JP2016170091A - Device, system, and method for measuring dimension of measurement object - Google Patents

Device, system, and method for measuring dimension of measurement object Download PDF

Info

Publication number
JP2016170091A
JP2016170091A JP2015050643A JP2015050643A JP2016170091A JP 2016170091 A JP2016170091 A JP 2016170091A JP 2015050643 A JP2015050643 A JP 2015050643A JP 2015050643 A JP2015050643 A JP 2015050643A JP 2016170091 A JP2016170091 A JP 2016170091A
Authority
JP
Japan
Prior art keywords
measurement object
distance
dimension
pair
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050643A
Other languages
Japanese (ja)
Other versions
JP6438807B2 (en
Inventor
浩章 青木
Hiroaki Aoki
浩章 青木
三郎 片山
Saburo Katayama
三郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015050643A priority Critical patent/JP6438807B2/en
Publication of JP2016170091A publication Critical patent/JP2016170091A/en
Application granted granted Critical
Publication of JP6438807B2 publication Critical patent/JP6438807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement-object dimension measurement device that allows rapid and precise measurement.SOLUTION: A measurement-object dimension measurement device 20 includes: a measurement object 10 with a pair of measuring target surfaces 11 and 12 facing each other; a spindle part 21 set on the measurement object 10; a beam part 22 supported by the spindle part 21; and a pair of non-contact distance sensors 24B and 24C held by the beam part 22. The beam part 22 is rotatable in a plane intersecting with the measuring target surfaces 11 and 12 and the non-contact distance sensor 24B detects a distance to the measuring target surface 11 and the non-contact distance sensor 24C detects a distance to the measuring target surface 12.SELECTED DRAWING: Figure 1

Description

本発明は、部材等の計測対象物の寸法を計測する技術に関する。   The present invention relates to a technique for measuring dimensions of a measurement object such as a member.

従来、工場での製作後又は現場搬入時において部材の寸法を計測する際には、メジャー、マイクロメータ、ノギス、定規、巻尺等の計測器が用いられる(例えば、特許文献1参照)。   Conventionally, measuring instruments such as a measure, a micrometer, a vernier caliper, a ruler, and a tape measure are used when measuring the dimensions of a member after manufacturing at a factory or at the time of carrying in the field (for example, see Patent Document 1).

特開2000−155001号公報JP 2000-155001 A

計測器は、部材の大きさや計測精度に比例して大型化かつ重量化する傾向にある。計測器が大型化かつ重量化すると、扱いにくいものとなる。例えば、幅1500mmのシールド工事用セグメントの幅寸法を計測する場合には、長さ2m重さ10kgのノギスが用いられる。
このように長くて重い計測器を用いると、計測器の操作が困難となるため、作業に時間がかかるとともに作業者の負担も大きくなる。また、計測器に傾き等が発生すると、測定誤差が発生してしまう。
Measuring instruments tend to increase in size and weight in proportion to the size of members and measurement accuracy. As measuring instruments become larger and heavier, they become difficult to handle. For example, when measuring the width dimension of a segment for shield construction having a width of 1500 mm, a caliper having a length of 2 m and a weight of 10 kg is used.
When such a long and heavy measuring instrument is used, it becomes difficult to operate the measuring instrument, so that the work takes time and the burden on the operator increases. Further, when an inclination or the like occurs in the measuring instrument, a measurement error occurs.

本発明は、前記した事情に鑑みて創案されたものであり、短時間で正確な計測が可能な計測対象物寸法計測装置、計測対象物寸法計測システム及び計測対象物寸法計測方法を提供することを課題とする。   The present invention has been made in view of the above-described circumstances, and provides a measurement object dimension measurement apparatus, a measurement object dimension measurement system, and a measurement object dimension measurement method capable of accurate measurement in a short time. Is an issue.

前記課題を解決するため、本発明の計測対象物寸法計測装置は、対向する一対の計測対象面を有する計測対象物に設置される支軸部と、前記支軸部に支持される梁部と、前記梁部に保持される一対の非接触式距離センサと、を備え、前記梁部は、前記一対の計測対象面と交差する平面内において回動可能であり、一方の前記非接触式距離センサは、一方の前記計測対象面までの距離を検出し、他方の前記非接触式距離センサは、他方の前記計測対象面までの距離を検出することを特徴とする。   In order to solve the above-mentioned problem, a measuring object size measuring apparatus of the present invention includes a support shaft portion installed on a measuring object having a pair of opposing measurement target surfaces, and a beam portion supported by the support shaft portion. A pair of non-contact type distance sensors held by the beam unit, and the beam unit is rotatable in a plane intersecting the pair of measurement target surfaces, and the one non-contact type distance sensor The sensor detects a distance to one of the measurement target surfaces, and the other non-contact distance sensor detects a distance to the other measurement target surface.

ここで、「前記一対の計測対象面と交差する平面」は、一対の計測対象面を延長した延長面と平面とが交差する場合も含む。
例えば、計測対象物が矩形等であり、その対向する一対の計測対象面間の距離を計測対象物の寸法として計測する場合には、梁部は、一対の計測対象面を延長した延長面と交差する平面内において回動可能となるように設けられ、一対の非接触式距離センサは、計測対象物を挟んで対向するように内向きに設けられる。
また、計測対象物に形成された凹部において対向する一対の計測対象面間の距離を計測対象物の寸法として計測する場合には、梁部は、凹部内において回動可能となるように設けられ、一対の非接触式距離センサは、計測対象面に向かうように外向きに設けられる。
Here, “the plane intersecting with the pair of measurement target surfaces” includes a case where an extended surface extending from the pair of measurement target surfaces intersects with a plane.
For example, when the measurement object is a rectangle or the like and the distance between the pair of measurement object surfaces facing each other is measured as the dimension of the measurement object, the beam portion is an extension surface obtained by extending the pair of measurement object surfaces. A pair of non-contact distance sensors are provided inward so as to be opposed to each other with the measurement object sandwiched therebetween so as to be rotatable in intersecting planes.
Further, when measuring the distance between a pair of measurement target surfaces facing each other in the recess formed in the measurement object as the dimension of the measurement object, the beam portion is provided so as to be rotatable in the recess. The pair of non-contact distance sensors are provided outward so as to face the measurement target surface.

かかる構成によると、一対の非接触式距離センサを一対の計測対象面と交差する平面内において(すなわち基準軸周りに)旋回させることによって計測対象物の寸法を計測することができるので、短時間で正確な計測が可能となる。   According to such a configuration, the dimension of the measurement object can be measured by turning the pair of non-contact distance sensors in a plane intersecting with the pair of measurement target surfaces (that is, around the reference axis). Makes accurate measurement possible.

また、本発明の計測対象物寸法計測システムは、前記計測対象物寸法計測装置と、前記一対の非接触式距離センサの検出結果に基づいて、前記計測対象物の対向する一対の計側対象面の間の長さを前記計測対象物の寸法として算出する計測対象物寸法算出部と、を備え、前記非接触式距離センサは、当該非接触式距離センサと対向する前記計測対象面までの距離を検出することを特徴とする。   Further, the measurement object dimension measurement system of the present invention is a pair of meter-side object surfaces of the measurement object facing each other based on detection results of the measurement object dimension measurement device and the pair of non-contact distance sensors. A measurement object size calculation unit that calculates the length of the measurement object as a dimension of the measurement object, wherein the non-contact distance sensor is a distance to the measurement object surface facing the non-contact distance sensor. Is detected.

前記一対の非接触式距離センサは、前記計測対象物を挟んで対向しており、前記計測対象物寸法算出部は、前記一対の非接触式距離センサの間の距離をAとし、前記一対の非接触式距離センサによって検出された前記距離の最大値をそれぞれBMAX,CMAXとし、前記計測対象物の寸法をXとしたとき、
X=A−(BMAX+CMAX
によって前記計測対象物の寸法を算出する構成であってもよい。
The pair of non-contact distance sensors are opposed to each other with the measurement object interposed therebetween, and the measurement object size calculation unit sets the distance between the pair of non-contact distance sensors as A, and When the maximum values of the distances detected by the non-contact type distance sensor are B MAX and C MAX , respectively, and the dimension of the measurement object is X,
X = A− (B MAX + C MAX )
The structure of calculating the dimension of the measurement object may be used.

また、前記一対の非接触式距離センサは、前記計測対象物を挟んで対向しており、前記計測対象物寸法算出部は、前記一対の非接触式距離センサの間の距離をAとし、一方の前記非接触式距離センサによって検出された前記距離の最大値をBMAXとし、BMAXと同時刻に他方の前記非接触式距離センサによって検出された前記距離をCとし、前記計測対象物の寸法をXとしたとき、
X=A−(BMAX+C
によって前記計測対象物の寸法を算出する構成であってもよい。
Further, the pair of non-contact distance sensors are opposed to each other with the measurement object interposed therebetween, and the measurement object size calculation unit sets the distance between the pair of non-contact distance sensors as A, The maximum value of the distance detected by the non-contact distance sensor is set to B MAX, and the distance detected by the other non-contact distance sensor at the same time as B MAX is set to C 1 , and the measurement object When the dimension of X is X
X = A− (B MAX + C 1 )
The structure of calculating the dimension of the measurement object may be used.

また、前記一対の非接触式距離センサは、前記計測対象物を挟んで対向しており、前記計測対象物寸法算出部は、前記一対の非接触式距離センサの間の距離をAとし、一方の前記非接触式距離センサによって検出された前記距離の最大値をBMAXとし、BMAXと同時刻に他方の前記非接触式距離センサによって検出された前記距離をCとし、他方の前記非接触式距離センサによって検出された前記距離の最大値をCMAXとし、CMAXと同時刻に一方の前記非接触式距離センサによって検出された前記距離をBとし、前記計測対象物の寸法をXとしたとき、
X=A−(BMAX+CMAX+B+C)/2
によって前記計測対象物の寸法を算出する構成であってもよい。
Further, the pair of non-contact distance sensors are opposed to each other with the measurement object interposed therebetween, and the measurement object size calculation unit sets the distance between the pair of non-contact distance sensors as A, The maximum value of the distance detected by the non-contact type distance sensor is set to B MAX , the distance detected by the other non-contact type distance sensor at the same time as B MAX is set to C 1 , and the other non-contact type distance sensor the maximum value of the distance detected by the contact type distance sensor and C MAX, and the distance detected by one of the non-contact distance sensors in C MAX at the same time as B 1, the dimension of the measurement object X
X = A− (B MAX + C MAX + B 1 + C 1 ) / 2
The structure of calculating the dimension of the measurement object may be used.

また、本発明の計測対象物寸法計測方法は、前記計測対象物寸法計測システムを用いた計測対象物寸法計測方法であって、前記梁部を回転させつつ、前記一対の非接触式距離センサが、当該非接触式距離センサと対向する前記計測対象物の計測対象面までの距離をそれぞれ検出するステップと、前記計測対象物寸法算出部が、前記一対の非接触式距離センサによって検出された前記距離に基づいて、前記計測対象物の対向する一対の前記計側対象面の間の長さを前記計測対象物の寸法として算出するステップと、を含むことを特徴とする。   The measuring object dimension measuring method of the present invention is a measuring object dimension measuring method using the measuring object dimension measuring system, wherein the pair of non-contact distance sensors are configured to rotate the beam portion. Detecting the distance to the measurement target surface of the measurement object facing the non-contact distance sensor, and the measurement object size calculation unit detected by the pair of non-contact distance sensors Calculating a length between a pair of measuring target surfaces facing each other of the measurement object as a dimension of the measurement object based on the distance.

本発明によれば、計測対象物の寸法の短時間で正確な計測が可能となる。   According to the present invention, it is possible to accurately measure the dimension of a measurement object in a short time.

(a)は、本発明の実施形態に係る計測対象物寸法計測装置を示す側面図であり、(b)は、本発明の実施形態に係る計測対象物寸法計測システムを示す機能ブロック図である。(A) is a side view which shows the measuring object dimension measuring apparatus which concerns on embodiment of this invention, (b) is a functional block diagram which shows the measuring object dimension measuring system which concerns on embodiment of this invention. . (a)は、計測対象物寸法計測システムの第一の動作例を示す平面図であり、(b)(c)は、非接触式距離センサの検出結果の例を示すグラフである。(A) is a top view which shows the 1st operation example of a measurement object dimension measurement system, (b) (c) is a graph which shows the example of the detection result of a non-contact-type distance sensor. (a)は、計測対象物寸法計測システムの第二及び第三の動作例を示す平面図であり、(b)(c)は、非接触式距離センサの検出結果の例を示すグラフであり、(d)は、計測される寸法の例を示す計測対象物の平面図である。(A) is a top view which shows the 2nd and 3rd operation example of a measurement object dimension measurement system, (b) (c) is a graph which shows the example of the detection result of a non-contact-type distance sensor. (D) is a top view of the measurement object which shows the example of the dimension measured.

以下、本発明の実施形態について、適宜図面を参照しながら説明する。図1(a)に示すように、本発明の実施形態に係る計測対象物寸法計測システム1は、計測対象物10の対向する一対の計測対象面11,12間の長さを計測対象物10の寸法として計測するシステムである。図1(b)に示すように、計測対象物寸法計測システム1は、計測対象物寸法計測装置20と、計測対象物寸法算出部31と、入力部32と、通知部33と、を備える。図1(a)に示すように、計測対象物部材寸法計測装置20は、支軸部21と、梁部22と、操作部23と、一対の非接触式距離センサ24B,24Cと、を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 1A, the measurement object size measurement system 1 according to the embodiment of the present invention determines the length between a pair of measurement object surfaces 11 and 12 facing the measurement object 10. It is a system that measures as the dimensions of. As shown in FIG. 1B, the measurement object dimension measurement system 1 includes a measurement object dimension measurement device 20, a measurement object dimension calculation unit 31, an input unit 32, and a notification unit 33. As shown in FIG. 1A, the measurement object member dimension measuring apparatus 20 includes a support shaft part 21, a beam part 22, an operation part 23, and a pair of non-contact distance sensors 24B and 24C. .

支軸部21は、一対の計測対象面11,12を繋ぐ表面13上に設けられるターンテーブルである。支軸部21の底面は、滑り止め機能を有しており、計測対象物10の表面13上に設置される。   The support shaft portion 21 is a turntable provided on the surface 13 that connects the pair of measurement target surfaces 11 and 12. The bottom surface of the support shaft portion 21 has a non-slip function and is installed on the surface 13 of the measurement object 10.

梁部22は、一対の非接触式距離センサ24B,24Cを保持するものであって、支軸部21の上部に取り付けられている。梁部22は、当該梁部22の中央部が支軸部21によって支持されることによって、表面13と交差する(本実施形態では直交する)基準軸P周りに回動可能となっている。換言すると、梁部22は、表面13と平行な面内で回動可能となっている。梁部22の長さは、計測対象物10の計測すべき寸法よりも長く設定されている。梁部22は、金属製のハンガーレール等によって形成可能である。   The beam portion 22 holds a pair of non-contact distance sensors 24 </ b> B and 24 </ b> C, and is attached to the upper portion of the support shaft portion 21. The beam portion 22 is rotatable around a reference axis P that intersects the surface 13 (orthogonal in the present embodiment) by supporting the central portion of the beam portion 22 by the support shaft portion 21. In other words, the beam portion 22 is rotatable in a plane parallel to the surface 13. The length of the beam portion 22 is set to be longer than the dimension of the measuring object 10 to be measured. The beam portion 22 can be formed by a metal hanger rail or the like.

操作部23は、梁部22の中央部の上部に取り付けられた作業用取っ手である。作業者は、当該操作部23を把持して梁部22を基準軸P周りに回動させることができる。   The operation part 23 is a work handle attached to the upper part of the central part of the beam part 22. The operator can hold the operation unit 23 and rotate the beam unit 22 around the reference axis P.

一対の非接触式距離センサ24B,24Cは、それぞれ梁部22の端部の下部に取り付けられている。非接触式距離センサ24Bと基準軸P(すなわち支軸部21)との間の距離と、非接触式距離センサ24Cと基準軸Pとの間の距離とは、互いに等しい。非接触式距離センサ24B,24Cとしては、レ―ザ式等の各種距離センサが好適に利用可能である。   The pair of non-contact distance sensors 24B and 24C are respectively attached to the lower portions of the end portions of the beam portion 22. The distance between the non-contact distance sensor 24B and the reference axis P (that is, the support shaft portion 21) is equal to the distance between the non-contact distance sensor 24C and the reference axis P. As the non-contact type distance sensors 24B and 24C, various distance sensors such as a laser type can be suitably used.

一方の非接触式距離センサ24Bは、梁部22の中央側(すなわち基準軸P)に向けられており、計測対象物10の一方の計側対象面11と対向する。非接触式距離センサ24Bは、当該非接触式距離センサ24Bから計測対象物10の計測対象面11までの距離Bを検出し、検出結果を計測対象物寸法算出部31へ出力する。
他方の非接触式距離センサ24Cは、梁部22の中央側(すなわち基準軸P)に向けられており、計測対象物10の他方の計側対象面12と対向する。非接触式距離センサ24Cは、当該非接触式距離センサ24Cから計測対象物10の計側対象面12までの距離Cを検出し、検出結果を計測対象物寸法算出部31へ出力する。
One non-contact type distance sensor 24 </ b> B is directed to the center side (that is, the reference axis P) of the beam portion 22, and opposes one measurement target surface 11 of the measurement target 10. The non-contact distance sensor 24 </ b> B detects the distance B from the non-contact distance sensor 24 </ b> B to the measurement target surface 11 of the measurement object 10 and outputs the detection result to the measurement object dimension calculation unit 31.
The other non-contact type distance sensor 24 </ b> C is directed to the center side (that is, the reference axis P) of the beam portion 22, and faces the other measurement-side target surface 12 of the measurement object 10. The non-contact distance sensor 24 </ b> C detects the distance C from the non-contact distance sensor 24 </ b> C to the measurement target surface 12 of the measurement object 10, and outputs the detection result to the measurement object size calculation unit 31.

計測対象物寸法計測装置20の支軸部21、梁部22、操作部23及び一対の非接触式距離センサ24B,24Cは、計測対象物として幅1500mmのシールド工事用セグメントの寸法を計測する場合には、3kg程度で具現化することが可能であり、軽量化を実現している。   When the spindle part 21, the beam part 22, the operation part 23, and the pair of non-contact distance sensors 24B and 24C of the measurement object dimension measuring apparatus 20 measure the dimension of a shield construction segment having a width of 1500 mm as a measurement object. It can be realized with about 3 kg, and light weight is realized.

計測対象物寸法算出部31は、CPU、ROM、RAM、入出力回路等によって構成されたいわゆる制御部である。計測対象物寸法算出部31は、非接触式距離センサ24B,24Cの検出結果を取得し、かかる検出結果に基づいて、計側対象面11,12間の長さを計測対象物10の寸法Xとして算出し、算出結果を通知部33へ出力する。計測対象物寸法算出部31による計測対象物10の寸法Xの算出手法に関しては、後記する各動作例において詳細に説明する。   The measurement object size calculation unit 31 is a so-called control unit configured by a CPU, a ROM, a RAM, an input / output circuit, and the like. The measurement object dimension calculation unit 31 acquires the detection results of the non-contact distance sensors 24B and 24C, and based on the detection results, determines the length between the measurement target surfaces 11 and 12 as the dimension X of the measurement object 10. And the calculation result is output to the notification unit 33. The calculation method of the dimension X of the measurement object 10 by the measurement object dimension calculation unit 31 will be described in detail in each operation example described later.

入力部32は、キーボード、マウス等であり、作業者による入力結果を計測対象物寸法算出部31へ出力する。通知部33は、モニタ等であり、計測対象物寸法算出部31によって算出された計測対象物10の寸法Xを表示して作業者へ通知する。   The input unit 32 is a keyboard, a mouse, or the like, and outputs an input result by the operator to the measurement object size calculation unit 31. The notification unit 33 is a monitor or the like, and displays the dimension X of the measurement object 10 calculated by the measurement object dimension calculation unit 31 to notify the operator.

<第一の動作例>
続いて、計測対象物寸法計測システム1による計測対象物10の寸法Xの計測方法の一例について、図1,2を参照して説明する。図2(a)に示すように、第一の動作例において、寸法を計測する一対の計測対象面11,12は、互いに平行であり、表面13は、一対の計側対象面11,12に対して直交している。また、基準軸Pは、一対の計測対象面11,12に平行である。
<First operation example>
Next, an example of a method for measuring the dimension X of the measurement object 10 by the measurement object dimension measurement system 1 will be described with reference to FIGS. As shown in FIG. 2A, in the first operation example, the pair of measurement target surfaces 11 and 12 for measuring the dimensions are parallel to each other, and the surface 13 is formed on the pair of measurement target target surfaces 11 and 12, They are orthogonal to each other. The reference axis P is parallel to the pair of measurement target surfaces 11 and 12.

まず、作業者が、図1(a)及び図2(a)に示すように、計測対象面11,12を繋ぐ表面13の中央部に、計測対象物寸法計測装置20の支軸部21を設置し、表面13における基準軸Pの位置を決定する。かかる状態において、非接触式距離センサ24Bは計測対象面11と対向しており、非接触式距離センサ24Cは、計測対象面12と対向している。   First, as shown in FIG. 1A and FIG. 2A, the operator places the support shaft portion 21 of the measurement object dimension measuring device 20 at the center of the surface 13 that connects the measurement object surfaces 11 and 12. Install and determine the position of the reference axis P on the surface 13. In such a state, the non-contact distance sensor 24 </ b> B faces the measurement target surface 11, and the non-contact distance sensor 24 </ b> C faces the measurement target surface 12.

続いて、作業者が、入力部32を操作することによって、計測対象物寸法計測装置20による検出開始を指定する。続いて、作業者が、図2(a)に示すように、操作部23を把持して梁部22を回転させる。ここで、一対の非接触式距離センサ24B,24Cは、基準軸Pの周りを旋回しながらそれぞれ計測対象面11,12までの距離B,Cを検出し続けるとともに、検出結果である距離B,Cを計測対象物寸法算出部31へ出力する。作業者による梁部22の回転が終了すると、作業者は、入力部32を操作することによって、計測対象物寸法計測装置20による検出終了を指定する。   Subsequently, the operator operates the input unit 32 to specify the start of detection by the measurement object dimension measuring device 20. Subsequently, as shown in FIG. 2A, the operator holds the operation unit 23 and rotates the beam unit 22. Here, the pair of non-contact distance sensors 24B and 24C continue to detect the distances B and C to the measurement target surfaces 11 and 12, respectively, while turning around the reference axis P, and the distances B and C as detection results are detected. C is output to the measurement object size calculation unit 31. When the rotation of the beam portion 22 by the worker is finished, the worker operates the input unit 32 to specify the end of detection by the measurement object dimension measuring device 20.

続いて、計測対象物寸法算出部31は、検出開始から検出終了までの間に検出された距離B,Cの最大値BMAX,CMAX、及び、予め記憶された一対の非接触式距離センサ24B,24C間の距離Aに基づいて、下記式(1)を用いて計測対象物10の寸法Xを算出する。
X=A−(BMAX+CMAX) …式(1)
本動作例では、梁部22が平面視で計側対象面11,12と直交する時刻tにおいて、距離B,Cがそれぞれ最大値BMAX,CMAXとなる(図2(b)(c)参照)。
Subsequently, the measurement object size calculation unit 31 includes the maximum values B MAX and C MAX of the distances B and C detected from the detection start to the detection end, and a pair of non-contact distance sensors stored in advance. Based on the distance A between 24B and 24C, the dimension X of the measurement object 10 is calculated using the following formula (1).
X = A− (B MAX + C MAX ) (1)
In this operation example, the distances B and C become the maximum values B MAX and C MAX at the time t 1 when the beam portion 22 is orthogonal to the measurement target surfaces 11 and 12 in plan view (FIGS. 2B and 2C). )reference).

<第二の動作例>
続いて、計測対象物寸法計測システム1による計測対象物10の寸法Xの計測方法の他の例について、第一の動作例との相違点を中心に、図1,3を参照して説明する。図3(a)に示す例では、一対の計測対象面11,12は、互いに非平行であり、表面13は、一対の計側面11,12に対して直交しているとともに台形形状を呈している。また、図3(b)(c)のグラフは、梁部22を平面視で時計回りに回転させた場合の距離B,Cの経時変化の例を示している。第二の動作例では、計測対象物寸法算出部31は、一対の計側対象面11,12間の寸法Xとして、後記する寸法X,Xを算出することができる。
<Second operation example>
Next, another example of a method for measuring the dimension X of the measurement object 10 by the measurement object dimension measurement system 1 will be described with reference to FIGS. 1 and 3 with a focus on differences from the first operation example. . In the example shown in FIG. 3A, the pair of measurement target surfaces 11 and 12 are non-parallel to each other, and the surface 13 is orthogonal to the pair of side surfaces 11 and 12 and has a trapezoidal shape. Yes. 3B and 3C show examples of changes over time in the distances B and C when the beam portion 22 is rotated clockwise in plan view. In the second operation example, the measurement object dimension calculation unit 31 can calculate dimensions X 1 and X 2 described later as the dimension X between the pair of measurement target surfaces 11 and 12.

すなわち、計測対象物寸法算出部31は、検出開始から検出終了までの間に検出された距離Bの最大値BMAXと、BMAXと同時刻tに検出された距離Cの値Cと、予め記憶された一対の非接触式距離センサ24B,24C間の距離Aと、に基づいて、下記式(2)を用いて計測対象物10の寸法Xを算出する(図3(b)(c)参照)。
=A−(BMAX+C) …式(2)
図3(d)に示すように、寸法Xは、計側対象面11に直交して梁部22の回転中心である基準軸Pを通る直線に沿った、計側対象面11から計側対象面12までの長さである。
That is, the measurement object size calculation unit 31 includes the maximum value B MAX of the distance B detected between the start of detection and the end of detection, and the value C 1 of the distance C detected at the same time t 2 as B MAX. , the distance a between the pair of noncontact distance sensors 24B, 24C which is previously stored, based on the calculated dimensions X 1 of the measurement object 10 using the following equation (2) (see FIG. 3 (b) (See (c)).
X 1 = A- (B MAX + C 1) ... Equation (2)
As shown in FIG. 3 (d), the dimension X 1 is measured from the measurement target surface 11 along the straight line passing through the reference axis P that is orthogonal to the measurement target surface 11 and that is the rotation center of the beam portion 22. This is the length to the target surface 12.

また、計測対象物寸法算出部31は、検出開始から検出終了までの間に検出された距離Cの最大値CMAXと、CMAXと同時刻tに検出された距離Bの値Bと、予め記憶された一対の非接触式距離センサ24B,24C間の距離Aと、に基づいて、下記式(3)を用いて計測対象物10の寸法Xを算出することもできる(図3(b)(c)参照)。
=A−(CMAX+B) …式(3)
図3(d)に示すように、寸法Xは、計側対象面12に直交して梁部22の回転中心である基準軸Pを通る直線に沿った、計側対象面12から計側対象面11までの長さである。
In addition, the measurement object size calculation unit 31 includes the maximum value C MAX of the distance C detected from the detection start to the detection end, and the value B 1 of the distance B detected at the same time t 3 as C MAX. , the distance a between the pair of noncontact distance sensors 24B, 24C which is previously stored, based on the dimension X 2 of the measurement object 10 can be calculated using the following equation (3) (Figure 3 (See (b) and (c)).
X 2 = A- (C MAX + B 1) ... Equation (3)
As shown in FIG. 3D, the dimension X 2 is measured from the measurement target surface 12 along the straight line passing through the reference axis P that is the rotation center of the beam portion 22 and orthogonal to the measurement target surface 12. This is the length to the target surface 11.

なお、計測対象物寸法算出部31は、作業者による入力部26の操作に基づいて、寸法算出の基準面を一対の非接触式距離センサ24B,24Cに対向する一対の計側対象面11,12のどちらにするかを決定することができる。   In addition, the measurement object dimension calculation part 31 is based on a pair of non-contact type distance sensors 24B and 24C facing a pair of non-contact type distance sensors 24B and 24C based on the operation of the input part 26 by an operator. 12 can be determined.

<第三の動作例>
続いて、計測対象物寸法計測システム1による計測対象物10の寸法Xの計測方法のさらに他の例について、第二の動作例との相違点を中心に、図1,3を参照して説明する。
<Third operation example>
Subsequently, still another example of the method of measuring the dimension X of the measurement object 10 by the measurement object dimension measurement system 1 will be described with reference to FIGS. 1 and 3 with a focus on differences from the second operation example. To do.

第三の動作例において、計測対象物寸法算出部31は、前記した寸法X,Xの算術平均を求めることによって、計測対象物10の寸法Xを算出する。すなわち、計測対象物寸法算出部31は、下記式(4)を用いて寸法Xを算出する。
X=A−(BMAX+CMAX+B+C)/2 …式(4)
In the third operation example, the measurement object size calculation unit 31 calculates the dimension X of the measurement object 10 by obtaining the arithmetic average of the above-described dimensions X 1 and X 2 . That is, the measurement object size calculation unit 31 calculates the size X using the following equation (4).
X = A- (B MAX + C MAX + B 1 + C 1) / 2 ... Equation (4)

本発明の実施形態に係る計測対象物寸法計測装置20及びこれを備える計測対象物寸法計測システム1は、一対の非接触式距離センサ24B,24Cを基準軸P周りに旋回させることによって寸法を計測するので、短時間で正確な計測が可能であるとともに計測対象物寸法計測装置20の軽量化を実現することができる。   The measuring object dimension measuring apparatus 20 and the measuring object dimension measuring system 1 including the measuring object dimension measuring apparatus 20 according to the embodiment of the present invention measure the dimensions by turning the pair of non-contact distance sensors 24B and 24C around the reference axis P. Therefore, accurate measurement can be performed in a short time, and the measurement object dimension measuring apparatus 20 can be reduced in weight.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、計測対象物寸法計測装置20は、梁部20を回転させるために、モータ等からなる回転駆動部を備える構成であってもよい。また、第二の動作例を行う場合には、非接触式距離センサ24B,24Cの検出結果のどちらの最大値を用いるかが、計測対象物寸法算出部31に予め記憶されており、最大値が用いられるセンサ又は梁部22における当該センサの近傍となる部位にマークが付されている構成とすることができる。また、第二及び第三の動作例は、図2(a)に示すように一対の計測対象面11,12が互いに平行な場合にも適用可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably. For example, the measurement object dimension measuring apparatus 20 may be configured to include a rotation drive unit including a motor or the like in order to rotate the beam unit 20. In the case of performing the second operation example, which maximum value of the detection results of the non-contact distance sensors 24B and 24C is used is stored in advance in the measurement object size calculation unit 31, and the maximum value It is possible to adopt a configuration in which a mark is attached to a portion in the vicinity of the sensor in which the sensor is used or the beam portion 22. The second and third operation examples can also be applied when the pair of measurement target surfaces 11 and 12 are parallel to each other as shown in FIG.

また、計測対象物10に形成された凹部の対向する計測対象面の間の長さを計測対象物10の寸法として計測する場合には、計測対象物寸法計測装置20は、非接触式距離センサ24B,24Cを基準軸Pとは反対側に向ける構成とすることができる。
すなわち、本発明の計測対象物寸法計測装置は、対向する一対の計測対象面を有する計測対象物に設置される支軸部と、前記支軸部に支持される梁部と、前記梁部に保持される一対の非接触式距離センサと、を備え、前記梁部は、前記一対の計測対象面と交差する(好ましくは、直交する)平面内において回動可能であり、一方の前記非接触式距離センサは、一方の前記計測対象面までの距離を検出し、他方の前記非接触式距離センサは、他方の前記計測対象面までの距離を検出する。
Moreover, when measuring the length between the measurement object surfaces which the recessed part formed in the measurement object 10 opposes as a dimension of the measurement object 10, the measurement object dimension measuring apparatus 20 is a non-contact-type distance sensor. 24B and 24C can be configured to face the opposite side of the reference axis P.
That is, the measuring object dimension measuring apparatus of the present invention includes a supporting shaft portion installed on a measuring object having a pair of opposing measuring object surfaces, a beam portion supported by the supporting shaft portion, and a beam portion. A pair of non-contact distance sensors to be held, and the beam portion is rotatable in a plane intersecting (preferably orthogonal) with the pair of measurement target surfaces, and one of the non-contact distance sensors. The type distance sensor detects the distance to one of the measurement target surfaces, and the other non-contact type distance sensor detects the distance to the other measurement target surface.

計測対象物10の凹部の対向する計測対象面の長さを計測対象物10の寸法Xとして計測する場合において、前記した第一の動作例を用いる場合には、計測対象物寸法算出部31は、検出開始から検出終了までの間に検出された距離B,Cの最小値Bmin,Cmin、及び、予め記憶された一対の非接触式距離センサ24B,24C間の距離に基づいて、下記式(5)を用いて計測対象物10の寸法Xを算出する。
X=A+(Bmin+Cmin) …式(5)
When measuring the length of the measurement target surface facing the concave portion of the measurement target 10 as the dimension X of the measurement target 10, when using the first operation example described above, the measurement target dimension calculation unit 31 is Based on the minimum values B min and C min of the distances B and C detected from the start of detection to the end of detection, and the distance between the pair of non-contact distance sensors 24B and 24C stored in advance, The dimension X of the measurement object 10 is calculated using Equation (5).
X = A + ( Bmin + Cmin ) ... Formula (5)

また、計測対象物10の凹部の対向する計測対象面の長さを計測対象物10の寸法Xとして計測する場合において、前記した第二の動作例を用いる場合には、検出開始から検出終了までの間に検出された距離Bの最小値Bminと、Bminと同時刻に検出された距離Cの値Cと、予め記憶された一対の非接触式距離センサ24B,24C間の距離Aと、に基づいて、下記式(6)を用いて計測対象物10の寸法Xを算出する。
=A+(Bmin+C) …式(6)
また、計測対象物寸法算出部31は、検出開始から検出終了までの間に検出された距離Cの最小値Cminと、Cminと同時刻に検出された距離Bの値Bと、予め記憶された一対の非接触式距離センサ24B,24C間の距離Aと、に基づいて、下記式(7)を用いて計測対象物10の寸法Xを算出することもできる。
=A+(Cmin+B) …式(7)
Further, in the case where the length of the measurement target surface facing the concave portion of the measurement target 10 is measured as the dimension X of the measurement target 10, when the second operation example described above is used, from the detection start to the detection end. The minimum value B min of the distance B detected during the period B, the value C 2 of the distance C detected at the same time as B min, and the distance A between the pair of non-contact distance sensors 24B and 24C stored in advance. If, based on the calculated dimensions X 3 of the measurement object 10 using the following equation (6).
X 3 = A + (B min + C 2) ... (6)
In addition, the measurement object size calculation unit 31 preliminarily calculates the minimum value C min of the distance C detected from the start of detection to the end of detection, the value B 2 of the distance B detected at the same time as C min , stored pair of noncontact distance sensor 24B, the distance a between the 24C, based on, it is also possible to calculate the dimensions X 4 of the measurement object 10 using the following equation (7).
X 4 = A + (C min + B 2) ... (7)

また、計測対象物10の凹部の対向する計測対象面の長さを計測対象物10の寸法Xとして計測する場合において、前記した第三の動作例を用いる場合には、計測対象物寸法算出部31は、前記した寸法X,Xの算術平均を求めることによって、計測対象物10の寸法Xを算出する。すなわち、計測対象物寸法算出部31は、下記式(8)を用いて寸法Xを算出する。
X=A+(Bmin+Cmin+B+C)/2 …式(8)
Further, in the case where the length of the measurement target surface facing the concave portion of the measurement target 10 is measured as the dimension X of the measurement target 10, when the third operation example described above is used, the measurement target dimension calculation unit 31, by determining the arithmetic mean of the dimension X 3, X 4 mentioned above, to calculate the size X of the measurement object 10. That is, the measurement object size calculation unit 31 calculates the size X using the following formula (8).
X = A + (B min + C min + B 2 + C 2) / 2 ... (8)

1 計測対象物寸法計測システム
10 計測対象物
11,12 計側対象面
20 計測対象物寸法計測装置
22 梁部
24B,24C 非接触式距離センサ
31 計測対象物寸法算出部
P 基準軸
DESCRIPTION OF SYMBOLS 1 Measurement object dimension measurement system 10 Measurement object 11, 12 Meter side object surface 20 Measurement object dimension measurement apparatus 22 Beam part 24B, 24C Non-contact type distance sensor 31 Measurement object dimension calculation part P Reference axis

Claims (6)

対向する一対の計測対象面を有する計測対象物に設置される支軸部と、
前記支軸部に支持される梁部と、
前記梁部に保持される一対の非接触式距離センサと、
を備え、
前記梁部は、前記一対の計測対象面と交差する平面内において回動可能であり、
一方の前記非接触式距離センサは、一方の前記計測対象面までの距離を検出し、他方の前記非接触式距離センサは、他方の前記計測対象面までの距離を検出する
ことを特徴とする計測対象物寸法計測装置。
A spindle part installed on a measurement object having a pair of measurement object surfaces facing each other;
A beam portion supported by the support shaft portion;
A pair of non-contact distance sensors held by the beam;
With
The beam portion is rotatable in a plane intersecting the pair of measurement target surfaces,
One of the non-contact distance sensors detects a distance to one of the measurement target surfaces, and the other non-contact distance sensor detects a distance to the other measurement target surface. Measuring object dimension measuring device.
請求項1に記載の計測対象物寸法計測装置と、
前記一対の非接触式距離センサの検出結果に基づいて、前記計測対象物の対向する一対の計側対象面の間の長さを前記計測対象物の寸法として算出する計測対象物寸法算出部と、
を備え、
前記非接触式距離センサは、当該非接触式距離センサと対向する前記計測対象面までの距離を検出する
ことを特徴とする計測対象物寸法計測システム。
A measurement object size measuring apparatus according to claim 1;
Based on the detection results of the pair of non-contact distance sensors, a measurement object size calculation unit that calculates the length between the pair of measuring target surfaces facing the measurement object as the dimensions of the measurement object; ,
With
The said non-contact type distance sensor detects the distance to the said measurement object surface facing the said non-contact type distance sensor. The measuring object dimension measuring system characterized by the above-mentioned.
前記一対の非接触式距離センサは、前記計測対象物を挟んで対向しており、
前記計測対象物寸法算出部は、前記一対の非接触式距離センサの間の距離をAとし、前記一対の非接触式距離センサによって検出された前記距離の最大値をそれぞれBMAX,CMAXとし、前記計測対象物の寸法をXとしたとき、
X=A−(BMAX+CMAX
によって前記計測対象物の寸法を算出する
ことを特徴とする請求項2に記載の計測対象物寸法計測システム。
The pair of non-contact distance sensors are opposed to each other with the measurement object interposed therebetween,
The measurement object size calculation unit sets A as the distance between the pair of non-contact distance sensors, and B MAX and C MAX as the maximum values of the distances detected by the pair of non-contact distance sensors, respectively. When the dimension of the measurement object is X,
X = A− (B MAX + C MAX )
The measurement object dimension measurement system according to claim 2, wherein a dimension of the measurement object is calculated by:
前記一対の非接触式距離センサは、前記計測対象物を挟んで対向しており、
前記計測対象物寸法算出部は、前記一対の非接触式距離センサの間の距離をAとし、一方の前記非接触式距離センサによって検出された前記距離の最大値をBMAXとし、BMAXと同時刻に他方の前記非接触式距離センサによって検出された前記距離をCとし、前記計測対象物の寸法をXとしたとき、
X=A−(BMAX+C
によって前記計測対象物の寸法を算出する
ことを特徴とする請求項2に記載の計測対象物寸法計測システム。
The pair of non-contact distance sensors are opposed to each other with the measurement object interposed therebetween,
The measurement object dimension calculation unit, the pair of the distance between the noncontact distance sensor is A, and the maximum value of said distance detected by one of the non-contact type distance sensor and B MAX, and B MAX when the distance in the same time is detected by the other of said noncontact distance sensor as the C 1, the dimension of the measurement object was X,
X = A− (B MAX + C 1 )
The measurement object dimension measurement system according to claim 2, wherein a dimension of the measurement object is calculated by:
前記一対の非接触式距離センサは、前記計測対象物を挟んで対向しており、
前記計測対象物寸法算出部は、前記一対の非接触式距離センサの間の距離をAとし、一方の前記非接触式距離センサによって検出された前記距離の最大値をBMAXとし、BMAXと同時刻に他方の前記非接触式距離センサによって検出された前記距離をCとし、他方の前記非接触式距離センサによって検出された前記距離の最大値をCMAXとし、CMAXと同時刻に一方の前記非接触式距離センサによって検出された前記距離をBとし、前記計測対象物の寸法をXとしたとき、
X=A−(BMAX+CMAX+B+C)/2
によって前記計測対象物の寸法を算出する
ことを特徴とする請求項2に記載の計測対象物寸法計測システム。
The pair of non-contact distance sensors are opposed to each other with the measurement object interposed therebetween,
The measurement object dimension calculation unit, the pair of the distance between the noncontact distance sensor is A, and the maximum value of said distance detected by one of the non-contact type distance sensor and B MAX, and B MAX said distance detected at the same time by the other of said noncontact distance sensor as the C 1, the maximum value of said distance detected by the other of said noncontact distance sensor and C MAX, the C MAX at the same time said distance detected by one of the noncontact distance sensor as B 1, when the dimension of the measurement object was X,
X = A− (B MAX + C MAX + B 1 + C 1 ) / 2
The measurement object dimension measurement system according to claim 2, wherein a dimension of the measurement object is calculated by:
請求項2に記載の計測対象物寸法計測システムを用いた計測対象物寸法計測方法であって、
前記梁部を回転させつつ、前記一対の非接触式距離センサが、当該非接触式距離センサと対向する前記計測対象物の計測対象面までの距離をそれぞれ検出するステップと、
前記計測対象物寸法算出部が、前記一対の非接触式距離センサによって検出された前記距離に基づいて、前記計測対象物の対向する一対の前記計側対象面の間の長さを前記計測対象物の寸法として算出するステップと、
を含むことを特徴とする計測対象物寸法計測方法。
A measuring object dimension measuring method using the measuring object dimension measuring system according to claim 2,
The pair of non-contact distance sensors each detecting a distance to the measurement target surface of the measurement object facing the non-contact distance sensor while rotating the beam portion;
Based on the distance detected by the pair of non-contact distance sensors, the measurement object size calculation unit calculates a length between the pair of measuring target surfaces facing the measurement object. Calculating the dimensions of the object;
A method for measuring a dimension of an object to be measured.
JP2015050643A 2015-03-13 2015-03-13 Measuring object dimension measuring apparatus, measuring object dimension measuring system, and measuring object dimension measuring method Active JP6438807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050643A JP6438807B2 (en) 2015-03-13 2015-03-13 Measuring object dimension measuring apparatus, measuring object dimension measuring system, and measuring object dimension measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050643A JP6438807B2 (en) 2015-03-13 2015-03-13 Measuring object dimension measuring apparatus, measuring object dimension measuring system, and measuring object dimension measuring method

Publications (2)

Publication Number Publication Date
JP2016170091A true JP2016170091A (en) 2016-09-23
JP6438807B2 JP6438807B2 (en) 2018-12-19

Family

ID=56983514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050643A Active JP6438807B2 (en) 2015-03-13 2015-03-13 Measuring object dimension measuring apparatus, measuring object dimension measuring system, and measuring object dimension measuring method

Country Status (1)

Country Link
JP (1) JP6438807B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443209U (en) * 1990-08-10 1992-04-13
JP2008020436A (en) * 2006-06-14 2008-01-31 Tanita Corp Linear measurement apparatus
JP2011215108A (en) * 2010-04-02 2011-10-27 Satoshi Kiyono Measuring method and shape measuring device
US20120092642A1 (en) * 2008-08-20 2012-04-19 Trimble Jena Gmbh Distance-measuring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443209U (en) * 1990-08-10 1992-04-13
JP2008020436A (en) * 2006-06-14 2008-01-31 Tanita Corp Linear measurement apparatus
US20120092642A1 (en) * 2008-08-20 2012-04-19 Trimble Jena Gmbh Distance-measuring system
JP2011215108A (en) * 2010-04-02 2011-10-27 Satoshi Kiyono Measuring method and shape measuring device

Also Published As

Publication number Publication date
JP6438807B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP5628668B2 (en) Cylindrical device for measuring object, measuring method, and tire appearance inspection device
Denkena et al. Feeling machines for online detection and compensation of tool deflection in milling
JP6657552B2 (en) Flatness measurement method
TWI534410B (en) Linear shape measurement method and linear shape measuring device
US9587926B2 (en) Device for measuring airfoil spacing
JP6438807B2 (en) Measuring object dimension measuring apparatus, measuring object dimension measuring system, and measuring object dimension measuring method
JP5246952B2 (en) Measuring method
JP2010256277A (en) Method and apparatus for measuring outer shape of workpiece
JP4769914B2 (en) Flatness measuring method and apparatus
JP4931867B2 (en) Variable terminal
JP2009063541A (en) Geometric quantity measurement method and device
JP6131610B2 (en) Circular workpiece diameter measurement method
JP2005037197A (en) Contact type surface shape measuring device and measuring method
JP2018161666A (en) Rotor profile measuring method
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
US20150073740A1 (en) Measurement apparatus, measurement method, and method of manufacturing article
JP6668986B2 (en) Inter-plane distance measuring method, inter-plane distance calculating device and distance measuring device
JP6705139B2 (en) Side trimming device, side trimming system and trim margin measuring method
JP6743351B2 (en) Method for calculating misalignment of roundness measuring machine and roundness measuring machine
KR101679339B1 (en) Linear positioning apparatus and method for compensating error thereof
TWM462360U (en) Vertical axis detection device
JP2011145151A (en) Method of evaluating shape error of diffraction grating
KR101033031B1 (en) Strain measuring device
Sanjid Improved direct comparison calibration of small angle blocks
JP5300831B2 (en) Mechanical angle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6438807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150