JP2016169439A - Copper terminal material with tin plating, manufacturing method therefor and wire terminal part structure - Google Patents

Copper terminal material with tin plating, manufacturing method therefor and wire terminal part structure Download PDF

Info

Publication number
JP2016169439A
JP2016169439A JP2016034562A JP2016034562A JP2016169439A JP 2016169439 A JP2016169439 A JP 2016169439A JP 2016034562 A JP2016034562 A JP 2016034562A JP 2016034562 A JP2016034562 A JP 2016034562A JP 2016169439 A JP2016169439 A JP 2016169439A
Authority
JP
Japan
Prior art keywords
tin
layer
nickel
zinc
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016034562A
Other languages
Japanese (ja)
Other versions
JP6740635B2 (en
Inventor
賢治 久保田
Kenji Kubota
賢治 久保田
圭栄 樽谷
Yoshie Tarutani
圭栄 樽谷
中矢 清隆
Kiyotaka Nakaya
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2016169439A publication Critical patent/JP2016169439A/en
Application granted granted Critical
Publication of JP6740635B2 publication Critical patent/JP6740635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a terminal material without generating electric corrosion by using copper or a copper alloy substrate as a terminal crimped to a terminal of a wire consisting of an aluminum wire material.SOLUTION: A ground layer consisting of nickel or a nickel alloy, a nickel tin zinc alloy layer and a tin layer are laminated on a substrate consisting of copper or a copper alloy in this order. The nickel tin zinc alloy layer has thickness of 0.13 μm to 1 μm, and contains nickel of 15 at% to 60 at%, zinc of 10 at% to 60 at% and the balance tin.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム線材からなる電線の端末に圧着される端子として用いられ、銅又は銅合金基材の表面に錫又は錫合金からなるめっきを施した錫めっき付銅端子材及びその製造方法並びに電線端末部構造に関する。   The present invention is used as a terminal to be crimped to an end of an electric wire made of an aluminum wire, and has a tin-plated copper terminal material in which the surface of a copper or copper alloy base material is plated with tin or a tin alloy, its manufacturing method, and The present invention relates to a wire terminal part structure.

従来、銅又は銅合金で構成されている電線の端末部に、銅又は銅合金で構成された端子を圧着し、この端子を別の機器の端子に接続することにより、その電線を上記別の機器に接続することが行われている。また、電線の軽量化等のために、電線を、銅又は銅合金に代えて、アルミニウム又はアルミニウム合金で構成している場合がある。
例えば、特許文献1には、アルミニウム合金からなる自動車ワイヤーハーネス用アルミ電線が開示されている。
Conventionally, by crimping a terminal made of copper or a copper alloy to the terminal part of an electric wire made of copper or a copper alloy, and connecting the terminal to a terminal of another device, Connecting to equipment is done. Further, in order to reduce the weight of the electric wire, the electric wire may be made of aluminum or aluminum alloy instead of copper or copper alloy.
For example, Patent Document 1 discloses an aluminum wire for an automobile wire harness made of an aluminum alloy.

ところで、電線(導線)をアルミニウム又はアルミニウム合金で構成し、端子を銅又は銅合金で構成すると、水が圧着部(端子と電線との係合部)に入ったときに、異金属の電位差による電食が発生することがある。そして、その電線の腐食に伴い、圧着部での電気抵抗値の上昇や固着力(端子と電線との結合力)の低下が生ずるおそれがある。   By the way, when the electric wire (conducting wire) is made of aluminum or an aluminum alloy and the terminal is made of copper or a copper alloy, when water enters the crimping portion (engagement portion between the terminal and the electric wire), it depends on the potential difference between different metals. Electrical corrosion may occur. And with the corrosion of the electric wire, there is a risk that an increase in the electric resistance value at the crimping portion and a decrease in the adhering force (bonding force between the terminal and the electric wire) may occur.

この腐食の防止法としては、例えば特許文献2や特許文献3記載のものがある。
特許文献2には、第1の金属材料で構成された地金部と、第1の金属材料よりも標準電極電位の値が小さい第2の金属材料で構成され、地金部の表面の少なくとも一部にめっきで薄く設けられた中間層と、第2の金属材料よりも標準電極電位の値が小さい第3の金属材料で構成され、中間層の表面の少なくとも一部にめっきで薄く設けられた表面層とを有する端子が開示されている。第1の金属材料として銅又はこの合金、第2の金属材料として鉛又はこの合金、あるいは錫又はこの合金、ニッケル又はこの合金、亜鉛又はこの合金が記載されており、第3の金属材料としてはアルミニウム又はこの合金が記載されている。
Examples of methods for preventing this corrosion include those described in Patent Document 2 and Patent Document 3.
Patent Document 2 includes a metal part made of a first metal material and a second metal material having a standard electrode potential value smaller than that of the first metal material, and at least a surface of the metal part. It is composed of an intermediate layer that is thinly provided by plating and a third metal material having a standard electrode potential smaller than that of the second metal material, and is thinly provided by plating on at least a part of the surface of the intermediate layer. A terminal having a surface layer is disclosed. The first metal material is copper or an alloy thereof, the second metal material is lead or an alloy thereof, tin or an alloy thereof, nickel or an alloy thereof, zinc or an alloy thereof, and the third metal material is Aluminum or its alloys are described.

特許文献3には、被覆電線の端末領域において、端子金具の一方端に形成されるかしめ部が被覆電線の被覆部分の外周に沿ってかしめられ、少なくともかしめ部の端部露出領域及びその近傍領域の全外周をモールド樹脂により完全に覆ってなるワイヤーハーネスの端末構造が開示されている。   In Patent Document 3, in the terminal region of the covered electric wire, the caulking portion formed at one end of the terminal metal fitting is caulked along the outer periphery of the covering portion of the covered electric wire, and at least the end exposed region of the caulking portion and the vicinity thereof A wire harness terminal structure is disclosed in which the entire outer periphery of the wire harness is completely covered with a mold resin.

特開2004−134212号公報JP 2004-134212 A 特開2013−33656号公報JP 2013-33656 A 特開2011−222243号公報JP 2011-222243 A

しかしながら、特許文献3記載の構造では腐食は防げるものの、樹脂モールド工程の追加により製造コストが増大し、さらに、樹脂による端子断面積増加によりワイヤーハーネスの小型化が妨げられるという問題があり、特許文献2記載の第3の金属材料であるアルミニウム系めっきを実施するためにはイオン性液体などを用いるため、非常にコストがかかるという問題があった。   However, although the structure described in Patent Document 3 can prevent corrosion, there is a problem that the manufacturing cost increases due to the addition of the resin molding process, and further, the miniaturization of the wire harness is hindered by the increase of the terminal cross-sectional area due to the resin. In order to carry out the aluminum-based plating that is the third metal material described in 2, an ionic liquid or the like is used, which causes a problem that it is very expensive.

ところで、銅又は銅合金の基材上に錫めっきをしてリフロー処理してなる錫めっき端子材を用いることが多い。この錫めっき端子材をアルミニウム製電線に圧着する場合、錫とアルミニウムとは腐食電位が近いため電食を生じ難いはずであるが、塩水などが圧着部に付着すると電食が生じる。   By the way, in many cases, a tin-plated terminal material obtained by subjecting a copper or copper alloy base material to tin plating and reflow treatment is used. When this tin-plated terminal material is crimped to an aluminum electric wire, it should be difficult to cause electrolytic corrosion because tin and aluminum have close corrosion potentials, but electrolytic corrosion occurs when salt water or the like adheres to the crimping portion.

本発明は、前述の課題に鑑みてなされたものであって、アルミニウム線材からなる電線の端末に圧着される端子として銅又は銅合金基材を用いて電食の生じない端子材を提供することを目的とする。   This invention is made in view of the above-mentioned subject, Comprising: As a terminal crimped | bonded to the terminal of the electric wire which consists of aluminum wires, the terminal material which does not produce electrolytic corrosion using a copper or copper alloy base material is provided. With the goal.

発明者らは、錫めっき端子材の電食について鋭意研究した結果、塩水による腐食作用で表面の錫又は錫合金からなる層(以下、これを錫層という)が速やかに消失し、下層の銅錫合金層が露出するため電食が生じることが分かった。この銅錫合金層の腐食電位は銅に近いため、高い電位差が生じてアルミニウムが優先的に腐食してしまう。
そこで、銅錫合金層に代えて、アルミニウムと腐食電位が近い合金層を形成することにより、錫層が消失しても電食の発生を抑えることができるようにした。
As a result of earnest research on the electrolytic corrosion of the tin-plated terminal material, the inventors quickly disappeared a layer made of tin or a tin alloy on the surface (hereinafter referred to as a tin layer) due to the corrosive action of salt water, and the lower layer copper It was found that electrolytic corrosion occurs because the tin alloy layer is exposed. Since the corrosion potential of the copper-tin alloy layer is close to that of copper, a high potential difference is generated and aluminum is preferentially corroded.
Therefore, instead of the copper-tin alloy layer, an alloy layer having a corrosion potential close to that of aluminum is formed, so that the occurrence of electrolytic corrosion can be suppressed even if the tin layer disappears.

すなわち、本発明の錫めっき付銅端子材は、銅又は銅合金からなる基材の上にニッケル又はニッケル合金からなる下地層、ニッケル錫亜鉛合金層、錫又は錫合金からなる錫層がこの順に積層されており、前記ニッケル錫亜鉛合金層は、厚みが0.13μm以上1μm以下であり、ニッケルが15at%以上60at%以下、亜鉛が10at%以上60at%以下含有し、残部が錫からなる。   That is, in the copper terminal material with tin plating of the present invention, the base layer made of nickel or nickel alloy, the nickel tin zinc alloy layer, and the tin layer made of tin or tin alloy are arranged in this order on the base material made of copper or copper alloy. The nickel tin zinc alloy layer is laminated and has a thickness of 0.13 μm or more and 1 μm or less, nickel is contained at 15 at% or more and 60 at% or less, zinc is contained at 10 at% or more and 60 at% or less, and the remainder is made of tin.

この錫めっき付銅端子材は、基材上の下地層と表面の錫層との間に、アルミニウムと腐食電位が比較的近いニッケル錫亜鉛合金層が形成されているので、錫層が消失してニッケル錫亜鉛合金層が露出したとしても、電食の発生を抑えることができる。   In this tin-plated copper terminal material, a nickel tin-zinc alloy layer having a relatively close corrosion potential to aluminum is formed between the base layer on the substrate and the tin layer on the surface, so that the tin layer disappears. Even if the nickel tin zinc alloy layer is exposed, the occurrence of electrolytic corrosion can be suppressed.

ニッケル錫亜鉛合金層の厚みが0.13μm未満では、錫層の消失後に下地層のニッケルが露出し易く、ニッケル層とアルミニウムとの間で電食を生じてしまい、厚みが1μmを超えるとプレス加工性が悪化するため好ましくない。ニッケル錫亜鉛合金層のニッケル含有量が15at%未満では、合金層の耐食性が悪化し塩水などの腐食環境に晒された際に合金層が速やかに腐食消失して下地層のニッケルが露出してアルミニウムとの間で電食を生じ易く、60at%を超えると当該合金層の腐食電位が貴になりアルミニウムとの電食を促進してしまう。また、亜鉛含有量が10at%未満では腐食電位が貴になりアルミニウムとの電食を促進し、60at%を超えると耐食性が悪化する。   If the thickness of the nickel tin zinc alloy layer is less than 0.13 μm, the nickel in the underlayer is easily exposed after the disappearance of the tin layer, and electrolytic corrosion occurs between the nickel layer and aluminum, and if the thickness exceeds 1 μm, the press Since workability deteriorates, it is not preferable. If the nickel content of the nickel-tin-zinc alloy layer is less than 15 at%, the corrosion resistance of the alloy layer deteriorates, and when exposed to a corrosive environment such as salt water, the alloy layer rapidly corrodes and the underlying nickel is exposed. Electrocorrosion is likely to occur with aluminum, and if it exceeds 60 at%, the corrosion potential of the alloy layer becomes noble and promotes electrolytic corrosion with aluminum. Further, when the zinc content is less than 10 at%, the corrosion potential becomes noble and promotes electrolytic corrosion with aluminum, and when it exceeds 60 at%, the corrosion resistance deteriorates.

本発明の錫めっき付銅端子材において、前記ニッケル錫亜鉛合金層のニッケル含有量は、前記基材側が高く、表面側が低く、さらに亜鉛含有量が表面側が低く、基材側が高くなっている。   In the copper terminal material with tin plating of the present invention, the nickel content of the nickel tin zinc alloy layer is high on the substrate side, low on the surface side, further low in zinc content on the surface side, and high on the substrate side.

このように、ニッケル錫亜鉛合金層のニッケル含有量を基材側で高く、表面側を低くする構造をとることで、錫層が腐食しニッケル錫亜鉛合金層が露出した場合においても、アルミニウムとの腐食電池の形成を抑えつつも、ニッケル錫亜鉛合金層の耐食性が高まり、銅または銅合金母材やニッケル又はニッケル合金めっき層が露出することを防ぐことができる。   Thus, by taking a structure in which the nickel content of the nickel tin zinc alloy layer is high on the substrate side and the surface side is low, even when the tin layer is corroded and the nickel tin zinc alloy layer is exposed, aluminum and The corrosion resistance of the nickel tin zinc alloy layer can be enhanced while the formation of the corrosion battery is prevented, and the exposure of the copper or copper alloy base material or the nickel or nickel alloy plating layer can be prevented.

具体的には、本発明の錫めっき付銅端子材において、前記ニッケル錫亜鉛合金層は、厚みが0.05μm以上でニッケルが25at%以上60at%以下、亜鉛が30at%以上60at%以下含有し、残部が錫からなる第1合金層と、厚みが0.08μm以上でニッケルが15at%以上40at%以下、亜鉛が10at%以上40at%以下含有し、残部が錫からなる第2合金層とが前記基材側から順に積層されている。   Specifically, in the tin-plated copper terminal material of the present invention, the nickel tin zinc alloy layer has a thickness of 0.05 μm or more, nickel of 25 at% to 60 at%, and zinc of 30 at% to 60 at%. A second alloy layer having a thickness of 0.08 μm or more, nickel of 15 at% to 40 at%, zinc of 10 at% to 40 at%, and a balance of tin. They are laminated in order from the substrate side.

さらにニッケル錫亜鉛合金層を上記のニッケル含有量と亜鉛含有量が段階的に異なる二層構造とすることで、より腐食電池の形成を抑えつつも耐食性を向上させることができる。すなわち、表面側の第2合金層はニッケルが15at%以上40at%を含みながらも第1合金層よりも亜鉛含有量が低いため耐食性が第1合金層よりも優れており、錫層が消失した際に合金層が腐食環境に晒されて速やかに消失することを防ぐことができる。さらに腐食が進み第2合金層に損傷が発生した際には、局部的な腐食の進行により下地の銅合金母材やニッケル又はニッケル合金めっき層が露出することがある。このとき、亜鉛が30at%以上60at%以下含有し、卑な腐食電位を示す第2合金層が犠牲アノードとなりアルミニウムとの電食の進行を抑えることができる。   Furthermore, by making the nickel tin zinc alloy layer have a two-layer structure in which the nickel content and the zinc content are stepwise different, the corrosion resistance can be improved while further suppressing the formation of the corrosion battery. That is, the second alloy layer on the surface side has nickel content of 15 at% or more and 40 at%, but the zinc content is lower than the first alloy layer, so the corrosion resistance is superior to the first alloy layer, and the tin layer disappears. In this case, it is possible to prevent the alloy layer from being rapidly lost by being exposed to a corrosive environment. When the corrosion further progresses and the second alloy layer is damaged, the underlying copper alloy base material or nickel or nickel alloy plating layer may be exposed due to the progress of local corrosion. At this time, the second alloy layer containing 30 at% or more and 60 at% or less of zinc and having a base corrosion potential serves as a sacrificial anode, and the progress of electrolytic corrosion with aluminum can be suppressed.

第1合金層の厚みが0.05μm未満では、第2合金層が損傷して第1合金層が露出した際に、当該第1合金層が速やかに腐食消滅してしまうため、電食を防止する効果が乏しくなる。ニッケル含有量は25at%未満では合金層の耐食性が悪化し、第1合金層が露出した際に速やかに腐食消滅してしまうため電食を防止する効果が乏しく、60at%を超えると腐食電位が貴となるため、犠牲アノードとなりアルミニウムとの電食の進行を防止することができない。亜鉛含有量は30at%未満では腐食電位が貴となるため犠牲アノードとなり、アルミニウムとの電食の進行を防止する効果が乏しく、60at%を超えると合金層の耐食性が悪化し、当該第1合金層が露出した際に速やかに腐食消滅してしまうため電食を防止する効果が乏しくなる。   If the thickness of the first alloy layer is less than 0.05 μm, when the second alloy layer is damaged and the first alloy layer is exposed, the first alloy layer is rapidly corroded to prevent electrolytic corrosion. The effect to do becomes poor. When the nickel content is less than 25 at%, the corrosion resistance of the alloy layer deteriorates, and when the first alloy layer is exposed, the corrosion disappears quickly, so the effect of preventing electrolytic corrosion is poor. Since it becomes noble, it becomes a sacrificial anode and cannot prevent the progress of electrolytic corrosion with aluminum. If the zinc content is less than 30 at%, the corrosion potential becomes noble and becomes a sacrificial anode, and the effect of preventing the progress of electrolytic corrosion with aluminum is poor. If it exceeds 60 at%, the corrosion resistance of the alloy layer deteriorates, and the first alloy When the layer is exposed, the corrosion disappears quickly, so that the effect of preventing electrolytic corrosion becomes poor.

第2合金層の厚みは0.08μm未満では、錫層が消失した際に第2合金層が腐食環境に晒されて速やかに消失してしまうため電食を抑える効果が乏しい。ニッケル含有量は15at%未満では耐食性が悪化し、錫層が消失した際に第2合金層が腐食環境に晒されて速やかに消失してしまうため電食を防止する効果が乏しくなり、40at%を超える場合は合金層の腐食電位が貴となりアルミニウムと腐食電池を形成するため電食を防止する効果が乏しくなる。第1合金層の亜鉛含有量は、10at%未満では合金層の腐食電位が貴となり、アルミニウムと腐食電池を形成するため電食を防止する効果が乏しくなり、40at%を超えると耐食性が悪化し、錫層が消失した際に合金層が腐食環境に晒されて速やかに消失してしまうため、電食を防止する効果が乏しい。   If the thickness of the second alloy layer is less than 0.08 μm, when the tin layer disappears, the second alloy layer is exposed to the corrosive environment and disappears quickly, so that the effect of suppressing electrolytic corrosion is poor. When the nickel content is less than 15 at%, the corrosion resistance deteriorates, and when the tin layer disappears, the second alloy layer is exposed to the corrosive environment and quickly disappears, so the effect of preventing electrolytic corrosion becomes poor, and 40 at% If it exceeds 1, the corrosion potential of the alloy layer becomes noble and forms a corrosion cell with aluminum, so the effect of preventing electrolytic corrosion becomes poor. If the zinc content of the first alloy layer is less than 10 at%, the corrosion potential of the alloy layer becomes noble and the effect of preventing electrolytic corrosion is poor because it forms a corrosion cell with aluminum, and if it exceeds 40 at%, the corrosion resistance deteriorates. When the tin layer disappears, the alloy layer is exposed to the corrosive environment and quickly disappears, so that the effect of preventing electrolytic corrosion is poor.

本発明の錫めっき付銅端子材において、前記錫層の上に、亜鉛濃度が20at%以上40at%以下で厚みがSiO換算で3nm以上30nm以下の金属亜鉛層が形成されているとよい。 In the copper terminal material with tin plating of the present invention, a metal zinc layer having a zinc concentration of 20 at% to 40 at% and a thickness of 3 nm to 30 nm in terms of SiO 2 may be formed on the tin layer.

金属亜鉛の腐食電位がアルミニウムと近いので、このごく薄い金属亜鉛層が表面に形成されていると、アルミニウム製電線と接触した場合の電食の発生をより有効に抑えることができる。金属亜鉛層の厚みがごく薄いため電気接続信頼性を損ねることもない。この場合、金属亜鉛層の亜鉛濃度は20at%未満では腐食電位を卑化する効果がなく、40at%を超えると接触抵抗が悪化する。金属亜鉛層のSiO換算厚みが3nm未満では腐食電位を卑化する効果がなく、30nmを超えると接触抵抗が悪化する。 Since the corrosion potential of metallic zinc is close to that of aluminum, if this very thin metallic zinc layer is formed on the surface, it is possible to more effectively suppress the occurrence of electrolytic corrosion when it comes into contact with an aluminum electric wire. Since the thickness of the metal zinc layer is very thin, the electrical connection reliability is not impaired. In this case, if the zinc concentration of the metal zinc layer is less than 20 at%, there is no effect of lowering the corrosion potential, and if it exceeds 40 at%, the contact resistance deteriorates. If the thickness of the metal zinc layer in terms of SiO 2 is less than 3 nm, there is no effect of lowering the corrosion potential, and if it exceeds 30 nm, the contact resistance is deteriorated.

本発明の錫めっき付銅端子材の製造方法は、銅又は銅合金からなる基材の表面にニッケル又はニッケル合金めっき層を0.1μm以上5μm以下の厚さで形成するニッケルめっき工程と、前記ニッケル又はニッケル合金めっき層の上に錫めっき層を0.3μm以上2.0μm以下の厚さで形成する錫めっき工程と、前記錫めっき層の上に亜鉛めっき層を0.05μm以上1.5μm以下の厚さで形成する亜鉛めっき工程と、該亜鉛めっき工程の後に230℃以上600℃以下の温度に加温して、ニッケル又はニッケル合金からなる下地層と、錫層と、これら下地層と錫層との間のニッケル錫亜鉛合金層とを形成する熱処理工程とを有する。   The method for producing a tin-plated copper terminal material of the present invention includes a nickel plating step of forming a nickel or nickel alloy plating layer on a surface of a base material made of copper or a copper alloy with a thickness of 0.1 μm or more and 5 μm or less, A tin plating step of forming a tin plating layer on the nickel or nickel alloy plating layer with a thickness of 0.3 μm or more and 2.0 μm or less; and a zinc plating layer on the tin plating layer of 0.05 μm or more and 1.5 μm A galvanizing step formed with the following thickness, and after the galvanizing step, heated to a temperature of 230 ° C. or more and 600 ° C. or less, an underlayer made of nickel or a nickel alloy, a tin layer, and these underlayers A heat treatment step of forming a nickel tin zinc alloy layer between the tin layer.

ニッケル又はニッケル合金めっき層は、厚さが0.1μm未満では、ニッケル量が不足し、所望のニッケル錫亜鉛合金層を形成することができない。一方、ニッケル又はニッケル合金めっき層の厚さが5μmを超えるとプレス時の曲げ加工によりめっき膜に割れが生じるため望ましくない。ニッケル又はニッケル合金めっき層の好ましい厚さは0.2μm以上0.6μm以下である。
錫めっき層は、厚さが0.3μm未満ではニッケル錫亜鉛合金層が表面に露出してしまい、端子の接触抵抗が悪化する。その厚さが2μmを超えるとプレス成型時に割れが発生しやすくなる。
亜鉛めっき層は、厚さが0.05μm未満では亜鉛が不足するため所望のニッケル錫亜鉛合金層を得ることができない。その厚さが1.5μmを超えると熱拡散処理時に厚い純亜鉛が最表層に残存し接触抵抗が悪化する。
めっき後の熱処理は、その温度が230℃未満では錫が十分に溶融しないため、所望のニッケル錫亜鉛合金層を得ることができない。一方、温度が600℃を超えていると拡散が過剰に進行し、ニッケル錫亜鉛合金層が多量に表面に露出して接触抵抗が悪化するため望ましくない。
When the thickness of the nickel or nickel alloy plating layer is less than 0.1 μm, the amount of nickel is insufficient, and a desired nickel tin zinc alloy layer cannot be formed. On the other hand, if the thickness of the nickel or nickel alloy plating layer exceeds 5 μm, the plating film is cracked by bending during pressing, which is not desirable. The preferred thickness of the nickel or nickel alloy plating layer is not less than 0.2 μm and not more than 0.6 μm.
When the thickness of the tin plating layer is less than 0.3 μm, the nickel tin zinc alloy layer is exposed on the surface, and the contact resistance of the terminal deteriorates. If the thickness exceeds 2 μm, cracks are likely to occur during press molding.
If the thickness of the galvanized layer is less than 0.05 μm, zinc is insufficient, so that a desired nickel tin zinc alloy layer cannot be obtained. When the thickness exceeds 1.5 μm, thick pure zinc remains in the outermost layer during the thermal diffusion treatment, and the contact resistance deteriorates.
In the heat treatment after plating, when the temperature is lower than 230 ° C., tin does not sufficiently melt, so that a desired nickel tin zinc alloy layer cannot be obtained. On the other hand, when the temperature exceeds 600 ° C., diffusion proceeds excessively, and a nickel tin zinc alloy layer is exposed on the surface in a large amount, so that contact resistance is deteriorated.

本発明の製造方法において、前記熱処理工程の温度が250℃以上350以下であると、錫層の表面に前述したごく薄い金属亜鉛層が形成され、さらに電食の発生を有効に抑えることができる。   In the production method of the present invention, when the temperature of the heat treatment step is 250 ° C. or more and 350 or less, the above-described very thin metal zinc layer is formed on the surface of the tin layer, and generation of electrolytic corrosion can be effectively suppressed. .

そして、本発明の錫めっき付銅端子材からなる端子がアルミニウム又はアルミニウム合金からなる電線の端末に圧着されている電線端末部構造とした。   And it was set as the electric wire terminal part structure where the terminal which consists of a copper terminal material with a tin plating of this invention was crimped | bonded to the terminal of the electric wire which consists of aluminum or an aluminum alloy.

本発明によれば、基材上の下地層と表面の錫層との間にニッケル錫亜鉛合金層を設けたので、錫層が消失した場合でもアルミニウム製電線との電食を防止して電気抵抗値の上昇や固着力の低下を抑制することができる。   According to the present invention, since the nickel tin zinc alloy layer is provided between the base layer on the base material and the tin layer on the surface, even when the tin layer disappears, the electric corrosion with the aluminum wire is prevented and the electric corrosion is prevented. An increase in resistance value and a decrease in fixing force can be suppressed.

本発明の錫めっき付銅端子材を模式的に示す断面図である。It is sectional drawing which shows typically the copper terminal material with a tin plating of this invention. 本発明の端子材が適用される端子の例を示す斜視図である。It is a perspective view which shows the example of the terminal to which the terminal material of this invention is applied. 図2の端子を圧着した電線の端末部を示す正面図である。It is a front view which shows the terminal part of the electric wire which crimped | bonded the terminal of FIG. 試料No.3の断面のエネルギー分散型X線分析による二次元組成マップ像である。Sample No. It is a two-dimensional composition map image by the energy dispersive X-ray analysis of 3 cross sections. 図4の矢印で示す範囲の線分析図である。FIG. 5 is a line analysis diagram of a range indicated by an arrow in FIG. 4. 試料10の表面部分におけるXPS分析による深さ方向の各元素の濃度分布図である。4 is a concentration distribution diagram of each element in a depth direction by XPS analysis in a surface portion of a sample 10. FIG. 試料10の深さ方向の化学状態解析図である。2 is a chemical state analysis diagram in the depth direction of a sample 10. FIG.

本発明の実施形態の錫めっき付銅端子材及びその製造方法を説明する。
本実施形態の錫めっき付銅端子材1は、図1に模式的に示したように、銅又は銅合金からなる基材2上にニッケル又はニッケル合金からなる下地層3、ニッケル錫亜鉛合金層4、錫層5がこの順に積層された構造であり、さらに、そのニッケル錫亜鉛合金層4がニッケル、錫、亜鉛の含有量が異なる第1合金層6、第2合金層7が順次積層された構造となっている。
そして、この錫層5の上にごく薄く金属亜鉛層8が形成されているのがより好ましい。
The copper terminal material with a tin plating of embodiment of this invention and its manufacturing method are demonstrated.
As schematically shown in FIG. 1, the tin-plated copper terminal material 1 of the present embodiment has a base layer 3 made of nickel or a nickel alloy on a base material 2 made of copper or a copper alloy, and a nickel tin zinc alloy layer. 4 and the tin layer 5 are laminated in this order, and the nickel tin zinc alloy layer 4 is further laminated in sequence with a first alloy layer 6 and a second alloy layer 7 having different contents of nickel, tin and zinc. It has a structure.
It is more preferable that the metal zinc layer 8 is formed very thin on the tin layer 5.

基材2は、銅又は銅合金からなるものであれば、特に、その組成が限定されるものではない。   If the base material 2 consists of copper or a copper alloy, the composition in particular will not be limited.

下地層3は、後述するように、基材2にニッケル又はニッケル合金めっき層、錫めっき層、亜鉛めっき層を順に形成した後、熱処理を施すことにより、ニッケル又はニッケル合金めっき層が残存して形成された層である。この下地層3の厚さは、0.1μm以上0.5μm以下が好ましい。   As will be described later, the base layer 3 is formed by sequentially forming a nickel or nickel alloy plating layer, a tin plating layer, and a zinc plating layer on the substrate 2, and then the heat treatment is performed to leave the nickel or nickel alloy plating layer. It is a formed layer. The thickness of the underlayer 3 is preferably 0.1 μm or more and 0.5 μm or less.

ニッケル錫亜鉛合金層4は、前述したニッケル又はニッケル合金めっき層、錫めっき層、亜鉛めっき層を形成して熱処理を施すことにより、下地層3と表面の錫層5との間に形成された合金層である。その全体としては、厚みが0.13μm以上1μm以下であり、ニッケルが15at%以上60at%以下、亜鉛が10at%以上60at%以下含有し、残部が錫からなる層である。   The nickel tin zinc alloy layer 4 was formed between the underlayer 3 and the surface tin layer 5 by forming the above-described nickel or nickel alloy plating layer, tin plating layer, and zinc plating layer and performing heat treatment. Alloy layer. As a whole, the thickness is 0.13 μm or more and 1 μm or less, nickel is contained in 15 at% or more and 60 at% or less, zinc is contained in 10 at% or more and 60 at% or less, and the balance is tin.

このニッケル錫亜鉛合金層4の厚みが0.13μm未満では、下地層3のニッケルと錫又はアルミニウムとの間で電食を生じ易く、厚みが1μmを超えるとプレス加工性が悪化するため好ましくない。ニッケル錫亜鉛合金層4のニッケル含有量が15at%未満では合金層の耐食性が悪化し、60at%を超えると腐食電位が貴になりアルミとの電食を促進する。また、亜鉛含有量が10at%未満では腐食電位が貴になりアルミニウムとの電食を促進し、60at%を超えると耐食性が悪化する。   If the thickness of the nickel tin zinc alloy layer 4 is less than 0.13 μm, it is easy to cause electrolytic corrosion between nickel and tin or aluminum of the underlayer 3. . When the nickel content of the nickel tin zinc alloy layer 4 is less than 15 at%, the corrosion resistance of the alloy layer is deteriorated, and when it exceeds 60 at%, the corrosion potential becomes noble and promotes electrolytic corrosion with aluminum. Further, when the zinc content is less than 10 at%, the corrosion potential becomes noble and promotes electrolytic corrosion with aluminum, and when it exceeds 60 at%, the corrosion resistance deteriorates.

また、このニッケル錫亜鉛合金層4は、前述したように二層からなる積層構造とされている。すなわち、厚みが0.05μm以上でニッケルが25at%以上60at%以下、亜鉛が30at%以上60at%以下含有し、残部が錫からなる第1合金層6と、厚みが0.08μm以上でニッケルが15at%以上40at%以下、亜鉛が10at%以上40at%以下含有し、残部が錫からなる第2合金層7が前記基材2側から順に積層されている。   Further, the nickel tin zinc alloy layer 4 has a laminated structure composed of two layers as described above. That is, the first alloy layer 6 having a thickness of 0.05 μm or more, nickel of 25 at% or more and 60 at% or less, zinc of 30 at% or more and 60 at% or less and the balance of tin, and a thickness of 0.08 μm or more of nickel The second alloy layer 7 containing 15 at% or more and 40 at% or less, zinc at 10 at% or more and 40 at% or less, and the balance being tin is laminated in order from the substrate 2 side.

錫層5は、前述した錫めっき層が熱処理によって形成された錫からなる層である。この錫層5の厚みは、0.2μm以上1.5μm以下が好ましく、薄過ぎるとはんだ濡れ性の低下、電気的接続信頼性の低下を招くおそれがあり、厚過ぎると、表面の動摩擦係数の増大を招き、コネクタ等での使用時の着脱抵抗が大きくなる傾向にある。この錫層5は、純錫が最も好ましいが、亜鉛、ニッケル、銅などの合金としてもよい。   The tin layer 5 is a layer made of tin in which the above-described tin plating layer is formed by heat treatment. The thickness of the tin layer 5 is preferably 0.2 μm or more and 1.5 μm or less. If the thickness is too thin, the solder wettability and the electrical connection reliability may be decreased. The increase in resistance tends to increase the attachment / detachment resistance during use with a connector or the like. The tin layer 5 is most preferably pure tin, but may be an alloy such as zinc, nickel, or copper.

金属亜鉛層8は、亜鉛濃度が20at%以上40at%以下で厚みがSiO換算で3nm以上30nm以下である。この金属亜鉛層8の亜鉛濃度は20at%未満では腐食電位を卑化する効果がなく、40at%を超えると接触抵抗が悪化する。この金属亜鉛層8の亜鉛濃度は、25at%以上35at%以下がより好ましい。
一方、金属亜鉛層8のSiO換算厚みが3nm未満では腐食電位を卑化する効果がなく、30nmを超えると接触抵抗が悪化する。このSiO換算厚みは5nm以上10nm以下がより好ましい。
なお、最表面には、亜鉛や錫の酸化物層が薄く形成される。
The metal zinc layer 8 has a zinc concentration of 20 at% to 40 at% and a thickness of 3 nm to 30 nm in terms of SiO 2 . If the zinc concentration of the metallic zinc layer 8 is less than 20 at%, there is no effect of lowering the corrosion potential, and if it exceeds 40 at%, the contact resistance deteriorates. The zinc concentration of the metal zinc layer 8 is more preferably 25 at% or more and 35 at% or less.
On the other hand, if the thickness of the metal zinc layer 8 in terms of SiO 2 is less than 3 nm, there is no effect of lowering the corrosion potential, and if it exceeds 30 nm, the contact resistance deteriorates. The SiO 2 equivalent thickness is more preferably 5 nm or more and 10 nm or less.
A thin oxide layer of zinc or tin is formed on the outermost surface.

次に、この錫めっき付銅端子材1の製造方法について説明する。
基材2として、銅又は銅合金からなる板材を用意する。この板材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、ニッケル又はニッケル合金めっき、錫めっき、亜鉛めっきをこの順序で施す。
Next, the manufacturing method of this copper terminal material 1 with a tin plating is demonstrated.
A plate material made of copper or a copper alloy is prepared as the substrate 2. After the surface of the plate material is cleaned by degreasing, pickling, etc., nickel or nickel alloy plating, tin plating, and zinc plating are applied in this order.

ニッケル又はニッケル合金めっきは緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴やスルファミン酸浴、クエン酸浴などを用いて電気めっきにより形成することができる。ニッケル合金めっきとしてはニッケルタングステン(Ni−W)合金、ニッケルリン(Ni−P)合金、ニッケルコバルト(Ni−Co)合金、ニッケルクロム(Ni−Cr)合金、ニッケル鉄(Ni−Fe)合金、ニッケル亜鉛(Ni−Zn)合金、ニッケルボロン(Ni−B)合金などを利用することができる。
端子へのプレス曲げ性と亜鉛との反応性を勘案すると、スルファミン酸浴から得られる純ニッケルめっき層が望ましい。このようなニッケルめっき層を基材に好ましくは0.2μm以上0.6μm以下の厚さで形成する。
The nickel or nickel alloy plating is not particularly limited as long as a dense nickel-based film can be obtained, and can be formed by electroplating using a known watt bath, sulfamic acid bath, citric acid bath, or the like. As nickel alloy plating, nickel tungsten (Ni-W) alloy, nickel phosphorus (Ni-P) alloy, nickel cobalt (Ni-Co) alloy, nickel chromium (Ni-Cr) alloy, nickel iron (Ni-Fe) alloy, A nickel zinc (Ni—Zn) alloy, a nickel boron (Ni—B) alloy, or the like can be used.
Considering the press bendability to the terminal and the reactivity with zinc, a pure nickel plating layer obtained from a sulfamic acid bath is desirable. Such a nickel plating layer is preferably formed on the substrate with a thickness of 0.2 μm or more and 0.6 μm or less.

錫めっき層のための錫めっきは、公知の方法により行うことができるが、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴又はアルカノールスルホン酸浴)、硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等の酸性浴、或いはカリウム浴やナトリウム浴等のアルカリ浴を用いて電気めっきすることができるが、熱拡散処理時の亜鉛拡散を阻害せず、加熱溶融時のめっきヨリ不具合を防ぐため、錫めっき層中の炭素含有量を0.1質量%以下に抑えることが望ましく、ホルムアルデヒドやアクリル酸といった炭素含有量を高める成分を含まない無光沢浴または半光沢浴が好ましい。亜鉛の熱拡散を妨げないため、純錫めっきが最も好ましいが、錫銅合金めっきや錫亜鉛合金めっき、錫ニッケル合金めっきとしてもよい。
この錫めっき層の厚さは0.3μm以上2μm以下に設定される。厚さが0.3μm未満ではニッケル錫亜鉛合金層が表面に露出してしまい、端子の接触抵抗が悪化する。その厚さが2μmを超えるとプレス成型時に割れが発生しやすくなる。
Tin plating for the tin plating layer can be performed by a known method. For example, an organic acid bath (for example, a phenolsulfonic acid bath, an alkanesulfonic acid bath or an alkanolsulfonic acid bath), a borofluoric acid bath, a halogen bath, Electroplating can be performed using an acidic bath such as a sulfuric acid bath or pyrophosphoric acid bath, or an alkaline bath such as a potassium bath or sodium bath. In order to prevent problems, it is desirable to suppress the carbon content in the tin plating layer to 0.1% by mass or less, and a matte bath or semi-gloss bath that does not contain a component that increases the carbon content such as formaldehyde and acrylic acid is preferable. Pure tin plating is most preferable because it does not hinder the thermal diffusion of zinc, but tin copper alloy plating, tin zinc alloy plating, or tin nickel alloy plating may be used.
The thickness of this tin plating layer is set to 0.3 μm or more and 2 μm or less. If the thickness is less than 0.3 μm, the nickel tin zinc alloy layer is exposed on the surface, and the contact resistance of the terminal deteriorates. If the thickness exceeds 2 μm, cracks are likely to occur during press molding.

亜鉛めっき層は公知の方法により行うことができるが、例えばジンケート浴、硫酸塩浴、塩化亜鉛浴、シアン浴を用いて電気めっきすることができる。亜鉛の熱拡散をスムーズに行うために電析亜鉛中に炭素成分を含みにくい、添加剤を含まない硫酸塩浴が特に好ましい。
この亜鉛めっき層は、0.05μm以上1.5μm以下の厚さに設定される。その厚さが0.05μm未満では亜鉛が不足するため所望のニッケル錫亜鉛合金層を得ることができない。その厚さが1.5μmを超えると熱拡散処理時に純亜鉛が最表層に残存し接触抵抗が悪化する。
The galvanized layer can be formed by a known method, and can be electroplated using, for example, a zincate bath, a sulfate bath, a zinc chloride bath, or a cyan bath. In order to smoothly perform the thermal diffusion of zinc, a sulfate bath that does not contain a carbon component in electrodeposited zinc and does not contain an additive is particularly preferable.
This galvanized layer is set to a thickness of 0.05 μm or more and 1.5 μm or less. If the thickness is less than 0.05 μm, zinc is insufficient and a desired nickel tin zinc alloy layer cannot be obtained. When the thickness exceeds 1.5 μm, pure zinc remains in the outermost layer during the thermal diffusion treatment, and the contact resistance is deteriorated.

このようにして、基材の上にニッケル又はニッケル合金めっき、錫めっき、亜鉛めっきをこの順序で施した後、熱処理を施す。
この熱処理は、還元雰囲気中で素材の表面温度が230℃以上600℃以下となる条件で5秒以上30秒以下の時間加熱する。
In this manner, nickel or nickel alloy plating, tin plating, and zinc plating are applied on the base material in this order, and then heat treatment is performed.
This heat treatment is performed for 5 seconds to 30 seconds in a reducing atmosphere under conditions where the surface temperature of the material is 230 ° C. or higher and 600 ° C. or lower.

この熱処理により、錫めっき層が溶融するとともに、表面の亜鉛めっき層中の亜鉛が下層に拡散して、一部のニッケル又はニッケル合金と反応し、このとき、錫の一部とも合金化して、これらのニッケル錫亜鉛の金属間化合物を生成する。そして、基材2上にニッケル又はニッケル合金の一部の層が残存し、表面に錫の一部が残存することにより、基材2側から順に、ニッケル又はニッケル合金からなる下地層3、ニッケル錫亜鉛合金層4、錫層5を形成する。   As a result of this heat treatment, the tin plating layer melts, and the zinc in the surface galvanization layer diffuses into the lower layer and reacts with a part of nickel or a nickel alloy. These intermetallic compounds of nickel tin zinc are produced. Then, a part of the nickel or nickel alloy layer remains on the base material 2 and a part of the tin remains on the surface, so that the base layer 3 made of nickel or a nickel alloy in order from the base material 2 side, nickel A tin-zinc alloy layer 4 and a tin layer 5 are formed.

この熱処理条件において、その温度が230℃未満では錫が十分に溶融しないため、所望のニッケル錫亜鉛合金層4を得ることができない。一方、温度が600℃を超えていると拡散が過剰に進行し、ニッケル錫亜鉛合金層4が多量に表面に露出して接触抵抗が悪化すると共に厚みが過剰に厚くなり曲げ加工性が悪化するため望ましくない。
加熱時間が5秒未満では合金層の生成が不十分で所望の厚みが得られない。30秒を超えると合金層が過剰に成長し、錫層が減少し接触抵抗が悪化すると共に、合金元素の相互拡散が過剰に進行してしまうため、所望のニッケルおよび亜鉛の含有量が異なる二層構造を得ることができない。
Under this heat treatment condition, if the temperature is lower than 230 ° C., tin is not sufficiently melted, so that the desired nickel tin zinc alloy layer 4 cannot be obtained. On the other hand, if the temperature exceeds 600 ° C., the diffusion proceeds excessively, the nickel tin zinc alloy layer 4 is exposed on the surface in a large amount, the contact resistance is deteriorated, the thickness is excessively increased, and the bending workability is deteriorated. Therefore, it is not desirable.
If the heating time is less than 5 seconds, the formation of the alloy layer is insufficient and the desired thickness cannot be obtained. If it exceeds 30 seconds, the alloy layer grows excessively, the tin layer decreases, the contact resistance deteriorates, and the interdiffusion of the alloy elements proceeds excessively, so that the desired nickel and zinc contents are different. A layer structure cannot be obtained.

また、この熱処理条件のうち、250℃以上350℃以下の温度で熱処理した場合には、表面の亜鉛めっき層中の亜鉛の下層への拡散が抑制され、一部の亜鉛が表面に残留した状態となり、錫層5の上に金属亜鉛層8が形成される。その温度が250℃未満では錫が未溶融となるため過剰に厚い金属亜鉛層が残留し、350℃を超えると、下層への過剰拡散と金属亜鉛層の酸化により所望の厚みが得られない。   In addition, among these heat treatment conditions, when heat treatment is performed at a temperature of 250 ° C. or higher and 350 ° C. or lower, diffusion of zinc in the surface galvanized layer to the lower layer is suppressed, and a part of zinc remains on the surface. Thus, the metal zinc layer 8 is formed on the tin layer 5. If the temperature is less than 250 ° C., tin is not melted, so that an excessively thick metal zinc layer remains. If it exceeds 350 ° C., a desired thickness cannot be obtained due to excessive diffusion to the lower layer and oxidation of the metal zinc layer.

そして、このようにして製造された錫めっき付銅端子材1は、例えば図2に示すような形状の端子10に成形される。
この端子10は、図2の例ではメス端子を示しており、先端から、オス端子(図示略)が嵌合される接続部11、電線12の露出した心線12aがかしめられる心線かしめ部13、電線12の被覆部12bがかしめられる被覆かしめ部14がこの順で一体に形成されている。
図3は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13が電線12の心線12aに直接接触することになる。
And the copper terminal material 1 with a tin plating manufactured in this way is shape | molded by the terminal 10 of a shape as shown, for example in FIG.
The terminal 10 is a female terminal in the example of FIG. 2, and is a connecting portion 11 into which a male terminal (not shown) is fitted from the tip, and a caulking portion caulking portion in which the exposed core wire 12 a of the electric wire 12 is caulked. 13. A covering caulking portion 14 to which the covering portion 12b of the electric wire 12 is caulked is integrally formed in this order.
FIG. 3 shows a terminal structure in which the terminal 10 is caulked to the electric wire 12, and the core caulking portion 13 is in direct contact with the core wire 12 a of the electric wire 12.

この端子10は、錫層5の下にニッケル錫亜鉛合金層4が前述したように形成されているので、錫層5の消失により、ニッケル錫亜鉛合金層4が露出したとしても、このニッケル錫亜鉛合金4の腐食電位はアルミニウムと比較的近いので、心線12aがアルミニウム製心線である場合の電食の発生を防止することができる。
また、ニッケル錫亜鉛合金層4のニッケル含有量が基材2側の第1合金層6から表面側の第2合金層7にかけて段階的に減じる二層構造としたことにより、アルミニウムとの腐食電池の形成を抑えつつも、ニッケル錫亜鉛合金層4の耐食性を向上させることができる。
また、表面に金属亜鉛層8が残留している場合、その金属亜鉛がアルミニウムと腐食電位が近いので、アルミニウム製電線と接触した場合の電食の発生をより有効に抑えることができる。
なお、電線12は導線が露出したままの裸電線、導線を心線として周囲を絶縁層で被覆した被覆電線のいずれにも適用することができる。本発明では、裸電線、被覆電線の心線のいずれをも含めて電線と称す。
In this terminal 10, since the nickel tin zinc alloy layer 4 is formed under the tin layer 5 as described above, even if the nickel tin zinc alloy layer 4 is exposed due to the disappearance of the tin layer 5, the nickel tin zinc alloy layer 4 is exposed. Since the corrosion potential of the zinc alloy 4 is relatively close to aluminum, the occurrence of electrolytic corrosion when the core wire 12a is an aluminum core wire can be prevented.
Further, the nickel tin zinc alloy layer 4 has a two-layer structure in which the nickel content gradually decreases from the first alloy layer 6 on the substrate 2 side to the second alloy layer 7 on the surface side, thereby corroding the battery with aluminum. The corrosion resistance of the nickel tin zinc alloy layer 4 can be improved while suppressing the formation of.
Moreover, when the metal zinc layer 8 remains on the surface, since the metal zinc has a corrosion potential close to that of aluminum, the occurrence of electrolytic corrosion when coming into contact with the aluminum wire can be more effectively suppressed.
In addition, the electric wire 12 can be applied to any of a bare electric wire with a conductive wire exposed and a covered electric wire having a conductive wire as a core wire and a periphery covered with an insulating layer. In the present invention, both the bare wire and the core wire of the covered wire are referred to as an electric wire.

基材の銅板に、脱脂、酸洗した後、ニッケルめっき、錫めっき、亜鉛めっきを順に施した。これらめっき層は表1に示す厚さとし、そのめっき層付銅板に表1に示す温度、時間で熱処理を施した後、40℃の水に投入して冷却処理を実施し、試料とした。試料1〜4,9,10が実施例で試料5〜8が比較例である。比較例8については亜鉛めっきを実施せず、基材の銅板に、脱脂、酸洗した後、ニッケルめっき、錫めっきを順に施した。   The copper plate of the base material was degreased and pickled, and then subjected to nickel plating, tin plating, and zinc plating in this order. These plating layers had the thicknesses shown in Table 1. After heat treatment was performed on the copper plates with plating layers at the temperatures and times shown in Table 1, they were poured into water at 40 ° C. and subjected to cooling treatment to prepare samples. Samples 1-4, 9, 10 are examples, and samples 5-8 are comparative examples. In Comparative Example 8, galvanization was not performed, and the copper plate of the base material was degreased and pickled, and then subjected to nickel plating and tin plating in this order.

得られた試料について、表面の金属亜鉛層、ニッケル錫亜鉛合金層を分析し、各層の厚さ、金属亜鉛層の亜鉛含有量、ニッケル錫亜鉛合金層のNi含有量、Zn含有量をそれぞれ測定した。
これらの測定に際しては、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)を用いて、試料を100nm以下に薄化し、観察試料とした。
この観察試料を日本電子株式会社製の走査透過型電子顕微鏡:STEM(型番:JEM−2010F)を用いて、加速電圧200kVで観察を行った。
金属亜鉛層の厚みと濃度については、各試料について、アルバック・ファイ株式会社製のXPS(X−ray Photoelectron Spectroscopy)分析装置:ULVAC PHI model−5600LSを用い、試料表面をアルゴンイオンでエッチングしながらXPS分析により測定した。その分析条件は以下の通りである。
X線源:Standard MgKα 350W
パスエネルギー:187.85eV(Survey)、58.70eV(Narrow)
測定間隔:0.8eV/step(Survey)、0.125eV(Narrow)
試料面に対する光電子取り出し角:45deg
分析エリア:約800μmφ
厚みについては、あらかじめ同機種で測定したSiOのエッチングレートを用いて、測定に要した時間から「SiO換算膜厚」を算出した。
SiOのエッチングレートの算出方法は、20nmの厚さであるSiO膜を2.8×3.5mmの長方形領域でアルゴンイオンでエッチングを行い20nmをエッチングするのに要した時間で割ることによって算出した。上記分析装置の場合には8分要したためエッチングレートは2.5nm/minである。XPSは深さ分解能が約0.5nmと優れるが、Arイオンビームでエッチングされる時間は各材料により異なるため、膜厚そのものの数値を得るためには、膜厚が既知かつ平坦な試料を調達し、エッチングレートを算出しなければならない。上記は容易でないため、膜厚が既知であるSiO膜にて算出したエッチングレートで規定し、エッチングに要した時間から算出される「SiO換算膜厚」を利用した。このため「SiO換算膜厚」は実際の酸化物の膜厚と異なる点に注意が必要である。SiO換算エッチングレートで膜厚を規定すると、実際の膜厚は不明であっても、一義的であるため定量的に膜厚を評価することができる。
About the obtained sample, the surface metal zinc layer and the nickel tin zinc alloy layer were analyzed, and the thickness of each layer, the zinc content of the metal zinc layer, the Ni content of the nickel tin zinc alloy layer, and the Zn content were measured. did.
In these measurements, the sample was thinned to 100 nm or less using a focused ion beam device: FIB (model number: SMI3050TB) manufactured by Seiko Instruments Inc., and used as an observation sample.
This observation sample was observed at an acceleration voltage of 200 kV using a scanning transmission electron microscope: STEM (model number: JEM-2010F) manufactured by JEOL Ltd.
Regarding the thickness and concentration of the metallic zinc layer, XPS (X-ray Photoelectron Spectroscopy) analyzer ULVAC PHI model-5600LS manufactured by ULVAC-PHI Co., Ltd. was used for each sample and the sample surface was etched with argon ions. It was measured by analysis. The analysis conditions are as follows.
X-ray source: Standard MgKα 350W
Path energy: 187.85 eV (Survey), 58.70 eV (Narrow)
Measurement interval: 0.8 eV / step (Survey), 0.125 eV (Narrow)
Photoelectron extraction angle with respect to sample surface: 45 deg
Analysis area: about 800μmφ
Regarding the thickness, the “SiO 2 equivalent film thickness” was calculated from the time required for the measurement using the etching rate of SiO 2 measured in advance with the same model.
The etching rate of SiO 2 is calculated by dividing the 20 nm thick SiO 2 film by etching with argon ions in a rectangular area of 2.8 × 3.5 mm and etching 20 nm. Calculated. In the case of the above analyzer, the etching rate is 2.5 nm / min since it took 8 minutes. XPS has an excellent depth resolution of about 0.5 nm, but the etching time with the Ar ion beam varies depending on the material. Therefore, to obtain a numerical value of the film thickness, a sample with a known and flat film thickness is procured. Then, the etching rate must be calculated. Since the above is not easy, the “SiO 2 equivalent film thickness” calculated from the time required for etching is defined by the etching rate calculated for the SiO 2 film whose film thickness is known. Therefore, it should be noted that the “SiO 2 equivalent film thickness” is different from the actual oxide film thickness. When the film thickness is defined by the SiO 2 conversion etching rate, even if the actual film thickness is unknown, the film thickness is unambiguous and can be quantitatively evaluated.

図4は、試料3について、STEMに付属するエネルギー分散型X線分析装置:EDS(Thermo社製)を用いて解析を行った二次元組成マップ像であり、図5は図4の矢印で示す範囲の線分析図である。また解析ソフトにはNSS(ver.3)EDSを用いた。
これらの図から、実施例の試料は、基材側からニッケル層、ニッケル、亜鉛、錫からなる第1合金層、ニッケル、亜鉛、錫からなるが第1合金層よりもニッケル、亜鉛含有率が少なくなっている第2合金層が形成され、合金層中でのニッケル含有量は、基材側が高く、表面側が低くなっていることが確認できる。さらに第2合金層の上に錫層が存在している。
第1合金層とニッケル層の間では亜鉛濃度がニッケル側から第1合金層に向かって連続的に高くなっている。合金層厚みを測定する際のニッケル層と第1合金層の境界点は線分析図の亜鉛濃度の傾きが最も大きい点とした。第1合金層と第2合金層の境界付近では亜鉛濃度が第2合金層に向かって連続的に低下しているが、第1合金層と第2合金層の境界点は線分析図の亜鉛濃度の傾きが最も大きい点とした。同様に錫層と第2合金層の境界点も亜鉛濃度の傾きが最も大きくなる点とした。
各合金層の組成は合金層厚みの中央においてSTEMに付属するエネルギー分散型X線分析装置を用いて測定した値とした。
さらに、図6は試料10のXPS分析による表面部分における深さ方向の各元素の濃度分布図であり、亜鉛濃度が20at%〜40at%の金属亜鉛層がSiO換算厚みで約10nm存在している。金属亜鉛層の亜鉛濃度はXPSにより10at%以上の金属亜鉛が検出されている部位の厚み方向の亜鉛濃度の平均値をとった。
図7は試料10の深さ方向の化学状態解析図であり、最表面のわずかな酸化物層の下に金属亜鉛層が存在していると判断できる。
FIG. 4 is a two-dimensional composition map image obtained by analyzing sample 3 using an energy dispersive X-ray analyzer attached to STEM: EDS (manufactured by Thermo), and FIG. 5 is indicated by an arrow in FIG. It is a line analysis figure of a range. NSS (ver. 3) EDS was used as analysis software.
From these figures, the sample of the example is made of nickel layer, nickel, zinc, tin from the base material side, nickel, zinc, tin, but nickel, zinc content is higher than the first alloy layer. It can be confirmed that a reduced second alloy layer is formed, and the nickel content in the alloy layer is high on the substrate side and low on the surface side. Further, a tin layer is present on the second alloy layer.
Between the first alloy layer and the nickel layer, the zinc concentration continuously increases from the nickel side toward the first alloy layer. The boundary point between the nickel layer and the first alloy layer when measuring the alloy layer thickness was the point where the slope of the zinc concentration in the line analysis diagram was the largest. In the vicinity of the boundary between the first alloy layer and the second alloy layer, the zinc concentration continuously decreases toward the second alloy layer, but the boundary point between the first alloy layer and the second alloy layer is zinc in the line analysis diagram. The point with the highest concentration gradient was taken. Similarly, the boundary point between the tin layer and the second alloy layer is also the point where the slope of the zinc concentration is the largest.
The composition of each alloy layer was a value measured using an energy dispersive X-ray analyzer attached to the STEM at the center of the alloy layer thickness.
Further, FIG. 6 is a concentration distribution diagram of each element in the depth direction on the surface portion of the sample 10 by XPS analysis. A metal zinc layer having a zinc concentration of 20 at% to 40 at% is present at a thickness of about 10 nm in terms of SiO 2. Yes. The zinc concentration of the metal zinc layer was the average value of the zinc concentration in the thickness direction at the site where 10 at% or more of metal zinc was detected by XPS.
FIG. 7 is a chemical state analysis diagram in the depth direction of the sample 10, and it can be determined that a metal zinc layer exists under a slight oxide layer on the outermost surface.

上記の測定結果を表2に示す。
なお、比較例の試料5はリフロー加熱時間が過剰であったため単相の合金層しか生成せず、金属亜鉛層も非常に薄いものであった。試料6は加熱時間が短くニッケルめっき厚が薄かったため、得られた第2合金層の厚みが薄く、ニッケル含有量が低くなっているとともに、亜鉛めっき厚が過剰であったために、非常に厚い金属亜鉛層が残留している。試料7は亜鉛めっきが薄く加熱温度が低すぎたために、第1合金層、第2合金層共に所望の厚みが得られておらず、亜鉛の含有量も所望の値以下であった。さらに熱処理により拡散しなかった金属亜鉛層が残留していた。試料8は亜鉛めっきを実施しなかったために錫とニッケルのみからなる合金層が錫層とニッケル層の間に認められた。
The measurement results are shown in Table 2.
In addition, since the reflow heating time was excessive, Sample 5 of the comparative example produced only a single-phase alloy layer, and the metal zinc layer was very thin. In sample 6, the heating time was short and the nickel plating thickness was thin. Therefore, the obtained second alloy layer was thin, the nickel content was low, and the galvanization thickness was excessive. A zinc layer remains. In Sample 7, since the zinc plating was thin and the heating temperature was too low, the first alloy layer and the second alloy layer did not have the desired thickness, and the zinc content was also less than the desired value. Furthermore, the metal zinc layer which did not spread | diffuse by heat processing remained. Sample 8 was not galvanized, so an alloy layer consisting only of tin and nickel was observed between the tin layer and the nickel layer.

各試料につき、はんだ濡れ性及び接触抵抗と曲げ加工性を評価した。
<はんだ濡れ性>
はんだ濡れ性は、JIS−C0053のはんだ付け試験方法(平衡法)に準じ、株式会社レスカ製のソルダーチェッカーWET−6000を用い、下記のフラックス塗布条件にて試料表面にフラックスを塗布した後、試料と鉛フリーはんだとの濡れ性を評価した。
(フラックス塗布条件)
フラックス:25質量%ロジン−エタノール、フラックス温度:室温、フラックス深さ:8mm、フラックス浸漬時間:5秒、たれ切り方法:ろ紙にエッジを5秒当ててフラックスを除去した。
このフラックスを塗布した試料を装置に固定し、はんだ槽内の鉛フリーはんだ内に浸漬速度2mm/secで深さ1mm浸漬して30秒保持し、ゼロクロスタイムが5秒以下のものを良、これを上回ったものを不良とした。
For each sample, solder wettability, contact resistance and bending workability were evaluated.
<Solder wettability>
The solder wettability is determined by applying a flux on the sample surface under the following flux application conditions using a solder checker WET-6000 manufactured by Reska Co., Ltd. according to the soldering test method (equilibrium method) of JIS-C0053. And the wettability of lead-free solder.
(Flux application conditions)
Flux: 25% by mass rosin-ethanol, flux temperature: room temperature, flux depth: 8 mm, flux immersion time: 5 seconds, draining method: edge was applied to filter paper for 5 seconds to remove the flux.
A sample coated with this flux is fixed to the apparatus, immersed in lead-free solder in a solder bath at a depth of 1 mm at a depth of 1 mm and held for 30 seconds, and a zero cross time of 5 seconds or less is acceptable. Anything exceeding that was considered defective.

<接触抵抗>
接触抵抗の測定方法はJCBA−T323に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)を用い、摺動式(1mm)で荷重0.98N時の接触抵抗を測定した。平板試料のめっき表面に対して測定を実施した。
<Contact resistance>
The contact resistance measurement method conforms to JCBA-T323, using a 4-terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU), sliding resistance (1 mm) and contact resistance at 0.98 N Was measured. Measurement was performed on the plated surface of the flat plate sample.

<接触抵抗の変化率>
試料を端子形状に加工し、アルミニウム線に圧着して、アルミニウム線と端子の接触抵抗を測定し、次いで、その圧着部分にJIS Z 2371に準じた塩水噴霧試験を24時間行った後に、再度アルミニウム線と端子の間の接触抵抗を測定し、接触抵抗の変化率を算出した。接触抵抗の測定方法は、4端子接触抵抗試験計(山崎精機研究所製:YMR−3)を用いた。
<曲げ加工性>
曲げ加工性については、試験片を圧延方向が長手となるように切出し、JISH3110に規定されるW曲げ試験治具を用い、圧延方向に対して直角方向となるように9.8×103Nの荷重で曲げ加工を施した。その後、実体顕微鏡にて観察を行った。曲げ加工性評価は、試験後の曲げ加工部に発生したクラックにより銅合金母材の露出が認められないレベルを「良」と評価し、発生したクラックにより銅合金母材が露出しているレベルを「不良」と評価した。
これらの評価結果を表3に示す。
<Change rate of contact resistance>
The sample is processed into a terminal shape, crimped to an aluminum wire, the contact resistance between the aluminum wire and the terminal is measured, and then a salt spray test according to JIS Z 2371 is performed on the crimped portion for 24 hours, and then aluminum is again formed. The contact resistance between the wire and the terminal was measured, and the change rate of the contact resistance was calculated. As a method for measuring contact resistance, a four-terminal contact resistance tester (Yamazaki Seiki Laboratories: YMR-3) was used.
<Bending workability>
For bending workability, a test piece is cut out so that the rolling direction is long, and a load of 9.8 × 103 N is used so as to be perpendicular to the rolling direction using a W bending test jig defined in JISH3110. Bending was applied. Then, it observed with the stereomicroscope. Bending workability is evaluated as “good” when the copper alloy base material is not exposed due to cracks occurring in the bent part after the test, and the level where the copper alloy base material is exposed due to the generated cracks. Was evaluated as “bad”.
These evaluation results are shown in Table 3.

この表3から明らかなように、実施例では塩水噴霧試験後の接触抵抗変化率が10%以下と低く、明確な電食防止効果が見られた。その中でも、錫層の上に金属亜鉛層が形成されている試料3,4,9,10では、接触抵抗変化率が特に低く、腐食防止効果が高いことがわかる。
一方、比較例の試料5では加熱過剰で単相の非常に厚い合金層が生成したために曲げ加工性が悪く、さらに合金層が過剰に成長して錫層から合金層が露出してしまったために初期の接触抵抗およびはんだ濡れ性が悪化している。また合金層の構造がおよび組成が所望の形で無かったために電食が発生して接触抵抗変化率も高かった。試料6ではニッケルの含有量が低く錫めっき厚が薄かったために半田濡れ性が不良となり、合金層のニッケル含有量が少なく亜鉛含有量が過剰であったために、腐食環境に晒された合金層が速やかに消失し下地基材やニッケル層とアルミニウムが腐食電池を形成して電食が発生し接触抵抗変化率が大きくなった。試料7では合金層の厚みが所望の値よりも全体的に薄かったために、電食防止効果が弱く接触抵抗変化率が98%と塩水噴霧試験後の接触抵抗が大幅に悪化した。試料8では合金層が亜鉛を含まなかったために、電食防止効果が認められず接触抵抗変化率が非常に高くなった。
As apparent from Table 3, in the examples, the rate of change in contact resistance after the salt spray test was as low as 10% or less, and a clear electric corrosion prevention effect was observed. Among them, samples 3, 4, 9, and 10 in which the metal zinc layer is formed on the tin layer have a particularly low contact resistance change rate and a high corrosion prevention effect.
On the other hand, in the sample 5 of the comparative example, since a very thick alloy layer having a single phase was generated due to overheating, bending workability was poor, and further, the alloy layer grew excessively and the alloy layer was exposed from the tin layer. Initial contact resistance and solder wettability have deteriorated. Moreover, since the structure and composition of the alloy layer were not in the desired form, electrolytic corrosion occurred and the rate of change in contact resistance was high. In sample 6, since the nickel content was low and the tin plating thickness was thin, solder wettability was poor, and since the nickel content of the alloy layer was small and the zinc content was excessive, the alloy layer exposed to the corrosive environment It quickly disappeared, and the base substrate, nickel layer, and aluminum formed a corrosion cell, which caused electrolytic corrosion and increased the rate of change in contact resistance. In sample 7, since the thickness of the alloy layer was generally thinner than the desired value, the effect of preventing electrolytic corrosion was weak and the contact resistance change rate was 98%, which significantly deteriorated the contact resistance after the salt spray test. In sample 8, since the alloy layer did not contain zinc, the effect of preventing electrolytic corrosion was not recognized, and the contact resistance change rate was very high.

1 錫めっき付銅端子材
2 基材
3 下地層
4 ニッケル錫亜鉛合金層
5 錫層
6 第1合金層
7 第2合金層
8 金属亜鉛層
10 端子
11 接続部
12 電線
12a 心線
12b 被覆部
13 心線かしめ部
14 被覆かしめ部
DESCRIPTION OF SYMBOLS 1 Tin terminal copper terminal material 2 Base material 3 Underlayer 4 Nickel tin zinc alloy layer 5 Tin layer 6 1st alloy layer 7 2nd alloy layer 8 Metal zinc layer 10 Terminal 11 Connection part 12 Electric wire 12a Core wire 12b Covering part 13 Core caulking part 14 Covering caulking part

Claims (7)

銅又は銅合金からなる基材の上にニッケル又はニッケル合金からなる下地層、ニッケル錫亜鉛合金層、錫又は錫合金からなる錫層がこの順に積層されており、
前記ニッケル錫亜鉛合金層は、厚みが0.13μm以上1μm以下であり、ニッケルが15at%以上60at%以下、亜鉛が10at%以上60at%以下含有し、残部が錫からなることを特徴とする錫めっき付銅端子材。
A base layer made of nickel or a nickel alloy, a nickel tin zinc alloy layer, a tin layer made of tin or a tin alloy are laminated in this order on a base material made of copper or a copper alloy,
The nickel-tin-zinc alloy layer has a thickness of 0.13 μm or more and 1 μm or less, nickel is contained at 15 at% or more and 60 at% or less, zinc is contained at 10 at% or more and 60 at% or less, and the balance is tin. Copper terminal material with plating.
前記ニッケル錫亜鉛合金層のニッケル含有量は、前記基材側が高く、表面側が低くなっていることを特徴とする請求項1記載の錫めっき付銅端子材。   2. The copper terminal material with tin plating according to claim 1, wherein the nickel content of the nickel tin zinc alloy layer is high on the substrate side and low on the surface side. 前記ニッケル錫亜鉛合金層は、厚みが0.05μm以上でニッケルが25at%以上60at%以下、亜鉛が30at%以上60at%以下含有し、残部が錫からなる第1合金層と、厚みが0.08μm以上でニッケルが15at%以上40at%以下、亜鉛が10at%以上40at%以下含有し、残部が錫からなる第2合金層とが前記基材側から順に積層されていることを特徴とする請求項2記載の錫めっき付銅端子材。   The nickel tin zinc alloy layer has a thickness of 0.05 μm or more, a nickel content of 25 at% or more and 60 at% or less, a zinc content of 30 at% or more and 60 at% or less, and a balance of 0.1%. A nickel alloy is contained at 15 at% or more and 40 at% or less at 08 μm or more, zinc is contained at 10 at% or more and 40 at% or less, and a second alloy layer made of tin is laminated in order from the base material side. Item 3. A copper terminal material with tin plating according to Item 2. 前記錫層の上に、亜鉛濃度が20at%以上40at%以下で厚みがSiO換算で3nm以上30nm以下の金属亜鉛層が形成されていることを特徴とする請求項1から3のいずれか一項記載の錫めっき付銅端子材。 4. The metal zinc layer having a zinc concentration of 20 at% or more and 40 at% or less and a thickness of 3 nm or more and 30 nm or less in terms of SiO 2 is formed on the tin layer. The copper terminal material with tin plating as described in the item. 銅又は銅合金からなる基材の表面にニッケル又はニッケル合金めっき層を0.1μm以上5μm以下の厚さで形成するニッケルめっき工程と、前記ニッケル又はニッケル合金めっき層の上に錫めっき層を0.3μm以上2.0μm以下の厚さで形成する錫めっき工程と、前記錫めっき層の上に亜鉛めっき層を0.05μm以上1.5μm以下の厚さで形成する亜鉛めっき工程と、該亜鉛めっき工程の後に230℃以上600℃以下の温度に加温して、ニッケル又はニッケル合金からなる下地層と、表面の錫層と、これら下地層と錫層との間のニッケル錫亜鉛合金層とを形成する熱処理工程とを有することを特徴とする錫めっき付銅端子材の製造方法。   A nickel plating step of forming a nickel or nickel alloy plating layer on the surface of a base material made of copper or copper alloy with a thickness of 0.1 μm or more and 5 μm or less; and a tin plating layer on the nickel or nickel alloy plating layer A tin plating step of forming a thickness of 3 μm to 2.0 μm, a galvanization step of forming a zinc plating layer on the tin plating layer with a thickness of 0.05 μm to 1.5 μm, and the zinc After the plating step, the substrate is heated to a temperature of 230 ° C. or more and 600 ° C. or less, a base layer made of nickel or a nickel alloy, a tin layer on the surface, and a nickel tin zinc alloy layer between the base layer and the tin layer, The manufacturing method of the copper terminal material with a tin plating characterized by having the heat processing process of forming. 前記熱処理工程の温度が250℃以上350℃以下であることを特徴とする請求項5記載の錫めっき付銅端子材の製造方法。   6. The method for producing a tin-plated copper terminal material according to claim 5, wherein the temperature of the heat treatment step is 250 ° C. or higher and 350 ° C. or lower. 請求項1から4記載の錫めっき付銅端子材からなる端子がアルミニウム又はアルミニウム合金からなる電線の心線の端末に圧着されていることを特徴とする電線端末部構造。   A wire terminal part structure, wherein a terminal made of a tin-plated copper terminal material according to claim 1 is crimped to a terminal of a core wire of an electric wire made of aluminum or an aluminum alloy.
JP2016034562A 2015-03-13 2016-02-25 Tin-plated copper terminal material, its manufacturing method, and wire terminal structure Active JP6740635B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015050932 2015-03-13
JP2015050932 2015-03-13

Publications (2)

Publication Number Publication Date
JP2016169439A true JP2016169439A (en) 2016-09-23
JP6740635B2 JP6740635B2 (en) 2020-08-19

Family

ID=56983169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034562A Active JP6740635B2 (en) 2015-03-13 2016-02-25 Tin-plated copper terminal material, its manufacturing method, and wire terminal structure

Country Status (1)

Country Link
JP (1) JP6740635B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090638A1 (en) * 2015-11-27 2017-06-01 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and wire terminal part structure
WO2017195768A1 (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Tinned copper terminal material, terminal, and electrical wire end part structure
JP2018116877A (en) * 2017-01-20 2018-07-26 古河電気工業株式会社 Fitting type terminal
WO2018139628A1 (en) * 2017-01-30 2018-08-02 三菱マテリアル株式会社 Terminal material for connectors, terminal, and electric wire end part structure
WO2018164127A1 (en) * 2017-03-07 2018-09-13 三菱マテリアル株式会社 Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JP2018147778A (en) * 2017-03-07 2018-09-20 三菱マテリアル株式会社 Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure
JP2018147777A (en) * 2017-03-07 2018-09-20 三菱マテリアル株式会社 Anticorrosive terminal material and anticorrosive terminal and wire terminal structure
WO2018212174A1 (en) * 2017-05-16 2018-11-22 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and power cable terminal structure
WO2019022188A1 (en) * 2017-07-28 2019-01-31 三菱マテリアル株式会社 Tin plated copper terminal material, terminal, and wire end structure
CN110036142A (en) * 2016-12-06 2019-07-19 同和金属技术有限公司 Sn coating material and its manufacturing method
CN111315922A (en) * 2017-10-30 2020-06-19 三菱综合材料株式会社 Anti-corrosion terminal material, anti-corrosion terminal, and wire terminal structure
CN113498543A (en) * 2019-04-26 2021-10-12 住友电气工业株式会社 Aluminum-based wire rod, stranded wire, and method for producing aluminum-based wire rod

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169996A (en) * 1998-09-28 2000-06-20 Nippon Mining & Metals Co Ltd Metallic material
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2004225070A (en) * 2003-01-20 2004-08-12 Furukawa Electric Co Ltd:The Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2007056286A (en) * 2005-08-22 2007-03-08 Rohm & Haas Electronic Materials Llc Aqueous solution for treating metal surface and method for preventing metal surface from discoloring
JP2009193879A (en) * 2008-02-15 2009-08-27 Yazaki Corp Crimp terminal and crimping structure using the same
JP2011222243A (en) * 2010-04-08 2011-11-04 Auto Network Gijutsu Kenkyusho:Kk Terminal structure for wire harness
JP2014040649A (en) * 2012-08-24 2014-03-06 Auto Network Gijutsu Kenkyusho:Kk Plated terminal for connector and method of manufacturing plated terminal for connector
JP2014164964A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169996A (en) * 1998-09-28 2000-06-20 Nippon Mining & Metals Co Ltd Metallic material
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2004225070A (en) * 2003-01-20 2004-08-12 Furukawa Electric Co Ltd:The Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2007056286A (en) * 2005-08-22 2007-03-08 Rohm & Haas Electronic Materials Llc Aqueous solution for treating metal surface and method for preventing metal surface from discoloring
JP2009193879A (en) * 2008-02-15 2009-08-27 Yazaki Corp Crimp terminal and crimping structure using the same
JP2011222243A (en) * 2010-04-08 2011-11-04 Auto Network Gijutsu Kenkyusho:Kk Terminal structure for wire harness
JP2014040649A (en) * 2012-08-24 2014-03-06 Auto Network Gijutsu Kenkyusho:Kk Plated terminal for connector and method of manufacturing plated terminal for connector
JP2014164964A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382814A4 (en) * 2015-11-27 2019-09-04 Mitsubishi Materials Corporation Tin-plated copper terminal material, terminal, and wire terminal part structure
JPWO2017090638A1 (en) * 2015-11-27 2017-11-30 三菱マテリアル株式会社 Tin-plated copper terminal material and terminal and wire terminal structure
US11088472B2 (en) 2015-11-27 2021-08-10 Mitsubishi Materials Corporation Tin-plated copper terminal material, terminal, and wire terminal part structure
WO2017090638A1 (en) * 2015-11-27 2017-06-01 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and wire terminal part structure
WO2017195768A1 (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Tinned copper terminal material, terminal, and electrical wire end part structure
US10801115B2 (en) 2016-05-10 2020-10-13 Mitsubishi Materials Corporation Tinned copper terminal material, terminal, and electrical wire end part structure
CN110036142A (en) * 2016-12-06 2019-07-19 同和金属技术有限公司 Sn coating material and its manufacturing method
CN110036142B (en) * 2016-12-06 2021-04-20 同和金属技术有限公司 Sn-plated material and method for producing same
US10985485B2 (en) * 2016-12-06 2021-04-20 Dowa Metaltech Co., Ltd. Tin-plated product and method for producing same
JP2018116877A (en) * 2017-01-20 2018-07-26 古河電気工業株式会社 Fitting type terminal
US11211729B2 (en) 2017-01-30 2021-12-28 Mitsubishi Materials Corporation Terminal material for connectors, terminal, and electric wire termination structure
JPWO2018139628A1 (en) * 2017-01-30 2019-01-31 三菱マテリアル株式会社 Terminal material and terminal for connector and wire terminal structure
WO2018139628A1 (en) * 2017-01-30 2018-08-02 三菱マテリアル株式会社 Terminal material for connectors, terminal, and electric wire end part structure
TWI752184B (en) * 2017-03-07 2022-01-11 日商三菱綜合材料股份有限公司 Corrosion-resistant terminal material, corrosion-resistant terminal, and wire termination structure
JP2018147778A (en) * 2017-03-07 2018-09-20 三菱マテリアル株式会社 Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure
CN110326168A (en) * 2017-03-07 2019-10-11 三菱综合材料株式会社 Anticorrosion terminal material and anticorrosion terminal and wire terminations portion structure
KR20190121776A (en) * 2017-03-07 2019-10-28 미쓰비시 마테리알 가부시키가이샤 Anticorrosive Terminal Material, Anticorrosive Terminal and Wire Terminal Structure
US20200005963A1 (en) * 2017-03-07 2020-01-02 Mitsubishi Materials Corporation Corrosion-resistant terminal material, corrosion-resistant terminal, and wire-end structure
WO2018164127A1 (en) * 2017-03-07 2018-09-13 三菱マテリアル株式会社 Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JP2018147777A (en) * 2017-03-07 2018-09-20 三菱マテリアル株式会社 Anticorrosive terminal material and anticorrosive terminal and wire terminal structure
CN110326168B (en) * 2017-03-07 2022-02-01 三菱综合材料株式会社 Corrosion-resistant terminal material, corrosion-resistant terminal, and wire terminal structure
KR102531227B1 (en) * 2017-03-07 2023-05-10 미쓰비시 마테리알 가부시키가이샤 Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
EP3595094A4 (en) * 2017-03-07 2020-12-16 Mitsubishi Materials Corporation Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
US10910130B2 (en) * 2017-03-07 2021-02-02 Mitsubishi Materials Corporation Corrosion-resistant terminal material, corrosion-resistant terminal, and wire-end structure
KR20200008116A (en) * 2017-05-16 2020-01-23 미쓰비시 마테리알 가부시키가이샤 Copper terminal material, terminal and wire terminal structure with tin plating
KR102546861B1 (en) * 2017-05-16 2023-06-22 미쓰비시 마테리알 가부시키가이샤 Tin-plated copper terminal material and terminal and wire termination structure
WO2018212174A1 (en) * 2017-05-16 2018-11-22 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and power cable terminal structure
JP2018193578A (en) * 2017-05-16 2018-12-06 三菱マテリアル株式会社 Tin-plated copper terminal material, and end part structure of electric wire
US11264750B2 (en) 2017-05-16 2022-03-01 Mitsubishi Materials Corporation Tin-plated copper terminal material, terminal, and electric-wire terminal structure
TWI761560B (en) * 2017-07-28 2022-04-21 日商三菱綜合材料股份有限公司 Tin-plated copper terminal material and terminal and wire termination structure
US10858750B2 (en) 2017-07-28 2020-12-08 Mitsubishi Materials Corporation Tin-plated copper terminal material, terminal and electric wire terminal-end structure
JPWO2019022188A1 (en) * 2017-07-28 2019-07-25 三菱マテリアル株式会社 Tin-plated copper terminal material and terminal and wire end structure
WO2019022188A1 (en) * 2017-07-28 2019-01-31 三菱マテリアル株式会社 Tin plated copper terminal material, terminal, and wire end structure
EP3705606A4 (en) * 2017-10-30 2021-10-13 Mitsubishi Materials Corporation Anticorrosive terminal material, anticorrosive terminal, and electric wire end structure
US11661667B2 (en) 2017-10-30 2023-05-30 Mitsubishi Materials Corporation Anti-corrosion terminal material, anti-corrosion terminal and electric wire end structure
CN111315922A (en) * 2017-10-30 2020-06-19 三菱综合材料株式会社 Anti-corrosion terminal material, anti-corrosion terminal, and wire terminal structure
CN111315922B (en) * 2017-10-30 2023-10-10 三菱综合材料株式会社 Corrosion-resistant terminal material, corrosion-resistant terminal, and wire terminal structure
CN113498543B (en) * 2019-04-26 2023-01-03 住友电气工业株式会社 Aluminum-based wire rod, stranded wire, and method for producing aluminum-based wire rod
CN113498543A (en) * 2019-04-26 2021-10-12 住友电气工业株式会社 Aluminum-based wire rod, stranded wire, and method for producing aluminum-based wire rod

Also Published As

Publication number Publication date
JP6740635B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
JP6304447B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
WO2017195768A1 (en) Tinned copper terminal material, terminal, and electrical wire end part structure
JP6226037B2 (en) Manufacturing method of copper terminal material with tin plating
JP6812852B2 (en) Anti-corrosion terminal material, anti-corrosion terminal, and electric wire terminal structure
JP2016166397A (en) Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure
JP6620897B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
KR102531227B1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
WO2018212174A1 (en) Tin-plated copper terminal material, terminal, and power cable terminal structure
JP6930327B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP2018147778A (en) Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
WO2017104682A1 (en) Method for manufacturing tin-plated copper terminal material
JP2020056090A (en) Anticorrosive terminal material, manufacturing method therefor, and anticorrosive terminal and wire terminal part structure
JP2018016878A (en) Manufacturing method of tin plating copper terminal material
WO2022168740A1 (en) Anti-corrosion terminal material for aluminum core wires, anti-corrosion terminal, and electric wire end part structure
JP2019137894A (en) Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6740635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150