JP2016169711A - Wind turbine for wind power generation and wind power generator - Google Patents

Wind turbine for wind power generation and wind power generator Download PDF

Info

Publication number
JP2016169711A
JP2016169711A JP2015051593A JP2015051593A JP2016169711A JP 2016169711 A JP2016169711 A JP 2016169711A JP 2015051593 A JP2015051593 A JP 2015051593A JP 2015051593 A JP2015051593 A JP 2015051593A JP 2016169711 A JP2016169711 A JP 2016169711A
Authority
JP
Japan
Prior art keywords
wind
wind turbine
main shaft
wind power
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015051593A
Other languages
Japanese (ja)
Inventor
浩行 野田
Hiroyuki Noda
浩行 野田
林 達也
Tatsuya Hayashi
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015051593A priority Critical patent/JP2016169711A/en
Priority to CN201680015475.5A priority patent/CN107407255B/en
Priority to KR1020177025924A priority patent/KR102456995B1/en
Priority to KR1020177025925A priority patent/KR20170129135A/en
Priority to CN201680015461.3A priority patent/CN107407254B/en
Priority to PCT/JP2016/057585 priority patent/WO2016148015A1/en
Priority to PCT/JP2016/057586 priority patent/WO2016148016A1/en
Priority to TW105107830A priority patent/TW201706497A/en
Priority to TW105107831A priority patent/TW201706498A/en
Publication of JP2016169711A publication Critical patent/JP2016169711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind turbine for wind power generation and a wind power generator having a vertical main shaft and capable of rotating blades even if wind power energy is low.SOLUTION: This wind turbine for wind power generation is a wind turbine for wind power generation having a vertical main shaft 22. This wind turbine comprises a vertical main shaft 22 rotatably arranged around its axis, supporters 23 integrally arranged with the vertical main shaft 22 and blades 24 connected to the vertical main shaft 22 through supporters 23 and rotated around the axis concentric with the axis while receiving wind. A plurality of blades 24 extending in a vertical direction are spaced apart from the vertical main shaft 22 and arranged around the vertical main shaft 22. When this wind turbine is installed at Northern hemisphere of the earth, each of the blades 24 has a sectional shape for generating rotating power rotated in a counter-clockwise direction R1 as seen from its top plan view by wind power. Each of the blades 24 is rotated in the counter-clockwise direction R1 under application of Coriolis force.SELECTED DRAWING: Figure 1

Description

この発明は、垂直主軸を持つ風力発電用の風車および風力発電機に関し、少ない風力エネルギーでも翼を回転させ得る技術に関する。   The present invention relates to a wind turbine and a wind power generator for wind power generation having a vertical main shaft, and relates to a technique capable of rotating a blade with a small amount of wind energy.

垂直主軸を持つ垂直軸式風力発電機が提案されている(特許文献1)。
垂直軸式発電用の風車は、例えば低速風でもある程度の回転速度が得られて効率良く発電できるように、翼の形状や枚数等が設計されている。
A vertical axis wind power generator having a vertical main shaft has been proposed (Patent Document 1).
The wind turbine for vertical shaft type power generation is designed with the shape and number of blades so that a certain rotational speed can be obtained even with low speed wind and power can be generated efficiently.

特開2006−118384号公報JP 2006-118384 A

しかし、従来の垂直軸式風力発電用の風車において、翼の回転方向に関して規定されておらず、平面視で時計回り(右回り)が基準であった。一方、垂直軸式風力発電用の風車において、低速風でも回転できる特長をより一層効果的とするために、より少ない風力エネルギーでも翼を回転させ得る技術が所望されていた。   However, in a conventional wind turbine for vertical axis wind power generation, the rotation direction of the blades is not defined, and the clockwise direction in the plan view (clockwise) is the standard. On the other hand, in the wind turbine for vertical axis wind power generation, in order to make the feature of being able to rotate even with low-speed wind even more effective, a technique capable of rotating the blades with less wind energy has been desired.

この発明の目的は、垂直主軸を持つ発電用の風車において、少ない風力エネルギーでも翼を回転させ得る風力発電用の風車および風力発電機を提供することである。   An object of the present invention is to provide a wind turbine for wind power generation and a wind power generator capable of rotating blades with a small amount of wind energy in a wind turbine for power generation having a vertical main shaft.

この発明の風力発電用の風車は、垂直主軸を持つ風力発電用の風車であって、上下方向に延びる複数枚の翼が、前記垂直主軸から離れて前記垂直主軸の周囲に設けられ、前記各翼は、この風車が地球の北半球に設置された場合に、平面視で反時計回りに回転する回転力を風力で発生する断面形状であることを特徴とする。   A wind turbine for wind power generation according to the present invention is a wind turbine for wind power generation having a vertical main shaft, and a plurality of blades extending in the vertical direction are provided around the vertical main shaft apart from the vertical main shaft, The wing is characterized by having a cross-sectional shape in which wind force generates a rotational force that rotates counterclockwise in a plan view when the windmill is installed in the northern hemisphere of the earth.

小型風力発電機の開発の過程において、翼の回転方向を特定方向に規定することで、少ない風のエネルギーでも翼が回転することが判明した。具体的には、北半球における日本国において、垂直軸型風車の上下方向に延びる翼の方向を上下反転させて主軸に取付けることにより確認したところ、右回りに比べ左回りが同じ条件下で良く回転した。北半球では、地球の自転により台風や渦潮および排水口の渦までも全て左回り(反時計回り)である。これは、地球の自転よるコリオリ力が作用しているためであると考えられる。一方、風車は、その翼の断面形状によって、翼が風を受けるとその翼の両面を流れる空気の流速差から生じる揚力に基づき回転方向が定まる。
この構成の風車によると、北半球に設置された場合に、各翼が平面視で反時計回りに回転する回転力を風力で発生する断面形状であるため、従来の時計回りの翼を持つ垂直軸式風力発電用の風車に対し、地球の自転により生じる作用を効果的に利用して回転抵抗を減らし、同じ条件下で多く翼を回転させることができる。したがって、垂直主軸を持つ発電用の風車を用いて、より少ない風のエネルギーから発電を行うことができる。
In the process of developing small wind power generators, it was found that the blades rotate even with a small amount of wind energy by specifying the rotation direction of the blades to a specific direction. Specifically, in Japan in the Northern Hemisphere, we confirmed that the direction of the wings extending in the vertical direction of the vertical axis wind turbine was turned upside down and attached to the main shaft. did. In the Northern Hemisphere, the typhoon, whirlpool, and drainage vortex are all counterclockwise due to the rotation of the earth. This is thought to be due to the Coriolis force acting on the earth's rotation. On the other hand, the direction of rotation of a windmill is determined based on the lift generated by the difference in flow velocity of air flowing on both sides of the blade when the blade receives wind due to the cross-sectional shape of the blade.
According to the wind turbine of this configuration, when installed in the northern hemisphere, each wing has a cross-sectional shape that generates a rotational force that rotates counterclockwise in plan view, so a vertical axis with a conventional clockwise wing. The wind turbine for wind power generation can effectively use the action caused by the rotation of the earth to reduce the rotational resistance and rotate many blades under the same conditions. Therefore, it is possible to generate power from less wind energy using a wind turbine for power generation having a vertical main shaft.

前記風車が直線翼垂直軸型風車であっても良い。この場合、翼に作用する揚力と抗力との比を高めることができる。また高い周速比で大きなトルクを得ることができる。
この発明の風力発電機は、この発明におけるいずれかの風車と、この風車により駆動される発電機とを備える。この構成によると、より少ない風のエネルギーから発電を行うことができるため、従来、設置が見送られてきたような場所に、この風力発電機を設置することが可能となる。
The windmill may be a straight blade vertical axis type windmill. In this case, the ratio of lift and drag acting on the wing can be increased. Also, a large torque can be obtained with a high peripheral speed ratio.
A wind power generator according to the present invention includes any one of the wind turbines according to the present invention and a power generator driven by the wind turbine. According to this configuration, since it is possible to generate power from less wind energy, it is possible to install the wind power generator in a place where installation has conventionally been postponed.

前記発電機は、出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記翼が回転し前記ステータとロータとが相対回転することにより発電電力を得る自励式であって、発電の初期励磁に必要な程度の磁力を生じさせる初期励磁手段を有するものとしても良い。この場合、主界磁巻線を用いて励磁を行う自励式であるため、通常の発電用の永久磁石や、外部からの他励のための給電を行う外部電源を必要とせずに発電が行える。自励式発電機では、通常の回転時は外部からの励磁は不要とするが回転の開始時は、若干の励磁が必要である。初期励磁手段は、このような発電の初期励磁に必要な程度の磁力を生じさせるものであるため、通常の、つまり常時の発電電力を得るための磁力は不要である。したがって、コギングトルクは実用上で問題とならない程度となり、小さなトルクでロータを回転させることができる。   In the generator, either one of the output core around which the output winding is wound and the field core around which the main field winding and the sub field winding are wound serves as a stator, and the other serves as a rotor. A rectifying means is connected to the magnetic winding, the blades rotate, and the stator and the rotor rotate relative to each other. The self-excited type obtains generated power, and generates an initial magnetic force necessary for the initial excitation of power generation. It may have excitation means. In this case, since it is a self-excited type that performs excitation using the main field winding, power generation can be performed without the need for a normal permanent magnet for power generation or an external power source that supplies power for external excitation from the outside. . Self-excited generators do not require external excitation during normal rotation, but require some excitation at the start of rotation. Since the initial excitation means generates a magnetic force necessary for the initial excitation of such power generation, a normal magnetic force for obtaining generated power at normal time is not necessary. Therefore, the cogging torque is not a problem in practical use, and the rotor can be rotated with a small torque.

この発明の発電用の風車は、垂直主軸を持つ風力発電用の風車であって、上下方向に延びる複数枚の翼が、前記垂直主軸から離れて前記垂直主軸の周囲に設けられ、前記各翼は、この風車が地球の北半球に設置された場合に、平面視で反時計回りに回転する回転力を風力で発生する断面形状であるため、少ない風力エネルギーでも翼を回転させ得る。
この発明の風力発電機は、この発明のいずれかの風車と、この風車により駆動される発電機とを備えるため、少ない風力エネルギーでも翼を回転させ得る。
A wind turbine for power generation according to the present invention is a wind turbine for wind power generation having a vertical main shaft, and a plurality of blades extending in the vertical direction are provided around the vertical main shaft away from the vertical main shaft, and each of the blades When this windmill is installed in the northern hemisphere of the earth, it has a cross-sectional shape that generates a rotational force that rotates counterclockwise in plan view with wind power, so that the wing can be rotated even with a small amount of wind energy.
Since the wind power generator according to the present invention includes any one of the wind turbines according to the present invention and the power generator driven by the wind turbine, the blades can be rotated even with a small amount of wind energy.

この発明の実施形態に係る風力発電用の風車の破断平面図である。1 is a cutaway plan view of a wind turbine for wind power generation according to an embodiment of the present invention. 同風車の正面図である。It is a front view of the windmill. (A)は同風車の翼の正面図、(B)は図3(A)のIIIB - IIIB線断面図である。(A) is the front view of the blade | wing of the windmill, (B) is the IIIB-IIIB sectional view taken on the line of FIG. 3 (A). 図3(B)のIV-IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. この発明の実施形態に係る発電機の発電機本体の破断正面図と回路図とを組み合わせた説明図である。It is explanatory drawing which combined the fracture | rupture front view and circuit diagram of the generator main body of the generator which concerns on embodiment of this invention. 同発電機本体を直線状に展開して示す説明図である。It is explanatory drawing which expands and shows the generator main body linearly. 同発電機本体の電気回路構成を示す回路図である。It is a circuit diagram which shows the electric circuit structure of the generator main body.

この発明の実施形態に係る風力発電用の風車および風力発電機を図1ないし図4と共に説明する。図1は、この実施形態に係る風力発電用の風車18の破断平面図である。図2はこの風車18の正面図である。この風車18は、翼24が上下方向に延びるいわゆる直線翼垂直軸型風車である。この風車18は北半球に設置されるものである。図1および図2に示すように、風力発電機19は、風車18と、この風車18により駆動される発電機26(後述する)とを備える。風車18は、支持板体20、枠体21、垂直主軸22、支持体23、翼24、および基台25を有する。支持板体20は、接地面に載置される平板状の板体であって、この支持板体20の上面に基台25が設置されている。この基台25の内部には、後述する発電機26が設けられている。   A wind turbine and a wind power generator for wind power generation according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cutaway plan view of a wind turbine 18 for wind power generation according to this embodiment. FIG. 2 is a front view of the wind turbine 18. The wind turbine 18 is a so-called straight blade vertical axis wind turbine in which the blades 24 extend in the vertical direction. This windmill 18 is installed in the northern hemisphere. As shown in FIGS. 1 and 2, the wind power generator 19 includes a windmill 18 and a power generator 26 (described later) driven by the windmill 18. The windmill 18 includes a support plate 20, a frame 21, a vertical main shaft 22, a support 23, wings 24, and a base 25. The support plate 20 is a flat plate placed on the ground surface, and a base 25 is installed on the upper surface of the support plate 20. Inside the base 25, a generator 26 described later is provided.

枠体21は、支持板体20から上方に延びる複数(この例では4本)の支柱21aと、これら支柱21aを水平方向に連結する複数の連結部材21bと、複数の架設部材21cとを有する。これら連結部材21bは、隣接する支柱21aの上端部同士を互いに連結する上段の複数の連結部材21bと、隣接する支柱21aの下端付近部を互いに連結する下段の複数の連結部材21bとを含む。上段(図2の上側)の連結部材21bのうち定められた連結部材21bと、この連結部材21bに対向する連結部材21bとにわたって架設部材21cが架設されている。また下段(図2下側)の連結部材21bのうち定められた連結部材21bと、この連結部材21bに対向する連結部材21bとにわたって架設部材21cが架設されている。   The frame body 21 has a plurality of (four in this example) support columns 21a extending upward from the support plate 20, a plurality of connection members 21b for connecting these support columns 21a in the horizontal direction, and a plurality of installation members 21c. . These connecting members 21b include a plurality of upper connecting members 21b that connect the upper ends of the adjacent columns 21a to each other, and a plurality of lower connecting members 21b that connect the vicinity of the lower ends of the adjacent columns 21a to each other. An erection member 21c is installed over the linking member 21b defined among the upper linking members 21b (upper side in FIG. 2) and the linking member 21b facing the linking member 21b. In addition, the erection member 21c is installed over the linking member 21b defined in the lower linking member 21b (the lower side in FIG. 2) and the linking member 21b facing the linking member 21b.

各架設部材21cの長手方向中間部に、それぞれ軸受27を介して垂直主軸22が回転自在に支持されている。垂直主軸22は上下方向に延び、この垂直主軸22の下端部が、基台25の内部に繋がっている。垂直主軸22の長手方向中間付近部から複数の支持体23がそれぞれ半径方向外方に延びるように設けられている。これら支持体23は、例えば、この風車の正面視において平行で、且つ、同風車の平面視において同位相となるように設けられている。   A vertical main shaft 22 is rotatably supported via a bearing 27 at an intermediate portion in the longitudinal direction of each erection member 21c. The vertical main shaft 22 extends in the vertical direction, and the lower end portion of the vertical main shaft 22 is connected to the inside of the base 25. A plurality of supports 23 are respectively provided so as to extend outward in the radial direction from the middle portion in the longitudinal direction of the vertical main shaft 22. These supports 23 are provided, for example, so as to be parallel in the front view of the windmill and in phase in the plan view of the windmill.

複数の支持体23における両側の先端部には、それぞれ翼24が設けられている。この例では、上下の支持体23,23の一端部に一枚の翼24が連結され、上下の支持体23,23の他端部に他の一枚の翼24が連結されている。これら翼24,24は、垂直主軸22を中心として180度位相の異なる位置に設けられる。各翼24は、上下方向に沿って延び、枠体21内において同枠体21に干渉しないように設けられる。各翼24は、様々な方向からの風を受けて垂直主軸22の軸心L1回りに回転する。   Wings 24 are provided at the tip portions on both sides of the plurality of supports 23. In this example, one wing 24 is connected to one end of the upper and lower supports 23, 23, and another wing 24 is connected to the other end of the upper and lower supports 23, 23. These blades 24, 24 are provided at positions 180 degrees out of phase with the vertical main shaft 22 as the center. Each wing 24 extends in the vertical direction and is provided in the frame body 21 so as not to interfere with the frame body 21. Each blade 24 receives wind from various directions and rotates about the axis L1 of the vertical main shaft 22.

図3(A)はこの風車の翼24の正面図であり、図3(B)は図3(A)のIIIB - IIIB線断面図である。図3(A),(B)に示すように、翼24は、ストレート部28と翼先端部29,29とを有する。ストレート部28は、垂直主軸22(図2)と平行に延び、且つ、図3(A)に示す正面視で上下方向のいずれの位置においても同一幅を成す。またストレート部28は、図3(B)に示すように、上下方向のいずれの位置においても同一の厚みに形成される。   3A is a front view of the blade 24 of this windmill, and FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG. As shown in FIGS. 3A and 3B, the blade 24 includes a straight portion 28 and blade tip portions 29 and 29. The straight portion 28 extends in parallel with the vertical main shaft 22 (FIG. 2), and has the same width at any position in the vertical direction when viewed from the front shown in FIG. 3 (A). Further, as shown in FIG. 3B, the straight portion 28 is formed with the same thickness at any position in the vertical direction.

図2および図3に示すように、翼先端部29は、この翼先端部29を前記軸心L1を含む平面で切断して見た断面が、基端から先端に向かうに従って垂直主軸L1側に至るように傾斜した断面形状としている。この翼先端部29は、図3(A)に示すように、基端から先端に向かうに従って幅狭となる先細形状としている。また翼先端部29は、図3(B)に示すように、基端から先端に向かうに従って薄肉となる厚みに形成される。   As shown in FIGS. 2 and 3, the blade tip 29 has a cross-section obtained by cutting the blade tip 29 along a plane including the axis L1 toward the vertical main shaft L1 side from the base end toward the tip. The cross-sectional shape is inclined so as to reach. As shown in FIG. 3A, the blade tip portion 29 has a tapered shape that becomes narrower from the base end toward the tip. Further, as shown in FIG. 3B, the blade tip portion 29 is formed to have a thickness that becomes thinner from the base end toward the tip.

図4は、図3(B)のIV-IV線断面図である。
図1および図4に示すように、複数(この例では2枚)の翼24は、風向きにかかわらず回転方向を特定方向(図1矢符R1で表す反時計回り)に規定する断面形状としている。つまり複数の翼24は、それぞれ垂直主軸22の軸心L1に垂直な平面で切断して見た断面が翼24の回転方向に対し非対称で、且つ、同断面にて厚肉側となる部分(同図4下側部分)を各翼24の回転方向先端としている。さらに各翼24のストレート部28の外側面28aを半径方向外方に凸となる湾曲面とし、各翼24のストレート部28の内側面28bの大部分を平坦面28baとしている。
FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
As shown in FIGS. 1 and 4, the plurality (two in this example) of blades 24 have a cross-sectional shape that regulates the rotation direction to a specific direction (counterclockwise indicated by arrow R <b> 1 in FIG. 1) regardless of the wind direction. Yes. In other words, each of the plurality of blades 24 has a section that is cut along a plane perpendicular to the axis L1 of the vertical main shaft 22 and is asymmetric with respect to the rotation direction of the blades 24, and is a portion on the thick side in the same section ( The lower part of FIG. 4 is the tip of each blade 24 in the rotational direction. Further, the outer surface 28a of the straight portion 28 of each blade 24 is a curved surface that protrudes radially outward, and the majority of the inner surface 28b of the straight portion 28 of each blade 24 is a flat surface 28ba.

なお内側面28bの大部分を平坦面28baとする代わりに、内側面28bを外側面28aよりも曲率半径の大きい湾曲面としても良い。ストレート部28の内側面28bにおける、外側面28aの円周方向一端(図4下側)との繋ぎ部は円弧面28bbを成す。この円弧面28bbと平坦面28baとの繋ぎ部は段差なく滑らかに続くように形成されている。   Instead of the majority of the inner surface 28b being the flat surface 28ba, the inner surface 28b may be a curved surface having a larger radius of curvature than the outer surface 28a. The connecting portion of the inner side surface 28b of the straight portion 28 and one end in the circumferential direction of the outer side surface 28a (the lower side in FIG. 4) forms an arc surface 28bb. The connecting portion between the arc surface 28bb and the flat surface 28ba is formed so as to continue smoothly without a step.

ストレート部28の内側面28bと、外側面28aの円周方向他端(図4上側)との繋ぎ部は、鋭角となる角部に形成されている。ストレート部28の内側面28bにおける平坦面28baのうち円弧面28bb寄りの部分に、支持体23の先端部が連結されている。前記平坦面28baは、支持体23の長手方向に対し垂直な平面を成し、この垂直な平面が上下方向に沿って延びる。   A connecting portion between the inner side surface 28b of the straight portion 28 and the other circumferential end (upper side in FIG. 4) of the outer side surface 28a is formed at an acute corner. The tip of the support 23 is connected to a portion of the flat surface 28ba on the inner side surface 28b of the straight portion 28 that is closer to the arc surface 28bb. The flat surface 28ba forms a plane perpendicular to the longitudinal direction of the support 23, and this perpendicular plane extends along the up-down direction.

このような翼24が風を受けると、内側面28bに沿う流速よりも外側面28aに沿う流速が速く、翼周りの圧力分布は外側面28aの負圧が大きくなる。よって翼全体として内側面側から外側面側への揚力Lが発生する。図4に示すように、ここで翼24の回転で生じる相対風速vと風速Uとの合成風速Wによって翼に発生する揚力をLとする。そうすると、揚力Lと効力Dのt方向の合成成分(Lt−Dt)が翼24の回転方向の力となる。   When such a blade 24 receives wind, the flow velocity along the outer surface 28a is faster than the flow velocity along the inner surface 28b, and the pressure distribution around the blade increases the negative pressure on the outer surface 28a. Therefore, lift L from the inner surface side to the outer surface side is generated as a whole blade. As shown in FIG. 4, let L be the lift generated in the blade by the combined wind speed W of the relative wind speed v and the wind speed U generated by the rotation of the blade 24. Then, the combined component (Lt−Dt) of the lift L and the effectiveness D in the t direction becomes the force in the rotational direction of the blade 24.

風向きにかかわらず回転方向を反時計回りに規定した前述の複数の翼24を備える風車18を北半球に設置した場合、従来の時計回りの翼を持つ垂直軸式風力発電用の風車に対し、地球の自転により生じるコリオリ力を効果的に利用して回転抵抗を減らし、同じ条件下で多く翼24を回転させることができる。したがって、垂直主軸22を持つ発電用の風車18を用いて、より少ない風のエネルギーから発電を行うことができる。
風力18は直線翼垂直軸型風車であるため、翼24に作用する揚力と抗力との比を高めることができる。また高い周速比で大きなトルクを得ることができる。
When the windmill 18 having the plurality of blades 24 whose rotation direction is defined counterclockwise regardless of the wind direction is installed in the northern hemisphere, the wind turbine for vertical axis wind power generation having the conventional clockwise blades is By effectively utilizing the Coriolis force generated by the rotation of the blade, the rotational resistance can be reduced, and the blades 24 can be rotated a lot under the same conditions. Therefore, it is possible to generate power from less wind energy by using the wind turbine 18 for power generation having the vertical main shaft 22.
Since the wind force 18 is a straight blade vertical axis type wind turbine, the ratio of lift and drag acting on the blade 24 can be increased. Also, a large torque can be obtained with a high peripheral speed ratio.

発電機26について図5ないし図7と共に説明する。
基台25(図2)の内部には、垂直主軸22(図2)の回転により後述のロータ5を回転させ発電を行う発電機26が設けられている。図5は、発電機26の発電機本体1の破断正面図と回路図とを組み合わせた説明図である。同図5において、発電機26の発電機本体1は、環状のステータ4と、このステータ4の内側にステータ4の中心周りで回転自在に設置されたロータ5とを有する。例えば、このロータ5と前述の垂直主軸(図2)とが同軸に連結されている。ステータ4は出力鉄心6と出力巻線7とを有する。この実施形態は2極発電機に適用した例であり、出力鉄心6は、円環状のヨーク部6aの円周方向2箇所に、内側へ突出する歯状の磁極部6bが形成されている。各磁極部6bに前記出力巻線7が巻かれている。
The generator 26 will be described with reference to FIGS.
Inside the base 25 (FIG. 2), there is provided a generator 26 that generates electricity by rotating a rotor 5 described later by rotation of the vertical main shaft 22 (FIG. 2). FIG. 5 is an explanatory diagram in which a broken front view and a circuit diagram of the generator body 1 of the generator 26 are combined. In FIG. 5, the generator body 1 of the generator 26 includes an annular stator 4 and a rotor 5 that is installed inside the stator 4 so as to be rotatable around the center of the stator 4. For example, the rotor 5 and the above-described vertical main shaft (FIG. 2) are connected coaxially. The stator 4 has an output iron core 6 and an output winding 7. This embodiment is an example applied to a two-pole generator, and the output iron core 6 is formed with tooth-shaped magnetic pole portions 6b protruding inward at two locations in the circumferential direction of an annular yoke portion 6a. The output winding 7 is wound around each magnetic pole portion 6b.

図6に示すように、各磁極部6bの出力巻線7は、出力鉄心6の隣り合う磁極部6bの内径側を向く磁極面に互いに異なる磁極が現れるように直列に接続されている。出力巻線7の両端が端子7a,7bとなり、これら端子7a,7bに図5のように外部負荷3を接続し、発電機から電流を外部に取り出す。   As shown in FIG. 6, the output windings 7 of the magnetic pole portions 6 b are connected in series such that different magnetic poles appear on the magnetic pole surfaces facing the inner diameter side of the adjacent magnetic pole portions 6 b of the output iron core 6. Both ends of the output winding 7 become terminals 7a and 7b, and an external load 3 is connected to these terminals 7a and 7b as shown in FIG. 5, and current is taken out from the generator.

図5および図6に示すように、ロータ5は、界磁鉄心8と、この界磁鉄心8に巻かれた主界磁巻線9および副界磁巻線10とを有する。界磁鉄心8は、中心孔を有する鉄心本体8aの外周に、外径側へ突出する複数の歯状の磁極部8bが円周方向に並んで設けられている。この磁極部8bは、出力鉄心6の一つの磁極部6bに対してそれぞれ3つずつ設けられている。   As shown in FIGS. 5 and 6, the rotor 5 has a field iron core 8, and a main field winding 9 and a subfield winding 10 wound around the field iron core 8. The field iron core 8 is provided with a plurality of tooth-shaped magnetic pole portions 8b protruding in the circumferential direction on the outer periphery of an iron core body 8a having a center hole. Three magnetic pole portions 8 b are provided for each magnetic pole portion 6 b of the output iron core 6.

主界磁巻線9は、隣合う2つの磁極部8b,8bに渡って巻かれ、この2つの磁極部8b,8bに渡って巻かれた各主界磁巻線9は、2つ一組となった隣合う磁極組同士の磁極面に異なる磁極が現れるように直列に接続されている。副界磁巻線10は、主界磁巻線9と一つの磁極部8bの分だけ位相をずらせて、主界磁巻線9と同様に、隣合う2つの磁極部8b,8bに渡って巻かれている。この2つの磁極部8b,8bに渡って巻かれた各副界磁巻線10は、2つ一組となった隣合う磁極組同士の磁極面に異なる磁極が現れるように直列に接続されている。主界磁巻線9および副界磁巻線10の各直列接続体の両端の端子を、それぞれ符号9a,9b,10a,10bで図6に示す。   The main field winding 9 is wound around two adjacent magnetic pole portions 8b and 8b, and each main field winding 9 wound around the two magnetic pole portions 8b and 8b is a set of two. The adjacent magnetic pole groups are connected in series so that different magnetic poles appear on the magnetic pole surfaces. The sub-field winding 10 is shifted in phase by the amount of the main field winding 9 and one magnetic pole portion 8b, and is spread over two adjacent magnetic pole portions 8b and 8b in the same manner as the main field winding 9. It is rolled up. The subfield windings 10 wound around the two magnetic pole portions 8b and 8b are connected in series so that different magnetic poles appear on the magnetic pole surfaces of adjacent magnetic pole pairs that are in pairs. Yes. Terminals at both ends of each series connection body of the main field winding 9 and the sub field winding 10 are shown in FIG. 6 by reference numerals 9a, 9b, 10a, 10b, respectively.

図7に示すように、主界磁巻線9には並列に整流素子(整流手段)11が接続され、主界磁巻線9には整流素子11が流すことができる向きの電流が流れる。副界磁巻線10は主界磁巻線9と直列に接続され、かつ直列に整流素子(整流手段)12が接続され、副界磁巻線10には主界磁巻線9と同じ方向の電流のみが流れる。図中の矢印は電流の流れる方向を示す。   As shown in FIG. 7, a rectifying element (rectifying means) 11 is connected in parallel to the main field winding 9, and a current in a direction that allows the rectifying element 11 to flow flows through the main field winding 9. The sub-field winding 10 is connected in series with the main field winding 9, and a rectifying element (rectifying means) 12 is connected in series, and the sub-field winding 10 has the same direction as the main field winding 9. Only current flows. The arrows in the figure indicate the direction of current flow.

この発電機26は、このような副界磁巻線10を有する構成の自励型の発電機において、発電の初期励磁に必要な程度の磁力を生じさせる初期励磁手段2を有する。図5に示すように、出力巻線7に、スイッチング手段13を介して着磁用電源14が外部負荷3と並列に接続されている。着磁用電源14とスイッチング手段13とで初期励磁手段2が構成される。スイッチング手段13は、半導体スイッチッング素子または有接点のスイッチが用いられる。着磁用電源14は2次電池またはコンデンサ等の蓄電手段である。外部負荷3が2次電池の場合は、それを着磁用電源として用いても良い。   This generator 26 includes an initial excitation means 2 that generates a magnetic force necessary for initial excitation of power generation in a self-excited generator having such a subfield winding 10. As shown in FIG. 5, a magnetizing power source 14 is connected to the output winding 7 in parallel with the external load 3 via the switching means 13. The magnetizing power supply 14 and the switching means 13 constitute the initial excitation means 2. The switching means 13 is a semiconductor switching element or a contact switch. The magnetizing power source 14 is a storage means such as a secondary battery or a capacitor. When the external load 3 is a secondary battery, it may be used as a magnetizing power source.

着磁をするには、所定の大きさの電流を極短時間流せば良い。着磁の程度は、発電の開始のための初期励磁に必要な残留磁気が得られる程度で良く、電流の大きさとスイッチング手段13のオン時間とで定められる。スイッチング手段13の開閉操作は、開閉制御手段15によって行われる。開閉制御手段15は、例えば、ロータ5の回転を検出する回転検出手段16の検出信号を監視し、ロータ5が静止状態から回転を開始したことが検出されると、スイッチング手段13を着磁に必要な設定時間だけオンさせる。   In order to magnetize, a current of a predetermined magnitude may be passed for a very short time. The degree of magnetization may be such that residual magnetism necessary for initial excitation for the start of power generation is obtained, and is determined by the magnitude of current and the ON time of the switching means 13. The opening / closing operation of the switching means 13 is performed by the opening / closing control means 15. For example, the opening / closing control means 15 monitors the detection signal of the rotation detection means 16 that detects the rotation of the rotor 5. When it is detected that the rotor 5 has started rotating from a stationary state, the switching means 13 is magnetized. Turn it on only for the required setting time.

なお、ロータ5の回転の停止時間が短い場合は残留磁気が十分に残っているため、開閉制御手段15は、設定時間以上のロータ5の停止の後に回転を開始した場合のみスイッチング手段13をオンさせるなど、設定条件に従ってスイッチング手段13をオンさせるように制御としても良い。また、所定の回転数になっても発電を開始しない時だけ着磁をするようにしてもよいし、所定の時間ごとに発電機の回転が停止しているときに着磁をしてもよい。   When the rotation stop time of the rotor 5 is short, sufficient residual magnetism remains, so that the opening / closing control means 15 turns on the switching means 13 only when the rotation starts after the rotor 5 stops for a set time or longer. For example, the switching unit 13 may be turned on according to the set conditions. Further, the magnetizing may be performed only when the power generation is not started even when the predetermined rotational speed is reached, or the magnetizing may be performed when the rotation of the generator is stopped every predetermined time. .

この実施形態では出力巻線7に着磁用電源14を接続したが、図7に示すように、界磁巻線9,10にスイッチング手段13を介して着磁用電源14を接続しても良い。この例の場合も、着磁用電源14は2次電池またはコンデンサである。着磁をするには、所定の大きさの電流を極短時間流せば良い。スイッチング手段13は、図5の実施形態と同様に開閉制御手段15で開閉制御される。   In this embodiment, the magnetizing power source 14 is connected to the output winding 7. However, as shown in FIG. 7, the magnetizing power source 14 may be connected to the field windings 9 and 10 via the switching means 13. good. Also in this example, the magnetizing power source 14 is a secondary battery or a capacitor. In order to magnetize, a current of a predetermined magnitude may be passed for a very short time. The switching means 13 is controlled to be opened and closed by the opening / closing control means 15 as in the embodiment of FIG.

ロータ5が回転し発電を行っている場合の動作を説明する。
図7に示すように、主界磁巻線9には並列に整流素子11が接続されているため、主界磁巻線9には整流素子11が流すことができる向きの電流が流れる。そのため、主界磁巻線9に流すことができる電流によって決まる向きの磁束が発生する。また、電磁誘導により、電流がつくる磁束と同方向の磁束の減少を妨げる向きに電流が流れるが、磁束が増えるのを阻止する向きには電流は流れない。そのため、磁束の減少は妨げられるが、磁束の増加は妨げられない。副界磁巻線10には直列に整流素子12が接続され、主界磁巻線9と同じ方向の電流のみが流れる。
The operation when the rotor 5 is rotating and generating power will be described.
As shown in FIG. 7, since the rectifying element 11 is connected in parallel to the main field winding 9, a current in a direction that allows the rectifying element 11 to flow flows through the main field winding 9. Therefore, a magnetic flux having a direction determined by a current that can be passed through the main field winding 9 is generated. In addition, due to electromagnetic induction, a current flows in a direction that prevents a decrease in magnetic flux in the same direction as a magnetic flux generated by the current, but a current does not flow in a direction that prevents an increase in magnetic flux. Therefore, the decrease of the magnetic flux is prevented, but the increase of the magnetic flux is not prevented. A rectifying element 12 is connected in series to the sub-field winding 10, and only a current in the same direction as the main field winding 9 flows.

図5乃至図7に示すように、出力鉄心6または界磁鉄心8の残留磁気により、主界磁巻線9に電流が流れる。この電流により主界磁巻線9がつくる磁束により副界磁巻線10に鎖交する磁束が変化して、副界磁巻線10に電圧が発生する。この電圧で副界磁巻線10が主界磁巻線9を介して電流を供給し、主界磁巻線9に流れる電流を増加させる。副界磁巻線10に電圧が誘起されずに電流を供給していない時、主界磁巻線9には整流子11を通して還流電流が流れ、主界磁巻線9の磁束を維持する。   As shown in FIGS. 5 to 7, a current flows through the main field winding 9 due to the residual magnetism of the output iron core 6 or the field iron core 8. With this current, the magnetic flux generated by the main field winding 9 changes the magnetic flux linked to the sub field winding 10, and a voltage is generated in the sub field winding 10. With this voltage, the sub-field winding 10 supplies a current through the main field winding 9 and increases the current flowing through the main field winding 9. When no voltage is induced in the subfield winding 10 and no current is supplied, a return current flows through the commutator 11 in the main field winding 9 to maintain the magnetic flux of the main field winding 9.

主界磁巻線9に電流が供給され、主界磁巻線9がつくる磁束が大きくなるので、副界磁巻線10に鎖交する磁束も大きくなり、さらに大きい電流が主界磁巻線9に供給される。このように、主界磁巻線9の電流が次第に増加し、発電に必要な界磁磁束がつくられる。出力鉄心6と界磁鉄心8の相対運動により、出力巻線7の鎖交磁束が変化して電圧が発生する。   Since the current is supplied to the main field winding 9 and the magnetic flux generated by the main field winding 9 is increased, the magnetic flux linked to the subfield winding 10 is also increased, and a larger current is supplied to the main field winding 9. 9 is supplied. In this manner, the current in the main field winding 9 gradually increases, and a field magnetic flux necessary for power generation is created. Due to the relative motion of the output iron core 6 and the field iron core 8, the flux linkage of the output winding 7 changes to generate a voltage.

上記のように、ロータ5が回転を行っている間に発電を行うが、ロータ5がある程度長い時間を停止していると、出力鉄心6および界磁鉄心8のいずれにも残留磁気がなく、または残留磁気が不十分であって、発電を開始できない。そこで、この実施形態では、ロータ5の停止後の回転の開始時に、初期励磁手段2のスイッチング手段13をオンにして着磁用電源14から出力巻線7に着磁電流を流し、出力鉄心6を着磁する。磁束は前記のように回転を続けると次第に大きくなるため、着磁の程度は、発電の開始のための初期励磁に必要な残留磁気が得られる程度で良い。そのため、着磁をするには、所定の大きさの電流を極短時間流せば良い。この着磁により、ロータ5の長時間の停止後にも、回転の再開により発電が確実に開始される。   As described above, power is generated while the rotor 5 is rotating. However, if the rotor 5 is stopped for a long time to some extent, there is no residual magnetism in either the output iron core 6 or the field iron core 8, Alternatively, the residual magnetism is insufficient and power generation cannot be started. Therefore, in this embodiment, at the start of rotation after the rotor 5 is stopped, the switching means 13 of the initial excitation means 2 is turned on so that a magnetizing current flows from the magnetizing power supply 14 to the output winding 7, and the output iron core 6. Magnetize. Since the magnetic flux gradually increases as the rotation continues as described above, the degree of magnetization may be such that the residual magnetism necessary for the initial excitation for the start of power generation is obtained. For this reason, in order to magnetize, a current of a predetermined magnitude may be passed for a very short time. By this magnetization, even after the rotor 5 is stopped for a long time, power generation is reliably started by resuming the rotation.

スイッチング手段13を設けた実施形態の場合は、ロータ5の停止後の回転の開始時に、初期励磁手段2のスイッチング手段13をオンにして着磁用電源14から主界磁巻線8に着磁電流を流し、界磁鉄心8を着磁する。このように界磁鉄心8を着磁した場合も、ロータ5の長時間の停止後にも、発電が開始される。   In the embodiment in which the switching means 13 is provided, at the start of rotation after the rotor 5 is stopped, the switching means 13 of the initial excitation means 2 is turned on to magnetize the main field winding 8 from the magnetizing power supply 14. A current is passed to magnetize the field core 8. Even when the field core 8 is magnetized in this way, power generation is started even after the rotor 5 has been stopped for a long time.

これら実施形態の発電機26によると、次の利点が得られる。主界磁巻線9を用いて励磁を行う自励式であるため、永久磁石や、外部からの他励のための給電を行う外部電源を必要とせずに発電が行える。自励式発電機では、通常の回転時は外部からの励磁は不要とするが回転の開始時は、若干の励磁が必要である。初期励磁手段2は、このような発電の初期励磁に必要な程度の磁力を生じさせるものであるため、通常の、つまり常時の発電電力を得るための磁力は不要である。したがって、コギングトルクは実用上で問題とならない程度となり、小さなトルクでロータ5を回転させることができる。自励式であるが、発電の初期励磁に必要な磁力を発生することが可能な程度に、発電機のいずれかの鉄心を着磁する初期励磁手段2を設けたため、回転の停止後や分解保守の後であっても、また低速回転であっても、確実に発電を開始することができる。前記初期励磁手段2は必要となるが、この初期励磁手段2は発電の初期励磁に必要な磁力を発生することが可能な程度に着磁を行えるものであれば足りるため、他励式の発電機における外部電源に比べて飛躍的に小型のもので済む。   According to the generator 26 of these embodiments, the following advantages are obtained. Since it is a self-excited type that performs excitation using the main field winding 9, power generation can be performed without the need for a permanent magnet or an external power source that supplies power for external excitation from the outside. Self-excited generators do not require external excitation during normal rotation, but require some excitation at the start of rotation. Since the initial excitation means 2 generates a magnetic force to such an extent that it is necessary for the initial excitation of power generation, a normal magnetic force, that is, a constant magnetic power for obtaining the generated power is not required. Therefore, the cogging torque is not problematic in practical use, and the rotor 5 can be rotated with a small torque. Although it is self-excited, the initial excitation means 2 that magnetizes one of the iron cores of the generator is provided to such an extent that it can generate the magnetic force required for the initial excitation of power generation. Even after or after low speed rotation, power generation can be started reliably. Although the initial excitation means 2 is necessary, the initial excitation means 2 is sufficient if it can be magnetized to such an extent that it can generate a magnetic force necessary for the initial excitation of power generation. Compared to an external power source in, it can be much smaller.

なお、上記実施形態では、ステータ4側を出力鉄心6、ロータ5側を界磁鉄心8としたが、これとは逆にステータ4側を界磁鉄心9,10とし、ロータ5側を出力鉄心6としても良い。また上記実施形態では2極発電機としたが、4極、8極、16極など、多極の発電機としても良い。   In the above-described embodiment, the stator 4 side is the output iron core 6 and the rotor 5 side is the field iron core 8. Conversely, the stator 4 side is the field iron cores 9 and 10, and the rotor 5 side is the output iron core. 6 is also acceptable. In the above embodiment, a two-pole generator is used, but a multi-pole generator such as a 4-pole, 8-pole, or 16-pole generator may be used.

一本の垂直主軸22に対して上下方向に複数段の翼24を設けても良い。この場合、風車の設置面積に対して翼24の受風面積を増加させることができる。
翼枚数は一段当たり二枚に限定されるものではなく、3枚以上としても良い。
発電機26は、界磁の生成に永久磁石を用いた同期発電機を用いても良い。
1本の垂直主軸22に対して複数の発電機26を設け、前記1本の垂直主軸22の回転により各発電機26を個別に発電することも可能である。
風車は、直線翼垂直軸型風車に限定されるものではなく、ダリウス型風車やサボニウス型風車であっても良い。
A plurality of blades 24 may be provided in the vertical direction with respect to one vertical main shaft 22. In this case, the wind receiving area of the blade 24 can be increased with respect to the installation area of the windmill.
The number of blades is not limited to two per stage, and may be three or more.
The generator 26 may be a synchronous generator using a permanent magnet for generating a field.
It is also possible to provide a plurality of generators 26 for one vertical main shaft 22 and to individually generate power by rotating the one vertical main shaft 22.
The windmill is not limited to a straight blade vertical axis type windmill, and may be a Darrieus type windmill or a Savonius type windmill.

以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

2…初期励磁手段
4…ステータ
5…ロータ
6…出力鉄心
7…出力巻線
8…界磁鉄心
9…主界磁巻線
10…副界磁巻線
11,12…整流素子(整流手段)
22…垂直主軸
23…支持体
24…翼
26…発電機
2 ... Initial excitation means 4 ... Stator 5 ... Rotor 6 ... Output iron core 7 ... Output winding 8 ... Field iron core 9 ... Main field winding 10 ... Sub-field windings 11, 12 ... Rectifying element (rectifying means)
22 ... Vertical spindle 23 ... Support 24 ... Wings 26 ... Generator

Claims (4)

垂直主軸を持つ風力発電用の風車であって、上下方向に延びる複数枚の翼が、前記垂直主軸から離れて前記垂直主軸の周囲に設けられ、前記各翼は、この風車が地球の北半球に設置された場合に、平面視で反時計回りに回転する回転力を風力で発生する断面形状であることを特徴とする風力発電用の風車。   A wind turbine for wind power generation having a vertical main shaft, wherein a plurality of wings extending in the vertical direction are provided around the vertical main shaft away from the vertical main shaft, and each of the wings is connected to the northern hemisphere of the earth. A wind turbine for wind power generation, characterized in that when installed, the wind turbine generates a rotational force that rotates counterclockwise in plan view. 請求項1に記載の風力発電用の風車において、前記風車が直線翼垂直軸型風車である風力発電用の風車。   The wind turbine for wind power generation according to claim 1, wherein the wind turbine is a straight blade vertical axis wind turbine. 請求項1または請求項2に記載の風車と、この風車により駆動される発電機とを備える風力発電機。   A wind turbine generator comprising the windmill according to claim 1 or 2 and a generator driven by the windmill. 請求項3に記載の風力発電機において、前記発電機は、出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記翼が回転し前記ステータとロータとが相対回転することにより発電電力を得る自励式であって、発電の初期励磁に必要な程度の磁力を生じさせる初期励磁手段を有する風力発電機。   4. The wind power generator according to claim 3, wherein the generator is one of an output core around which an output winding is wound and a field core around which a main field winding and a sub field winding are wound. Is a stator, the other is a rotor, a rectifier is connected to each of the field windings, the blades rotate, and the stator and rotor rotate relative to each other. A wind power generator having initial excitation means for generating a magnetic force required for excitation.
JP2015051593A 2015-03-16 2015-03-16 Wind turbine for wind power generation and wind power generator Pending JP2016169711A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015051593A JP2016169711A (en) 2015-03-16 2015-03-16 Wind turbine for wind power generation and wind power generator
CN201680015475.5A CN107407255B (en) 2015-03-16 2016-03-10 Impeller and generating electricity by natural energy device with impeller
KR1020177025924A KR102456995B1 (en) 2015-03-16 2016-03-10 An impeller and a natural energy power generation device having the same
KR1020177025925A KR20170129135A (en) 2015-03-16 2016-03-10 Wing cars and natural energy generating devices equipped with them
CN201680015461.3A CN107407254B (en) 2015-03-16 2016-03-10 Impeller and natural energy power generation device with same
PCT/JP2016/057585 WO2016148015A1 (en) 2015-03-16 2016-03-10 Turbine rotor and natural energy generating device equipped with same
PCT/JP2016/057586 WO2016148016A1 (en) 2015-03-16 2016-03-10 Impeller and natural energy power generation device provided with same
TW105107830A TW201706497A (en) 2015-03-16 2016-03-15 Turbine rotor and natural energy generator system having same
TW105107831A TW201706498A (en) 2015-03-16 2016-03-15 Turbine rotor and natural energy generator system having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051593A JP2016169711A (en) 2015-03-16 2015-03-16 Wind turbine for wind power generation and wind power generator

Publications (1)

Publication Number Publication Date
JP2016169711A true JP2016169711A (en) 2016-09-23

Family

ID=56983368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051593A Pending JP2016169711A (en) 2015-03-16 2015-03-16 Wind turbine for wind power generation and wind power generator

Country Status (1)

Country Link
JP (1) JP2016169711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165779A (en) * 2017-06-07 2017-09-15 曲阜师范大学 A kind of vertical axis suspension permanent magnet wind-driven generator and its control method
USD821320S1 (en) * 2016-02-18 2018-06-26 Ntn Corporation Blade for a vertical turbine rotor
USD821321S1 (en) * 2016-09-07 2018-06-26 Ntn Corporation Blade for a vertical windmill

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD821320S1 (en) * 2016-02-18 2018-06-26 Ntn Corporation Blade for a vertical turbine rotor
USD821321S1 (en) * 2016-09-07 2018-06-26 Ntn Corporation Blade for a vertical windmill
CN107165779A (en) * 2017-06-07 2017-09-15 曲阜师范大学 A kind of vertical axis suspension permanent magnet wind-driven generator and its control method
CN107165779B (en) * 2017-06-07 2023-11-07 曲阜师范大学 Vertical axis suspension permanent magnet wind driven generator and control method thereof

Similar Documents

Publication Publication Date Title
KR102456995B1 (en) An impeller and a natural energy power generation device having the same
CN101874337A (en) Rotary electric machine and drive controller
CN107196477B (en) Rotating electric machine
JP2001224154A (en) Method and apparatus for multipole magnetically levitating rotation
JP2007336777A (en) Wind power generating device
JP2016169711A (en) Wind turbine for wind power generation and wind power generator
KR20160049617A (en) Dual generators for wind power
WO2016148016A1 (en) Impeller and natural energy power generation device provided with same
KR101230054B1 (en) Slotted axial field permanent magnet synchronous generator for small wind turbine generator
KR101238855B1 (en) Double air gap type generator
Patel et al. Design and performance analysis of a magnetically levitated vertical axis wind turbine based axial flux PM generator
JP6537858B2 (en) Wings and natural energy generators
JP2006266107A (en) Wind power generation device
JP2004211707A (en) Wind power generator
WO2016013477A1 (en) Generator
JP2015050892A (en) Power generation system
JP2015061464A (en) Permanent magnet rotary electric machine and wind generator system
JP2016025811A (en) Power generator
JP6632805B2 (en) Impeller and renewable energy generator
JP2016039747A (en) Generator for wind power generation
JP2016176372A (en) Blade wheel and natural energy generator
JP3175706U (en) Coreless generator and micro hydro power generation system using the same
JP2016067128A (en) Generator
JP2016025815A (en) Power generator
JP2008278716A (en) Wind power generator