入し、保持孔を有すると共に、外周の2箇所に該保持孔に繋がる溶液流通孔を有する板状の保持金具の該保持孔に前記試料収容部材を挿入し、該保持金具の両面に薄肉の被覆材を被せて前記試料収容孔を液密状態で被覆し、前記試料収容孔を囲んで配置されるビーム通過孔を設けた一対のケース金具で該被覆材を介して該保持金具を両面側から挟持して締付手段により保持金具に固定し、溶液流通手段によって前記溶液流通孔を通して前記試料収容孔内に溶液を流通させ、ビーム計測装置によって前記ビーム通過孔を通して前記試料に計測用ビームを照射することにより計測を行うことを特徴とするビーム照射による軟質材料の構造解析方法。 A soft material sample is inserted into the sample-containing sample-receiving member of the plate-like sample-containing member provided with the sample-containing hole, and has a holding hole, and a solution circulation hole connected to the holding hole at two locations on the outer periphery The sample holding member is inserted into the holding hole of the plate-shaped holding metal fitting having a thin coating material on both surfaces of the holding metal fitting to cover the sample holding hole in a liquid-tight state, and the sample holding hole is formed. A pair of case fittings provided with a beam passage hole arranged so as to be enclosed are sandwiched from both sides of the holding fixture via the covering material and are fixed to the holding fixture by fastening means. A structure analysis method for a soft material by beam irradiation, wherein a solution is circulated through the sample receiving hole through the beam and measurement is performed by irradiating the sample with a measurement beam through the beam passage hole by a beam measuring device. 前記試料収容部材としてろ紙を用いたことを特徴とする請求項1に記載のビーム照射による軟質材料の構造解析方法。 The structure analysis method for a soft material by beam irradiation according to claim 1, wherein a filter paper is used as the sample storage member. 前記試料収容孔内に溶液を導入しない状態と導入した状態での前記ビーム計測装置による計測結果の差分を得ることを特徴とする請求項1又は2に記載のビーム照射による軟質材料の構造解析方法。 The structural analysis method for a soft material by beam irradiation according to claim 1 or 2, wherein a difference between measurement results obtained by the beam measurement device in a state where the solution is not introduced into the sample accommodation hole and in a state where the solution is introduced is obtained. . 軟質材料の試料が挿入される試料収容孔を設けた溶液透過性を有する板状の試料収容部材と、該試料収容部材が収容される保持孔を有すると共に、外周の2箇所に該保持孔に繋がる溶液流通孔を有する板状の保持金具と、該保持金具の両面側に密着して配置されて前記試料収容孔を液密状態で被覆する一対の薄肉の被覆材と、前記保持金具を両面側に該被覆材を介して配置されて前記試料収容孔を囲んで配置されるビーム通過孔を設け、該保持金具を挟持して締付手段により該保持金具に締付け固定される一対のケース金具と、前記溶液流通孔を通して前記試料収容孔内に溶液を流通させる溶液流通手段とを設けたことを特徴とするビーム照射による軟質材料の構造解析に用いる軟質材料保持装置。 A plate-shaped sample accommodating member having a solution permeability provided with a sample accommodating hole into which a sample of a soft material is inserted, a holding hole for accommodating the sample accommodating member, and the holding hole at two locations on the outer periphery. A plate-shaped holding metal fitting having a solution flow hole to be connected, a pair of thin coating materials arranged in close contact with both sides of the holding metal fitting to cover the sample receiving hole in a liquid-tight state, and the holding metal fitting on both sides A pair of case fittings provided with a beam passage hole arranged on the side through the covering material and surrounding the sample receiving hole, and clamped and fixed to the holding fixture by clamping means. And a soft material holding device used for structural analysis of the soft material by beam irradiation, wherein a solution flow means for flowing the solution into the sample accommodation hole through the solution flow hole is provided. 前記試料収容部材としてろ紙を用いたことを特徴とする請求項4に記載のビーム照射による軟質材料の構造解析に用いる軟質材料保持装置。 The soft material holding device used for the structural analysis of the soft material by beam irradiation according to claim 4, wherein a filter paper is used as the sample storage member.
JP2006239164A 2006-09-04 2006-09-04 Structure analysis method of soft material by beam irradiation and soft material holding device used therefor Expired - Fee Related JP5028588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239164A JP5028588B2 (en) 2006-09-04 2006-09-04 Structure analysis method of soft material by beam irradiation and soft material holding device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239164A JP5028588B2 (en) 2006-09-04 2006-09-04 Structure analysis method of soft material by beam irradiation and soft material holding device used therefor

Publications (2)

Publication Number Publication Date
JP2008064463A true JP2008064463A (en) 2008-03-21
JP5028588B2 JP5028588B2 (en) 2012-09-19

Family

ID=39287323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239164A Expired - Fee Related JP5028588B2 (en) 2006-09-04 2006-09-04 Structure analysis method of soft material by beam irradiation and soft material holding device used therefor

Country Status (1)

Country Link
JP (1) JP5028588B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175264A (en) * 2009-01-27 2010-08-12 Shiseido Co Ltd Method and device for evaluating subcorneal intercellular lipid structure
JP2013205077A (en) * 2012-03-27 2013-10-07 Kwansei Gakuin Sample holding device, and sample analysis method
JP2015040702A (en) * 2013-08-20 2015-03-02 日本メナード化粧品株式会社 Skin penetrability assessment method using x-ray diffraction
RU2570092C2 (en) * 2013-09-30 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" Methods of detecting differences in cellulose structural condition
JP2016170093A (en) * 2015-03-13 2016-09-23 住友金属鉱山株式会社 Sample holder and x-ray analysis method
JP2020197474A (en) * 2019-06-04 2020-12-10 出光興産株式会社 Observation device, observation system, and observation method
JP2021530682A (en) * 2019-04-30 2021-11-11 エルジー・ケム・リミテッド Battery measuring device using X-rays
KR20230021412A (en) * 2021-08-05 2023-02-14 한국원자력연구원 Multi-sample environminet device of transmitted x-ray scattering device used for various phase

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646842A (en) * 1987-06-30 1989-01-11 Ricoh Kk Detecting device
JPH09288073A (en) * 1996-04-23 1997-11-04 Nippon Steel Corp Dynamic measurement method and apparatus for reaction process in liquid by x rays
JP2002277356A (en) * 2001-03-21 2002-09-25 Sumitomo Chem Co Ltd Method of introducing sample into glass capillary, and method of preparing sample for measurement by differential scanning caloriimeter(dsc)
JP2006078217A (en) * 2004-09-07 2006-03-23 Mitsubishi Rayon Co Ltd Sample measuring cell and electromagnetic wave absorption measuring method
JP2006162506A (en) * 2004-12-09 2006-06-22 Hokkaido Univ X-ray transmitting window, x-ray absorption fine structure measuring cell, and reaction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646842A (en) * 1987-06-30 1989-01-11 Ricoh Kk Detecting device
JPH09288073A (en) * 1996-04-23 1997-11-04 Nippon Steel Corp Dynamic measurement method and apparatus for reaction process in liquid by x rays
JP2002277356A (en) * 2001-03-21 2002-09-25 Sumitomo Chem Co Ltd Method of introducing sample into glass capillary, and method of preparing sample for measurement by differential scanning caloriimeter(dsc)
JP2006078217A (en) * 2004-09-07 2006-03-23 Mitsubishi Rayon Co Ltd Sample measuring cell and electromagnetic wave absorption measuring method
JP2006162506A (en) * 2004-12-09 2006-06-22 Hokkaido Univ X-ray transmitting window, x-ray absorption fine structure measuring cell, and reaction system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175264A (en) * 2009-01-27 2010-08-12 Shiseido Co Ltd Method and device for evaluating subcorneal intercellular lipid structure
JP2013205077A (en) * 2012-03-27 2013-10-07 Kwansei Gakuin Sample holding device, and sample analysis method
JP2015040702A (en) * 2013-08-20 2015-03-02 日本メナード化粧品株式会社 Skin penetrability assessment method using x-ray diffraction
RU2570092C2 (en) * 2013-09-30 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" Methods of detecting differences in cellulose structural condition
JP2016170093A (en) * 2015-03-13 2016-09-23 住友金属鉱山株式会社 Sample holder and x-ray analysis method
JP2021530682A (en) * 2019-04-30 2021-11-11 エルジー・ケム・リミテッド Battery measuring device using X-rays
JP7152071B2 (en) 2019-04-30 2022-10-12 エルジー エナジー ソリューション リミテッド Battery measuring device using X-ray
JP2020197474A (en) * 2019-06-04 2020-12-10 出光興産株式会社 Observation device, observation system, and observation method
JP7292643B2 (en) 2019-06-04 2023-06-19 出光興産株式会社 Observation device, observation system, and observation method
KR20230021412A (en) * 2021-08-05 2023-02-14 한국원자력연구원 Multi-sample environminet device of transmitted x-ray scattering device used for various phase
KR102531592B1 (en) * 2021-08-05 2023-05-15 한국원자력연구원 Multi-sample environminet device of transmitted x-ray scattering device used for various phase

Also Published As

Publication number Publication date
JP5028588B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5028588B2 (en) Structure analysis method of soft material by beam irradiation and soft material holding device used therefor
Kim et al. Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer
Kanthan et al. Intracerebral human microdialysis: in vivo study of an acute focal ischemic model of the human brain
US5657754A (en) Apparatus for non-invasive analyses of biological compounds
Ahmad et al. Detection of free radical formation in various tissues after acute carbon tetrachloride administration in gerbil
WO2001051094A1 (en) Diagnostic method using a deuterated agent for imaging specific tissue
Zhou et al. Gold nanoparticle-decorated silver needle for surface-enhanced Raman spectroscopy screening of residual malachite green in aquaculture products
JP2013096920A (en) Fluorescent phantom device and fluorescent imaging method
Lee et al. Near-infrared light emitting diode based non-invasive glucose detection system
Lipiec et al. A new approach to studying the effects of ionising radiation on single cells using FTIR synchrotron microspectroscopy
Bertrand et al. Lead-revealed lipid organization in human hair
Hirosawa et al. In vivo investigation of progressive alterations in rat mammary gland tumors by near-infrared spectroscopy
Cal et al. Advanced tools for in vivo skin analysis
Knipfer et al. During measurements of root hydraulics with pressure probes, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high‐pressure flowmeter
Leung et al. The influence of ceramic far-infrared ray (cFIR) irradiation on water hydrogen bonding and its related chemo-physical properties
Kezic Methods for measuring in-vivo percutaneous absorption in humans
JP5904835B2 (en) Sample holding device and sample analysis method
JP3768591B2 (en) A positron imaging system for living tissue slices
Qassem et al. Comparing the rates of absorption and weight loss during a desorption test using near infrared spectroscopy
JP2008051742A (en) Measurement method for liquid retention amount of protein fiber
Yuasa et al. Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT
JP2008289437A (en) Method for measuring enzyme activity, and device for the same using laser
Nerella et al. Depth-resolved near-infrared spectroscopy
JP2019015638A (en) Thin film measuring method, thin film measuring kit, and measuring device
Altieri et al. Neutron radiography of human liver metastases after BPA infusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

R150 Certificate of patent or registration of utility model

Ref document number: 5028588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees