JP2016166383A - HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME - Google Patents

HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME Download PDF

Info

Publication number
JP2016166383A
JP2016166383A JP2015045751A JP2015045751A JP2016166383A JP 2016166383 A JP2016166383 A JP 2016166383A JP 2015045751 A JP2015045751 A JP 2015045751A JP 2015045751 A JP2015045751 A JP 2015045751A JP 2016166383 A JP2016166383 A JP 2016166383A
Authority
JP
Japan
Prior art keywords
hard powder
powder
hard
sintered body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015045751A
Other languages
Japanese (ja)
Other versions
JP6427442B2 (en
Inventor
澤田 俊之
Toshiyuki Sawada
俊之 澤田
福本 新吾
Shingo Fukumoto
新吾 福本
義久 植田
Yoshihisa Ueda
義久 植田
裕作 吉田
Yusaku Yoshida
裕作 吉田
杉本 勝
Masaru Sugimoto
勝 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Fine Sinter Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Fine Sinter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Fine Sinter Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2015045751A priority Critical patent/JP6427442B2/en
Publication of JP2016166383A publication Critical patent/JP2016166383A/en
Application granted granted Critical
Publication of JP6427442B2 publication Critical patent/JP6427442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard powder for Fe-based sinter used for a valve sheet of an internal combustion engine and excellent in abrasion resistance and a sintered body using the same.SOLUTION: There are provided a hard powder for Fe-based sinter excellent in abrasion resistance containing, by mass%, C:0.5 to 2%, Si:0.5 to 2%, Mn:2 to 10%, Mo:30 to 50%, Cr:15% or less, one or two of Ni and Co of less than 5% in total, one or more of W, V and Nb of 5% or less in total, and the balance Fe with inevitable impurities, and an Fe-based sintered body excellent in abrasion resistance using the same.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関のシリンダヘッドに圧入され、バルブの開閉によるシリンダヘッドの摩耗を防ぐ焼結バルブシートに用いられる、Fe基焼結用硬質粉末およびそれを用いた耐摩耗性の優れたFe基焼結体に関する。   The present invention relates to a hard powder for Fe-based sintering that is press-fitted into a cylinder head of an internal combustion engine and prevents wear of the cylinder head due to opening and closing of the valve, and Fe having excellent wear resistance using the same. The present invention relates to a base sintered body.

従来より、内燃機関のバルブシートには、Fe系粉末を基地とし、MoおよびNi、Coのようなレアメタルを多く含有する硬質粒子が混合された焼結合金が用いられてきた。この硬質粒子に添加されるMoは、主に硬質な炭化物を形成し耐摩耗性を改善するとともに、酸化物を生成しやすいため固体潤滑性を持たせ凝着を抑制する働きをしている。また、NiやCoは、硬質粒子のマトリックスをオーステナイト化し、耐摩耗性や凝着性を改善するMoの硬質粒子内への固溶量を増加させる意図で添加されている。   Conventionally, a sintered alloy based on Fe-based powder and mixed with hard particles containing a large amount of rare metals such as Mo, Ni, and Co has been used for valve seats of internal combustion engines. Mo added to the hard particles mainly forms hard carbides to improve wear resistance, and easily forms oxides, so that it has solid lubricity and functions to suppress adhesion. Ni and Co are added with the intention of austenizing the matrix of hard particles and increasing the amount of solid solution of Mo into hard particles that improves wear resistance and adhesion.

例えば、特開2001−181807号公報(特許文献1)に開示されているように、質量%で、Mo:20〜60%、C:0.2〜3%、Ni:5〜40%、Mn:1〜15%、Cr:0.1〜10%を含み、残部が不可避不純物とFeからなる硬質粒子が提案されている。また、特開2011−190526号公報(特許文献2)に開示されているように、質量%で、Mo:20〜40%、C:0.5〜1.0%、Ni:5〜30%、Mn:1〜10%、Cr:1〜10%、Co:5〜30%、Y:0.05〜2%、残部が不可避不純物とFeからなる焼結合金配合用硬質粒子が提案されている。   For example, as disclosed in Japanese Patent Application Laid-Open No. 2001-181807 (Patent Document 1), in mass%, Mo: 20 to 60%, C: 0.2 to 3%, Ni: 5 to 40%, Mn : 1-15%, Cr: 0.1-10%, and the hard particle | grains which the remainder consists of an unavoidable impurity and Fe are proposed. Moreover, as disclosed in JP 2011-190526 A (Patent Document 2), in mass%, Mo: 20 to 40%, C: 0.5 to 1.0%, Ni: 5 to 30% , Mn: 1 to 10%, Cr: 1 to 10%, Co: 5 to 30%, Y: 0.05 to 2%, the hard particles for compounding sintered alloy consisting of inevitable impurities and Fe have been proposed Yes.

特開2001−181807号公報JP 2001-181807 A 特開2011−190526号公報JP2011-190526A

上述した、特許文献1や特許文献2に開示されているように、これら硬質粒子は、従来より提案されているとおり、鋳造粉砕法、水アトマイズ法、ガスアトマイズ法など、汎用の方法で製造される。一方、Ni、Coのようなレアメタルは原料コストが高く、価格変動も大きいため、価格や供給の安定化が本業界における課題のひとつであった。しかしながら、硬質粒子において、NiやCoの添加量を下げると、硬質粒子のマトリックスがフェライト化することで、摩耗量が増加してしまう課題があった。   As disclosed in Patent Document 1 and Patent Document 2 described above, these hard particles are produced by a general-purpose method such as a casting pulverization method, a water atomization method, and a gas atomization method as conventionally proposed. . On the other hand, since rare metals such as Ni and Co have high raw material costs and large price fluctuations, stabilization of price and supply has been one of the problems in the industry. However, in the hard particles, when the amount of Ni or Co added is lowered, there is a problem that the amount of wear increases because the matrix of the hard particles becomes ferrite.

上述した問題を解決するために、発明者らは、Ni、Coを過度に添加することなく、優れた耐摩耗性を有する硬質粉末について鋭意検討した結果、硬質粉末のマトリックスが十分なオーステナイトでなくても、所定の元素の添加量を最適化することにより、十分な耐摩耗性を得られることを見出し、内燃機関のバルブシートに用いられる、Fe基焼結用硬質粉末およびそれを用いた耐摩耗性の優れたFe基焼結体を提供する発明に至った。   In order to solve the above-mentioned problems, the inventors have intensively studied a hard powder having excellent wear resistance without excessively adding Ni and Co. As a result, the matrix of the hard powder is not sufficient austenite. However, by optimizing the addition amount of a predetermined element, it has been found that sufficient wear resistance can be obtained, and an Fe-based sintering hard powder used for a valve seat of an internal combustion engine and an anti-resistance using the same. It came to the invention which provides the Fe-based sintered body excellent in abrasion.

その発明の要旨とするところは、
(1)質量%で、C:0.5〜2%、Si:0.5〜2%、Mn:2〜10%、Mo:30〜50%、Cr:15%以下、NiとCoのうちの1種または2種の合計:5%未満、WとVとNbのうちの1種または2種以上の合計:5%以下、残部がFeおよび不可避的不純物からなることを特徴とするFe基焼結用硬質粉末。
The gist of the invention is that
(1) By mass%, C: 0.5-2%, Si: 0.5-2%, Mn: 2-10%, Mo: 30-50%, Cr: 15% or less, among Ni and Co Fe group characterized in that the total of one or two of: less than 5%, the total of one or more of W, V and Nb: 5% or less, the balance being Fe and inevitable impurities Hard powder for sintering.

(2)前記(1)に記載のFe基焼結用硬質粉末と焼結体の基地となるFe系粉末とを混合し、焼結してなることを特徴とする耐摩耗性の優れたFe基焼結体。
(3)前記(1)に記載のFe基焼結用硬質粉末を5〜50質量%と焼結体の基地となるFe系粉末とを混合し、焼結してなることを特徴とする耐摩耗性の優れたFe基焼結体にある。
(2) Fe having excellent wear resistance, characterized in that the hard powder for Fe-based sintering described in (1) above and an Fe-based powder serving as a base of a sintered body are mixed and sintered. Base sintered body.
(3) 5% by mass to 50% by mass of the Fe-based sintering hard powder described in (1) above and an Fe-based powder serving as a base of the sintered body, and sintered, Fe-based sintered body with excellent wear.

上述したように、本発明により、内燃機関のバルブシートに用いられる、Fe基焼結用硬質粉末およびそれを用いた耐摩耗性の優れたFe基焼結体を提供できる。   As described above, according to the present invention, it is possible to provide an Fe-based sintered hard powder used for a valve seat of an internal combustion engine and an Fe-based sintered body having excellent wear resistance using the same.

図1は、バルブシート耐摩耗試験機の概略を示す図である。FIG. 1 is a diagram showing an outline of a valve seat abrasion resistance tester.

以下、本発明について詳細に説明する。
本発明における最大の特徴は、Mo系炭化物による耐摩耗性改善と同時に、積極的にNi、Coを減じることで硬質粉末のマトリックスのフェライト化を促進し、かつ、このフェライト中にSiを固溶させることにより酸化しやすくし、耐摩耗性を改善したことである。さらに、Siにはフェライトを安定化させる効果も認められる。したがって、本発明における硬質粉末の組成は、Mo、C、Siを必須元素として含むと同時に、オーステナイト化元素であるNiとCoの合計の上限を厳しく規制することを特徴とする。このように、本発明は硬質粉末のマトリックスを積極的にフェライト化する点において、上述した特許文献1、2と本発明は大きく視点が異なる。
Hereinafter, the present invention will be described in detail.
The greatest feature of the present invention is that the wear resistance is improved by the Mo-based carbide, and at the same time, Ni and Co are actively reduced to promote the ferrite formation of the hard powder matrix, and Si is dissolved in the ferrite. This makes it easier to oxidize and improve wear resistance. Further, Si has an effect of stabilizing ferrite. Therefore, the composition of the hard powder in the present invention is characterized in that it contains Mo, C, and Si as essential elements and at the same time strictly restricts the upper limit of the total of austenitizing elements Ni and Co. As described above, the present invention is significantly different from the above-described Patent Documents 1 and 2 in that the matrix of hard powder is positively ferritized.

また、本発明における硬質粉末は、必要に応じ、Cr、Mn、W、V、Nbを添加することができる。製法としては一般的な、鋳造粉砕法、水アトマイズ法、ガスアトマイズ法といった従来の方法が適用できる。なお、本発明における硬質粉末は、Fe系粉末や、必要に応じて、黒鉛粉末、その他の純金属あるいは合金粉末といった、従来提案されている各種粉末と混合、焼結することで、バルブシートとして使用でき、硬質粉末の添加量としては従来知られているとおり、5〜50%程度で使用可能である。   Moreover, Cr, Mn, W, V, and Nb can be added to the hard powder in the present invention as necessary. As a production method, a conventional method such as a general casting pulverization method, a water atomization method, or a gas atomization method can be applied. In addition, the hard powder in the present invention can be used as a valve seat by mixing and sintering with various conventionally proposed powders such as Fe-based powder and, if necessary, graphite powder, other pure metal or alloy powder. It can be used, and the addition amount of the hard powder can be used at about 5 to 50% as conventionally known.

以下、本発明に係る硬質粉末の限定理由を説明する。
C:0.5〜2%
本発明においてCは、硬質粉末中にMo系炭化物を生成し耐摩耗性を改善するための必須元素である。しかしながら、過度に添加すると硬質粉末が脆くなり、バルブシート形状への機械加工時に脱落しやすくなる。0.5%未満の添加では耐摩耗性が十分でなく、2%を超えて添加すると脆くなる。好ましくは0.7%〜1.8%、より好ましくは0.8%〜1.5%である。
Hereinafter, the reasons for limitation of the hard powder according to the present invention will be described.
C: 0.5-2%
In the present invention, C is an essential element for generating Mo-based carbides in the hard powder and improving wear resistance. However, if added excessively, the hard powder becomes brittle and easily falls off during machining into a valve seat shape. When the amount is less than 0.5%, the wear resistance is not sufficient, and when the amount exceeds 2%, the material becomes brittle. Preferably they are 0.7%-1.8%, More preferably, they are 0.8%-1.5%.

Si:0.5〜2%
本発明においてSiは、硬質粉末マトリックスのフェライトを安定化させるとともに酸化しやすくし、耐摩耗性を改善するための必須元素である。また、マトリックスに固溶することで硬質粉末の硬さを増加させる。しかしながら、過度に添加すると硬質粉末が脆くなる。0.5%未満の添加では耐摩耗性が十分でなく、2%を超えて添加すると脆くなる。好ましくは0.7%〜1.8%、より好ましくは0.8%〜1.5%である。また、Moは炭化物形成元素であるとともに、珪化物も比較的形成しやすい元素であるが、Mo系珪化物は比較的脆い特徴を有する。したがって、C添加量とSi添加量の比率において、Si添加量の比率が高いと、Mo系珪化物を生成しやすくなる。したがって、本発明における硬質粉末成分範囲におけるSi/C比の最大値は4であるが、好ましくは3以下、より好ましくは2以下である。
Si: 0.5-2%
In the present invention, Si is an essential element for stabilizing the ferrite of the hard powder matrix, facilitating oxidation, and improving wear resistance. Further, the hardness of the hard powder is increased by dissolving in the matrix. However, if added excessively, the hard powder becomes brittle. When the amount is less than 0.5%, the wear resistance is not sufficient, and when the amount exceeds 2%, the material becomes brittle. Preferably they are 0.7%-1.8%, More preferably, they are 0.8%-1.5%. Mo is a carbide-forming element and silicide is also an element that is relatively easy to form. However, Mo-based silicide has a relatively fragile characteristic. Therefore, when the ratio of the Si addition amount is high in the ratio of the C addition amount and the Si addition amount, Mo-based silicide is easily generated. Therefore, the maximum value of the Si / C ratio in the hard powder component range in the present invention is 4, but is preferably 3 or less, more preferably 2 or less.

Mn:2〜10%
本発明においてMnは焼結時に硬質粉末と基地の密着性を改善する効果を有する元素であり、2%未満の添加では基地との密着性が悪く機械加工時に表面の硬質粉末の脱落面積率が大きく、10%を超えて添加すると、基地への拡散が大きくなり過ぎて硬質粉末の形状を保てなくなり、かえって密着性が低下する。好ましくは3%〜8%、より好ましくは5%〜7%である。
Mn: 2 to 10%
In the present invention, Mn is an element that has the effect of improving the adhesion between the hard powder and the matrix during sintering, and if it is less than 2%, the adhesion with the matrix is poor, and the falling area ratio of the surface hard powder during machining is low. On the other hand, if added over 10%, the diffusion to the base becomes too large and the shape of the hard powder cannot be maintained, and the adhesion is rather lowered. Preferably it is 3% -8%, More preferably, it is 5% -7%.

Mo:30〜50%
本発明においてMoは、硬質粉末中にMo系炭化物を生成し耐摩耗性を改善するための必須元素である。しかしながら、過度に添加すると硬質粉末が脆くなり、バルブシート形状への機械加工時に脱落しやすくなる。30%未満の添加では耐摩耗性が十分でなく、50%を超えて添加すると脆くなる。好ましくは34%〜46%、より好ましくは38%〜42%である。
Mo: 30-50%
In the present invention, Mo is an essential element for generating Mo-based carbides in hard powder and improving wear resistance. However, if added excessively, the hard powder becomes brittle and easily falls off during machining into a valve seat shape. If the addition is less than 30%, the wear resistance is not sufficient, and if the addition exceeds 50%, it becomes brittle. Preferably they are 34%-46%, More preferably, they are 38%-42%.

Cr:15%以下
本発明においてCrは硬質粉末の硬さをわずかに増加させる効果を有する元素であり、必要に応じて添加することができる。しかしながら、15%を超えて添加すると機械加工時に硬質粉末が脱落しやすくなる。好ましくは1%〜13%、より好ましくは3%〜11%である。
Cr: 15% or less In the present invention, Cr is an element having an effect of slightly increasing the hardness of the hard powder, and can be added as necessary. However, if added over 15%, the hard powder tends to fall off during machining. Preferably they are 1%-13%, More preferably, they are 3%-11%.

NiとCoのうちの1種または2種:5%未満
本発明においてNiとCoは、いずれも硬質粉末マトリックスをオーステナイト化させてしまう元素であるため、その合計量の上限を厳しく制限する必要がある。その合計量が5%未満においてはオーステナイト化の効果が小さいが、5%以上ではオーステナイト化が進み、硬質粉末が酸化しにくくなり、耐摩耗性が低下する。好ましくは3%以下、より好ましくは無添加である。
One or two of Ni and Co: less than 5% In the present invention, both Ni and Co are elements that austenitize the hard powder matrix. Therefore, it is necessary to strictly limit the upper limit of the total amount. is there. If the total amount is less than 5%, the effect of austenitizing is small, but if it is 5% or more, austenitizing proceeds, the hard powder is difficult to oxidize, and the wear resistance is reduced. Preferably it is 3% or less, more preferably no additive.

WとVとNbのうちの1種または2種以上:5%以下
本発明においてW、V、Nbは硬質な炭化物を形成する元素であり、必要に応じて添加することができる。しかしながら、その合計量が5%を超えて添加すると炭化物がCを多く消費し、結果としてMo系炭化物の生成を阻害する。したがって、W、V、Nbの合計量は、好ましくは0.1%〜3%、より好ましくは0.5%〜2%である。なお、本発明に係る硬質粉末は残部Feであり、このFeは本発明の硬質粉末において最も添加量の多いMoと比較し、低コスト、低融点である。したがって、原料コストと製造時の溶解性を考慮すると、35%を超え、60%未満が好ましく、45%を超え、55%未満がより好ましい。
One or more of W, V, and Nb: 5% or less In the present invention, W, V, and Nb are elements that form a hard carbide, and can be added as necessary. However, when the total amount exceeds 5%, the carbide consumes a large amount of C, and as a result, the production of Mo-based carbide is inhibited. Therefore, the total amount of W, V, and Nb is preferably 0.1% to 3%, more preferably 0.5% to 2%. Note that the hard powder according to the present invention is the balance Fe, and this Fe has a lower cost and a lower melting point than Mo, which is the most added amount in the hard powder of the present invention. Therefore, when considering the raw material cost and solubility during production, it is more than 35% and preferably less than 60%, more than 45% and more preferably less than 55%.

硬質粉末の混合量:5〜50%
硬質粉末は基本的に混合量が増加するとともに耐摩耗性が向上する。5%未満では添加の効果が小さく、50%を超えて添加すると金型に充填して加圧成形した際、形状が安定しない。
Hard powder mixing amount: 5-50%
Hard powder basically increases the mixing amount and improves wear resistance. If it is less than 5%, the effect of addition is small, and if it exceeds 50%, the shape is not stable when filled in a mold and press-molded.

焼結体の基礎となるFe系粉末
上述した焼結体の基地となるFe系粉末は、例えば内燃機関のバルブシート等の用途に使用する場合には、Fe99%以上、残部を不可避的不純物からなる還元鉄粉またはアトマイズ鉄粉を用いるが、特にこの粉末に限定されるものではない。
Fe-based powder that is the basis of the sintered body The Fe-based powder that is the base of the above-mentioned sintered body is, for example, used for applications such as a valve seat of an internal combustion engine, Fe 99% or more, the remainder from inevitable impurities Although reduced iron powder or atomized iron powder is used, it is not particularly limited to this powder.

以下、本発明について実施例によって具体的に説明する。
(硬質粉末の作製)
表1、2に示す成分組成となるよう秤量した原料を用い、ガスアトマイズ法により粉末を作製し、これを210μm以下に分級し、硬質粉末として用いた。
Hereinafter, the present invention will be specifically described with reference to examples.
(Production of hard powder)
Using raw materials weighed so as to have the component compositions shown in Tables 1 and 2, powders were prepared by a gas atomization method, classified to 210 μm or less, and used as hard powders.

(焼結体の作製)
上記表1、2に示す組成および混合量の硬質粉末、黒鉛粉末を添加し、残部をFeとして混合し、その混合粉を金型に充填して加圧成形したのち、焼結を行って試験片を作製した。なお、Feは還元鉄粉(180μm以下)、Cは鱗状黒鉛粉(平均粒径25μm)を使用した。
(Production of sintered body)
Add hard powder and graphite powder with the composition and mixing amount shown in Tables 1 and 2 above, mix the remainder as Fe, fill the mixed powder into a mold, press mold, sinter and test A piece was made. Fe was reduced iron powder (180 μm or less), and C was scaly graphite powder (average particle size 25 μm).

(耐摩耗性の評価)
図1に示すバルブシート耐摩耗試験機を用い焼結合金の耐摩耗性を評価した。この試験機ではプロパンガスバーナー1を加熱源として用い、前記の様に作製した焼結合金からなる試験片であるリング形状のバルブシート2と、バルブ3のバルブフェース4との摺動部をプロパンガス燃焼雰囲気とした。バルブフェース4はSUH35材である。バルブシートフェース5の温度を300℃に制御し、スプリング6によりバルブシートフェース5とバルブフェース4との接触時に245Nの荷重を付与して3250回/分の割合で接触させ、8時間の摩耗試験を行った。比較例33の摩耗深さを1とした摩耗量比にて、耐摩耗性を評価した。
(Evaluation of wear resistance)
The wear resistance of the sintered alloy was evaluated using the valve seat abrasion tester shown in FIG. In this testing machine, a propane gas burner 1 is used as a heating source, and a sliding portion between a ring-shaped valve seat 2 which is a test piece made of a sintered alloy produced as described above and the valve face 4 of the valve 3 is made of propane. A gas combustion atmosphere was used. The valve face 4 is a SUH35 material. The temperature of the valve seat face 5 is controlled to 300 ° C., and a load of 245 N is applied by the spring 6 when the valve seat face 5 and the valve face 4 are brought into contact with each other at a rate of 3250 times / min. Went. Abrasion resistance was evaluated at a wear amount ratio with the wear depth of Comparative Example 33 taken as 1.

(硬質粉末脱落の評価)
作製したバルブシートのバルブとの当たり面を実体顕微鏡で撮影し、5mm2分の視野における脱落した硬質粉末の面積率で評価した。
(Evaluation of falling off hard powder)
The contact surface of the produced valve seat with the bulb was photographed with a stereomicroscope and evaluated by the area ratio of the hard powder that had fallen off in a visual field of 5 mm 2 min.

Figure 2016166383
Figure 2016166383

Figure 2016166383
表1は、種々の成分からなる硬質粉末の添加量を40%で一定とし、硬質粉末組成による影響を評価し、特性に優れる硬質粉末組成範囲を明らかにしたものである。さらに、表2は、本請求項1内と外の成分を有する硬質粉末の添加量を変化させて評価し、本請求項1内の硬質粉末が優れた特性を示す添加量範囲を明らかにしたものである。表1に示すNo.1〜15および表2に示すNo.31〜34は本発明例であり、表1に示すNo.16〜29および表2に示すNo.30、35〜41は比較例である。
Figure 2016166383
Table 1 shows the hard powder composition range having excellent characteristics by evaluating the influence of the hard powder composition with the addition amount of hard powder composed of various components constant at 40%. Further, Table 2 was evaluated by changing the addition amount of the hard powder having components outside and within the present claim 1, and clarified the addition amount range in which the hard powder within the present claim 1 exhibits excellent characteristics. Is. No. shown in Table 1. 1-15 and No. 2 shown in Table 2. 31 to 34 are examples of the present invention. 16-29 and Table 2 30 and 35 to 41 are comparative examples.

表1に示すように、比較例No.16は硬質粉末の成分組成であるMo,C,Si含有量が低いために、耐摩耗性が劣る。比較例No.17は硬質粉末の成分組成であるNi+Coの値が高いために、耐摩耗性が劣る。比較例No.18は硬質粉末の成分組成であるCr含有量が高いために、機械加工時に硬質粉末が脱落し易く脱落面積率が大きい。比較例No.19は硬質粉末の成分組成であるMn含有量が高いために、機械加工時に硬質粉末が脱落し易く脱落面積率が大きい。   As shown in Table 1, Comparative Example No. No. 16 has a low Mo, C, Si content, which is a component composition of hard powder, and therefore wear resistance is poor. Comparative Example No. Since No. 17 has a high value of Ni + Co, which is the component composition of the hard powder, the wear resistance is inferior. Comparative Example No. No. 18 has a high Cr content, which is a component composition of the hard powder, so that the hard powder easily falls off during machining and has a large drop-off area ratio. Comparative Example No. No. 19 has a high Mn content, which is the component composition of the hard powder, so that the hard powder is easily dropped during machining and has a large drop area ratio.

比較例No.20は硬質粉末の成分組成であるSiの含有量が高く、硬質粉末の成分組成であるMn含有量が低いために、耐摩耗性が劣り、かつ脱落面積率が大きい。比較例No.21、22は硬質粉末の成分組成であるMn含有量が低いために、脱落面積率が大きい。比較例No.23は硬質粉末の成分組成であるCの含有量が低いために、耐摩耗性が悪い。比較例No.24は硬質粉末の成分組成であるCの含有量が高いために、粉末が脆くなり脱落面積率が大きい。   Comparative Example No. No. 20 has a high content of Si, which is a component composition of the hard powder, and a low content of Mn, which is a component composition of the hard powder, so that the wear resistance is inferior and the drop area ratio is large. Comparative Example No. Since Nos. 21 and 22 have a low Mn content, which is the component composition of the hard powder, the falling area ratio is large. Comparative Example No. Since No. 23 has a low content of C, which is a component composition of a hard powder, the wear resistance is poor. Comparative Example No. No. 24 has a high content of C, which is the component composition of the hard powder, so that the powder becomes brittle and the drop area ratio is large.

比較例No.25は硬質粉末の成分組成であるSiの含有量が高いために、耐摩耗性が悪く、かつ脱落面積率が大きい。比較例No.26は硬質粉末の成分組成であるMnの含有量が高いために、脱落面積率が大きい。比較例No.27は硬質粉末の成分組成であるW+V+Nbの含有量がやや高いために、炭化物がCを多く消費し、結果としてMo系炭化物の生成を阻害し、機械加工時に硬質粒子が脱落し易く脱落面積率がやや大きくなる。   Comparative Example No. No. 25 has a high content of Si, which is a component composition of a hard powder, and therefore has poor wear resistance and a large drop area ratio. Comparative Example No. Since No. 26 has high content of Mn which is a component composition of a hard powder, the drop area ratio is large. Comparative Example No. 27 has a slightly high content of W + V + Nb, which is the component composition of the hard powder, so that the carbide consumes a lot of C, resulting in inhibiting the formation of Mo-based carbides, and the hard particles easily fall off during machining. Is slightly larger.

比較例No.28は硬質粉末の成分組成であるMo、Cr,Mnの含有量が高く、W+V+Nbの含有量がやや高いために、機械加工時に硬質粉末が脱落し易く脱落面積率が大きい。比較例No.29は硬質粉末の成分組成であるNi、Coが高く、Ni+Coの値が高いため、マトリックスがオーステナイト化し、酸化が進まないため、耐摩耗性が劣る。比較例No.34は硬質粉末の混合量が低いために、耐摩耗性が悪い。これに対して、本発明No.1〜15の硬質粉末はいずれも本発明の条件を満たしていることから、耐摩耗性に優れ、かつ脱落面積率の小さいことが分かる。   Comparative Example No. No. 28 has a high content of Mo, Cr, and Mn, which are the component composition of the hard powder, and a slightly high content of W + V + Nb. Comparative Example No. No. 29 has high Ni and Co, which are component compositions of hard powder, and has a high value of Ni + Co. Therefore, the matrix is austenitized and oxidation does not proceed, so that the wear resistance is inferior. Comparative Example No. No. 34 has poor wear resistance due to the low mixing amount of hard powder. On the other hand, the present invention No. Since all the hard powders 1 to 15 satisfy the conditions of the present invention, it can be seen that they are excellent in wear resistance and have a small falling area ratio.

次に、表2に示すように、比較例No.30と36を比較すると、硬質粉末の混合量が低いため、硬質粉末組成による特性への影響が小さい。また、比較例No.35と41は、硬質粉末添加量が高いために、硬質粉末組成によらず加圧成形後の形状が不安定となる。さらに、比較例37,38,39,40は、本請求項1の硬質粉末組成範囲外であることから、同範囲内の硬質粉末を同量混合した実施例No.31,32,33,34とそれぞれ比較し、特性が著しく優れており、硬質粉末添加量の適当な範囲であることがわかる。   Next, as shown in Table 2, Comparative Example No. When 30 and 36 are compared, since the mixing amount of the hard powder is low, the influence of the hard powder composition on the characteristics is small. Comparative Example No. Since 35 and 41 have a high hard powder addition amount, the shape after pressure molding becomes unstable regardless of the hard powder composition. Furthermore, since Comparative Examples 37, 38, 39, and 40 are outside the hard powder composition range of Claim 1, Example No. 1 was mixed with the same amount of hard powder within the same range. Compared with 31, 32, 33, and 34, respectively, the characteristics are remarkably excellent, and it is understood that the amount of the hard powder added is within an appropriate range.

以上述べたように、本発明はMo系炭化物による耐摩耗性改善と同時に、積極的にNi、Coを減じることで硬質粉末のマトリックスのフェライト化を促進し、かつ、このフェライト中にSiを固溶させることにより酸化しやすくし、耐摩耗性の向上および脱落面積率の減少を図ることを可能とした極めて優れた効果を奏するものである。   As described above, the present invention improves the wear resistance by the Mo-based carbide, and at the same time, actively reduces Ni and Co, thereby promoting the ferrite formation of the matrix of the hard powder and fixing Si in the ferrite. By dissolving it, it is easy to oxidize, and it has an extremely excellent effect that it is possible to improve the wear resistance and reduce the falling area ratio.

1 プロパンガスバーナー
2 バルブシート
3 バルブ
4 バルブフェース
5 バルブシートフェース
6 スプリング


出願人 山陽特殊製鋼株式会社 他1
代理人 弁理士 椎 名 彊
1 Propane Gas Burner 2 Valve Seat 3 Valve 4 Valve Face 5 Valve Seat Face 6 Spring


Applicant Sanyo Special Steel Co., Ltd. 1
Attorney: Attorney Shiina

Claims (3)

質量%で、
C:0.5〜2%、
Si:0.5〜2%、
Mn:2〜10%、
Mo:30〜50%、
Cr:15%以下、
NiとCoのうちの1種または2種:5%未満、
WとVとNbのうちの1種または2種以上:5%以下、
残部がFeおよび不可避的不純物からなることを特徴とするFe基焼結用硬質粉末。
% By mass
C: 0.5-2%
Si: 0.5-2%,
Mn: 2 to 10%,
Mo: 30-50%,
Cr: 15% or less,
One or two of Ni and Co: less than 5%,
One or more of W, V and Nb: 5% or less,
A hard powder for Fe-based sintering, wherein the balance is Fe and inevitable impurities.
請求項1に記載のFe基焼結用硬質粉末と焼結体の基地となるFe系粉末とを混合し、焼結してなることを特徴とする耐摩耗性の優れたFe基焼結体。   A Fe-based sintered body having excellent wear resistance, wherein the Fe-based sintered hard powder according to claim 1 and the Fe-based powder serving as a base of the sintered body are mixed and sintered. . 請求項1に記載のFe基焼結用硬質粉末を5〜50質量%と焼結体の基地となるFe系粉末とを混合し、焼結してなることを特徴とする耐摩耗性の優れたFe基焼結体。   The hard powder for Fe-based sintering according to claim 1 is mixed with 5 to 50% by mass and an Fe-based powder serving as a base of a sintered body, and is sintered. Fe-based sintered body.
JP2015045751A 2015-03-09 2015-03-09 Hard powder for Fe-based sintering and Fe-based sintered body excellent in wear resistance using the same Active JP6427442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045751A JP6427442B2 (en) 2015-03-09 2015-03-09 Hard powder for Fe-based sintering and Fe-based sintered body excellent in wear resistance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045751A JP6427442B2 (en) 2015-03-09 2015-03-09 Hard powder for Fe-based sintering and Fe-based sintered body excellent in wear resistance using the same

Publications (2)

Publication Number Publication Date
JP2016166383A true JP2016166383A (en) 2016-09-15
JP6427442B2 JP6427442B2 (en) 2018-11-21

Family

ID=56897411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045751A Active JP6427442B2 (en) 2015-03-09 2015-03-09 Hard powder for Fe-based sintering and Fe-based sintered body excellent in wear resistance using the same

Country Status (1)

Country Link
JP (1) JP6427442B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112206A (en) * 1977-03-14 1978-09-30 Daido Steel Co Ltd Production of sintered alloy with good abrasion resistance
JPH01201439A (en) * 1988-02-05 1989-08-14 Nissan Motor Co Ltd Heat-resistant and wear-resistant iron-based sintered alloy
JP2011157617A (en) * 2010-02-04 2011-08-18 Daido Steel Co Ltd Hard particle for sintered compact, and the sintered compact
JP2012149584A (en) * 2011-01-20 2012-08-09 Riken Corp Iron-based sintered alloy valve seat
JP2014098189A (en) * 2012-11-14 2014-05-29 Toyota Motor Corp Hard particle for blending in sintered alloy, abrasion resistant iron-based sintered alloy and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112206A (en) * 1977-03-14 1978-09-30 Daido Steel Co Ltd Production of sintered alloy with good abrasion resistance
JPH01201439A (en) * 1988-02-05 1989-08-14 Nissan Motor Co Ltd Heat-resistant and wear-resistant iron-based sintered alloy
JP2011157617A (en) * 2010-02-04 2011-08-18 Daido Steel Co Ltd Hard particle for sintered compact, and the sintered compact
JP2012149584A (en) * 2011-01-20 2012-08-09 Riken Corp Iron-based sintered alloy valve seat
JP2014098189A (en) * 2012-11-14 2014-05-29 Toyota Motor Corp Hard particle for blending in sintered alloy, abrasion resistant iron-based sintered alloy and its manufacturing method

Also Published As

Publication number Publication date
JP6427442B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
JP6305811B2 (en) Ferrous sintered alloy material for valve seat and method for producing the same
JP5887374B2 (en) Ferrous sintered alloy valve seat
JP4213060B2 (en) Ferrous sintered alloy material for valve seats
JPH028350A (en) Heat-resistant and wear-resistant ferrous sintered alloy
KR20130030505A (en) Valve seat of engine and manufacturing method therof
JP2006299404A (en) Valve seat material made from iron-based sintered alloy for internal combustion engine
JP5637201B2 (en) Hard particles for blending sintered alloy, wear-resistant iron-based sintered alloy, and method for producing the same
JP5125488B2 (en) Hard particle powder for sintered body and sintered body
JP2002356704A (en) Alloy powder for forming wear-resistant hard phase and method for producing wear-resistant sintered alloy using the same
JP2003268510A (en) Sintered iron alloy for valve seat
JP6635664B2 (en) Hard powder for Fe-based sintering and Fe-based sintered body using the same and having excellent wear resistance
JP4455390B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2018090900A (en) Iron-based sintered allot valve seat for internal combustion engine having excellent wear resistance and assemblage of valve seat and valve
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP2015160960A (en) Abrasion resistant copper-based sinter alloy
JP6392530B2 (en) Ferrous sintered alloy valve seat
JP2017115197A (en) Manufacturing method of abrasion resistant iron-based alloy and manufacturing method of valve sheet
JP2016166383A (en) HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME
JP2019143176A (en) Hard particle powder for sintered bodies
JP7156193B2 (en) Hard particles and sintered sliding member using the same
JPH09256120A (en) Powder metallurgy material excellent in wear resistance
JP2009035785A (en) Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2010013697A (en) Alloy powder for forming hard phase
JPS63109142A (en) Ferrous sintered alloy combining heat resistance with wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6427442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250