JP2016167933A - 故障検出装置 - Google Patents
故障検出装置 Download PDFInfo
- Publication number
- JP2016167933A JP2016167933A JP2015047067A JP2015047067A JP2016167933A JP 2016167933 A JP2016167933 A JP 2016167933A JP 2015047067 A JP2015047067 A JP 2015047067A JP 2015047067 A JP2015047067 A JP 2015047067A JP 2016167933 A JP2016167933 A JP 2016167933A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- cell module
- failure detection
- failure
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】太陽電池モジュールの故障を容易に検出することができる故障検出装置を提供することである。【解決手段】実施形態の故障検出装置は、表示部を持つ。故障検出装置は、複数の太陽電池モジュールの各々に接続されている。表示部は、接続された前記太陽電池モジュールの発電電力に基づいて、前記太陽電池モジュールが故障していることを表示する。【選択図】図1
Description
本発明の実施形態は、故障検出装置に関する。
メガソーラーシステム等の大規模な太陽光発電システムは、数千枚〜数万枚の太陽電池モジュールを備えている。太陽電池モジュールは、時間経過とともに、個別の環境や耐久性能に応じて様々な進行態様で故障する。ここで、故障とは、太陽電池モジュールの発電量が所定値以下になることをいう。保守員は、故障した太陽電池モジュールを発見するために、テスターによる電気的特性の検査を行っている。しかしながら、テスターによる電気的特性の検査では、多大な時間を要するため太陽電池モジュールの故障の発見が遅れる場合があった。
本発明が解決しようとする課題は、太陽電池モジュールの故障を早期に発見することができる故障検出装置を提供することである。
実施形態の故障検出装置は、表示部を持つ。故障検出装置は、複数の太陽電池モジュールの各々に接続されている。表示部は、接続された前記太陽電池モジュールの発電電力に基づいて、前記太陽電池モジュールが故障していることを表示する。
以下、実施形態の故障検出装置を、図面を参照して説明する。
実施形態の太陽電池モジュールの故障検出装置は、太陽電池モジュール毎に設けられている。故障検出装置は、設けられている太陽電池モジュールの発電電力(例えば、出力電圧)に基づいて、太陽電池モジュールが故障しているか否かを判定する。故障検出装置は、太陽電池モジュールが故障していると判定した場合には、故障を示す表示を表示部に表示させる。
図1は、実施形態の太陽電池モジュールの故障検出装置20を用いた太陽光発電システム1の一例を示す概略ブロック図である。
本実施形態の太陽光発電システム1は、太陽電池アレイ2、接続箱3、PCS(Power Conditioning Subsystem)4及び故障検出装置20を備える。
太陽電池アレイ2は、並列に接続されたn個の太陽電池ストリング10−1、10−2〜10−n)を備えている。なお、太陽電池ストリング10−1、10−2〜10−nは総称して、太陽電池ストリング10と呼ばれることがある。
本実施形態の太陽光発電システム1は、太陽電池アレイ2、接続箱3、PCS(Power Conditioning Subsystem)4及び故障検出装置20を備える。
太陽電池アレイ2は、並列に接続されたn個の太陽電池ストリング10−1、10−2〜10−n)を備えている。なお、太陽電池ストリング10−1、10−2〜10−nは総称して、太陽電池ストリング10と呼ばれることがある。
太陽電池ストリング10は、複数の太陽電池モジュール11を備えている。
太陽電池モジュール11は、複数枚の太陽電池セルがパネル状に並べられ、太陽光を受光することで光起電力効果により直流電力を発生させる。複数の太陽電池モジュール11は、それぞれが電気的に直列に接続されている。なお、太陽光発電システム1は、太陽電池ストリング10に代えて単体の太陽電池モジュール11を電気的に並列に接続されてもよい。また、太陽電池モジュール11及び太陽電池ストリング10の数量は合計2つ以上であればいくつでもよい。各太陽電池モジュール11には、故障検出装置20が接続されている。
太陽電池モジュール11は、複数枚の太陽電池セルがパネル状に並べられ、太陽光を受光することで光起電力効果により直流電力を発生させる。複数の太陽電池モジュール11は、それぞれが電気的に直列に接続されている。なお、太陽光発電システム1は、太陽電池ストリング10に代えて単体の太陽電池モジュール11を電気的に並列に接続されてもよい。また、太陽電池モジュール11及び太陽電池ストリング10の数量は合計2つ以上であればいくつでもよい。各太陽電池モジュール11には、故障検出装置20が接続されている。
接続箱3は、複数の太陽電池ストリング10を多段階且つ電気的に並列に接続している。各太陽電池モジュール11からの電力は、接続箱3において1つの接続線に纏められている。その接続線は、PCS4に接続されている。これにより、接続箱3は、太陽電池モジュール11から供給された直流電流をPCS4に出力する。なお、本実施形態では、接続箱が1つである場合について説明するが、太陽電池モジュールの数によっては、接続箱は複数個でもよい。その際、接続箱3とPCS4との間に集電箱が接続される場合がある。集電箱を用いる場合においては、接続箱3は、太陽電池モジュール11から供給された直流電流を集電箱に出力する。各接続箱3から供給された直流電流は、集電箱において1つの接続線に纏められている。集電箱は、接続箱3から供給された直流電流をPCS4に出力する。
PCS4は、接続箱3から供給される直流電力を交流電力に変換して、変換した交流電力を変電設備等の電力系統に出力する。これにより、PCS4には太陽電池モジュール11の全出力の直流電力が供給される。
故障検出装置20は、各太陽電池モジュール11に接続されている。故障検出装置20は、太陽電池モジュール11の正(+)端子と負(−)端子との間に接続されている。すなわち、故障検出装置20は、自装置が接続されている太陽電池モジュール11が発電した発電電力を取得する。
図2は、実施形態の故障検出装置20の一例を示す概略ブロック図である。
実施形態の故障検出装置20は、制御部200及び表示部201を備える。
制御部200は、自装置が接続されている太陽電池モジュール11の出力電圧である直流電圧Vを取得する。制御部200は、直流電圧Vと予め設定された閾値Vthとを比較することで自装置が接続されている太陽電池モジュール11が故障しているか否かを判定する。閾値Vthは、故障していない太陽電池モジュール11と故障している太陽電池モジュール11とを区別するために用いられる電圧値である。例えば、閾値Vthは、以下の(1)式に示すように、太陽電池モジュール11の定格出力値に係数αを乗じた値とする。
閾値Vth=太陽電池モジュールの定格出力値×係数α …(1)
実施形態の故障検出装置20は、制御部200及び表示部201を備える。
制御部200は、自装置が接続されている太陽電池モジュール11の出力電圧である直流電圧Vを取得する。制御部200は、直流電圧Vと予め設定された閾値Vthとを比較することで自装置が接続されている太陽電池モジュール11が故障しているか否かを判定する。閾値Vthは、故障していない太陽電池モジュール11と故障している太陽電池モジュール11とを区別するために用いられる電圧値である。例えば、閾値Vthは、以下の(1)式に示すように、太陽電池モジュール11の定格出力値に係数αを乗じた値とする。
閾値Vth=太陽電池モジュールの定格出力値×係数α …(1)
なお、係数αは、1より小さい値であり、太陽電池モジュールが設置されている周囲環境に基づいて算出されてもよい。例えば、係数αは2/3である。また、係数αは、過去にストリング計測装置等で測定された太陽電池モジュール11の発電電力の履歴に基づいて算出されてもよい。また、係数αは、使用年数に基づいて決定されてもよい。
制御部200は、直流電圧Vが閾値Vth未満である場合、自装置が接続されている太陽電池モジュール11が故障していると判定する。制御部200は、直流電圧Vが閾値Vthを超えている場合、自装置が接続されている太陽電池モジュール11が故障していないと判定する。制御部200は、直流電圧Vが閾値Vth未満である場合、太陽電池モジュール11の故障を示す表示を表示部201に表示させる。
表示部201は、太陽電池モジュール11の故障を示す表示を表示する。例えば、表示部201は、警告灯であり、太陽電池モジュール11の故障を示す表示とは、警告灯の点灯である。表示部201は、直流電圧Vが閾値Vth未満である場合、点灯する。なお、表示部201において、太陽電池モジュール11が故障していないことを示す表示灯を別途設けられてもよい。表示部201は、直流電圧Vが閾値Vth以上である場合、消灯する。そして、上記表示灯は点灯する。
図3は、実施形態における故障検出装置20の太陽電池モジュールの故障検出処理のフローチャート図である。
ステップS101において、制御部200は、自装置が接続されている太陽電池モジュール11が発電した直流電圧Vを取得する。
ステップS102において、制御部200は、直流電圧Vと予め設定された閾値Vthとを比較する。制御部200は、直流電圧Vが閾値Vth未満である場合、自装置が接続されている太陽電池モジュール11が故障していると判定する。制御部200は、直流電圧Vが閾値Vth以上である場合、自装置が接続されている太陽電池モジュール11が故障していないと判定する。
ステップS103において、制御部200は、直流電圧Vが閾値Vth未満である場合、表示部201を点灯させる。
ステップS101において、制御部200は、自装置が接続されている太陽電池モジュール11が発電した直流電圧Vを取得する。
ステップS102において、制御部200は、直流電圧Vと予め設定された閾値Vthとを比較する。制御部200は、直流電圧Vが閾値Vth未満である場合、自装置が接続されている太陽電池モジュール11が故障していると判定する。制御部200は、直流電圧Vが閾値Vth以上である場合、自装置が接続されている太陽電池モジュール11が故障していないと判定する。
ステップS103において、制御部200は、直流電圧Vが閾値Vth未満である場合、表示部201を点灯させる。
図4は、故障検出装置20の変形例である故障検出装置20Aの概略ブロック図である。故障検出装置20Aは、表示部201として表示灯ではなく表示器を用いている。例えば、故障検出装置20Aは、マクリット表示器である。以下に、故障検出装置20Aとしてマクリット表示器を用いた場合について説明する。
故障検出装置20Aは、表示器203及び表示器204を備えている。例えば、表示器203は、太陽電池モジュール11が故障していることを示すものであり、赤表示である。表示器204は、太陽電池モジュール11が故障していないことを示すものであり、緑表示である。故障検出装置20Aは、自装置が接続されている太陽電池モジュール11が発電した直流電圧に基づいて、表示器203と表示器204とを切り替える。例えば、故障検出装置20Aは、電磁反転式のマクリット表示器である。したがって、故障検出装置20Aは、閾値Vth以上の電圧が印加されると、内部のソレノイドが励磁され、表示器204を表示する。故障検出装置20Aは、閾値Vth未満の電圧が印加されると、内部のソレノイドが消磁され、表示器203を表示する。
故障検出装置20Aは、表示器203及び表示器204を備えている。例えば、表示器203は、太陽電池モジュール11が故障していることを示すものであり、赤表示である。表示器204は、太陽電池モジュール11が故障していないことを示すものであり、緑表示である。故障検出装置20Aは、自装置が接続されている太陽電池モジュール11が発電した直流電圧に基づいて、表示器203と表示器204とを切り替える。例えば、故障検出装置20Aは、電磁反転式のマクリット表示器である。したがって、故障検出装置20Aは、閾値Vth以上の電圧が印加されると、内部のソレノイドが励磁され、表示器204を表示する。故障検出装置20Aは、閾値Vth未満の電圧が印加されると、内部のソレノイドが消磁され、表示器203を表示する。
図5は、実施形態における故障検出装置20Aの太陽電池モジュールの故障検出処理のフローチャート図である。
ステップS301において、故障検出装置20Aは、自装置が接続されている太陽電池モジュール11が発電した直流電圧Vを取得する。
ステップS302において、故障検出装置20Aは、直流電圧Vと予め設定された閾値Vthとを比較する。
ステップS303において、制御部200は、直流電圧Vが閾値未満である場合、自装置が接続されている太陽電池モジュール11が故障していることを示す表示器203を表示する。
ステップS304において、制御部200は、直流電圧Vが閾値Vth以上である場合、自装置が接続されている太陽電池モジュール11が故障していないことを示す表示器204を表示する。
ステップS301において、故障検出装置20Aは、自装置が接続されている太陽電池モジュール11が発電した直流電圧Vを取得する。
ステップS302において、故障検出装置20Aは、直流電圧Vと予め設定された閾値Vthとを比較する。
ステップS303において、制御部200は、直流電圧Vが閾値未満である場合、自装置が接続されている太陽電池モジュール11が故障していることを示す表示器203を表示する。
ステップS304において、制御部200は、直流電圧Vが閾値Vth以上である場合、自装置が接続されている太陽電池モジュール11が故障していないことを示す表示器204を表示する。
図6は、故障検出装置20の変形例である故障検出装置20Bの概略ブロック図である。例えば、故障検出装置20Bは、LED(Light Emitting Diode)である。以下に、故障検出装置20BとしてLEDを用いた場合について説明する。
故障検出装置20Bは、自装置が接続されている太陽電池モジュール11が発電した直流電圧に基づいて、点灯又は消灯する。例えば、故障検出装置20Aは、故障検出装置20Aは、閾値Vth未満の電圧が印加されると、消灯する。故障検出装置20Aは、閾値Vth以上の電圧が印加されると、点灯する。故障検出装置20BがLEDである場合、閾値Vthは順電圧値に対応する値である。故障検出装置20BがLEDである場合、日中に消灯している故障検出装置20Bが接続された太陽電池モジュールが故障している太陽電池モジュールとなる。
故障検出装置20Bは、自装置が接続されている太陽電池モジュール11が発電した直流電圧に基づいて、点灯又は消灯する。例えば、故障検出装置20Aは、故障検出装置20Aは、閾値Vth未満の電圧が印加されると、消灯する。故障検出装置20Aは、閾値Vth以上の電圧が印加されると、点灯する。故障検出装置20BがLEDである場合、閾値Vthは順電圧値に対応する値である。故障検出装置20BがLEDである場合、日中に消灯している故障検出装置20Bが接続された太陽電池モジュールが故障している太陽電池モジュールとなる。
以上説明した少なくともひとつの実施形態によれば、故障検出装置は、太陽電池モジュール毎に設けられている。故障検出装置は、太陽電池モジュールの発電電力に基づいて、太陽電池モジュールが太陽電池モジュールの故障を示す表示を表示部に表示させる。したがって、実施形態の故障検出装置は、太陽電池テスターによる電気的特性の検査が必要ないため、太陽電池モジュールの故障を容易に検出することができる。これにより、保守員は、日中にて故障検出装置を目視確認することにより容易に故障した太陽電池モジュールを発見することができる。
また、実施形態の故障検出装置20は、マクリット表示器又はLEDのみで構成することができるため、従来実施していたサーモカメラによる故障検出や発電電力の傾向を随時モニタリングする故障検出等より安価に太陽電池モジュールの故障を検出することができる。
また、太陽電池モジュールが故障する際に発生する発熱を感知する感熱シールを用いる従来の方法では、感熱シールが風雨にさらされることで脱落する場合があった。また、感熱シールは、太陽電池モジュールにおいて、貼付された付近の故障しか検出することができない場合があった。すなわち、感熱シールが貼付されていない箇所の故障の場合には、太陽電池モジュールの故障を検出することができない場合があった。実施形態の故障検出装置は、太陽電池モジュールの発電電力に基づいて太陽電池モジュールの故障を検出するため、感熱シールを用いる場合と比べて風雨による脱落が少ない。実施形態の故障検出装置は、太陽電池モジュールの発電電力に基づいて太陽電池モジュールの故障を検出するため、太陽電池モジュール11内の故障箇所にかかわらず、故障した太陽電池モジュールを検出できる。
また、テスターによる電気的特性の検査により太陽電池モジュールの故障を検出する従来の方法では、保守員が接続箱や集電箱において、太陽電池ストリングの発電量をテスターで確認していた。少数の太陽電池モジュールの故障では太陽電池ストリングの発電量への影響が小さい場合がある。したがって、太陽電池モジュールが故障しても太陽電池ストリングの発電量が変化しない場合があり、故障が波及的に発生してから太陽電池モジュールの故障が発見される場合があった。本実施形態の故障検出装置は、各太陽電池モジュールに接続されているため、故障した太陽電池モジュールの個数にかかわらず、太陽電池モジュールの故障を検出することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…太陽光発電システム、2…太陽電池アレイ、3…接続箱、4…PCS、10…太陽電池ストリング、11…太陽電池モジュール、20…故障検出装置、200…制御部、201…表示部
Claims (4)
- 複数の太陽電池モジュールの各々に接続された故障検出装置であって、
接続された前記太陽電池モジュールの発電電力に基づいて、前記太陽電池モジュールが故障していることを表示する表示部を備える故障検出装置。 - 前記表示部は、前記太陽電池モジュールの出力電圧が所定の閾値未満である場合、前記太陽電池モジュールが故障していることを示す表示を表示する請求項1に記載の故障検出装置。
- 前記閾値は、前記太陽電池モジュールの定格出力値に係数を乗じた値である請求項2に記載の故障検出装置。
- 前記表示部は、マクリット表示器である請求項1から請求項3のいずれか一項に記載の故障検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047067A JP2016167933A (ja) | 2015-03-10 | 2015-03-10 | 故障検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047067A JP2016167933A (ja) | 2015-03-10 | 2015-03-10 | 故障検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016167933A true JP2016167933A (ja) | 2016-09-15 |
Family
ID=56898875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015047067A Pending JP2016167933A (ja) | 2015-03-10 | 2015-03-10 | 故障検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016167933A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022061490A1 (zh) * | 2020-09-22 | 2022-03-31 | 华为数字能源技术有限公司 | 一种光伏发电系统、检测光伏组串对地故障的方法及设备 |
-
2015
- 2015-03-10 JP JP2015047067A patent/JP2016167933A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022061490A1 (zh) * | 2020-09-22 | 2022-03-31 | 华为数字能源技术有限公司 | 一种光伏发电系统、检测光伏组串对地故障的方法及设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5584622B2 (ja) | 太陽光発電システムの故障検出方法 | |
KR101491013B1 (ko) | 누설전류 및 화재 징후 감시 기능을 갖는 태양광 접속반을 포함하는 태양광 발전 시스템 | |
JP4780416B2 (ja) | 太陽電池アレイ故障診断方法 | |
JP6176939B2 (ja) | 太陽電池の異常状態検出方法およびその装置、並びに、当該装置を有する太陽光発電システム | |
WO2012026449A1 (ja) | 地絡検出装置、その地絡検出装置を用いた集電箱及びその集電箱を用いた太陽光発電装置 | |
AU2010347924B2 (en) | Photovoltaic power generation system | |
US10615741B2 (en) | Method and apparatus for detecting, regenerating and/or preventing defects in a solar panel installation | |
JP6029285B2 (ja) | 太陽電池モジュールの異常検出装置、異常検出設備、並びに太陽光発電装置 | |
JP6448946B2 (ja) | 太陽電池パネル異常検出システム | |
KR20210137872A (ko) | 태양광 모듈별 발전전류를 관리하는 태양광 발전 시스템 | |
JP2017184472A (ja) | 太陽光発電システムの発電診断方法、及び発電診断装置 | |
KR101632831B1 (ko) | 태양광 모듈의 고장 위치 검출 장치 | |
KR101479285B1 (ko) | 태양광 발전시스템의 접속함 접촉불량 검출장치 | |
JP2012195322A (ja) | 太陽光発電システム | |
JP2016167933A (ja) | 故障検出装置 | |
KR101695381B1 (ko) | 태양광 접속반 장치 | |
WO2011111252A1 (ja) | 太陽光発電システム | |
KR101810857B1 (ko) | 태양전지 모듈에서의 pid 진단방법 | |
KR102440143B1 (ko) | 태양광 모듈의 음영 및 고장을 감지하기 위한 장치 | |
JP2019146297A (ja) | 太陽電池の動作電圧制御装置 | |
KR20160064450A (ko) | 직렬 연결된 태양광 모듈 스트링에서의 이상 모듈 진단 시스템 및 방법 | |
JP6367005B2 (ja) | 太陽電池監視装置 | |
KR20170118384A (ko) | 컨버터 일체형 태양전지모듈 정션박스 | |
TWI437248B (zh) | 回收光能之點亮測試設備 | |
JP6100031B2 (ja) | 太陽光発電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20170911 Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170911 |