JP2016167470A - Manufacturing method of flat nonaqueous secondary battery - Google Patents

Manufacturing method of flat nonaqueous secondary battery Download PDF

Info

Publication number
JP2016167470A
JP2016167470A JP2016125363A JP2016125363A JP2016167470A JP 2016167470 A JP2016167470 A JP 2016167470A JP 2016125363 A JP2016125363 A JP 2016125363A JP 2016125363 A JP2016125363 A JP 2016125363A JP 2016167470 A JP2016167470 A JP 2016167470A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
positive electrode
positive
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016125363A
Other languages
Japanese (ja)
Other versions
JP6240265B2 (en
Inventor
山本 雄治
Yuji Yamamoto
雄治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2016125363A priority Critical patent/JP6240265B2/en
Publication of JP2016167470A publication Critical patent/JP2016167470A/en
Application granted granted Critical
Publication of JP6240265B2 publication Critical patent/JP6240265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a flat nonaqueous secondary battery which improves productivity.SOLUTION: A flat nonaqueous secondary battery includes an electrode group in which positive electrodes and negative electrodes are alternately laminated via separators substantially in parallel with flat surfaces of an exterior case and a sealing case within a space that is formed by caulking and sealing a positive electrode case and a negative electrode case via an insulation gasket. Collector tab parts of the positive electrodes or the negative electrodes are collectively welded, integrated and folded on the electrodes of the same pole closer to an outermost part of the electrode group. An end of a welding portion of the integrated collector tab parts of the positive electrodes or the negative electrodes is positioned closer to the inside of the battery than an outermost part of the integrated collector tab parts of the positive electrodes or the negative electrodes closer to the insulation gasket. When manufacturing such a flat nonaqueous secondary battery, the manufacturing method of the flat nonaqueous secondary battery includes folding and collecting the collector tab parts of the electrodes onto the electrode at the outermost part of the electrode group while forcedly creasing the collector tab parts, and then welding and integrating the collector tab parts with each other.SELECTED DRAWING: Figure 2

Description

本発明は、生産性に優れた扁平形非水二次電池と、その製造方法に関するものである。   The present invention relates to a flat non-aqueous secondary battery excellent in productivity and a method for manufacturing the same.

一般にコイン形電池やボタン形電池と称される扁平形の非水二次電池では、正極と負極とがセパレータを介して対向して構成された電極群と、非水電解液とを、外装ケースと封口ケースと絶縁ガスケットとで形成された空間内に収容した構造を有している。   In a flat non-aqueous secondary battery generally referred to as a coin-type battery or a button-type battery, an electrode group in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a non-aqueous electrolyte solution are provided in an outer case. And a structure accommodated in a space formed by a sealing case and an insulating gasket.

前記のような扁平形非水二次電池では、正極および負極に、集電体の片面または両面に正極合剤層や負極剤層を形成し、かつ集電体の一部を、正極合剤層や負極剤層を形成せずに露出させ、これを集電タブとして利用し、各正極および各負極の集電タブを、それぞれ纏めて溶接などし、これらの纏めた集電タブを、端子を兼ねる外装ケースや封口ケースの内面との電気的接続に利用しているものがある(例えば、特許文献1)。   In the flat non-aqueous secondary battery as described above, a positive electrode mixture layer or a negative electrode agent layer is formed on one or both surfaces of the current collector on the positive electrode and the negative electrode, and a part of the current collector is mixed with the positive electrode mixture. It is exposed without forming a layer or a negative electrode agent layer, and this is used as a current collecting tab. The current collecting tabs of each positive electrode and each negative electrode are welded together, and these collected current collecting tabs are connected to terminals. There are some which are used for electrical connection with the inner surface of an exterior case or a sealing case that also serves as a material (for example, Patent Document 1).

また、近年では、扁平形非水二次電池の適用範囲が広がるにつれて、例えば小型化などの要請がある。しかし、扁平形非水二次電池では、小型のものなどのように電池の形状によっては、電池内が非常に狭いことから、電極群に係る纏めた正負極の集電タブと、外装ケースや封口ケースの内面との溶接が困難となり、電池の生産性が損なわれる場合がある。   In recent years, as the application range of flat non-aqueous secondary batteries has expanded, for example, there has been a demand for downsizing. However, in a flat non-aqueous secondary battery, depending on the shape of the battery, such as a small one, the inside of the battery is very narrow. Welding with the inner surface of the sealing case may be difficult, and battery productivity may be impaired.

そこで、纏めて溶接した複数の集電タブを、電極群の外面側に折り返して接着し、これを正極ケースや負極ケースの内面と接触させて電気的に接続することで、集電タブの長さをある程度確保しつつ、小型の電池ケースの適用を可能にした技術の提案もある(特許文献2)。   Therefore, the plurality of current collecting tabs welded together are folded and bonded to the outer surface side of the electrode group, and are brought into contact with the inner surfaces of the positive electrode case and the negative electrode case to be electrically connected to each other. There is also a proposal of a technique that enables the application of a small battery case while ensuring a certain degree (Patent Document 2).

特開2003−142161号公報JP 2003-142161 A 特開2011−141997号公報JP 2011-141997 A

ところが、特許文献2に記載の技術では、正極ケースと負極ケースとの嵌合がし難いといった問題もあり、特に平面視での径に対して厚みが小さい薄型の扁平形非水二次電池においては、この問題が生産性にも影響する。かかる点において、特許文献2に記載の技術も、未だ改善の余地を残している。   However, the technique described in Patent Document 2 also has a problem that it is difficult to fit the positive electrode case and the negative electrode case, particularly in a thin flat non-aqueous secondary battery having a small thickness with respect to the diameter in plan view. This problem also affects productivity. In this respect, the technique described in Patent Document 2 still leaves room for improvement.

本発明は、前記事情に鑑みてなされたものであり、その目的は、生産性に優れた扁平形非水二次電池と、その製造方法とを提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the flat type non-aqueous secondary battery excellent in productivity, and its manufacturing method.

正極端子を兼ねる正極ケースと負極端子を兼ねる負極ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、正極と負極とがセパレータを介して交互に、かつ前記正極ケースおよび前記負極ケースの扁平面に略平行に積層されており、正極および負極の合計枚数が3枚以上である電極群、並びに非水電解液を有する扁平形非水二次電池であって、下記(1)または(2)の態様を有することを特徴とするものである。   A positive electrode case that also serves as a positive electrode terminal and a negative electrode case that also serves as a negative electrode terminal are formed in a space formed by caulking and sealing via an insulating gasket. A flat non-aqueous secondary battery having a non-aqueous electrolyte and an electrode group in which the total number of positive and negative electrodes is three or more, and is laminated substantially parallel to the flat surface of the negative electrode case. ) Or (2).

(1)前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、集電体に負極剤層が形成されておらず、前記電極群は、前記負極を少なくとも2枚有しており、かつ前記電極群における負極ケース側の最外部の電極が負極であり、前記各負極の集電タブ部が纏められ、互いに溶接されて一体化しており、前記一体化した負極の集電タブ部が、前記電極群における負極ケース側の最外部の負極上に折り返されており、前記一体化した負極の集電タブ部における溶接部分の、負極の本体部側の端部が、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側に位置している。 (1) The negative electrode includes a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. A negative electrode layer containing a negative electrode active material is formed on one side or both sides of a current collector. In the current collector tab portion of the negative electrode, a negative electrode layer is not formed on the current collector. It has at least two negative electrodes, and the outermost electrode on the negative electrode case side in the electrode group is a negative electrode, and the current collecting tab portions of the negative electrodes are gathered together and welded together, and The integrated negative electrode current collecting tab portion is folded on the outermost negative electrode on the negative electrode case side in the electrode group, and the welded portion of the integrated negative electrode current collecting tab portion on the negative electrode body portion side Is an insulating gasket in the current collecting tab portion of the integrated negative electrode Than most external, it is located in the battery inside.

(2)前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、集電体に正極合剤層が形成されておらず、前記電極群は、前記正極を少なくとも2枚有しており、かつ前記電極群における正極ケース側の最外部の電極が正極であり、前記各正極の集電タブ部が纏められ、互いに溶接されて一体化しており、前記一体化した正極の集電タブ部が、前記電極群における正極ケース側の最外部の正極上に折り返されており、前記一体化した正極の集電タブ部における溶接部分の、正極の本体部側の端部が、前記一体化した正極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側に位置している。 (2) The positive electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. A positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides of the current collector, and in the current collector tab portion of the positive electrode, a positive electrode mixture layer is not formed on the current collector, and the electrode group is , Having at least two positive electrodes, and the outermost electrode on the positive electrode case side in the electrode group is a positive electrode, and the current collecting tab portions of the positive electrodes are collected and welded together to be integrated The integrated current collecting tab portion of the positive electrode is folded on the outermost positive electrode on the positive electrode case side in the electrode group, and the positive electrode main body of the welded portion of the integrated positive electrode current collecting tab portion The end on the part side is the insulating gasket in the current collecting tab part of the integrated positive electrode. Than the outermost portion of the door side, it is located in the battery inside.

前記(1)の態様に係る本発明の扁平形非水二次電池は、正極、負極およびセパレータを重ねた後に、各負極の集電タブ部を、電極群の最外部となる負極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、各負極の集電タブ部を一体化する工程を有する本発明の製造方法により製造できる。   In the flat nonaqueous secondary battery of the present invention according to the aspect (1), after the positive electrode, the negative electrode, and the separator are stacked, the current collecting tab portion of each negative electrode is forced on the outermost negative electrode of the electrode group. It can be manufactured by the manufacturing method of the present invention, which includes a step of folding and collecting together with creases, and then welding together to integrate the current collecting tab portions of the negative electrodes.

また、前記(2)の態様に係る本発明の扁平形非水二次電池は、正極、負極およびセパレータを重ねた後に、各正極の集電タブ部を、電極群の最外部となる正極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、各正極の集電タブ部を一体化する工程を有する本発明の製造方法により製造できる。   The flat non-aqueous secondary battery of the present invention according to the above aspect (2) includes a positive electrode, a negative electrode, and a separator, and the current collecting tab portion of each positive electrode is placed on the positive electrode that is the outermost part of the electrode group. Can be manufactured by the manufacturing method of the present invention, which includes a step of forcing the current collecting tabs of the respective positive electrodes together by folding them together while forcibly folding them together.

なお、電池業界においては、高さより径の方が大きい扁平形電池をコイン形電池と呼んだり、ボタン形電池と呼んだりしているが、そのコイン形電池とボタン形電池との間に明確な差はなく、本発明の扁平形非水二次電池には、コイン形電池、ボタン形電池のいずれもが含まれる。   In the battery industry, a flat battery with a diameter larger than the height is called a coin-type battery or a button-type battery, but there is a clear gap between the coin-type battery and the button-type battery. There is no difference, and the flat non-aqueous secondary battery of the present invention includes both coin-type batteries and button-type batteries.

本発明によれば、生産性に優れた扁平形非水二次電池と、その製造方法とを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flat type non-aqueous secondary battery excellent in productivity and its manufacturing method can be provided.

本発明の扁平形非水二次電池の一例を模式的に表す縦断面図である。It is a longitudinal cross-sectional view which represents typically an example of the flat non-aqueous secondary battery of this invention. 図1の扁平形非水二次電池の要部断面拡大図である。It is a principal part expanded view of the flat non-aqueous secondary battery of FIG. 本発明の扁平形非水二次電池に係る負極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the negative electrode which concerns on the flat nonaqueous secondary battery of this invention. 本発明の扁平形非水二次電池に係る正極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the positive electrode which concerns on the flat nonaqueous secondary battery of this invention. 本発明法以外の方法で製造した扁平形非水二次電池の一例を模式的に表す要部断面拡大図である。It is a principal part expanded view which represents typically an example of the flat type non-aqueous secondary battery manufactured by methods other than this invention method. 本発明の扁平形非水二次電池の他の例を模式的に表す縦断面図である。It is a longitudinal cross-sectional view which represents typically the other example of the flat nonaqueous secondary battery of this invention. 図6の扁平形非水二次電池の要部断面拡大図である。FIG. 7 is an enlarged cross-sectional view of a main part of the flat nonaqueous secondary battery in FIG. 6. 本発明の扁平形非水二次電池に係るセパレータの一例を模式的に表す平面図である。It is a top view which represents typically an example of the separator which concerns on the flat nonaqueous secondary battery of this invention.

図1および図2に、本発明の扁平形非水二次電池の一例を模式的に示す。図1は、扁平形非水二次電池の縦断面図であり、図2は、図1の要部断面拡大図である。   1 and 2 schematically show an example of the flat non-aqueous secondary battery of the present invention. FIG. 1 is a longitudinal sectional view of a flat non-aqueous secondary battery, and FIG. 2 is an enlarged sectional view of a main part of FIG.

図1および図2に示すように、扁平形非水二次電池1は、複数の正極5および複数の負極6を、セパレータ7を介して、それらの平面が電池の扁平面に略平行(平行を含む)となるように積層した積層型の電極群と、非水電解液(図示しない)とが、正極端子を兼ねる正極ケース2(図1では外装ケース)、負極端子を兼ねる負極ケース3(図1では封口ケース)および絶縁ガスケット4により形成される空間(密閉空間)内に収容されている。負極ケース3は、正極ケース2の開口部に絶縁ガスケット4を介して嵌合しており、正極ケース2の開口端部が内方に締め付けられ、これにより絶縁ガスケット4が負極ケース3に当接することで、正極ケース2の開口部が封口されて電池内部が密閉構造となっている。正極ケース2および負極ケース3は、ステンレス鋼などの金属製であり、絶縁ガスケット4は、ポリプロピレンなどの絶縁性を有する樹脂製である。   As shown in FIG. 1 and FIG. 2, the flat non-aqueous secondary battery 1 includes a plurality of positive electrodes 5 and a plurality of negative electrodes 6 with separators 7 interposed therebetween, and their planes are substantially parallel (parallel) to the flat surface of the battery. And a non-aqueous electrolyte solution (not shown) are a positive electrode case 2 (exterior case in FIG. 1), and a negative electrode case 3 (also an outer case) (also shown in FIG. 1). In FIG. 1, it is accommodated in the space (sealed space) formed by the sealing case) and the insulating gasket 4. The negative electrode case 3 is fitted in the opening of the positive electrode case 2 via an insulating gasket 4, and the opening end of the positive electrode case 2 is tightened inward, whereby the insulating gasket 4 contacts the negative electrode case 3. Thus, the opening of the positive electrode case 2 is sealed, and the inside of the battery has a sealed structure. The positive electrode case 2 and the negative electrode case 3 are made of a metal such as stainless steel, and the insulating gasket 4 is made of an insulating resin such as polypropylene.

なお、図1および図2の電池では、前記の通り、正極端子を兼ねる正極ケース2が外装ケースであり、負極端子を兼ねる負極ケース3が封口ケースであるが、本発明の電池においては、例えば電極群の構成に応じて、外装ケースが負極端子を兼ねる負極ケースであり、封口ケースが正極端子を兼ねる正極ケースであってもよい。   1 and 2, as described above, the positive electrode case 2 that also serves as the positive electrode terminal is an outer case, and the negative electrode case 3 that also serves as a negative electrode terminal is a sealing case. In the battery of the present invention, for example, Depending on the configuration of the electrode group, the outer case may be a negative electrode case that also serves as a negative electrode terminal, and the sealing case may be a positive electrode case that also serves as a positive electrode terminal.

また、図3に負極6の平面図を模式的に示しているが、負極6は、本体部600と、平面視で、本体部600から突出した、本体部600よりも幅(図3中上下方向の長さ)の狭い集電タブ部601とを有している。集電タブ部601の幅は、例えば本体部600の幅の5〜60%とすることができる。   3 schematically shows a plan view of the negative electrode 6. The negative electrode 6 has a width that is larger than the main body 600 and the main body 600 protruding from the main body 600 in plan view (up and down in FIG. 3). Current collecting tab portion 601 having a narrow direction length). The width of the current collecting tab portion 601 can be set to 5 to 60% of the width of the main body portion 600, for example.

負極6の本体部600は、集電体(図1中62)の片面または両面に、負極活物質などを含有する負極剤層61が形成されている。そして、負極6の集電タブ部601は、集電体62表面に負極剤層が形成されておらず、集電体62が露出している。   In the main body 600 of the negative electrode 6, a negative electrode agent layer 61 containing a negative electrode active material or the like is formed on one side or both sides of a current collector (62 in FIG. 1). And the current collection tab part 601 of the negative electrode 6 does not have the negative electrode agent layer formed in the surface of the electrical power collector 62, and the electrical power collector 62 is exposed.

図1および図2に示す電池では、電極群の上下両端が負極6B、6Bとなっており、これらの負極6B、6Bは、集電体62の片面(電池内側の面)にのみ、負極剤層61を有している。一方、電極群の上下両端以外に配置されている負極6Aは、集電体62の両面に負極剤層61、61を有している。なお、電極群の最外部側に配置される負極も、集電体の両面に負極剤層を有していてもよい。   In the battery shown in FIG. 1 and FIG. 2, the upper and lower ends of the electrode group are negative electrodes 6B and 6B, and these negative electrodes 6B and 6B are provided on only one side of the current collector 62 (the inner surface of the battery). A layer 61 is provided. On the other hand, the negative electrode 6 </ b> A arranged on the electrode group other than the upper and lower ends has negative electrode agent layers 61 and 61 on both surfaces of the current collector 62. In addition, the negative electrode arrange | positioned at the outermost side of an electrode group may also have a negative electrode agent layer on both surfaces of a collector.

また、図4に正極5の平面図を模式的に示しているが、正極5は、本体部500と、平面視で、本体部500から突出した、本体部500よりも幅(図4中上下方向の長さ)の狭い集電タブ部501とを有している。集電タブ部501の幅は、例えば本体部500の幅の5〜60%とすることができる。   4 schematically shows a plan view of the positive electrode 5. The positive electrode 5 has a width that is larger than the main body 500 and the main body 500 protruding from the main body 500 in plan view (upper and lower in FIG. 4). Current collecting tab portion 501 having a narrow direction length). The width of the current collecting tab portion 501 can be set to 5 to 60% of the width of the main body portion 500, for example.

正極5の本体部500は、集電体(図1中52)の両面に、正極活物質などを含有する正極合剤層51が形成されている。そして、正極5の集電タブ部501は、集電体52表面に正極合剤層が形成されておらず、集電体52が露出している。なお、図1および図2に示す電池では、電極群における最外部側の電極がいずれも負極であるために、全ての正極5の本体部500においては、集電体52の両面に正極合剤層51が形成されているが、例えば、電極群における最外部側の電極のうちの一方(より具体的には、正極端子を兼ねる外装ケース側または封口ケース側の電極)または両方を正極とすることもでき、その場合、電極群における最外部側の正極は、その本体部における集電体の片面(電池内側の面)にのみ正極合剤層を有していてもよく、両面に正極合剤層を有していてもよい。   In the main body 500 of the positive electrode 5, a positive electrode mixture layer 51 containing a positive electrode active material or the like is formed on both surfaces of a current collector (52 in FIG. 1). In the current collecting tab portion 501 of the positive electrode 5, the positive electrode mixture layer is not formed on the surface of the current collector 52, and the current collector 52 is exposed. In the batteries shown in FIGS. 1 and 2, since the outermost electrode in the electrode group is a negative electrode, the positive electrode mixture is formed on both surfaces of the current collector 52 in the main body portion 500 of all the positive electrodes 5. Although the layer 51 is formed, for example, one of the electrodes on the outermost side in the electrode group (more specifically, the electrode on the exterior case side or the sealing case side that also serves as the positive electrode terminal) or both is used as the positive electrode. In this case, the outermost positive electrode in the electrode group may have a positive electrode mixture layer only on one side of the current collector (the inner surface of the battery) in the main body, and the positive electrode mixture layer on both sides. You may have an agent layer.

また、図1に示す電池では、電極群を構成する全ての正極5の集電タブ部が纏められており、これらは互いに溶接されて一体化し、その端部が平面視で電極群の外側(図中左側)へ向くように折り曲げられている。そして、前記纏められ溶接されて一体化した正極の集電タブ部501aが、正極ケース2の内面に溶接されている。   Further, in the battery shown in FIG. 1, the current collecting tab portions of all the positive electrodes 5 constituting the electrode group are collected, and these are welded and integrated, and the end portions thereof are outside the electrode group in plan view ( It is bent so as to face the left side in the figure. The positive current collecting tab portion 501 a which is integrated and welded is welded to the inner surface of the positive electrode case 2.

一方、図1および図2に示す電池では、電極群を構成する全ての負極6の集電タブ部601は、纏められ互いに溶接されて一体化しており、かつ電極群における負極ケース3側の最外部の負極6B上に折り返されており、電極群の外面(図1および図2中上面)と負極ケースの内面とによって挟持されている。そして、一体化した負極の集電タブ部601aの溶接部分の、負極の本体部側の端部Xが、一体化した負極の集電タブ部における絶縁ガスケット側の最外部Yよりも、電池内側の位置している。この図1および図2に示すように、一体化した負極の集電タブ部の溶接部分における負極の本体部側の端部が、一体化した負極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側の位置している扁平形非水二次電池は、各負極の集電タブ部を特定の手法によって溶接する工程を有する本発明の製造方法により製造することができる。   On the other hand, in the battery shown in FIG. 1 and FIG. 2, the current collecting tab portions 601 of all the negative electrodes 6 constituting the electrode group are integrated and welded together, and the outermost electrode on the negative electrode case 3 side in the electrode group. It is folded on the external negative electrode 6B and is sandwiched between the outer surface of the electrode group (upper surface in FIGS. 1 and 2) and the inner surface of the negative electrode case. Then, the end X of the negative electrode main body portion side of the welded portion of the integrated negative electrode current collecting tab portion 601a is closer to the inside of the battery than the outermost Y on the insulating gasket side of the integrated negative electrode current collecting tab portion. Is located. As shown in FIGS. 1 and 2, the end of the negative electrode body tab side in the welded portion of the integrated negative electrode current collector tab portion is the outermost portion on the insulating gasket side in the integrated negative electrode current collector tab portion. The flat nonaqueous secondary battery located inside the battery can be manufactured by the manufacturing method of the present invention including a step of welding the current collecting tab portion of each negative electrode by a specific method.

図5に、本発明法とは異なる製造方法で製造した扁平形非水二次電池を模式的に表す要部断面拡大図を示している。図5に示す電池100は、正極5、負極6A、6Bおよびセパレータ7を積層して電極群を形成した後に、各負極の集電タブ部を纏めて互いに溶接して一体化し、その後に、この一体化した負極の集電タブ部601aを電極群の最外部の負極6B上に折り返す工程を経て製造されたものである。   FIG. 5 shows an enlarged cross-sectional view of a main part schematically showing a flat non-aqueous secondary battery manufactured by a manufacturing method different from the method of the present invention. The battery 100 shown in FIG. 5 is formed by laminating the positive electrode 5, the negative electrodes 6A and 6B, and the separator 7 to form an electrode group, and then collecting and integrating the current collecting tab portions of the negative electrodes together. The integrated negative electrode current collecting tab portion 601a is manufactured through a step of folding back on the outermost negative electrode 6B of the electrode group.

このような製造方法によって製造された電池では、一体化した負極の集電タブ部601aを構成する各負極の集電タブ部の互いの位置が固定された状態で、電極群の最外部の負極6B上に折り返されるため、より内側となる集電タブ部では撓みが生じ、より外側となる集電タブ部では長さが足りなくなることから、折り返しても戻りが生じてしまって、一体化した負極の集電タブ部601aを電極群の最外部の負極6Bの外面に良好に沿わせることができずに浮き上がってしまう。一体化した負極の集電タブ部601aの先が浮き上がった状態で、電池の組み立てを行うと、電極群を装填して正極ケースと負極ケースとを嵌合する際の作業性が低下し、不良品の発生割合が多くなったり、不良品の発生を抑えるための操作が必要になったりして、電池の生産性が低下する虞がある。   In the battery manufactured by such a manufacturing method, the outermost negative electrode of the electrode group in a state where the positions of the current collecting tab portions of the negative electrodes constituting the integrated negative current collecting tab portion 601a are fixed. 6B, because the current collecting tab portion on the inner side is bent, and the length of the current collecting tab portion on the outer side is insufficient, the return is generated even if it is turned back and integrated. The negative electrode current collecting tab portion 601a cannot be satisfactorily placed on the outer surface of the outermost negative electrode 6B of the electrode group, and is raised. When the battery is assembled with the tip of the integrated negative electrode current collecting tab portion 601a raised, workability when the electrode group is loaded and the positive electrode case and the negative electrode case are fitted decreases. There is a possibility that the productivity of the battery may be reduced because the generation ratio of non-defective products increases or an operation for suppressing the generation of defective products becomes necessary.

そして、各負極の集電タブ部を溶接して一体化してから、電極群の最外部の負極上に折り返す工程を経て製造し、良好に製造できた扁平形非水二次電池の場合には、図5に示しているように、一体化した負極の集電タブ部601aの溶接部分における負極の本体部側の端部Xが、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部Yに位置するようになる。   And in the case of a flat non-aqueous secondary battery that is manufactured through a process of folding back on the outermost negative electrode of the electrode group after welding and integrating the current collecting tab portion of each negative electrode, As shown in FIG. 5, the end X on the negative electrode body portion side of the welded portion of the integrated negative electrode current collector tab portion 601a is connected to the insulating gasket side of the integrated negative electrode current collector tab portion. It comes to be located in the outermost Y.

これに対し、本発明法では、正極、負極、およびセパレータを積層して後に、各負極の集電タブ部を、電極群の最外部となる負極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、各負極の集電タブ部を一体化する工程を経て扁平形非水二次電池を製造する。このような方法で製造した場合には、電極群の最外部の負極上で、各集電タブの互いの位置が定まった状態で溶接によって固定されるため、一体化した負極の集電タブ部における前記の戻りの発生を抑えることができる。そのため、前記のような電池組み立て時の問題を回避して、電池の生産性を高めることができる。   On the other hand, in the method of the present invention, after the positive electrode, the negative electrode, and the separator are laminated, the current collecting tab portion of each negative electrode is folded and forcedly folded on the negative electrode that is the outermost part of the electrode group. Then, a flat non-aqueous secondary battery is manufactured through a process of welding each other and integrating the current collecting tab portions of the negative electrodes. When manufactured by such a method, the current collecting tabs of the integrated negative electrode are fixed on the outermost negative electrode of the electrode group by welding in a state where the positions of the current collecting tabs are fixed. The occurrence of the return in step 1 can be suppressed. For this reason, it is possible to avoid the problems during the battery assembly as described above and increase the productivity of the battery.

そして、本発明法によって製造した扁平形非水二次電池では、図2に示しているように、一体化した負極の集電タブ部601aの溶接部分における負極の本体部側の端部Xが、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部Yよりも、電池内側に位置するようになる。   And in the flat non-aqueous secondary battery manufactured by the method of the present invention, as shown in FIG. 2, the end X on the main body side of the negative electrode in the welded portion of the integrated negative electrode current collecting tab 601a is The integrated negative electrode current collecting tab portion is located on the inner side of the battery with respect to the outermost Y on the insulating gasket side.

一体化した負極の集電タブ部601aの溶接部分における負極の本体部側の端部Xは、平面視(図1における電池上面からの平面視)で、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部Yの位置から、0.3〜2.6mm離れていることが好ましい。   The end X on the negative electrode body portion side in the welded portion of the integrated negative electrode current collecting tab portion 601a is the integrated negative electrode current collecting tab portion in plan view (plan view from the battery upper surface in FIG. 1). It is preferable that it is 0.3-2.6 mm away from the position of the outermost Y on the insulating gasket side.

なお、一体化した負極の集電タブ部の一部は、図1および図2に示すように、電極群の外面と負極ケースの内面とで挟持されており、これにより、各負極と負極端子を兼ねる負極ケースとが電気的に接続される。   As shown in FIGS. 1 and 2, a part of the integrated negative electrode current collecting tab portion is sandwiched between the outer surface of the electrode group and the inner surface of the negative electrode case. Are electrically connected to the negative electrode case.

図1には、電極群の最外部側の2枚の電極のいずれもが負極である場合を示しているが、前記の通り、本発明の電池においては、電極群の最外部側のいずれか一方または両方が正極であってもよい。   FIG. 1 shows a case where both of the two electrodes on the outermost side of the electrode group are negative electrodes. As described above, in the battery of the present invention, either one of the outermost side of the electrode group One or both may be positive.

このような扁平形非水二次電池は、正極、負極およびセパレータを重ねた後に、各正極の集電タブ部を、電極群の最外部となる正極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、各正極の集電タブ部を一体化する工程を有する本発明法により製造する。この場合、前記の方法で負極の集電タブ部を一体化する工程を経て製造した扁平形非水二次電池の場合と同様に、一体化した正極の集電タブ部が、電極群の最外部の正極上から離れて浮き上がることを抑えることできるため、こうした浮き上がりによる電池の生産性低下を抑制することができる。   In such a flat non-aqueous secondary battery, after the positive electrode, the negative electrode, and the separator are stacked, the current collecting tab portion of each positive electrode is folded back on the positive electrode that is the outermost part of the electrode group while being forcibly folded. It is manufactured by the method of the present invention, which includes a step of integrating the current collecting tab portions of each positive electrode by welding them together. In this case, as in the case of the flat non-aqueous secondary battery manufactured through the process of integrating the negative electrode current collecting tab part by the above-described method, the integrated positive electrode current collecting tab part is the outermost electrode group. Since it is possible to suppress lifting from the external positive electrode, it is possible to suppress a decrease in battery productivity due to such lifting.

そして、正極、負極およびセパレータを重ねた後に、各正極の集電タブ部を、前記電極群の最外部となる正極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、各正極の集電タブ部を一体化する工程を有する本発明法により製造した扁平形非水二次電池では、一体化した正極の集電タブ部の溶接部分における正極の本体部側の端部が、前記一体化した正極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側に位置するようになる。   And after stacking the positive electrode, the negative electrode, and the separator, the current collecting tab portion of each positive electrode is forcibly folded and folded on the positive electrode that is the outermost part of the electrode group, and then welded together, In the flat type non-aqueous secondary battery manufactured by the method of the present invention having the step of integrating the current collecting tab portion of each positive electrode, the end of the positive electrode body portion side in the welded portion of the current collecting tab portion of the integrated positive electrode However, it comes to be located inside a battery rather than the outermost part by the side of the insulation gasket in the current collection tab part of the said integrated positive electrode.

一体化した正極の集電タブ部溶接部分における正極の本体部側の端部は、平面視で、前記一体化した正極の集電タブ部における絶縁ガスケット側の最外部の位置から、0.3〜2.6mm離れていることが好ましい。   The end on the main body side of the positive electrode current collector tab portion welded portion of the integrated positive electrode is 0.3 mm from the outermost position on the insulating gasket side in the integrated current collector tab portion of the positive electrode. It is preferable to be separated by ~ 2.6 mm.

また、この態様の電池の場合、一体化した正極の集電タブ部の一部は、電極群の外面と正極ケースの内面とで挟持されるため、これにより、各正極と正極端子を兼ねる正極ケースとが電気的に接続される。   In addition, in the case of the battery of this aspect, a part of the integrated current collecting tab portion of the positive electrode is sandwiched between the outer surface of the electrode group and the inner surface of the positive electrode case, so that each positive electrode serves as both the positive electrode and the positive electrode terminal. The case is electrically connected.

図1に示すように、電極群の最外部側の2枚の電極がいずれも負極の場合、正極ケース(図1および図2では外装ケース)と、電極群(その最外部の負極)との間には、例えば、ポリエチレンテレフタレート(PET)やポリイミドなどで形成されたテープなどからなる絶縁シール(図1中、8)を配置すればよい。   As shown in FIG. 1, when the two electrodes on the outermost side of the electrode group are both negative electrodes, the positive electrode case (the outer case in FIGS. 1 and 2) and the electrode group (the outermost negative electrode) An insulating seal (8 in FIG. 1) made of, for example, a tape formed of polyethylene terephthalate (PET) or polyimide may be disposed between them.

また、例えば、電極群の最外部側の2枚の電極がいずれも正極の場合、電極群に係る負極と、負極ケース(外装ケースまたは封口ケース)との電気的接続は、例えば、電極群を構成する全ての負極の集電タブ部を纏め互いに溶接して一体化し、それを図1および図2に示すように、電極群の外面側の負極上に折り返すことなく、その端部などを負極ケースの内面に溶接するなどして行うことができる。   Also, for example, when the two electrodes on the outermost side of the electrode group are both positive electrodes, the electrical connection between the negative electrode and the negative electrode case (exterior case or sealing case) associated with the electrode group is, for example, Collecting and collecting the current collecting tabs of all the negative electrodes together and integrating them together, as shown in FIGS. 1 and 2, the end portions and the like of the negative electrode are not folded over the negative electrode on the outer surface side of the electrode group. It can be performed by welding to the inner surface of the case.

電極群の最外部側の2枚の電極がいずれも正極の場合、負極ケースと電極群(その最外部の正極)との間には、例えば、PETやポリイミドなどで形成されたテープなどからなる絶縁シールを配置すればよい。   When the two electrodes on the outermost side of the electrode group are both positive electrodes, for example, a tape formed of PET or polyimide is formed between the negative electrode case and the electrode group (the outermost positive electrode). An insulating seal may be arranged.

本発明の電池では、電極群の最外部側の2枚の電極のうち、一方を負極とし、他方を正極とすることもできる。この場合、電極群に係る各負極の集電タブ部については、電極群の最外部の2枚の電極がいずれも負極の場合について先に説明した構成と同様の構成とし(すなわち、負極の集電タブ部を一体化する工程を特定した本発明法に係る工程を適用し)、かつ電極群に係る各正極の集電タブ部については、電極群の最外部の2枚の電極がいずれも正極の場合について先に説明した構成と同様の構成とする(すなわち、正極の集電タブ部を一体化する工程を特定した本発明法に係る工程を適用する)ことができる。   In the battery of the present invention, one of the two electrodes on the outermost side of the electrode group can be a negative electrode and the other can be a positive electrode. In this case, the current collecting tab portion of each negative electrode in the electrode group has the same configuration as that described above in the case where the two outermost electrodes in the electrode group are both negative electrodes (that is, the negative electrode current collecting tabs). Applying the process according to the method of the present invention that specifies the process of integrating the electric tab part), and for the current collecting tab part of each positive electrode related to the electrode group, the outermost two electrodes of the electrode group are both The configuration of the positive electrode can be the same as the configuration described above (that is, the step according to the present invention specifying the step of integrating the current collecting tab portion of the positive electrode can be applied).

図1および図2に示すように、一体化した負極の集電タブ部を、電極群の最外部の負極上に折り返す場合、この一体化した負極の集電タブ部に、正極ケース側に向けてある程度弛みを持たせてもよい。この場合には、個々の負極の集電タブ部をある程度長くすることが可能になるため、特に小型や薄型の扁平形非水二次電池の場合には、各負極の集電タブ部を一体化する際の溶接の作業性が向上する。ただし、この場合、一体化した負極の集電タブ部が正極ケースと接触しないようにするために、前記の弛ませる部分の長さは、その端部が正極ケースに到達しない程度の長さ(例えば、電極群の厚み未満)とすることが好ましい。   As shown in FIGS. 1 and 2, when the integrated current collecting tab portion of the negative electrode is folded over the outermost negative electrode of the electrode group, the integrated negative electrode current collecting tab portion is directed toward the positive electrode case side. To some extent. In this case, the current collecting tabs of the individual negative electrodes can be lengthened to some extent. Therefore, particularly in the case of a small and thin flat non-aqueous secondary battery, the current collecting tabs of the respective negative electrodes are integrated. This improves the workability of the welding process. However, in this case, in order to prevent the current collecting tab portion of the integrated negative electrode from coming into contact with the positive electrode case, the length of the loosened portion is such that the end portion does not reach the positive electrode case ( For example, the thickness is preferably less than the thickness of the electrode group.

他方、一体化した正極の集電タブ部を、電極群の最外部の正極上に折り返す場合、この一体化した正極の集電タブ部に、負極ケース側に向けてある程度弛みを持たせてもよい。
この場合には、個々の正極の集電タブ部をある程度長くすることが可能になるため、特に小型や薄型の扁平形非水二次電池の場合には、各正極の集電タブ部を一体化する際の溶接の作業性が向上する。ただし、この場合にも、一体化した正極の集電タブ部が負極ケースと接触しないようにするために、前記の弛ませる部分の長さは、その端部が負極ケースに到達しない程度の長さ(例えば、電極群の厚み未満)とすることが好ましい。
On the other hand, when the integrated current collecting tab portion of the positive electrode is folded on the outermost positive electrode of the electrode group, the integrated positive electrode current collecting tab portion may have some slack toward the negative electrode case side. Good.
In this case, since the current collecting tabs of individual positive electrodes can be made somewhat long, the current collecting tabs of each positive electrode are integrated, particularly in the case of a small and thin flat non-aqueous secondary battery. This improves the workability of the welding process. However, also in this case, in order to prevent the current collecting tab portion of the integrated positive electrode from coming into contact with the negative electrode case, the length of the loosened portion is long enough not to reach the negative electrode case. It is preferable to set the thickness (for example, less than the thickness of the electrode group).

本発明の電池では、正極の両面に配置された2枚のセパレータについて、それらの周縁部の少なくとも一部において、互いに溶着して接合部を形成することができる。   In the battery of the present invention, the two separators arranged on both surfaces of the positive electrode can be welded to each other at at least a part of their peripheral portions to form a joint portion.

図6および図7に、本発明の扁平形非水二次電池の他の例を模式的に示す。図6および図7に示す電池は、正極5の両面に配置された2枚のセパレータ7、7の周縁部に接合部を形成して構成した電極群を有するものであり、図6は、電池の正極ケース2、負極ケース3および絶縁ガスケット4部分の断面を表す縦断面図であり、図7は図6の要部を拡大し、更に電極群の部分を断面にしたものである。   6 and 7 schematically show another example of the flat non-aqueous secondary battery of the present invention. The battery shown in FIGS. 6 and 7 has a group of electrodes formed by forming joints at the peripheral edges of the two separators 7 and 7 arranged on both surfaces of the positive electrode 5, and FIG. FIG. 7 is a longitudinal sectional view showing a cross section of the positive electrode case 2, the negative electrode case 3, and the insulating gasket 4, and FIG. 7 is an enlarged view of the main part of FIG. 6 and a cross section of the electrode group.

また、図8に、周縁部の一部に接合部を形成したセパレータの平面図を模式的に示す。なお、図8では、セパレータ7とともに、正極、負極およびセパレータが積層された積層型の電極群とした場合を想定して、セパレータ7の下に配置される正極5を点線で示し、それらの更に下側に配置される負極に係る集電タブ部601を一点鎖線で示し、電極群に係る各構成要素の位置ずれを抑えるための結束テープ9を二点鎖線で示している。また、図8に示す正極5は、電極群において、その両側(両面)が負極と対向するものであり、図8では図示していないが、電極群とした場合、セパレータ7の上側(図中手前方向)には、少なくとも負極が配置される。   FIG. 8 schematically shows a plan view of a separator in which a joining portion is formed on a part of the peripheral edge. In FIG. 8, assuming the case of a stacked electrode group in which the positive electrode, the negative electrode, and the separator are stacked together with the separator 7, the positive electrode 5 disposed under the separator 7 is indicated by a dotted line, A current collecting tab portion 601 relating to the negative electrode disposed on the lower side is indicated by a one-dot chain line, and a binding tape 9 for suppressing positional deviation of each component relating to the electrode group is indicated by a two-dot chain line. Further, the positive electrode 5 shown in FIG. 8 is one in which both sides (both sides) of the electrode group are opposed to the negative electrode. Although not shown in FIG. In the forward direction), at least a negative electrode is arranged.

図8に示すセパレータ7は、正極5(図中点線で表示)を介してその下側(図中奥行き方向)に配置される他のセパレータと、その周縁部において互いに溶着した接合部7c(図中、格子模様で表示)を有している。すなわち、セパレータ7と、その下側に配置されたセパレータとは、周縁部で互いに溶着されて袋状となっており、その内部に正極5を収容している。   The separator 7 shown in FIG. 8 is joined to another separator disposed on the lower side (in the depth direction in the drawing) via the positive electrode 5 (indicated by a dotted line in the drawing), and a joint 7c (FIG. Middle). That is, the separator 7 and the separator disposed below the separator 7 are welded to each other at the peripheral edge to form a bag shape, and the positive electrode 5 is accommodated therein.

なお、図8に示すセパレータ7は、正極5の本体部5a全面を覆う主体部7a(すなわち、正極5の本体部5aよりも平面視での面積が大きな主体部7a)と、主体部7aから突出し、正極5の集電タブ部5bの、本体部5aとの境界部を少なくとも含む部分を覆う張り出し部7bとを有している。そして、セパレータ7の主体部7aの周縁部の少なくとも一部に、正極5の両面に配置された2枚のセパレータ(セパレータ7と、正極5の下側に配置されたセパレータ)同士を互いに溶着した接合部7cを設けている。   The separator 7 shown in FIG. 8 includes a main body part 7a (that is, a main body part 7a having a larger area in plan view than the main body part 5a of the positive electrode 5) and the main body part 7a. It has a protruding portion 7b that protrudes and covers at least a portion of the current collecting tab portion 5b of the positive electrode 5 that includes a boundary portion with the main body portion 5a. Then, two separators (the separator 7 and the separator disposed below the positive electrode 5) disposed on both surfaces of the positive electrode 5 were welded to at least a part of the peripheral portion of the main body portion 7 a of the separator 7. A joint 7c is provided.

非水二次電池のセパレータには、高温下で熱収縮しやすい熱可塑性樹脂製の微多孔膜が使用されることが一般的であるが、このように、正極の両面に配置された2枚のセパレータにおいて、その周縁部を互いに溶着して接合部を形成することで、例えば、電池内が高温となっても、セパレータの熱収縮が抑制されるため、より安全性の高い電池を構成することができる。   As separators for non-aqueous secondary batteries, a microporous film made of a thermoplastic resin that is easily heat-shrinkable at high temperatures is generally used. In this way, two sheets arranged on both sides of the positive electrode are used. In this separator, the peripheral portions are welded to each other to form a joint portion, so that, for example, even if the inside of the battery becomes high temperature, the thermal contraction of the separator is suppressed, so that a safer battery is configured. be able to.

なお、図8に示すように、主体部と張り出し部とを有するセパレータを使用する場合、正極の両面に配置された2枚のセパレータを接合するための接合部は、セパレータの主体部の周縁部に設ければよいが、セパレータの張り出し部の周縁部(セパレータの張り出し部の周縁部のうち、主体部からの突出方向に沿う部分)にも接合部を設けてもよい。   In addition, as shown in FIG. 8, when using the separator which has a main-body part and an overhang | projection part, the junction part for joining two separators arrange | positioned on both surfaces of a positive electrode is a peripheral part of the main-body part of a separator However, a joining portion may also be provided at the peripheral portion of the separator overhanging portion (the portion of the peripheral edge portion of the separator overhanging portion along the protruding direction from the main body portion).

接合部は、2枚のセパレータの周縁部同士を直接溶着して形成してもよいが、2枚のセパレータの間に熱可塑性樹脂で構成される層を介在させ、この層を介して2枚のセパレータを溶着することにより形成してもよい。ただし、後者の場合、セパレータ間に介在させる層を構成する熱可塑性樹脂の種類と、セパレータを構成する熱可塑性樹脂の種類によっては、接合部の強度が小さくなる場合があるため、セパレータ間に介在させる層は、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成されたものを使用することが好ましい。すなわち、セパレータ同士を直接溶着したり、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成される層を介してセパレータ同士を溶着したりした場合には、接合部の強度がセパレータ自身の強度とほぼ同等となるため、例えば、電池の使用時に振動などによって生じる虞のある接合部での剥離が良好に抑制でき、更に信頼性の高い電池とすることができる。   The joining portion may be formed by directly welding the peripheral portions of the two separators, but a layer made of a thermoplastic resin is interposed between the two separators, and two sheets are interposed via this layer. The separator may be formed by welding. However, in the latter case, depending on the type of thermoplastic resin that constitutes the layer interposed between the separators and the type of thermoplastic resin that constitutes the separator, the strength of the joint may be reduced. It is preferable to use the layer made of the same kind of resin as the thermoplastic resin constituting the separator. That is, when the separators are welded directly, or when the separators are welded via a layer composed of the same type of resin as the thermoplastic resin that constitutes the separator, the strength of the joint is determined by the strength of the separator itself. Since they are almost the same, for example, separation at a joint portion that may occur due to vibration or the like when the battery is used can be satisfactorily suppressed, and a battery with higher reliability can be obtained.

なお、図8に示すように主体部と張り出し部とを有するセパレータを使用する場合、セパレータの主体部に係る周縁部は、全てが接合部となっていてもよいが、例えば、図8に示すように、周縁部の一部を、セパレータ同士を溶着せずに非溶着部7d、7dとして残してもよい。2枚のセパレータを溶着して袋状とした後に、その中に正極を収容したり、1枚のセパレータの上に正極を配置し、その正極の上に更にセパレータを配置して、セパレータの周縁部を溶着して袋状としたセパレータの中に正極を収容したりした場合、セパレータ内に空気が残留することがある。しかし、このような正極を用いて電池を製造する場合、外装ケースと封口ケースとをかしめる際に、前記の残留空気が、非溶着部7d、7dを通じてセパレータ外へ良好に排出されるため、セパレータ内の残留空気による問題(発電時の反応が不均一になって容量が低下するなどの問題)の発生を防止できる。   In addition, when using the separator which has a main-body part and an overhang | projection part as shown in FIG. 8, all the peripheral parts which concern on the main-body part of a separator may be a junction part, For example, it shows in FIG. Thus, you may leave a part of peripheral part as the non-welding parts 7d and 7d, without welding separators. After the two separators are welded to form a bag, the positive electrode is accommodated therein, the positive electrode is disposed on one separator, and the separator is further disposed on the positive electrode. When the positive electrode is housed in a separator that is welded to form a bag, air may remain in the separator. However, when manufacturing a battery using such a positive electrode, when the outer case and the sealing case are caulked, the residual air is well discharged outside the separator through the non-welded portions 7d and 7d. Occurrence of problems due to residual air in the separator (problems such as non-uniform reaction during power generation and reduced capacity) can be prevented.

セパレータの周縁部に非溶着部を設ける場合、電池の生産性の低下を抑える観点から、その個数は1〜5個程度とすることが好ましい。また、セパレータの周縁部に非溶着部を設ける場合、セパレータの主体部に係る非溶着部の外縁の長さが、セパレータの主体部に係る外縁の全長さ(張り出し部を除く外縁の全長さ)の15〜60%程度することが好ましい。すなわち、セパレータの主体部においては、その外縁の全長さのうちの40%以上(好ましくは70%以上)が接合部であることが好ましく、これにより、セパレータ同士の接合強度を良好に確保することができる。   When providing a non-welding part in the peripheral part of a separator, it is preferable that the number shall be about 1-5 from a viewpoint of suppressing the productivity fall of a battery. Moreover, when providing a non-welding part in the peripheral part of a separator, the length of the outer edge of the non-welding part related to the main part of the separator is the total length of the outer edge related to the main part of the separator (the total length of the outer edge excluding the overhanging part). Is preferably about 15 to 60%. That is, in the main part of the separator, it is preferable that 40% or more (preferably 70% or more) of the entire length of the outer edge is a joined part, thereby ensuring good joining strength between the separators. Can do.

2枚のセパレータの周縁部に接合部を形成するとともに、これらのセパレータの間に正極を収容するには、2枚のセパレータ同士を直接溶着して接合部を形成する場合では、例えば、1枚のセパレータ上に正極を重ね、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、2枚のセパレータを重ね、これらの周縁部を溶着してセパレータ同士を接合し、その後、これらのセパレータ間に正極を挿入する方法を採用することもできる。   In order to form a joint part at the peripheral part of two separators and to accommodate a positive electrode between these separators, when two separators are directly welded together to form a joint part, for example, one sheet It is possible to employ a method in which the positive electrode is overlaid on the separator, the separator is further overlaid thereon, and then the peripheral portions of these separators are welded. It is also possible to adopt a method in which two separators are stacked, the peripheral portions thereof are welded to join the separators, and then the positive electrode is inserted between these separators.

一方、2枚のセパレータ同士の間にセパレータの構成樹脂と同種の樹脂で構成された層を介在させ、これらを溶着して接合部を形成する場合では、例えば、1枚のセパレータ上の接合部となることが予定される箇所に前記層となるフィルムを置き、かつこのセパレータ上に正極を配置し、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、1枚のセパレータ上の接合部となることが予定されている箇所に前記層となるフィルムを置き、このセパレータとフィルムとを予め溶着しておき、その後、このセパレータに正極、セパレータの順に重ねて周縁部を溶着する方法や、2枚のセパレータの間に前記層となるフィルムを介在させて溶着して接合部を形成した後に、これらのセパレータ間に正極を挿入する方法を採用することもできる。   On the other hand, when a layer composed of the same kind of resin as the constituent resin of the separator is interposed between the two separators and these are welded to form a joint, for example, the joint on one separator It is possible to adopt a method in which a film to be the layer is placed at a place where the layer is expected to be placed, a positive electrode is disposed on the separator, and a separator is further stacked thereon, and then the peripheral portions of these separators are welded. . In addition, a film to be the layer is placed in a place where it is planned to become a joint portion on one separator, and the separator and the film are previously welded. Adopting a method of laminating the peripheral portion by overlapping, or a method of inserting a positive electrode between these separators after forming a joined portion by interposing a film serving as the layer between two separators. You can also.

セパレータの周縁部の溶着は、例えば、加熱プレスにより行うことができる。この場合、加熱温度は、セパレータを構成する熱可塑性樹脂の融点よりも高い温度であればよいが、例えば、融点より10〜50℃高い温度で行うことが好ましい。また、加熱プレスの時間については、良好に接合部が形成できれば特に制限はないが、通常は、1〜10秒程度とする。   For example, the peripheral edge of the separator can be welded by a hot press. In this case, the heating temperature may be a temperature higher than the melting point of the thermoplastic resin constituting the separator, but for example, the heating temperature is preferably 10 to 50 ° C. higher than the melting point. Moreover, about the time of a hot press, if a junction part can be formed satisfactorily, there will be no restriction | limiting, However, Usually, it shall be about 1 to 10 second.

なお、本発明の電池に使用するセパレータの平面形状は、例えば、前記のようにセパレータの周縁部の少なくとも一部に接合部(正極の両面に配置された2枚のセパレータに係る周縁部の少なくとも一部を、互いに溶着することにより形成する接合部)を形成する場合には、図8に示す形状であることが好ましいが、前記接合部を形成しない場合でも、図8に示す形状とすることが好ましい。   In addition, the planar shape of the separator used for the battery of the present invention is, for example, at least a part of the peripheral part of the separator as described above at least at the joint part (at least the peripheral part of the two separators arranged on both surfaces of the positive electrode). In the case of forming a joint portion formed by welding a part of each other, the shape shown in FIG. 8 is preferable. However, even when the joint portion is not formed, the shape shown in FIG. Is preferred.

本発明の電池では、電極群の形成にあたり、少なくとも両側が負極と対向している正極の両面にはセパレータを配置するが、電極群の最外部側に配置される正極、すなわち片側(片面)のみが負極と対向している正極については、その両面にセパレータを配置してもよく(更に、これらの2枚のセパレータに接合部を形成してもよい)、負極と対向する面にのみセパレータを配置しても構わない。更に、電極群に係る最外部側の電極をいずれも正極とし、これらの正極の両面にセパレータを配置しない場合には、負極端子を兼ねる電池ケースと電極群の最外部の正極との間には、前記の通り、PETやポリイミドなどで形成されたテープなどからなる絶縁シールなどの絶縁体を配置する。   In the battery of the present invention, when forming the electrode group, separators are arranged on both sides of the positive electrode at least on both sides facing the negative electrode, but only the positive electrode arranged on the outermost side of the electrode group, that is, only one side (one side). As for the positive electrode facing the negative electrode, separators may be disposed on both sides thereof (joint portions may be formed on these two separators), or only on the surface facing the negative electrode. You may arrange. Furthermore, when all the outermost electrodes in the electrode group are positive electrodes and no separator is disposed on both surfaces of these positive electrodes, the battery case that also serves as the negative electrode terminal and the outermost positive electrode of the electrode group are between As described above, an insulator such as an insulating seal made of tape or the like made of PET or polyimide is disposed.

なお、これまで、図1から図8を用いて、本発明の扁平形非水二次電池を説明してきたが、図1から図8は、本発明の説明を容易にするために作成されたものであって、底に示されている各部材の形状、サイズについては、必ずしも正確ではない。   Heretofore, the flat non-aqueous secondary battery of the present invention has been described with reference to FIGS. 1 to 8, but FIGS. 1 to 8 were created to facilitate the description of the present invention. However, the shape and size of each member shown on the bottom are not necessarily accurate.

本発明の電池に係る正極の正極合剤層は、正極活物質、導電助剤、バインダなどを含有する層である。   The positive electrode mixture layer of the positive electrode according to the battery of the present invention is a layer containing a positive electrode active material, a conductive additive, a binder and the like.

本発明の電池に係る正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−yなどのリチウム遷移金属複合酸化物などが挙げられる(ただし、前記の各リチウム遷移金属複合酸化物において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2である。)。これらの正極活物質は1種単独で使用してもよく、2種以上を併用しても構わない。 Examples of the positive electrode active material according to the battery of the present invention include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. lithium transition metal composite such as Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (However, in each of the above lithium transition metal composite oxides, M is at least one selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, and Cr.) It is a metal element, and 0 ≦ x ≦ 1.1, 0 <y <1.0, and 2.0 ≦ z ≦ 2.2.) These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

また、正極の導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが挙げられる。更に、正極のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース、スチレンブタジエンラバーなどが挙げられる。   Moreover, as a conductive support agent of a positive electrode, carbon black, scale-like graphite, ketjen black, acetylene black, fibrous carbon etc. are mentioned, for example. Furthermore, examples of the binder for the positive electrode include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), carboxymethyl cellulose, and styrene butadiene rubber.

正極は、例えば、正極活物質と導電助剤とバインダとを混合して得られる正極合剤を水または有機溶剤に分散させて正極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい)、その正極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体の片面または両面に塗布し、乾燥した後、加圧成形することによって正極合剤層を形成して作製される。ただし、正極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   For the positive electrode, for example, a positive electrode mixture obtained by mixing a positive electrode active material, a conductive additive, and a binder is dispersed in water or an organic solvent to prepare a positive electrode mixture-containing paste (in this case, the binder is preliminarily mixed with water or It may be dissolved or dispersed in a solvent and mixed with a positive electrode active material or the like to prepare a positive electrode mixture-containing paste), and the positive electrode mixture-containing paste is made of metal foil, expanded metal, plain weave metal mesh, etc. It is manufactured by forming a positive electrode mixture layer by applying it to one or both sides of a current collector, drying it, and then press-molding it. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.

正極の組成としては、例えば、正極を構成する正極合剤100質量%中、正極活物質を75〜90質量%、導電助剤を5〜20質量%、バインダを3〜15質量%とすることが好ましい。また、正極合剤層の厚みは、例えば、30〜200μmであることが好ましい。   As a composition of the positive electrode, for example, in 100% by mass of the positive electrode mixture constituting the positive electrode, the positive electrode active material is 75 to 90% by mass, the conductive additive is 5 to 20% by mass, and the binder is 3 to 15% by mass. Is preferred. Moreover, it is preferable that the thickness of a positive mix layer is 30-200 micrometers, for example.

正極の集電体の素材としては、アルミニウムやアルミニウム合金が好ましい。なお、正極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、8〜20μmであることが好ましい。   The material for the current collector of the positive electrode is preferably aluminum or an aluminum alloy. From the viewpoint of reducing the total thickness of the positive electrode and increasing the number of layers of the positive electrode and the negative electrode in the battery to increase the facing area between the positive electrode mixture layer and the negative electrode agent layer and improving the load characteristics of the battery, It is preferable to use a metal foil for the current collector. Moreover, it is preferable that the thickness of a collector is 8-20 micrometers, for example.

本発明の電池に係る負極としては、活物質に、リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料、チタン酸リチウムなどを有する負極が挙げられる。   Examples of the negative electrode according to the battery of the present invention include a negative electrode having lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, lithium titanate, and the like as an active material.

負極活物質に用い得るリチウム合金としては、例えば、リチウム−アルミニウム、リチウム−ガリウムなどのリチウムと可逆的に合金化するリチウム合金が挙げられ、リチウム含有量が、例えば1〜15原子%であることが好ましい。また、負極活物質に用い得る炭素材料としては、例えば、人造黒鉛、天然黒鉛、低結晶性カーボン、コークス、無煙炭などが挙げられる。   Examples of the lithium alloy that can be used for the negative electrode active material include lithium alloys that reversibly alloy with lithium, such as lithium-aluminum and lithium-gallium, and the lithium content is, for example, 1 to 15 atomic%. Is preferred. Examples of the carbon material that can be used for the negative electrode active material include artificial graphite, natural graphite, low crystalline carbon, coke, and anthracite.

負極活物質に用い得るチタン酸リチウムとしては、一般式LiTiで表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムが好ましく、特にx=1.33、y=1.67の化学量論数を持つチタン酸リチウムが好ましい。前記一般式LiTiで表されるチタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760〜1100℃で熱処理することによって得ることができる。前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。 The lithium titanate that can be used for the negative electrode active material is represented by the general formula Li x Ti y O 4 , and x and y are 0.8 ≦ x ≦ 1.4 and 1.6 ≦ y ≦ 2.2, respectively. Lithium titanate having a stoichiometric number is preferable, and lithium titanate having a stoichiometric number of x = 1.33 and y = 1.67 is particularly preferable. The lithium titanate represented by the general formula Li x Ti y O 4 can be obtained, for example, by heat-treating titanium oxide and a lithium compound at 760 to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and examples of the lithium compound include lithium hydroxide, lithium carbonate, and lithium oxide.

負極は、負極活物質がリチウムやリチウム合金の場合は、リチウムやリチウム合金を金属網などの集電体に圧着することで、集電体の表面にリチウムやリチウム合金などからなる負極剤層を形成して得ることができる。他方、負極活物質として炭素材料やチタン酸リチウムを用いる場合は、例えば、負極活物質としての炭素材料やチタン酸リチウムとバインダ、更には必要に応じて導電助剤を混合して得られる負極合剤を水または有機溶剤に分散させて負極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを負極活物質などと混合して負極合剤含有ペーストを調製してもよい)、その負極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体に塗布し、乾燥した後、加圧成形することによって負極剤層(負極合剤層)を形成して負極を作製することができる。ただし、負極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   When the negative electrode active material is lithium or a lithium alloy, the negative electrode is formed by bonding the lithium or lithium alloy to a current collector such as a metal network to form a negative electrode layer made of lithium or lithium alloy on the surface of the current collector. Can be obtained. On the other hand, when a carbon material or lithium titanate is used as the negative electrode active material, for example, a negative electrode composite obtained by mixing a carbon material or lithium titanate with a binder as the negative electrode active material and, if necessary, a conductive additive. The negative electrode mixture-containing paste is prepared by dispersing the agent in water or an organic solvent (in this case, the binder is previously dissolved or dispersed in water or solvent, and mixed with the negative electrode active material or the like to contain the negative electrode mixture) The paste containing the negative electrode mixture may be applied to a current collector made of metal foil, expanded metal, plain weave metal mesh, etc., dried, and then pressed to form a negative electrode layer (negative electrode composite). The negative electrode can be produced by forming an agent layer. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.

なお、負極に係るバインダおよび導電助剤としては、正極に用い得るものとして先に例示した各種バインダおよび導電助剤を用いることができる。   In addition, as a binder and conductive support agent which concern on a negative electrode, the various binders and conductive support agent which were illustrated previously as what can be used for a positive electrode can be used.

負極活物質に炭素材料を用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、炭素材料を80〜95質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。他方、負極活物質にチタン酸リチウムを用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、チタン酸リチウムを75〜90質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。   The composition of the negative electrode when a carbon material is used as the negative electrode active material is, for example, that the carbon material is 80 to 95% by mass and the binder is 3 to 15% by mass in 100% by mass of the negative electrode mixture constituting the negative electrode. Moreover, when using together a conductive support agent, it is preferable that a conductive support agent shall be 5-20 mass%. On the other hand, the composition of the negative electrode when lithium titanate is used as the negative electrode active material is, for example, 75 to 90% by mass of lithium titanate and 3 to 15% by mass of the binder in 100% by mass of the negative electrode mixture constituting the negative electrode. In addition, when a conductive auxiliary is used in combination, the conductive auxiliary is preferably 5 to 20% by mass.

負極における負極剤層(負極合剤層を含む)の厚みは、例えば、40〜200μmであることが好ましい。   The thickness of the negative electrode layer (including the negative electrode mixture layer) in the negative electrode is preferably 40 to 200 μm, for example.

負極の集電体の素材としては、銅や銅合金が好ましい。なお、負極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、5〜30μmであることが好ましい。   The material for the current collector of the negative electrode is preferably copper or a copper alloy. From the viewpoint of reducing the total thickness of the negative electrode and increasing the number of layers of the positive electrode and negative electrode in the battery to increase the facing area between the positive electrode mixture layer and the negative electrode agent layer, and improving the load characteristics of the battery, It is preferable to use a metal foil for the current collector. Moreover, it is preferable that the thickness of a collector is 5-30 micrometers, for example.

セパレータには、熱可塑性樹脂製の微多孔膜で構成されたものを使用する。セパレータを構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、ポリメチルペンテンなどのポリオレフィンが好ましく、セパレータ同士を溶着したり、セパレータ間にセパレータの構成樹脂と同種の樹脂を配置して溶着したりする観点からは、その融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100〜180℃のポリオレフィンがより好ましい。   A separator made of a microporous film made of a thermoplastic resin is used. As the thermoplastic resin constituting the separator, for example, polyolefins such as polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, polymethylpentene, and the like are preferable. From the viewpoint of arranging and welding the same type of resin as the constituent resin, the melting point, that is, the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121 is 100. A polyolefin of ˜180 ° C. is more preferable.

セパレータを構成する熱可塑性樹脂製の微多孔膜の形態としては、必要な電池特性が得られるだけのイオン伝導度を有していればどのような形態でもよいが、従来から知られている乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の微多孔膜(電池のセパレータとして汎用されている微多孔フィルム)が好ましい。   As the form of the microporous film made of the thermoplastic resin constituting the separator, any form may be used as long as it has an ionic conductivity sufficient to obtain the required battery characteristics. Or the ion-permeable microporous film (microporous film currently used widely as a battery separator) which has many holes formed by the wet extending | stretching method etc. is preferable.

セパレータの厚みは、例えば、5〜25μmであることが好ましく、また、空孔率は、例えば、30〜70%であることが好ましい。   The thickness of the separator is preferably, for example, 5 to 25 μm, and the porosity is preferably, for example, 30 to 70%.

前記の正極、負極およびセパレータは、図1や図2、図6、図7に示すように積層して積層型の電極群として使用するが、その際、各正極の集電タブ部が、電極群の平面視で同一方向を向くように配置され、かつ各負極の集電タブ部が、電極群の平面視で同一方向を向くように配置されていることが好ましい。これにより、正極および負極の集電がより容易となる。   The positive electrode, the negative electrode, and the separator are stacked and used as a stacked electrode group as shown in FIG. 1, FIG. 2, FIG. 6, and FIG. 7. It is preferable that the electrodes are arranged so as to face in the same direction in the plan view of the group, and the current collecting tab portions of the respective negative electrodes are arranged so as to face in the same direction in the plan view of the electrode group. Thereby, current collection of the positive electrode and the negative electrode becomes easier.

更に、各正極の集電タブ部と、各負極の集電タブ部とは、電極群の平面視で互いに接触しないように配置されていればよいが、これらの接触をより良好に抑制し、かつ電池の生産をより良好にする観点からは、図8に示しているように、各正極の集電タブ部501と各負極の集電タブ部601とは、電極群の平面視で互いに対向する位置に配されていることがより好ましい。   Furthermore, the current collecting tab portion of each positive electrode and the current collecting tab portion of each negative electrode only need to be arranged so as not to contact each other in a plan view of the electrode group, but these contacts are better suppressed, In addition, from the viewpoint of improving battery production, as shown in FIG. 8, the current collecting tab portion 501 of each positive electrode and the current collecting tab portion 601 of each negative electrode face each other in a plan view of the electrode group. More preferably, it is arranged at a position where

また、正極、負極およびセパレータを積層して構成した電極群は、図8に示すように、その外周を、耐薬品性を有するポリプロピレンなどで構成された結束テープ9で結束して、各構成要素(セパレータに包まれた正極、および負極)の位置ずれを抑制することが好ましい。   Further, as shown in FIG. 8, the electrode group formed by laminating the positive electrode, the negative electrode, and the separator is bound to the outer periphery with a binding tape 9 made of polypropylene having chemical resistance, etc. It is preferable to suppress misalignment of the positive electrode and the negative electrode wrapped in the separator.

電極群に係る正極および負極は、少なくとも合計枚数が3枚であるが、それ以上(4枚、5枚、6枚、7枚、8枚など)とすることも可能である。ただし、正極および負極の積層数をあまり多くすると、扁平状電池としてのメリットが小さくなる虞があることから、通常は、13枚以下とすることが好ましい。   The total number of positive electrodes and negative electrodes in the electrode group is at least 3, but it is also possible to increase the number (4, 5, 6, 7, 8, etc.). However, if the number of stacked positive and negative electrodes is increased too much, the merit as a flat battery may be reduced. Therefore, it is usually preferable that the number is 13 or less.

電池に係る非水電解液としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状炭酸エステル;1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;などの有機溶媒に、電解質(リチウム塩)を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した電解液を用いることができる。前記の有機溶媒は、それぞれ1種単独で用いてもよく、2種以上を併用しても構わない。   Examples of non-aqueous electrolytes for batteries include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonate esters such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate. 1,2-dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, tetrahydrofuran, etc. It is possible to use an electrolytic solution prepared by dissolving an electrolyte (lithium salt) in a concentration of about 0.3 to 2.0 mol / L in an organic solvent such as ether; That. The above organic solvents may be used alone or in combination of two or more.

前記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。 Examples of the electrolyte include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) Lithium salts such as 2 are mentioned.

本発明の扁平形非水二次電池の平面形状には特に制限は無く、従来から知られている扁平形電池の主流である円形の他、角形(四角形)などの多角形状でもよい。なお、本明細書でいう電池の平面形状としての角形などの多角形には、その角が切り落とされた形状や、角を曲線にした形状も包含される。また、正極および負極の本体部の平面形状は、電池の平面形状に応じた形状とすればよく、略円形としたり、長方形や正方形などの四角形などの多角形とすることもできるが、例えば、略円形とする場合には、対極の集電タブ部が配置される箇所に相当する部分は、対極の集電タブ部との接触を防止するために、図3および図4に示すように切り落とした形状としておくことが好ましい。   The planar shape of the flat non-aqueous secondary battery of the present invention is not particularly limited, and may be a polygonal shape such as a square (quadrangle) in addition to the circular shape that is the mainstream of conventionally known flat batteries. In addition, the polygon such as a square as the planar shape of the battery in this specification includes a shape in which the corner is cut off and a shape in which the corner is curved. Moreover, the planar shape of the main body part of the positive electrode and the negative electrode may be a shape corresponding to the planar shape of the battery, and may be a substantially circular shape or a polygon such as a rectangle such as a rectangle or a square. In the case of a substantially circular shape, the portion corresponding to the location where the current collecting tab portion of the counter electrode is disposed is cut off as shown in FIGS. 3 and 4 in order to prevent contact with the current collecting tab portion of the counter electrode. It is preferable to use a different shape.

本発明の扁平形非水二次電池は、従来から知られている扁平形非水二次電池と同様の用途に適用することができる。   The flat non-aqueous secondary battery of the present invention can be applied to the same use as a conventionally known flat non-aqueous secondary battery.

なお、本発明の扁平形非水二次電池は、例えば、電池の直径d(電池の平面視形状が円でない場合には、その平面視面積から、平面視形状が円であると仮定した場合に求められる直径)(mm)に対する電池の厚みt(mm)の比t/dが0.03〜0.3といった通常よりも薄型の電池に適しており、こうした信頼性が損なわれやすい薄型形状としても、高い信頼性を確保できる。また、本発明の電池は、そのサイズについては特に制限はないが、例えば、絶縁ガスケットの開口面積が100mm以下といった非常に小さなサイズとする場合にも好ましく適用できる。ただし、絶縁ガスケットの開口面積があまり小さな電池は、それ自体生産が困難となる傾向にあるため、本発明の電池に係る絶縁ガスケットの開口面積は、例えば、20mm以上であることが好ましい。 The flat non-aqueous secondary battery according to the present invention has, for example, a battery diameter d (when the planar view shape of the battery is not a circle, the planar view area assumes that the planar view shape is a circle. Is suitable for thin batteries with a thickness t (mm) to battery thickness t (mm) of 0.03 to 0.3, which is less than usual. However, high reliability can be secured. Further, the size of the battery of the present invention is not particularly limited, but it can be preferably applied to, for example, a very small size such as an opening area of an insulating gasket of 100 mm 2 or less. However, since the battery having a very small opening area of the insulating gasket itself tends to be difficult to produce, the opening area of the insulating gasket according to the battery of the present invention is preferably 20 mm 2 or more, for example.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
<正極の作製>
正極活物質としてLiCoOを、導電助剤としてカーボンブラックを、バインダとしてPVDFを、それぞれ用いて正極を作製した。まず、LiCoO:93質量部とカーボンブラック:3質量部とを混合し、得られた混合物とPVDF:4質量部を予めN−メチル−2−ピロリドン(NMP)に溶解させておいたバインダ溶液とを混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面にアプリケータにより塗布した。なお、正極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した正極合剤含有ペーストを乾燥して正極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の正極を得た。なお、この正極は、幅を40mmとし、正極合剤層形成部の厚みを140μmとなるようにした。
Example 1
<Preparation of positive electrode>
A positive electrode was prepared using LiCoO 2 as a positive electrode active material, carbon black as a conductive additive, and PVDF as a binder. First, LiCoO 2 : 93 parts by mass and carbon black: 3 parts by mass were mixed, and the resulting mixture and PVDF: 4 parts by mass were previously dissolved in N-methyl-2-pyrrolidone (NMP). Were mixed to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm by an applicator. When applying the positive electrode mixture-containing paste, the application part and the non-application part were continuously arranged every 5 cm, and the part that was the application part on the front surface was also the application part on the back surface. Subsequently, the applied positive electrode mixture-containing paste was dried to form a positive electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a belt-like positive electrode. The positive electrode had a width of 40 mm, and the positive electrode mixture layer forming portion had a thickness of 140 μm.

前記の帯状の正極を、正極合剤層形成部が本体部(円弧の部分の直径15.1mm)とし、正極合剤層未形成部が集電タブ部(幅3.5mm)となるように、図4に示す形状に打ち抜いて、電池用正極を得た。   The belt-like positive electrode is such that the positive electrode mixture layer forming portion is the main body portion (arc portion diameter 15.1 mm), and the positive electrode mixture layer non-forming portion is the current collecting tab portion (width 3.5 mm). 4 was punched into the shape shown in FIG. 4 to obtain a positive electrode for a battery.

<電池用正極とセパレータとの一体化>
前記の電池用正極の両面に、図8に示す形状のPE製微多孔膜セパレータ(厚み16μm)を配置し、図8に示す箇所を加熱プレス(温度170℃、プレス時間2秒)により溶着し、2枚のセパレータに係る主体部の周縁部の一部および張り出し部の周縁部の一部に接合部を形成して、電池用正極とセパレータとを一体化した。なお、2枚のセパレータに係る接合部の幅は、主体部、張り出し部とも0.3mmとし、張り出し部の周縁部における主体部からの突出方向の長さは0.5mmとした。また、2枚のセパレータの主体部の外縁のうち、90%の長さ部分を接合部とした。
<Integration of battery positive electrode and separator>
A PE microporous membrane separator (thickness 16 μm) having the shape shown in FIG. 8 is disposed on both surfaces of the battery positive electrode, and the portion shown in FIG. 8 is welded by a heat press (temperature 170 ° C., press time 2 seconds). A joining part was formed in a part of the peripheral part of the main part and a part of the peripheral part of the overhanging part related to the two separators, and the battery positive electrode and the separator were integrated. Note that the width of the joint portion relating to the two separators was 0.3 mm for both the main portion and the overhang portion, and the length in the protruding direction from the main portion at the peripheral portion of the overhang portion was 0.5 mm. Of the outer edges of the main parts of the two separators, 90% of the length was used as the joint.

<負極の作製>
負極活物質として黒鉛を、バインダとしてPVDFを、それぞれ用いて負極を作製した。前記黒鉛:94質量部とPVDF:6質量部と予めNMPに溶解させておいたバインダ溶液とを混合して、負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の片面または両面にアプリケータにより塗布した。なお、負極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ集電体の両面に塗布したものでは、表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した負極合剤含有ペーストを乾燥して負極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の負極を得た。なお、この負極は、幅を40mmとし、負極合剤層形成部の厚みを、集電体の両面に形成したものでは190μm、集電体の片面に形成したものでは100μmとなるようにした。
<Production of negative electrode>
A negative electrode was prepared using graphite as the negative electrode active material and PVDF as the binder. The graphite: 94 parts by mass, PVDF: 6 parts by mass, and a binder solution previously dissolved in NMP were mixed to prepare a negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to one or both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm by an applicator. In addition, when applying the negative electrode mixture-containing paste, when the coated part and the non-coated part are continuously applied every 5 cm and are applied to both sides of the current collector, the place where the coated part is the surface is the back side However, it was made to become an application part. Subsequently, the applied negative electrode mixture-containing paste was dried to form a negative electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a strip-shaped negative electrode. The negative electrode had a width of 40 mm, and the negative electrode mixture layer forming portion had a thickness of 190 μm when formed on both sides of the current collector and 100 μm when formed on one side of the current collector.

前記の帯状の負極を、負極合剤層形成部が本体部(円弧の部分の直径16.3mm)とし、負極合剤層未形成部が集電タブ部となるように、図3に示す形状に打ち抜いて、集電体の片面に負極合剤層を有する電池用負極と、集電体の両面に負極合剤層を有する電池用負極とを得た。なお、集電体の片面の負極合剤層を有する電池用負極の一部については、前記の帯状の負極の集電体の露出面に、厚みが100μmのPETフィルムを貼り付けた後に打ち抜いた。   The strip-shaped negative electrode has the shape shown in FIG. 3 such that the negative electrode mixture layer forming portion is a main body portion (arc portion diameter 16.3 mm) and the negative electrode mixture layer non-forming portion is a current collecting tab portion. The negative electrode for a battery having a negative electrode mixture layer on one side of the current collector and the negative electrode for a battery having a negative electrode mixture layer on both sides of the current collector were obtained. A part of the negative electrode for a battery having the negative electrode mixture layer on one side of the current collector was punched after a PET film having a thickness of 100 μm was attached to the exposed surface of the current collector of the strip-shaped negative electrode. .

<電池の組み立て>
前記のセパレータと一体化した電池用正極3枚と、集電体の両面に負極合剤層を形成した電池用負極2枚と、集電体の片面に負極合剤層を形成した電池用負極2枚(このうち1枚は、集電体の露出面にPETフィルムを貼り付けたもの)とを用い、集電体の片面に負極合剤層を形成した電池用負極が最外部の電極になるように、電池用正極と電池用負極とを交互に重ねた。そして、各電池用正極の集電タブ部を纏めて溶接して一体化した。また、各電池用負極の集電タブ部を、最外部の電池用負極のうちの一方の上に、強制的に各集電タブ部に折り目を付けつつ折り返した後に、これらを纏めて溶接して電極群を得た。
<Battery assembly>
Three battery positive electrodes integrated with the separator, two battery negative electrodes with a negative electrode mixture layer formed on both sides of the current collector, and a battery negative electrode with a negative electrode mixture layer formed on one side of the current collector The battery negative electrode with a negative electrode mixture layer formed on one side of the current collector was used as the outermost electrode using two sheets (one of which was a PET film affixed to the exposed surface of the current collector) The battery positive electrode and the battery negative electrode were alternately stacked. And the current collection tab part of each battery positive electrode was collectively welded and integrated. In addition, the current collecting tab portion of each battery negative electrode is forcibly folded over each current collecting tab portion on one of the outermost battery negative electrodes, and these are then welded together. Thus, an electrode group was obtained.

外装ケース内に前記の電極群を、PETフィルムが外装ケース(正極ケース)内面と対向するように入れ、一体化した各電池用正極の集電タブ部を外装ケース内面に溶接した。 また、封口ケース(負極ケース)に絶縁ガスケットを装着し、非水電解液(LiPFをエチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒に、1.2mol/lの濃度で溶解した溶液)90mgを入れた後、電極群を収容した外装ケースを被せ、周囲をかしめて、直径20mm、厚み1.6mmで、図6および図7に示すものと同様の構造の扁平形非水二次電池を得た。 The electrode group was placed in the outer case so that the PET film faced the inner surface of the outer case (positive electrode case), and the integrated current collecting tab portion of each battery positive electrode was welded to the inner surface of the outer case. In addition, an insulating gasket is attached to the sealing case (negative electrode case), and the nonaqueous electrolyte (LiPF 6) is dissolved in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2 at a concentration of 1.2 mol / l. After adding 90 mg, the outer case containing the electrode group was put on, and the periphery was caulked, the diameter was 20 mm, the thickness was 1.6 mm, and flat non-aqueous water having a structure similar to that shown in FIGS. 6 and 7 A secondary battery was obtained.

なお、前記の扁平形非水二次電池は、電流値6mAでの放電で、放電容量が30mAhとなるように設計したものである(後記の比較例1も同様である)。   The flat non-aqueous secondary battery is designed to discharge at a current value of 6 mA and a discharge capacity of 30 mAh (the same applies to Comparative Example 1 described later).

比較例1
電極群の形成時において、各負極の集電タブ部を纏めて溶接し、その後に、この一体化した負極の集電タブ部を電極群の最外部の負極上に折り返した以外は、実施例1と同様にして扁平形非水二次電池を作製した。
Comparative Example 1
Example, except that the current collecting tabs of each negative electrode were welded together at the time of forming the electrode group, and then the integrated current collecting tab part of the negative electrode was folded back on the outermost negative electrode of the electrode group In the same manner as in Example 1, a flat non-aqueous secondary battery was produced.

実施例1および比較例1の扁平形非水二次電池各100個を製造した際の不良品の発生状況を調査したところ、不良品の発生数が、実施例1の電池では0個であったのに対し、比較例1の電池では5個であり、実施例1の電池は、比較例1の電池に比べて生産性が優れていることが判明した。   When the occurrence state of defective products when 100 flat non-aqueous secondary batteries of Example 1 and Comparative Example 1 were manufactured was investigated, the number of defective products was 0 in the battery of Example 1. On the other hand, the number of batteries in Comparative Example 1 was 5, and it was found that the battery of Example 1 was superior in productivity to the battery of Comparative Example 1.

また、実施例1の扁平形非水二次電池をエポキシ樹脂に漬け、エポキシ樹脂を硬化させた後に、電池内の負極のタブ部が存在する位置で電池を切断した。その後、切断面の表面研磨を行い、光学顕微鏡を用いて倍率40倍で観察したところ、いずれの電池においても、一体化した負極の集電タブ部における溶接部分の、負極の本体部側の端部が、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側に位置していた。   In addition, the flat non-aqueous secondary battery of Example 1 was immersed in an epoxy resin, and the epoxy resin was cured, and then the battery was cut at a position where the negative electrode tab portion was present. Thereafter, the cut surface was polished and observed with an optical microscope at a magnification of 40. In either battery, the end of the negative electrode body portion side of the welded portion of the integrated negative electrode current collecting tab portion was observed. The part was located inside the battery from the outermost part on the insulating gasket side in the current collecting tab part of the integrated negative electrode.

一方、比較例1の扁平形非水二次電池のうち、不良品ではなかったものについて、実施例1の電池と同様にして、それらの断面を観察したところ、いずれの電池においても、一体化した負極の集電タブ部における溶接部分の、負極の本体部側の端部が、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部に位置していた。   On the other hand, among the flat non-aqueous secondary batteries of Comparative Example 1, those that were not defective were observed in the same manner as in the battery of Example 1, and as a result, all the batteries were integrated. The end of the welded portion of the current collector tab portion of the negative electrode on the side of the main body portion of the negative electrode was located on the outermost side on the insulating gasket side of the current collector tab portion of the integrated negative electrode.

1 扁平形非水二次電池
2 正極ケース
3 負極ケース
4 絶縁ガスケット
5 正極
500 正極の本体部
501 正極の集電タブ部
6、6A、6B 負極
600 負極の本体部
601 負極の集電タブ部
7 セパレータ
7c 接合部
8 絶縁材
DESCRIPTION OF SYMBOLS 1 Flat type non-aqueous secondary battery 2 Positive electrode case 3 Negative electrode case 4 Insulation gasket 5 Positive electrode 500 Positive electrode main-body part 501 Positive electrode current collection tab part 6, 6A, 6B Negative electrode 600 Negative electrode main-body part 601 Negative electrode current collection tab part 7 Separator 7c Joint 8 Insulating material

Claims (5)

正極端子を兼ねる正極ケースと負極端子を兼ねる負極ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、正極と負極とがセパレータを介して交互に、かつ前記正極ケースおよび前記負極ケースの扁平面に平行に積層されており、正極および負極の合計枚数が3枚以上である電極群、並びに非水電解液を有する扁平形非水二次電池を製造する方法であって、
前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、集電体に負極剤層が形成されておらず、
前記電極群は、前記負極を少なくとも2枚有しており、かつ前記電極群における負極ケース側の最外部の電極が負極であり、前記負極の各集電タブ部が纏められ、互いに溶接されて一体化しており、前記一体化した負極の集電タブ部が、前記電極群における負極ケース側の最外部の負極上に折り返されており、
前記一体化した負極の集電タブ部における溶接部分の、負極の本体部側の端部が、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側に位置しており、
前記正極、前記負極および前記セパレータを重ねた後に、前記負極の各集電タブ部を、前記電極群の最外部となる負極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、前記負極の各集電タブ部を一体化する工程を有していることを特徴とする扁平形非水二次電池の製造方法。
A positive electrode case that also serves as a positive electrode terminal and a negative electrode case that also serves as a negative electrode terminal are formed in a space formed by caulking and sealing via an insulating gasket. A method for producing a flat non-aqueous secondary battery having a non-aqueous electrolyte, and an electrode group having a total number of positive and negative electrodes of 3 or more, which are stacked in parallel to the flat surface of the negative electrode case,
The negative electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. The main body portion of the negative electrode includes a current collector. A negative electrode layer containing a negative electrode active material is formed on one side or both sides, and in the current collector tab portion of the negative electrode, the negative electrode layer is not formed on the current collector,
The electrode group has at least two negative electrodes, the outermost electrode on the negative electrode case side in the electrode group is a negative electrode, and the current collecting tab portions of the negative electrode are collected and welded together. The integrated negative electrode current collecting tab portion is folded over the outermost negative electrode on the negative electrode case side of the electrode group,
The end of the negative electrode body portion side of the welded portion of the integrated negative electrode current collector tab portion is located on the inner side of the battery than the outermost portion of the integrated negative electrode current collector tab portion on the insulating gasket side. And
After the positive electrode, the negative electrode, and the separator are stacked, the current collecting tab portions of the negative electrode are forcibly folded and folded on the negative electrode that is the outermost part of the electrode group, and then welded together. And the manufacturing method of the flat type non-aqueous secondary battery characterized by having the process of integrating each current collection tab part of the said negative electrode.
前記一体化した負極の集電タブ部における溶接部分の、負極の本体部側の端部が、前記一体化した負極の集電タブ部における絶縁ガスケット側の最外部よりも、平面視で0.3〜2.6mmだけ電池内側に位置している請求項1に記載の扁平形非水二次電池の製造方法。   The end of the negative electrode body portion side of the welded portion of the integrated negative electrode current collecting tab portion is 0. 0 in plan view from the outermost portion on the insulating gasket side of the integrated negative electrode current collecting tab portion. The method for producing a flat nonaqueous secondary battery according to claim 1, wherein the flat nonaqueous secondary battery is positioned inside the battery by 3 to 2.6 mm. 正極端子を兼ねる正極ケースと負極端子を兼ねる負極ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、正極と負極とがセパレータを介して交互に、かつ前記正極ケースおよび前記負極ケースの扁平面に平行に積層されており、正極および負極の合計枚数が3枚以上である電極群、並びに非水電解液を有する扁平形非水二次電池を製造する方法であって、
前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、集電体に正極合剤層が形成されておらず、
前記電極群は、前記正極を少なくとも2枚有しており、かつ前記電極群における正極ケース側の最外部の電極が正極であり、前記正極の各集電タブ部が纏められ、互いに溶接されて一体化しており、前記一体化した正極の集電タブ部が、前記電極群における正極ケース側の最外部の正極上に折り返されており、
前記一体化した正極の集電タブ部における溶接部分の、正極の本体部側の端部が、前記一体化した正極の集電タブ部における絶縁ガスケット側の最外部よりも、電池内側に位置しており、
前記正極、前記負極および前記セパレータを重ねた後に、前記正極の各集電タブ部を、電極群の最外部となる正極上に強制的に折り目を付けつつ折り返して纏め、その後に互いに溶接して、前記正極の各集電タブ部を一体化する工程を有していることを特徴とする扁平形非水二次電池の製造方法。
A positive electrode case that also serves as a positive electrode terminal and a negative electrode case that also serves as a negative electrode terminal are formed in a space formed by caulking and sealing via an insulating gasket. A method for producing a flat non-aqueous secondary battery having a non-aqueous electrolyte, and an electrode group having a total number of positive and negative electrodes of 3 or more, which are stacked in parallel to the flat surface of the negative electrode case,
The positive electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. The main body portion of the positive electrode includes a current collector. A positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides, and in the current collector tab portion of the positive electrode, a positive electrode mixture layer is not formed on the current collector,
The electrode group has at least two positive electrodes, and the outermost electrode on the positive electrode case side in the electrode group is a positive electrode, and each current collecting tab portion of the positive electrode is gathered and welded together. The integrated current collecting tab portion of the positive electrode is folded on the outermost positive electrode on the positive electrode case side in the electrode group,
The end of the welded portion of the current collecting tab portion of the integrated positive electrode on the main body side of the positive electrode is located on the inner side of the battery than the outermost portion on the insulating gasket side of the current collecting tab portion of the integrated positive electrode. And
After the positive electrode, the negative electrode, and the separator are stacked, the current collecting tab portions of the positive electrode are forcibly folded and folded on the positive electrode that is the outermost part of the electrode group, and then welded together. A method for producing a flat non-aqueous secondary battery, comprising the step of integrating the current collecting tab portions of the positive electrode.
前記一体化した正極の集電タブ部における溶接部分の、正極の本体部側の端部が、前記一体化した正極の集電タブ部における絶縁ガスケット側の最外部よりも、平面視で0.3〜2.6mmだけ電池内側に位置している請求項3に記載の扁平形非水二次電池の製造方法。   The end of the welded portion of the integrated positive collector tab portion on the main body side of the positive electrode is 0. 0 in plan view from the outermost portion on the insulating gasket side of the integrated positive collector tab portion. The method for producing a flat non-aqueous secondary battery according to claim 3, wherein the flat non-aqueous secondary battery is positioned inside the battery by 3 to 2.6 mm. 正極および負極の合計枚数を13枚以下とする請求項1〜4のいずれかに記載の扁平形非水二次電池の製造方法。
The method for producing a flat nonaqueous secondary battery according to claim 1, wherein the total number of positive electrodes and negative electrodes is 13 or less.
JP2016125363A 2016-06-24 2016-06-24 Method for manufacturing flat non-aqueous secondary battery Active JP6240265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125363A JP6240265B2 (en) 2016-06-24 2016-06-24 Method for manufacturing flat non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125363A JP6240265B2 (en) 2016-06-24 2016-06-24 Method for manufacturing flat non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012192962A Division JP2014049371A (en) 2012-09-03 2012-09-03 Flat type nonaqueous secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016167470A true JP2016167470A (en) 2016-09-15
JP6240265B2 JP6240265B2 (en) 2017-11-29

Family

ID=56898706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125363A Active JP6240265B2 (en) 2016-06-24 2016-06-24 Method for manufacturing flat non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6240265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931888A (en) * 2019-12-05 2020-03-27 昆山兴能能源科技有限公司 Assembling method of button lithium secondary battery
CN114207905A (en) * 2019-07-31 2022-03-18 松下知识产权经营株式会社 Battery with a battery cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298825A (en) * 2001-03-29 2002-10-11 Tdk Corp Method of producing electrochemical device and the electrochemical device
JP2007234466A (en) * 2006-03-02 2007-09-13 Nec Tokin Corp Stacked lithium ion cell and its manufacturing method
JP2009110751A (en) * 2007-10-29 2009-05-21 Panasonic Corp Secondary battery
JP2011141997A (en) * 2010-01-07 2011-07-21 Hitachi Maxell Ltd Flat-type nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298825A (en) * 2001-03-29 2002-10-11 Tdk Corp Method of producing electrochemical device and the electrochemical device
JP2007234466A (en) * 2006-03-02 2007-09-13 Nec Tokin Corp Stacked lithium ion cell and its manufacturing method
JP2009110751A (en) * 2007-10-29 2009-05-21 Panasonic Corp Secondary battery
JP2011141997A (en) * 2010-01-07 2011-07-21 Hitachi Maxell Ltd Flat-type nonaqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207905A (en) * 2019-07-31 2022-03-18 松下知识产权经营株式会社 Battery with a battery cell
CN110931888A (en) * 2019-12-05 2020-03-27 昆山兴能能源科技有限公司 Assembling method of button lithium secondary battery

Also Published As

Publication number Publication date
JP6240265B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5735096B2 (en) Non-aqueous secondary battery manufacturing method and non-aqueous secondary battery manufacturing method
WO2011065345A1 (en) Flat nonaqueous secondary battery
JP6081745B2 (en) Flat non-aqueous secondary battery
JP5483587B2 (en) Battery and manufacturing method thereof
JP2011159491A (en) Flat nonaqueous secondary battery
JP2014049371A (en) Flat type nonaqueous secondary battery and manufacturing method thereof
JP5348720B2 (en) Flat non-aqueous secondary battery
JP2012064366A (en) Flat-shaped nonaqueous secondary battery and manufacturing method thereof
JP5495270B2 (en) battery
JP5562655B2 (en) Flat non-aqueous secondary battery
JP6283288B2 (en) Flat non-aqueous secondary battery
JP5377249B2 (en) Flat non-aqueous secondary battery
JP6240265B2 (en) Method for manufacturing flat non-aqueous secondary battery
JP5528304B2 (en) Flat non-aqueous secondary battery
JP2011129330A (en) Flat type nonaqueous secondary battery
JP5528305B2 (en) Flat non-aqueous secondary battery
JP2002260670A (en) Battery and its manufacturing method
JP5681358B2 (en) Flat non-aqueous secondary battery
JP5562654B2 (en) Flat non-aqueous secondary battery
JP5566671B2 (en) Flat non-aqueous secondary battery
JP2011154784A (en) Flat nonaqueous secondary battery
JP5473063B2 (en) Flat non-aqueous secondary battery and manufacturing method thereof
JP5377250B2 (en) Flat non-aqueous secondary battery
JP2011187266A (en) Flat nonaqueous secondary battery
JP5954339B2 (en) Rectangular secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6240265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250