JP2016025811A - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP2016025811A
JP2016025811A JP2014150442A JP2014150442A JP2016025811A JP 2016025811 A JP2016025811 A JP 2016025811A JP 2014150442 A JP2014150442 A JP 2014150442A JP 2014150442 A JP2014150442 A JP 2014150442A JP 2016025811 A JP2016025811 A JP 2016025811A
Authority
JP
Japan
Prior art keywords
magnetizing
generator
winding
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014150442A
Other languages
Japanese (ja)
Inventor
水谷 政敏
Masatoshi Mizutani
政敏 水谷
浩行 野田
Hiroyuki Noda
浩行 野田
夏比古 森
Natsuhiko Mori
夏比古 森
龍介 柄澤
Ryusuke Karasawa
龍介 柄澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014150442A priority Critical patent/JP2016025811A/en
Priority to CN201580039574.2A priority patent/CN106537758A/en
Priority to PCT/JP2015/070375 priority patent/WO2016013477A1/en
Priority to EP15825372.4A priority patent/EP3174194A4/en
Publication of JP2016025811A publication Critical patent/JP2016025811A/en
Priority to US15/412,677 priority patent/US20170133916A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generator that requires no power supply for separate excitation from a permanent magnet and outside and can start power generation more reliably by resuming rotation after rotation stop.SOLUTION: Among an output core 6 wound in an output winding 7 and a field core 8 wound in a main field winding 9 and a sub field winding 10, one is a stator 4 and the other is a rotor 5. Commutation means 11 and 12 are connected to the field windings 9 and 10. In a self-excited power generator for obtaining generated power due to relative rotation of the stator 4 and the rotor 5, magnetization means 2 is provided for magnetizing either the output core 6 or the field core 8 to an extent that can generate a necessary magnetic force for initial excitation in power generation. The magnetization means 2 comprises, for example, a magnetization power supply 14 consisting of a secondary battery or a capacitor and switching means 13.SELECTED DRAWING: Figure 1

Description

この発明は、小型風力発電機や、流水を利用する発電機などに用いられる永久磁石レスの発電機に関する。   The present invention relates to a permanent magnet-less generator used for a small wind generator, a generator using running water, or the like.

回転により発電を行う発電機として、誘導発電機や同期発電機があり、誘導発電機はロータの巻線に励磁を必要としないが、系統連係させかつ高い回転速度で回転させる必要があって小型の発電機には適さない。そのため、小型風力発電機等では、同期発電機が用いられることが多い。
しかし、通常の同期発電機は、界磁の生成に永久磁石を用いるため、永久磁石の成分となるレアメタルが高価で発電機全体が高額になるうえ、始動時にコギングが発生し、コギングトルクによって始動トルクが大きくなる。このため、小型風力発電機等の僅かな自然力で発電させる発電機には適さない。永久磁石の代わりに電磁石を用いる他励式の同期発電機もあるが、電磁石への外部からの給電の構成が必要で、外部電源により構成が複雑となる。
There are induction generators and synchronous generators as generators that generate electricity by rotation. Induction generators do not require excitation in the rotor windings, but they must be linked to the system and rotated at a high rotational speed to make them compact. Not suitable for generators. Therefore, a synchronous generator is often used in a small wind power generator or the like.
However, since a normal synchronous generator uses a permanent magnet to generate a field, the rare metal that is a component of the permanent magnet is expensive and the entire generator is expensive. Torque increases. For this reason, it is not suitable for a generator that generates power with a slight natural force, such as a small wind power generator. There is a separately-excited synchronous generator that uses an electromagnet instead of a permanent magnet. However, a configuration for supplying power to the electromagnet from the outside is necessary, and the configuration is complicated by an external power source.

これらの課題を解消し、永久磁石および外部からの給電が不必要な自励式の同期発電機が提案されている(特許文献1)。この発電機は、鉄心の残留磁気を利用して、自己励磁により界磁巻線に流れる電流を増加させて行くことで、発電に必要な磁束を、高価な永久磁石や励磁用の外部電源を必要とせずに作り出している。   There has been proposed a self-excited synchronous generator that solves these problems and does not require a permanent magnet and external power supply (Patent Document 1). This generator uses the residual magnetism of the iron core to increase the current that flows in the field winding by self-excitation, so that the magnetic flux required for power generation can be supplied with an expensive permanent magnet or an external power source for excitation. Produced without need.

特開2006−149148号公報JP 2006-149148 A

上記提案例の自励式の発電機は、上記のように優れた利点があるが、発電を長期間停止したり、発電機を分解したりすると、発電機鉄心の残留磁気が弱くなる。発電機鉄心の残留磁気が弱いと、初期励磁に必要な磁力が不足し、発電を開始しないか、または発電を開始する回転速度がある程度高いことが必要となる。そのため、風力発電や、流水を利用する発電のように停止する期間が生じたり、低速で発電させることが必要な発電機では、前記自励式の発電機においても、発電開始の確実性が不十分となる。   The self-excited generator of the proposed example has excellent advantages as described above, but if the power generation is stopped for a long time or the generator is disassembled, the residual magnetism of the generator core becomes weak. If the residual magnetism of the generator core is weak, the magnetic force necessary for the initial excitation is insufficient, and it is necessary that the power generation is not started or the rotational speed at which the power generation is started is somewhat high. Therefore, in the generator that needs to be stopped like wind power generation or power generation using running water, or that needs to be generated at low speed, the self-excited generator has insufficient certainty of power generation start. It becomes.

この発明の目的は、永久磁石および外部からの他励のための給電が不必要で、かつ回転停止後にも回転の再開により確実に発電を開始できる発電機を提供することである。   An object of the present invention is to provide a generator that does not require power supply for external excitation from a permanent magnet and from the outside, and that can reliably start power generation by restarting rotation even after the rotation is stopped.

この発明の発電機は、出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記ステータとロータとの相対回転により発電電力を得る自励式の発電機において、
発電の初期励磁に必要な磁力を発生することが可能な程度に、前記出力鉄心および界磁鉄心のいずれか一方または両方の鉄心を着磁する着磁手段を設けたことを特徴とする。
In the generator of the present invention, one of the output iron core around which the output winding is wound and the field iron core around which the main field winding and the sub field winding are wound serves as a stator, and the other serves as a rotor. In a self-excited generator in which a rectifying means is connected to each field winding and the generated electric power is obtained by relative rotation between the stator and the rotor,
Magnetizing means for magnetizing one or both of the output core and the field core is provided to such an extent that a magnetic force required for initial excitation of power generation can be generated.

この構成によると、主界磁巻線を用いて励磁を行う自励式であるため、永久磁石や、外部からの他励のための給電を行う外部電源を必要とせずに発電が行える。永久磁石を用いないため、コギングトルクが発生せず、小さなトルクでロータを回転させることができる。自励式であるが、発電の初期励磁に必要な磁力を発生することが可能な程度に、発電機のいずれかの鉄心を着磁する着磁手段を設けたため、回転の停止後や分解保守の後であっても、また低速回転であっても、確実に発電を開始することができる。自励式の発電機は、回転するに従って磁束が増大するため、初期励磁に必要な磁力は極小さな磁力で済む。前記着磁手段は必要となるが、この着磁手段は発電の初期励磁に必要な磁力を発生することが可能な程度に着磁を行えるものであれば足りるため、他励式の発電機における外部電源に比べて飛躍的に小型のもので済む。
なお、上記の「着磁」とは、磁化処理の終了後に残留磁気が生じるように磁化することを言う。
According to this configuration, since it is a self-excited type that performs excitation using the main field winding, power generation can be performed without the need for a permanent magnet or an external power source that supplies power for external excitation from the outside. Since no permanent magnet is used, no cogging torque is generated, and the rotor can be rotated with a small torque. Although it is self-excited, it has magnetizing means to magnetize any iron core of the generator to the extent that it can generate the magnetic force required for the initial excitation of power generation. Even after or at a low speed, power generation can be reliably started. Since the self-excited generator increases the magnetic flux as it rotates, the magnetic force required for the initial excitation is very small. The magnetizing means is necessary, but it is sufficient that the magnetizing means can be magnetized to such an extent that it can generate a magnetic force necessary for initial excitation of power generation. Compared to a power supply, it can be much smaller.
The term “magnetization” refers to magnetization so that residual magnetism is generated after the end of the magnetization process.

この発明において、前記着磁手段が、前記出力巻線または前記いずれかの界磁巻線に着磁用電流を通電する構成であっても良い。巻線にある程度以上の大きさの電流を通電することで、鉄心の着磁が行える。着磁手段が巻線に着磁用電流を通電する構成であると、着磁手段が簡単な構成で済む。
前記着磁用電流は直流電流であっても、パルス状の電流であっても良い。直流電流であると、着磁手段がより簡単な構成で済む。パルス状の電流であると、着磁に必要なだけの強い電流を一時的に与えたり、また着磁用電流の大きさを調整することが簡単に行える。
In the present invention, the magnetizing means may be configured to pass a magnetizing current through the output winding or any one of the field windings. By energizing the winding with a current larger than a certain level, the iron core can be magnetized. If the magnetizing means is configured to pass a magnetizing current through the winding, the magnetizing means can be configured simply.
The magnetizing current may be a direct current or a pulsed current. If it is a direct current, the magnetizing means can be configured more simply. When the current is pulsed, it is possible to easily apply a current as strong as necessary for magnetization or to adjust the magnitude of the magnetizing current.

前記巻線に着磁用電流を通電する構成の着磁手段は、2次電池またはコンデンサからなる着磁用電源と、前記着磁用電流を通電する前記出力巻線または界磁巻線と前記着磁用電源との間に介在させたスイッチング手段とでなる構成であっても良い。この構成であると、前記着磁手段が簡単な構成で済む。   The magnetizing means configured to pass a magnetizing current through the winding includes a magnetizing power source comprising a secondary battery or a capacitor, the output winding or field winding passing the magnetizing current, and the It may be configured with switching means interposed between the magnetizing power source. With this configuration, the magnetizing means can be a simple configuration.

この発明の発電機は、出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記ステータとロータとの相対回転により発電電力を得る自励式の発電機において、発電の初期励磁に必要な磁力を発生することが可能な程度に、前記出力鉄心および界磁鉄心のいずれか一方または両方の鉄心を着磁する着磁手段を設けたため、永久磁石および外部からの他励のための給電が不必要で、かつ回転停止後にも回転の再開により確実に発電を開始することができる。   In the generator of the present invention, one of the output iron core around which the output winding is wound and the field iron core around which the main field winding and the sub field winding are wound serves as a stator, and the other serves as a rotor. In a self-excited generator in which rectifying means is connected to each field winding and the generated electric power is obtained by relative rotation of the stator and the rotor, it is possible to generate a magnetic force necessary for initial excitation of power generation, Since magnetizing means for magnetizing one or both of the output iron core and the field iron core is provided, power supply for external excitation from the permanent magnet and the outside is unnecessary, and rotation is possible even after rotation stops. Power generation can be reliably started by restarting.

この発明の第1の実施形態にかかる発電機の発電機本体の破断正面図と着磁手段の回路図とを組み合わせた説明図である。It is explanatory drawing which combined the fracture | rupture front view of the generator main body of the generator concerning 1st Embodiment of this invention, and the circuit diagram of a magnetization means. 同発電機発の電機本体を直線状に展開して示す説明図である。It is explanatory drawing which expands and shows the electric-machine main body from the generator linearly. 同発電機の発電機本体の電気回路構成を示す回路図である。It is a circuit diagram which shows the electric circuit structure of the generator main body of the generator. この発明の他の実施形態にかかる発電機の電気回路図である。It is an electric circuit diagram of the generator concerning other embodiments of this invention. この発明のさらに他の実施形態にかかる発電機の発電機本体の破断正面図と一部の回路とを示す説明図である。It is explanatory drawing which shows the fracture | rupture front view and some circuit of the generator main body of the generator concerning further another embodiment of this invention. 同発電機の破断側面図である。It is a fracture side view of the generator. 図5,図6の発電機についての磁場解析によるコイル電圧、鎖交磁束の立ち上がり波形を示すグラフである。It is a graph which shows the rising waveform of the coil voltage and linkage flux by the magnetic field analysis about the generator of FIG. 5, FIG. 同発電機の磁場解析による磁束の状態の説明図である。It is explanatory drawing of the state of the magnetic flux by the magnetic field analysis of the generator. 同磁場解析による磁束の他の状態の説明図である。It is explanatory drawing of the other state of the magnetic flux by the same magnetic field analysis.

この発明の第1の実施形態を図1ないし図3と共に説明する。図1は、この発電機の発電機本体1の破断正面図、並びに着磁手段2および外部負荷3の電気回路図を組み合わせた説明図である。図2は、同図の発電機本体1を直線状に描いた模式図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram combining a broken front view of a generator main body 1 of this generator and an electric circuit diagram of a magnetizing means 2 and an external load 3. FIG. 2 is a schematic diagram in which the generator main body 1 of FIG.

図1おいて、この発電機は、発電機本体1が、環状のステータ4と、このステータ4の内側にステータ4の中心周りで回転自在に設置されたロータ5とで構成される。ステータ4は出力鉄心6と出力巻線7とからなる。この実施形態は2極発電機に適用した例であり、出力鉄心6は、円環状のヨーク部6aの円周方向2箇所に、内側へ突出する歯状の磁極部6bが形成されている。各磁極部6bに前記出力巻線7が巻かれている。各磁極部6bの出力巻線7は、図2に示すように、出力鉄心6の隣り合う磁極部6bの内径側を向く磁極面に互いに異なる磁極が現れるように直列に接続されている。出力巻線7の両端が端子7a,7bとなり、これら端子7a,7bに図1のように外部負荷3を接続し、発電機から電流を外部に取り出す。   In FIG. 1, the generator includes a generator main body 1 that includes an annular stator 4 and a rotor 5 that is installed inside the stator 4 so as to be rotatable around the center of the stator 4. The stator 4 includes an output iron core 6 and an output winding 7. This embodiment is an example applied to a two-pole generator, and the output iron core 6 is formed with tooth-shaped magnetic pole portions 6b protruding inward at two locations in the circumferential direction of an annular yoke portion 6a. The output winding 7 is wound around each magnetic pole portion 6b. As shown in FIG. 2, the output windings 7 of the magnetic pole portions 6 b are connected in series so that different magnetic poles appear on the magnetic pole surfaces facing the inner diameter side of the adjacent magnetic pole portions 6 b of the output iron core 6. Both ends of the output winding 7 become terminals 7a and 7b, and an external load 3 is connected to these terminals 7a and 7b as shown in FIG. 1, and current is taken out from the generator.

ロータ5は、界磁鉄心8と、この界磁鉄心8に巻かれた主界磁巻線9および副界磁巻線10とからなる。界磁鉄心8は、中心孔を有する鉄心本体8aの外周に、外径側へ突出する複数の歯状の磁極部8bが円周方向に並んで設けられている。この磁極部8bは、出力鉄心6の一つの磁極部6bに対してそれぞれ3つずつ設けられている。主界磁巻線9は、隣合う2つの磁極部8b,8bに渡って巻かれ、この2つの磁極部8b,8bに渡って巻かれた各主界磁巻線9は、2つ一組となった隣合う磁極組同士の磁極面に異なる磁極が現れるように直列に接続されている。副界磁巻線10は、主界磁巻線9と一つの磁極部8bの分だけ位相をずらせて、主界磁巻線9と同様に、隣合う2つの磁極部8b,8bに渡って巻かれている。この2つの磁極部8b,8bに渡って巻かれた各副界磁巻線10は、2つ一組となった隣合う磁極組同士の磁極面に異なる磁極が現れるように直列に接続されている。主界磁巻線9および副界磁巻線10の各直列接続体の両端の端子を、それぞれ符号9a,9b,10a,10bで図2に示す。   The rotor 5 includes a field iron core 8, a main field winding 9 and a sub-field winding 10 wound around the field iron core 8. The field iron core 8 is provided with a plurality of tooth-shaped magnetic pole portions 8b protruding in the circumferential direction on the outer periphery of an iron core body 8a having a center hole. Three magnetic pole portions 8 b are provided for each magnetic pole portion 6 b of the output iron core 6. The main field winding 9 is wound around two adjacent magnetic pole portions 8b and 8b, and each main field winding 9 wound around the two magnetic pole portions 8b and 8b is a set of two. The adjacent magnetic pole groups are connected in series so that different magnetic poles appear on the magnetic pole surfaces. The sub-field winding 10 is shifted in phase by the amount of the main field winding 9 and one magnetic pole portion 8b, and is spread over two adjacent magnetic pole portions 8b and 8b in the same manner as the main field winding 9. It is rolled up. The subfield windings 10 wound around the two magnetic pole portions 8b and 8b are connected in series so that different magnetic poles appear on the magnetic pole surfaces of adjacent magnetic pole pairs that are in pairs. Yes. Terminals at both ends of each series connection body of the main field winding 9 and the sub field winding 10 are shown in FIG. 2 by reference numerals 9a, 9b, 10a, and 10b, respectively.

図3に示すように、主界磁巻線9には並列に整流素子11が接続され、主界磁巻線9には整流素子11が流すことができる向きの電流が流れる。副界磁巻線10は主界磁巻線9と直列に接続され、かつ直列に整流素子12が接続され、副界磁巻線10には主界磁巻線9と同じ方向の電流のみが流れる。図中の矢印は電流の流れる方向を示す。   As shown in FIG. 3, a rectifying element 11 is connected in parallel to the main field winding 9, and a current in a direction that allows the rectifying element 11 to flow flows through the main field winding 9. The subfield winding 10 is connected in series with the main field winding 9, and a rectifying element 12 is connected in series, and only current in the same direction as the main field winding 9 is supplied to the subfield winding 10. Flowing. The arrows in the figure indicate the direction of current flow.

この発電機は、このような副界磁巻線10を有する構成の自励型の発電機において、図1に示すように、出力巻線7に、スイッチング手段13を介して着磁用電源14が外部負荷3と並列に接続されている。前記着磁用電源14とスイッチング手段13とで前記着磁手段2が構成される。スイッチング手段13は、半導体スイッチッング素子または有接点のスイッチが用いられる。着磁用電源14は2次電池またはコンデンサ等の蓄電手段である。外部負荷3が2次電池の場合は、それを着磁用電源として用いても良い。   This generator is a self-excited generator having such a subfield winding 10, and as shown in FIG. 1, a magnetizing power supply 14 is connected to an output winding 7 via a switching means 13. Are connected in parallel with the external load 3. The magnetizing means 2 is constituted by the magnetizing power source 14 and the switching means 13. The switching means 13 is a semiconductor switching element or a contact switch. The magnetizing power source 14 is a storage means such as a secondary battery or a capacitor. When the external load 3 is a secondary battery, it may be used as a magnetizing power source.

着磁をするには、所定の大きさの電流を極短時間流せば良い。着磁の程度は、発電の開始のための初期励磁に必要な残留磁気が得られる程度で良く、電流の大きさとスイッチング手段13のオン時間とで定められる。スイッチング手段13の開閉操作は、開閉制御手段15によって行われる。開閉制御手段15は、例えば、ロータ5の回転を検出する回転検出手段16の検出信号を監視し、ロータ5が静止状態から回転を開始したことが検出されると、スイッチング手段13を着磁に必要な設定時間だけオンさせる。なお、ロータ5の回転の停止時間が短い場合は残留磁気が十分に残っているため、開閉制御手段15は、設定時間以上のロータ5の停止の後に回転を開始した場合のみスイッチング手段13をオンさせるなど、設定条件に従ってスイッチング手段13をオンさせるように制御としても良い。また、所定の回転数になっても発電を開始しない時だけ着磁をするようにしてもよいし、所定の時間ごとに発電機の回転が停止しているときに着磁をしてもよい。   In order to magnetize, a current of a predetermined magnitude may be passed for a very short time. The degree of magnetization may be such that residual magnetism necessary for initial excitation for the start of power generation is obtained, and is determined by the magnitude of current and the ON time of the switching means 13. The opening / closing operation of the switching means 13 is performed by the opening / closing control means 15. For example, the opening / closing control means 15 monitors the detection signal of the rotation detection means 16 that detects the rotation of the rotor 5. When it is detected that the rotor 5 has started rotating from a stationary state, the switching means 13 is magnetized. Turn it on only for the required setting time. When the rotation stop time of the rotor 5 is short, sufficient residual magnetism remains, so that the opening / closing control means 15 turns on the switching means 13 only when the rotation starts after the rotor 5 stops for a set time or longer. For example, the switching unit 13 may be turned on according to the set conditions. Further, the magnetizing may be performed only when the power generation is not started even when the predetermined rotational speed is reached, or the magnetizing may be performed when the rotation of the generator is stopped every predetermined time. .

図1の実施形態では出力巻線7に着磁用電源14を接続したが、図4に示すように、界磁巻線9,10にスイッチング手段13を介して着磁用電源14を接続しても良い。この例の場合も、着磁用電源14は2次電池またはコンデンサである。着磁をするには、所定の大きさの電流を極短時間流せば良い。スイッチング手段13は、図1の実施形態と同様に開閉制御手段15で開閉制御される。   In the embodiment of FIG. 1, the magnetizing power source 14 is connected to the output winding 7. However, as shown in FIG. 4, the magnetizing power source 14 is connected to the field windings 9 and 10 via the switching means 13. May be. Also in this example, the magnetizing power source 14 is a secondary battery or a capacitor. In order to magnetize, a current of a predetermined magnitude may be passed for a very short time. The switching means 13 is controlled to be opened and closed by the opening / closing control means 15 as in the embodiment of FIG.

第1の実施形態の動作を説明する。ロータ5が回転し発電を行っている場合の動作を説明する。図3に示すように、主界磁巻線9には並列に整流素子11が接続されているため、主界磁巻線9には整流素子11が流すことができる向きの電流が流れる。そのため、主界磁巻線9に流すことができる電流によって決まる向きの磁束が発生する。また、電磁誘導により、電流がつくる磁束と同方向の磁束の減少を妨げる向きに電流が流れるが、磁束が増えるのを阻止する向きには電流は流れない。そのため、磁束の減少は妨げられるが、磁束の増加は妨げられない。副界磁巻線10には直列に整流素子12が接続され、主界磁巻線9と同じ方向の電流のみが流れる。   The operation of the first embodiment will be described. The operation when the rotor 5 is rotating and generating power will be described. As shown in FIG. 3, since the rectifying element 11 is connected in parallel to the main field winding 9, a current in a direction that allows the rectifying element 11 to flow flows through the main field winding 9. Therefore, a magnetic flux having a direction determined by a current that can be passed through the main field winding 9 is generated. In addition, due to electromagnetic induction, a current flows in a direction that prevents a decrease in magnetic flux in the same direction as a magnetic flux generated by the current, but a current does not flow in a direction that prevents an increase in magnetic flux. Therefore, the decrease of the magnetic flux is prevented, but the increase of the magnetic flux is not prevented. A rectifying element 12 is connected in series to the sub-field winding 10, and only a current in the same direction as the main field winding 9 flows.

出力鉄心6または界磁鉄心8の残留磁気により、主界磁巻線9に電流が流れる。この電流により主界磁巻線9がつくる磁束により副界磁巻線10に鎖交する磁束が変化して、副界磁巻線10に電圧が発生する。この電圧で副界磁巻線10が主界磁巻線9を介して電流を供給し、主界磁巻線9に流れる電流を増加させる。副界磁巻線10に電圧が誘起されずに電流を供給していない時、主界磁巻線9には整流子11を通して還流電流が流れ、主界磁巻線9の磁束を維持する。主界磁巻線9に電流が供給され、主界磁巻線9がつくる磁束が大きくなるので、副界磁巻線10に鎖交する磁束も大きくなり、さらに大きい電流が主界磁巻線9に供給される。このように、主界磁巻線9の電流が次第に増加し、発電に必要な界磁磁束がつくられる。出力鉄心6と界磁鉄心8の相対運動により、出力巻線7の鎖交磁束が変化して電圧が発生する。   Current flows through the main field winding 9 due to the residual magnetism of the output iron core 6 or the field iron core 8. With this current, the magnetic flux generated by the main field winding 9 changes the magnetic flux linked to the sub field winding 10, and a voltage is generated in the sub field winding 10. With this voltage, the sub-field winding 10 supplies a current through the main field winding 9 and increases the current flowing through the main field winding 9. When no voltage is induced in the subfield winding 10 and no current is supplied, a return current flows through the commutator 11 in the main field winding 9 to maintain the magnetic flux of the main field winding 9. Since the current is supplied to the main field winding 9 and the magnetic flux generated by the main field winding 9 is increased, the magnetic flux linked to the subfield winding 10 is also increased, and a larger current is supplied to the main field winding 9. 9 is supplied. In this manner, the current in the main field winding 9 gradually increases, and a field magnetic flux necessary for power generation is created. Due to the relative motion of the output iron core 6 and the field iron core 8, the flux linkage of the output winding 7 changes to generate a voltage.

上記のように、ロータ5が回転を行っている間に発電を行うが、ロータ5がある程度長い時間を停止していると、出力鉄心6および界磁鉄心8のいずれにも残留磁気がなく、または残留磁気が不十分であって、発電を開始できない。そこで、この実施形態では、ロータ5の停止後の回転の開始時に、着磁手段2のスイッチング手段13をオンにして着磁用電源14から出力巻線7に着磁電流を流し、出力鉄心6を着磁する。磁束は前記のように回転を続けると次第に大きくなるため、着磁の程度は、発電の開始のための初期励磁に必要な残留磁気が得られる程度で良い。そのため、着磁をするには、所定の大きさの電流を極短時間流せば良い。この着磁により、ロータ5の長時間の停止後にも、回転の再開により発電が確実に開始される。   As described above, power is generated while the rotor 5 is rotating. However, if the rotor 5 is stopped for a long time to some extent, there is no residual magnetism in either the output iron core 6 or the field iron core 8, Alternatively, the residual magnetism is insufficient and power generation cannot be started. Therefore, in this embodiment, at the start of the rotation after the rotor 5 is stopped, the switching means 13 of the magnetizing means 2 is turned on to pass a magnetizing current from the magnetizing power supply 14 to the output winding 7, and the output iron core 6. Magnetize. Since the magnetic flux gradually increases as the rotation continues as described above, the degree of magnetization may be such that the residual magnetism necessary for the initial excitation for the start of power generation is obtained. For this reason, in order to magnetize, a current of a predetermined magnitude may be passed for a very short time. By this magnetization, even after the rotor 5 is stopped for a long time, power generation is reliably started by resuming the rotation.

図4の実施形態の場合は、ロータ5の停止後の回転の開始時に、着磁手段2のスイッチング手段13をオンにして着磁用電源14から主界磁巻線8に着磁電流を流し、界磁鉄心8を着磁する。このように界磁鉄心8を着磁した場合も、ロータ5の長時間の停止後にも、発電が開始される。   In the case of the embodiment of FIG. 4, at the start of the rotation after the rotor 5 is stopped, the switching means 13 of the magnetizing means 2 is turned on to pass a magnetizing current from the magnetizing power supply 14 to the main field winding 8. The field iron core 8 is magnetized. Even when the field core 8 is magnetized in this way, power generation is started even after the rotor 5 has been stopped for a long time.

これら第1の実施形態および図4の構成の発電機によると、次の利点が得られる。主界磁巻線9を用いて励磁を行う自励式であるため、永久磁石や、外部からの他励のための給電を行う外部電源を必要とせずに発電が行える。永久磁石を用いないため、コギングトルクが発生せず、小さなトルクでロータ5を回転させることができる。自励式であるが、発電の初期励磁に必要な磁力を発生することが可能な程度に、発電機のいずれかの鉄心を着磁する着磁手段2を設けたため、回転の停止後や分解保守の後であっても、また低速回転であっても、確実に発電を開始することができる。前記着磁手段2は必要となるが、この着磁手段2は発電の初期励磁に必要な磁力を発生することが可能な程度に着磁を行えるものであれば足りるため、他励式の発電機における外部電源に比べて飛躍的に小型のもので済む。   According to the first embodiment and the generator configured as shown in FIG. 4, the following advantages are obtained. Since it is a self-excited type that performs excitation using the main field winding 9, power generation can be performed without the need for a permanent magnet or an external power source that supplies power for external excitation from the outside. Since no permanent magnet is used, no cogging torque is generated and the rotor 5 can be rotated with a small torque. Although it is self-excited, the magnetizing means 2 for magnetizing one of the iron cores of the generator is provided to such an extent that it can generate the magnetic force required for the initial excitation of power generation. Even after or after low speed rotation, power generation can be started reliably. Although the magnetizing means 2 is necessary, the magnetizing means 2 is sufficient if it can be magnetized to such an extent that it can generate a magnetic force necessary for initial excitation of power generation. Compared to an external power source in, it can be much smaller.

なお、上記実施形態では、ステータ4側を出力鉄心6、ロータ5側を界磁鉄心8としたが、これとは逆にステータ4側を界磁鉄心9,10とし、ロータ5側を出力鉄心6としても良い。また上記実施形態では2極発電機としたが、4極、8極、16極など、多極の発電機としても良い。   In the above-described embodiment, the stator 4 side is the output iron core 6 and the rotor 5 side is the field iron core 8. Conversely, the stator 4 side is the field iron cores 9 and 10, and the rotor 5 side is the output iron core. 6 is also acceptable. In the above embodiment, a two-pole generator is used, but a multi-pole generator such as a 4-pole, 8-pole, or 16-pole generator may be used.

図5は、ステータ4側を界磁鉄心8とし、ロータ5側を出力鉄心6とし、4極発電機とした例を示す。原理は第1の実施形態と同様であるため、対応部分に同一符号を付してその説明を省略する。また、着磁手段については図示を省略している。
図6に示すように、ロータ5は、シャフト21に取付けられ、シャフト21と共にフレーム22に対して軸受23により回転自在に支持されている。ステータ4はフレーム22に固定されている。ロータ5の出力巻線は、スリップリング24とブラシ25とを介して固定側に取り出されている。
FIG. 5 shows an example in which the stator 4 side is a field iron core 8 and the rotor 5 side is an output iron core 6 to form a quadrupole generator. Since the principle is the same as that of the first embodiment, the same reference numerals are assigned to the corresponding parts and the description thereof is omitted. Further, the illustration of the magnetizing means is omitted.
As shown in FIG. 6, the rotor 5 is attached to the shaft 21 and is rotatably supported by a bearing 23 with respect to the frame 22 together with the shaft 21. The stator 4 is fixed to the frame 22. The output winding of the rotor 5 is taken out to the fixed side via the slip ring 24 and the brush 25.

図7〜図9に、図5,図6の構成の発電機について試作および磁場解析を行った結果を示す。
図7は、磁場解析によるコイル電圧、鎖交磁束の立ち上がり波形を示す。同図から、メインコイルの鎖交磁束が徐々に増加していく状態が分かる。なお、同図における「メインコイル」は、実施形態で言う「主界磁巻線9」であり、「サブコイル」は実施形態で言う「副界磁巻線10」である。また、「ロータコイル」は「出力巻線7」である。
図8,図9から、ロータ5の回転による各部の磁束密度の変化が分かる。
7 to 9 show the results of trial manufacture and magnetic field analysis of the generator having the configuration shown in FIGS.
FIG. 7 shows the rising waveforms of the coil voltage and the linkage flux by magnetic field analysis. From this figure, it can be seen that the linkage flux of the main coil gradually increases. The “main coil” in the same figure is the “main field winding 9” referred to in the embodiment, and the “subcoil” is the “sub field winding 10” referred to in the embodiment. The “rotor coil” is “output winding 7”.
From FIGS. 8 and 9, the change in the magnetic flux density of each part due to the rotation of the rotor 5 can be seen.

1…発電機本体
2…着磁手段
3…外部負荷
4…ステータ
5…ロータ
6…出力鉄心
6a…ヨーク部
6b…磁極部
7…出力巻線
8…界磁鉄心
8a…鉄心本体
8b…磁極部
9…主界磁巻線
10…副界磁巻線
11…整流素子
12…整流素子
13…スイッチング手段
14…着磁用電源
15…開閉制御手段
16…回転検出手段
DESCRIPTION OF SYMBOLS 1 ... Generator main body 2 ... Magnetization means 3 ... External load 4 ... Stator 5 ... Rotor 6 ... Output iron core 6a ... Yoke part 6b ... Magnetic pole part 7 ... Output winding 8 ... Field iron core 8a ... Iron core main body 8b ... Magnetic pole part DESCRIPTION OF SYMBOLS 9 ... Main field winding 10 ... Sub field winding 11 ... Rectification element 12 ... Rectification element 13 ... Switching means 14 ... Magnetizing power supply 15 ... Opening / closing control means 16 ... Rotation detection means

Claims (5)

出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記ステータとロータとの相対回転により発電電力を得る自励式の発電機において、 発電の初期励磁に必要な磁力を発生することが可能な程度に、前記出力鉄心および界磁鉄心のいずれか一方または両方の鉄心を着磁する着磁手段を設けたことを特徴とする発電機。   One of the output core wound with the output winding and the field core wound with the main field winding and the sub field winding is the stator, and the other is the rotor. In the self-excited generator that is connected to the stator and obtains generated electric power by relative rotation between the stator and the rotor, the output iron core and the field iron core are produced to such an extent that a magnetic force necessary for initial excitation of electric power generation can be generated. A generator having magnetizing means for magnetizing one or both of the iron cores. 請求項1に記載の発電機において、前記着磁手段が、前記出力巻線または前記いずれかの界磁巻線に着磁用電流を通電する構成である発電機。   The generator according to claim 1, wherein the magnetizing means is configured to pass a magnetizing current through the output winding or any one of the field windings. 請求項2に記載の発電機において、前記着磁用電流は直流電流である発電機。   The generator according to claim 2, wherein the magnetizing current is a direct current. 請求項2に記載の発電機において、前記着磁用電流はパルス状の電流である発電機。   The generator according to claim 2, wherein the magnetizing current is a pulsed current. 請求項2ないし請求項4のいずれか1項に記載の発電機において、前記着磁手段は、2次電池またはコンデンサからなる着磁用電源と、前記着磁用電流を通電する前記出力巻線または界磁巻線と前記着磁用電源との間に介在させたスイッチング手段とでなる発電機。
The generator according to any one of claims 2 to 4, wherein the magnetizing means includes a magnetizing power source comprising a secondary battery or a capacitor, and the output winding for energizing the magnetizing current. Or the generator which consists of a switching means interposed between the field winding and the said magnetizing power supply.
JP2014150442A 2014-07-24 2014-07-24 Power generator Pending JP2016025811A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014150442A JP2016025811A (en) 2014-07-24 2014-07-24 Power generator
CN201580039574.2A CN106537758A (en) 2014-07-24 2015-07-16 Generator
PCT/JP2015/070375 WO2016013477A1 (en) 2014-07-24 2015-07-16 Generator
EP15825372.4A EP3174194A4 (en) 2014-07-24 2015-07-16 Generator
US15/412,677 US20170133916A1 (en) 2014-07-24 2017-01-23 Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150442A JP2016025811A (en) 2014-07-24 2014-07-24 Power generator

Publications (1)

Publication Number Publication Date
JP2016025811A true JP2016025811A (en) 2016-02-08

Family

ID=55272142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150442A Pending JP2016025811A (en) 2014-07-24 2014-07-24 Power generator

Country Status (1)

Country Link
JP (1) JP2016025811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067086A (en) * 2018-09-10 2018-12-21 罗中岭 A kind of Micropower generating device
CN110050403A (en) * 2016-10-04 2019-07-23 霍尔科姆科学研究有限公司 Solid-state multipole and homopolar generator rotor for AC/DC generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050403A (en) * 2016-10-04 2019-07-23 霍尔科姆科学研究有限公司 Solid-state multipole and homopolar generator rotor for AC/DC generator
CN110050403B (en) * 2016-10-04 2021-11-12 霍尔科姆科学研究有限公司 Solid state multi-pole and single pole generator rotor for AC/DC generator
CN109067086A (en) * 2018-09-10 2018-12-21 罗中岭 A kind of Micropower generating device
CN109067086B (en) * 2018-09-10 2023-08-22 罗中岭 Micro-power generating device

Similar Documents

Publication Publication Date Title
JP6332011B2 (en) Axial gap type rotating electrical machine
US9318937B2 (en) Flux controlled PM electric machine rotor
JP5216686B2 (en) Permanent magnet generator
CN107196477B (en) Rotating electric machine
JP2013055789A (en) Motor generator
US20140368075A1 (en) Permanent magnet synchronous machines with magnetic flux regulation
EP2833526B1 (en) Electrical power motor-generator excited by magnetic transference
KR101238855B1 (en) Double air gap type generator
JP2016025811A (en) Power generator
WO2016013477A1 (en) Generator
JP2016019327A (en) Driving device for synchronous motor
US8258667B2 (en) Reverse electromotive force generating motor
US20070132333A1 (en) Self magnetizing motor and method for winding coils on stator thereof
WO2019098341A1 (en) Brushless synchronous generator
JP2016169711A (en) Wind turbine for wind power generation and wind power generator
JP2017050945A (en) Rotary electric machine
US20070132332A1 (en) Self magnetizing motor and method for winding coils on stator thereof
JP2002078306A (en) Magnet field system rotating type dynamo-electric machine
JP2016039747A (en) Generator for wind power generation
JP2016067128A (en) Generator
JP2016025815A (en) Power generator
JP6444677B2 (en) Generator
JP6396146B2 (en) Generator
JP6444676B2 (en) Generator
JP2016140216A (en) Electric generator