JP2016166118A - CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL, GROWTH METHOD OF THE SAME, AND SGGG SINGLE CRYSTAL SUBSTRATE - Google Patents

CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL, GROWTH METHOD OF THE SAME, AND SGGG SINGLE CRYSTAL SUBSTRATE Download PDF

Info

Publication number
JP2016166118A
JP2016166118A JP2015060823A JP2015060823A JP2016166118A JP 2016166118 A JP2016166118 A JP 2016166118A JP 2015060823 A JP2015060823 A JP 2015060823A JP 2015060823 A JP2015060823 A JP 2015060823A JP 2016166118 A JP2016166118 A JP 2016166118A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
sggg
raw material
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015060823A
Other languages
Japanese (ja)
Other versions
JP2016166118A5 (en
JP6547360B2 (en
Inventor
松井 正好
Masayoshi Matsui
正好 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2016166118A publication Critical patent/JP2016166118A/en
Publication of JP2016166118A5 publication Critical patent/JP2016166118A5/ja
Application granted granted Critical
Publication of JP6547360B2 publication Critical patent/JP6547360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a growth method of a SGGG single crystal substrate having a homogeneous distribution of a lattice constant at a crystal top part and a crystal bottom part of a CaMgZr substitution type gadolinium gallium garnet (SGGG) single crystal grown by a Czochralski method, and a SGGG single crystal substrate.SOLUTION: A SGGG single crystal is grown by using a raw material melt expressed by a composition formula (1), setting a solidification ratio of the raw material melt in time of growth [(crystal weight÷raw material weight)×100] to a range of 37% - 47%, and using a Czochralski method. The SGGG single crystal has a lattice constant of 12.4945 - 12.4975 Å, and a difference in lattice constant of 0.0002 Å or less on a same position specified on a two-dimensional coordinate within arbitrary two planes (for example, a crystal top part 11 and a crystal bottom part 12) orthogonal to a growth direction of the single crystal. GdCa)(GaMgZr)O(1)[0.320≤x≤0.330, and 0.308≤y≤0.320]SELECTED DRAWING: Figure 2

Description

本発明は、CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶とその育成方法に係り、特に、チョクラルスキー(CZ:Czochralski)法により育成されたSGGG単結晶の結晶トップ部と結晶ボトム部間における格子定数の分布が均一化されているSGGG単結晶とその育成方法およびSGGG単結晶を切断して製造されるSGGG単結晶基板に関するものである。   The present invention relates to a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal and a growth method thereof, and in particular, a crystal top portion and a crystal bottom portion of an SGGG single crystal grown by a Czochralski (CZ) method. The present invention relates to a SGGG single crystal having a uniform lattice constant distribution between them, a growth method thereof, and a SGGG single crystal substrate manufactured by cutting the SGGG single crystal.

光アイソレータは、磁界を印加することにより入射光の偏光面を回転させるファラデー回転子を有しており、近年、光アイソレータは、光通信の分野だけでなくファイバーレーザー加工機にも使用されるようになってきている。   An optical isolator has a Faraday rotator that rotates a polarization plane of incident light by applying a magnetic field. In recent years, an optical isolator is used not only in the field of optical communication but also in a fiber laser processing machine. It is becoming.

このような光アイソレータに使用されるファラデー回転子の材料として、CaMgZr置換型ガドリニウム・ガリウム・ガーネット(Substituted Gd5Ga312:SGGG)単結晶を基板(非磁性ガーネット単結晶基板)とし、該SGGG基板上に液相エピタキシャル(Liquid Phase Epitaxy;LPE)成長させて得られる酸化物ガーネット単結晶膜が知られており(特許文献1〜2、非特許文献1参照)、該ガーネット単結晶膜の中でも、希土類鉄ガーネット単結晶膜(RIG:Rare-earth iron garnet)は近赤外領域で高い透過率を有しかつ大きなファラデー効果を示す優れた材料である。 As a material of a Faraday rotator used for such an optical isolator, a CaMgZr-substituted gadolinium gallium garnet (Substituted Gd 5 Ga 3 O 12 : SGGG) single crystal is used as a substrate (nonmagnetic garnet single crystal substrate), An oxide garnet single crystal film obtained by growing liquid phase epitaxy (LPE) on an SGGG substrate is known (see Patent Documents 1 and 2 and Non-Patent Document 1). Among them, a rare earth iron garnet single crystal film (RIG: Rare-earth iron garnet) is an excellent material having a high transmittance in the near infrared region and a large Faraday effect.

尚、非磁性ガーネット単結晶基板については、該単結晶の育成方向における結晶方位が<111>である[すなわち、非磁性ガーネット単結晶基板の(111)面上にLPE法により酸化物ガーネット単結晶膜が育成されている]基板が利用されている(特許文献3および特許文献4参照)。   For the nonmagnetic garnet single crystal substrate, the crystal orientation in the growth direction of the single crystal is <111> [that is, the oxide garnet single crystal is formed on the (111) plane of the nonmagnetic garnet single crystal substrate by the LPE method. The film is grown] A substrate is used (see Patent Document 3 and Patent Document 4).

ところで、希土類鉄ガーネット(RIG)単結晶膜は、基板上に、液相エピタキシャル(LPE)成長法を用い、300〜500μm程度の厚さに育成されるため、基板の格子定数をRIG単結晶膜に整合させる必要がある。基板とRIG単結晶膜との格子定数差が大き過ぎる場合、基板とRIG単結晶膜間に応力が発生し、基板ごと割れて収率の低下を引き起こすからである。   By the way, the rare earth iron garnet (RIG) single crystal film is grown on a substrate to a thickness of about 300 to 500 μm by using a liquid phase epitaxial (LPE) growth method. It is necessary to make it consistent. This is because when the difference in lattice constant between the substrate and the RIG single crystal film is too large, stress is generated between the substrate and the RIG single crystal film, and the substrate is cracked to cause a decrease in yield.

そこで、RIG単結晶膜と格子定数を整合させるため、基板として使用されるSGGGは、格子定数12.383Åのガドリニウム・ガリウム・ガーネット単結晶(GGG:Gd3Ga512)に、カルシウム(Ca)、マグネシウム(Mg)、ジルコニウム(Zr)を添加して12.494〜12.500Åの格子定数を得ている。 Therefore, in order to match the lattice constant with the RIG single crystal film, SGGG used as a substrate is composed of gadolinium gallium garnet single crystal (GGG: Gd 3 Ga 5 O 12 ) having a lattice constant of 12.383 、, calcium (Ca ), Magnesium (Mg), and zirconium (Zr) are added to obtain a lattice constant of 12.494 to 12.500Å.

但し、SGGGは添加元素(Ca、Mg、Zr)の濃度に依存して格子定数が変化するため、RIG単結晶膜の格子定数と整合するSGGG基板を製造するには、SGGG単結晶を育成する際、SGGG単結晶内において格子定数が均一になるよう添加元素の濃度分布を制御する必要がある。   However, since the lattice constant of SGGG changes depending on the concentration of the additive element (Ca, Mg, Zr), to produce an SGGG substrate that matches the lattice constant of the RIG single crystal film, the SGGG single crystal is grown. At this time, it is necessary to control the concentration distribution of the additive element so that the lattice constant is uniform in the SGGG single crystal.

一方、RIG単結晶膜の液相エピタキシャル(LPE)法においては、RIG単結晶膜を育成する際、SGGG基板との格子定数差が大きくなり過ぎないように溶液組成を調整する等して、割れ等による収率低下の防止策が採られている。   On the other hand, in the liquid phase epitaxial (LPE) method of the RIG single crystal film, when growing the RIG single crystal film, the solution composition is adjusted so that the difference in lattice constant from the SGGG substrate does not become too large. Measures to prevent a decrease in yield due to the above are taken.

尚、上記CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶は、(Gd3-xCax)(Ga5-x-2yMgyZrx+y)O12、(GdCa)3(GaMgZr)512、(GdCaGaMgZr)812等の組成式で表わされる。 Incidentally, the CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal, (Gd 3-x Ca x ) (Ga 5-x-2y Mg y Zr x + y) O 12, (GdCa) 3 (GaMgZr) It is represented by a composition formula such as 5 O 12 or (GdCaGaMgZr) 8 O 12 .

特開2003−238294号公報JP 2003-238294 A 特開2003−238295号公報JP 2003-238295 A 特開平11−199390号公報JP-A-11-199390 特開2000−89165号公報JP 2000-89165 A

D. Mateika, R. Laurien, Ch. Rusche, J. Crystal Growth 56 (1982) 677D. Mateika, R. Laurien, Ch. Rusche, J. Crystal Growth 56 (1982) 677

ところで、チョクラルスキー(CZ:Czochralski)法により育成されるSGGG単結晶においては、原料融液から単結晶化する際に添加元素(Ca、Mg、Zr)が偏析するため、育成初期の結晶トップ部と育成終盤の結晶ボトム部とで格子定数は均一にならない。   By the way, in the SGGG single crystal grown by the Czochralski (CZ) method, since the additive elements (Ca, Mg, Zr) are segregated when single crystallization is performed from the raw material melt, the top of the crystal at the initial stage of growth. The lattice constant is not uniform between the crystal part and the crystal bottom part at the end of growth.

しかし、LPE法によるRIG単結晶膜の生産性を向上させるため、SGGG単結晶基板には格子定数における均一性の向上が求められている。育成されたSGGG単結晶の結晶トップ部とボトム部とで格子定数の差が大きい場合(SGGG単結晶基板における格子定数の均一性が悪い場合)、LPE法でRIG単結晶膜の育成を行うに際し、結晶トップ部から得られたSGGG基板と結晶ボトム部から得られたSGGG基板とで育成条件を変える必要が生じ、個々の格子定数に合わせて溶液組成や育成条件の調整操作が必要となる煩雑さを有するからである。この場合、SGGG単結晶基板における格子定数の均一性を向上させることで、RIG単結晶膜の育成時における上記調整操作を省略することができ、RIG単結晶膜の生産性を向上させることが可能となる。   However, in order to improve the productivity of the RIG single crystal film by the LPE method, the SGGG single crystal substrate is required to improve the uniformity in lattice constant. When the difference in lattice constant between the crystal top portion and the bottom portion of the grown SGGG single crystal is large (when the uniformity of the lattice constant in the SGGG single crystal substrate is poor), when the RIG single crystal film is grown by the LPE method Therefore, it is necessary to change the growth conditions between the SGGG substrate obtained from the crystal top part and the SGGG substrate obtained from the crystal bottom part, and it is necessary to adjust the solution composition and the growth conditions according to the individual lattice constants. It is because it has a thickness. In this case, by improving the uniformity of the lattice constant in the SGGG single crystal substrate, the above adjustment operation during the growth of the RIG single crystal film can be omitted, and the productivity of the RIG single crystal film can be improved. It becomes.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、チョクラルスキー(CZ)法により育成されたSGGG単結晶の結晶トップ部と結晶ボトム部間における格子定数の分布が均一化されているSGGG単結晶とその育成方法を提供し、合わせてSGGG単結晶から製造されるSGGG単結晶基板を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the lattice constant between the crystal top portion and the crystal bottom portion of the SGGG single crystal grown by the Czochralski (CZ) method. An object of the present invention is to provide an SGGG single crystal having a uniform distribution of the same and a growth method thereof, and to provide an SGGG single crystal substrate manufactured from the SGGG single crystal.

上記課題を解決するため本発明者が鋭意研究を行った結果、組成式(GdCaGaMgZr)812で示される原料融液中のカルシウムとマグネシウムの原子比Ca/Mgを一定範囲に制御し、かつ、添加元素(Ca、Mg、Zr)の偏析を避けるため、原料融液の固化率[(結晶重量÷原料重量)×100]を50%未満の所定範囲に設定することで解決できることを見出すに至った。 As a result of intensive studies by the inventor in order to solve the above problems, the atomic ratio Ca / Mg of calcium to magnesium in the raw material melt represented by the composition formula (GdCaGaMgZr) 8 O 12 is controlled within a certain range, and In order to avoid segregation of the additive elements (Ca, Mg, Zr), it can be solved by setting the solidification rate of the raw material melt [(crystal weight / raw material weight) × 100] within a predetermined range of less than 50%. It came.

すなわち、本発明に係る第1の発明は、
チョクラルスキー(CZ:Czochralski)法により育成されたCaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶において、
育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37%〜47%の範囲に設定して育成され、格子定数が12.4945〜12.4975Åであり、かつ、単結晶の育成方向と直交する任意の2平面内の2次元座標で特定される同一位置における格子定数の差が0.0002Å以下であることを特徴とする。
That is, the first invention according to the present invention is:
In a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal grown by the Czochralski (CZ) method,
It is grown by setting the solidification rate of the raw material melt at the time of growth [(crystal weight / raw material weight) × 100] in the range of 37% to 47%, the lattice constant is 12.4945 to 12.4975Å, and The difference in lattice constant at the same position specified by two-dimensional coordinates in two arbitrary planes orthogonal to the growth direction of the single crystal is 0.0002Å or less.

また、第2の発明は、
第1の発明に記載のSGGG単結晶において、
下記組成式(1)で示される原料融液を用いて育成されていることを特徴とし、
(Gd3.036−xCa)(Ga4.964−x−2yMgZrx+y)O12 (1)
[但し、組成式(1)中のx、yは、0.320≦x≦0.330、および、0.308≦y≦0.320である。]
第3の発明は、
第1の発明または第2の発明に記載のSGGG単結晶において、
下記組成式(2)で示されることを特徴とし、
(Gd3−xCa)(Ga5−x−2yMgZrx+y)O12 (2)
[但し、組成式(2)中のx、yは、0.304≦x≦0.336、および、0.259≦y≦0.320である。]
第4の発明は、
第1の発明〜第3の発明のいずれかに記載のSGGG単結晶において、
単結晶の育成方向における結晶方位が<111>であることを特徴とし、
第5の発明は、
第1の発明〜第4の発明のいずれかに記載のSGGG単結晶において、
単結晶の育成方向と直交する任意の2平面間における育成方向の長さが100mm以下であることを特徴とする。
In addition, the second invention,
In the SGGG single crystal according to the first invention,
It is grown using a raw material melt represented by the following composition formula (1),
(Gd 3.036-x Ca x ) (Ga 4.964-x-2y Mg y Zr x + y ) O 12 (1)
[However, x and y in the composition formula (1) are 0.320 ≦ x ≦ 0.330 and 0.308 ≦ y ≦ 0.320. ]
The third invention is
In the SGGG single crystal according to the first invention or the second invention,
It is represented by the following composition formula (2),
(Gd 3-x Ca x) (Ga 5-x-2y Mg y Zr x + y) O 12 (2)
[However, x and y in the composition formula (2) are 0.304 ≦ x ≦ 0.336 and 0.259 ≦ y ≦ 0.320. ]
The fourth invention is:
In the SGGG single crystal according to any one of the first to third inventions,
The crystal orientation in the growth direction of the single crystal is <111>,
The fifth invention is:
In the SGGG single crystal according to any one of the first to fourth inventions,
The length of the growth direction between any two planes orthogonal to the growth direction of the single crystal is 100 mm or less.

次に、本発明に係る第6の発明は、
チョクラルスキー(CZ:Czochralski)法によりSGGG単結晶を育成する方法において、
下記組成式(1)で示される原料融液を用いると共に、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37%〜47%の範囲に設定して育成することを特徴とする。
(Gd3.036−xCa)(Ga4.964−x−2yMgZrx+y)O12 (1)
[但し、組成式(1)中のx、yは、0.320≦x≦0.330、および、0.308≦y≦0.320である。]
Next, a sixth invention according to the present invention includes:
In the method of growing SGGG single crystal by the Czochralski (CZ) method,
The raw material melt represented by the following composition formula (1) is used, and the solidification rate [(crystal weight / raw material weight) × 100] of the raw material melt at the time of growth is set within a range of 37% to 47%. It is characterized by that.
(Gd 3.036-x Ca x ) (Ga 4.964-x-2y Mg y Zr x + y ) O 12 (1)
[However, x and y in the composition formula (1) are 0.320 ≦ x ≦ 0.330 and 0.308 ≦ y ≦ 0.320. ]

また、本発明に係る第7の発明は、
希土類鉄ガーネット単結晶膜を液相エピタキシャル成長法(LPE法)により育成する際に用いられるSGGG単結晶基板において、
第4の発明に記載のSGGG単結晶をその育成方向と直交する方向へ切断して製造され、下記組成式(2)で示されると共に、格子定数が12.4945〜12.4975Åであることを特徴とする。
(Gd3−xCa)(Ga5−x−2yMgZrx+y)O12 (2)
[但し、組成式(2)中のx、yは、0.304≦x≦0.336、および、0.259≦y≦0.320である。]
The seventh invention according to the present invention is:
In the SGGG single crystal substrate used when growing the rare earth iron garnet single crystal film by the liquid phase epitaxial growth method (LPE method),
It is manufactured by cutting the SGGG single crystal described in the fourth invention in a direction orthogonal to its growth direction, and is represented by the following composition formula (2) and has a lattice constant of 12.4945 to 12.4975%. Features.
(Gd 3-x Ca x) (Ga 5-x-2y Mg y Zr x + y) O 12 (2)
[However, x and y in the composition formula (2) are 0.304 ≦ x ≦ 0.336 and 0.259 ≦ y ≦ 0.320. ]

チョクラルスキー(CZ)法により育成される本発明に係るSGGG単結晶は、単結晶の育成方向と直交する任意の2平面(例えば、直胴部から選択された結晶トップ部と結晶ボトム部)内の2次元座標で特定される同一位置における格子定数の差が0.0002Å以下であることから格子定数の分布が均一化されている。   The SGGG single crystal according to the present invention grown by the Czochralski (CZ) method has two arbitrary planes orthogonal to the growth direction of the single crystal (for example, a crystal top portion and a crystal bottom portion selected from a straight body portion). Since the difference in lattice constant at the same position specified by the two-dimensional coordinates is 0.0002 mm or less, the distribution of the lattice constant is made uniform.

従って、結晶トップ部から得られたSGGG基板と結晶ボトム部から得られたSGGG基板における格子定数の均一性に優れ、LPE法によりRIG単結晶膜を育成する際、結晶トップ部から得られたSGGG基板と結晶ボトム部から得られたSGGG基板とで育成条件を変える必要がないため、従来と比較してRIG単結晶膜の生産性を向上できる効果を有している。   Therefore, the SGGG substrate obtained from the crystal top portion has excellent lattice constant uniformity in the SGGG substrate obtained from the crystal top portion and the SGGG substrate obtained from the crystal bottom portion, and the SGGG obtained from the crystal top portion is grown when growing the RIG single crystal film by the LPE method. Since it is not necessary to change the growth conditions between the substrate and the SGGG substrate obtained from the crystal bottom portion, the productivity of the RIG single crystal film can be improved as compared with the conventional case.

本発明に係るSGGG単結晶の育成方法に用いられる製造装置の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the manufacturing apparatus used for the growth method of the SGGG single crystal which concerns on this invention. 本発明に係るSGGG単結晶の直胴部における結晶トップ部と結晶ボトム部を示す説明図。Explanatory drawing which shows the crystal | crystallization top part and crystal | crystallization bottom part in the straight body part of the SGGG single crystal which concerns on this invention.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(1)チョクラルスキー法によるSGGG単結晶の育成方法
図1は、本発明に係るCaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶の育成方法に用いられる製造装置の概略構成を示す説明図である。
(1) Method for Growing SGGG Single Crystal by Czochralski Method FIG. 1 is an explanatory diagram showing a schematic configuration of a manufacturing apparatus used for a method for growing a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal according to the present invention. It is.

この製造装置は、公知のチョクラルスキー法によりSGGG単結晶を育成する育成炉1を備えている。育成炉1の構造を簡単に説明すると、育成炉1は、筒状のチャンバー2と、このチャンバー2の内側に設置された高周波コイル10と、この高周波コイル10の内側に配置された断熱材3およびイリジウム製坩堝8を有している。尚、上記育成炉1の寸法は、製造するSGGG単結晶の大きさに依存するが、一例として直径0.6m、高さ1m程度である。   This manufacturing apparatus includes a growth furnace 1 for growing an SGGG single crystal by a known Czochralski method. The structure of the growth furnace 1 will be briefly described. The growth furnace 1 includes a cylindrical chamber 2, a high-frequency coil 10 installed inside the chamber 2, and a heat insulating material 3 arranged inside the high-frequency coil 10. And an iridium crucible 8. In addition, although the dimension of the said growth furnace 1 depends on the magnitude | size of the SGGG single crystal to manufacture, it is a diameter of about 0.6 m and height about 1 m as an example.

また、上記育成炉1には開口部(図示せず)が2箇所設けられており、これ等開口部を介して不活性ガス、好適には窒素ガスが給排され、結晶育成時のチャンバー2内は不活性ガスで満たされる。尚、育成炉1内には、上記坩堝8底部の下側に温度を計測する図示外の温度計(熱電対)が設置されている。   Further, the growth furnace 1 is provided with two openings (not shown), and an inert gas, preferably nitrogen gas, is supplied and discharged through these openings, so that a chamber 2 for crystal growth is provided. The inside is filled with an inert gas. In the growth furnace 1, a thermometer (thermocouple) (not shown) for measuring temperature is installed below the bottom of the crucible 8.

また、上記高周波コイル10は銅管で構成され、図示外の制御部を通じ投入電力が制御されて坩堝8が高周波加熱されると共に温度調節がなされる。また、上記チャンバー2の内側で高周波コイル10内には断熱材3が配置されており、複数の断熱材3により囲まれた雰囲気によりホットゾーン5が形成されている。   The high-frequency coil 10 is made of a copper tube, and the power supplied is controlled through a control unit (not shown) to heat the crucible 8 at high frequency and adjust the temperature. Further, a heat insulating material 3 is disposed inside the high frequency coil 10 inside the chamber 2, and a hot zone 5 is formed by an atmosphere surrounded by the plurality of heat insulating materials 3.

上記ホットゾーン5の上下方向における温度勾配は高周波コイル10への投入電力量を制御することによって変化させることができ、かつ、断熱材3の形状と構成(材質)によっても広範囲に変化させることができる。更に、高周波コイル10の坩堝8に対する相対位置を調整することによりホットゾーン5の温度勾配を微調整することができる。尚、上記断熱材3は、高融点の耐火物により構成されている。   The temperature gradient in the vertical direction of the hot zone 5 can be changed by controlling the amount of electric power supplied to the high-frequency coil 10 and can be changed in a wide range depending on the shape and configuration (material) of the heat insulating material 3. it can. Furthermore, the temperature gradient of the hot zone 5 can be finely adjusted by adjusting the relative position of the high frequency coil 10 to the crucible 8. In addition, the said heat insulating material 3 is comprised with the refractory material of high melting | fusing point.

また、上記坩堝8はカップ状に形成され、その底部が断熱材3上に配置されかつ断熱材3により保持されている。また、坩堝8の上方側には、種結晶6と成長したSGGG単結晶を保持しかつ引き上げるための引き上げ軸4が設置されており、引き上げ軸4は軸線を中心に回転させることができる。   The crucible 8 is formed in a cup shape, and the bottom thereof is disposed on the heat insulating material 3 and held by the heat insulating material 3. Further, on the upper side of the crucible 8, a pulling shaft 4 for holding and pulling the seed crystal 6 and the grown SGGG single crystal is installed, and the pulling shaft 4 can be rotated around the axis.

そして、坩堝8内に原料を充填し、育成炉1のチャンバー2内に上記坩堝8を配置しかつ高周波コイル10により加熱して原料を融解させ、その後、原料融液9に種結晶6を接触させて徐々に温度を降下させ、同時に引き上げ軸4を徐々に引き上げることにより種結晶6の下部側において原料融液9を順次結晶化させる。そして、育成条件に従い高周波コイル10への投入電力を調整し、所望とする直径のSGGG単結晶7を育成することが可能となる。図2は育成されたSGGG単結晶7を示し、符号11はSGGG単結晶7の直胴部における結晶トップ部、符号12はSGGG単結晶7の直胴部における結晶ボトム部をそれぞれ示している。   Then, the crucible 8 is filled with the raw material, the crucible 8 is placed in the chamber 2 of the growth furnace 1 and heated by the high frequency coil 10 to melt the raw material, and then the seed crystal 6 is brought into contact with the raw material melt 9. The raw material melt 9 is successively crystallized on the lower side of the seed crystal 6 by gradually lowering the temperature and simultaneously raising the pulling shaft 4 at the same time. Then, the SGGG single crystal 7 having a desired diameter can be grown by adjusting the input power to the high-frequency coil 10 according to the growing conditions. FIG. 2 shows the grown SGGG single crystal 7. Reference numeral 11 denotes a crystal top portion in the straight body portion of the SGGG single crystal 7, and reference numeral 12 denotes a crystal bottom portion in the straight body portion of the SGGG single crystal 7.

尚、単結晶の育成方向における結晶方位が<111>である非磁性ガーネット単結晶基板が広く用いられているため、育成されるSGGG単結晶7の育成方向における結晶方位は<111>であることが好ましい。   In addition, since the nonmagnetic garnet single crystal substrate whose crystal orientation in the growth direction of the single crystal is <111> is widely used, the crystal orientation in the growth direction of the SGGG single crystal 7 to be grown is <111>. Is preferred.

また、SGGG単結晶の肩部を育成するとき、ファセット成長に伴う歪の発生を抑制するため、「界面反転操作」を行って界面形状を凸から平坦にしている。また、単結晶育成に係る一連の温度モニタは上記温度計(熱電対)により行われる。   Further, when the shoulder portion of the SGGG single crystal is grown, in order to suppress the occurrence of distortion accompanying facet growth, the “interface inversion operation” is performed to flatten the interface shape from convex. In addition, a series of temperature monitors related to single crystal growth is performed by the thermometer (thermocouple).

更に、SGGGが原料融液から単結晶化する際の添加元素(Ca、Mg、Zr)の偏析を回避するため、原料融液の固化率[(結晶重量÷原料重量)×100]を37%〜47%の範囲に設定している。   Furthermore, in order to avoid segregation of additive elements (Ca, Mg, Zr) when SGGG is single-crystallized from the raw material melt, the solidification rate of the raw material melt [(crystal weight ÷ raw material weight) × 100] is 37%. The range is set to ˜47%.

尚、原料融液の上記固化率が37%〜47%の範囲内に設定された場合でも、単結晶の育成方向と直交する任意の2平面(例えば、直胴部から選択された結晶トップ部と結晶ボトム部)間の育成方向の長さ(2平面間距離)が増大すると単結晶良品率が低下してしまうことがある(単結晶の直胴部長が115mmである実施例5参照)。このため、単結晶の育成方向と直交する任意の2平面間における育成方向の長さは100mm以下であることが好ましい。   Even when the solidification rate of the raw material melt is set in the range of 37% to 47%, any two planes orthogonal to the growth direction of the single crystal (for example, the crystal top portion selected from the straight body portion) When the length in the growth direction (distance between two planes) between the crystal bottom part and the crystal bottom part) increases, the yield rate of the single crystal may decrease (see Example 5 where the length of the straight body of the single crystal is 115 mm). For this reason, it is preferable that the length of the growth direction between any two planes orthogonal to the growth direction of the single crystal is 100 mm or less.

そして、上記SGGG単結晶は、純度99.99%の酸化ガドリニウム(Gd23)、炭酸カルシウム(CaCO3)、酸化ガリウム(Ga23)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)を、下記組成式(1)で示される比率に混合した原料を用いてチョクラルスキー法により育成されている。
(Gd3.036−xCa)(Ga4.964−x−2yMgZrx+y)O12 (1)
[但し、組成式(1)中のx、yは、0.320≦x≦0.330、および、0.308≦y≦0.320である。]
The SGGG single crystal has a purity of 99.99% gadolinium oxide (Gd 2 O 3 ), calcium carbonate (CaCO 3 ), gallium oxide (Ga 2 O 3 ), magnesium oxide (MgO), zirconium oxide (ZrO 2 ). ) Is grown by the Czochralski method using a raw material mixed in a ratio represented by the following composition formula (1).
(Gd 3.036-x Ca x ) (Ga 4.964-x-2y Mg y Zr x + y ) O 12 (1)
[However, x and y in the composition formula (1) are 0.320 ≦ x ≦ 0.330 and 0.308 ≦ y ≦ 0.320. ]

ところで、チョクラルスキー(CZ:Czochralski)法によるSGGG単結晶の直胴部における育成条件は、本出願人が開発した育成法(特願2014−182970号明細書参照)の条件が採用されている。すなわち、従来の育成条件(原料融液の加熱条件、界面反転操作等従来から採用されている自動制御による条件)を維持したまま、結晶育成炉内の原料融液9表面から引き上げ方向1cmまでの雰囲気における温度勾配を7〜14℃/cm、1cmを越え引き上げ方向10cmまでの雰囲気における温度勾配を19〜23℃/cmの範囲に維持すると共に、SGGG単結晶の直胴部上端から0mm〜30mmまでの直胴部育成中、上記種結晶6の回転数を22〜30rpm内の一定値(例えば22rpm)に設定し、直胴部上端から30mmを越えた以降の直胴部育成中、上記一定値(例えば22rpm)から一定の比率で回転数を減少させて直胴部上端から83mm直胴部が育成した時点における種結晶6の回転数が18〜21rpm(例えば18rpm)となるように管理しながらSGGG単結晶の直胴部を育成している。   By the way, as the growth conditions in the straight body portion of the SGGG single crystal by the Czochralski (CZ) method, the conditions of the growth method developed by the present applicant (see Japanese Patent Application No. 2014-182970) are adopted. . That is, while maintaining the conventional growth conditions (conditions based on automatic control such as heating conditions of the raw material melt and interface reversal operation conventionally employed), from the surface of the raw material melt 9 in the crystal growth furnace up to 1 cm in the pulling direction. The temperature gradient in the atmosphere is 7 to 14 ° C./cm, and the temperature gradient in the atmosphere exceeding 1 cm to 10 cm in the pulling direction is maintained in the range of 19 to 23 ° C./cm, and 0 mm to 30 mm from the upper end of the straight body portion of the SGGG single crystal. During the growth of the straight body up to 30 mm, the rotational speed of the seed crystal 6 is set to a constant value within 22-30 rpm (for example, 22 rpm), and during the growth of the straight body after exceeding 30 mm from the upper end of the straight body, the constant The number of rotations of the seed crystal 6 at the time when the number of rotations is reduced from the value (for example, 22 rpm) at a constant ratio and the 83 mm straight body is grown from the upper end of the straight body is 18 to 21 rpm (example) And to foster a straight body portion of the SGGG single crystal while managing in such a way that if 18rpm).

(2)液相エピタキシャル法によるRIG単結晶膜の育成方法
育成されたSGGG単結晶は育成炉1から取り出され、熱歪を除去するアニール処理が施された後、規格に合わせた厚さに切断され、更に両面研磨されて本発明に係るSGGG単結晶基板に加工される。
(2) Growth method of RIG single crystal film by liquid phase epitaxial method The grown SGGG single crystal is taken out from the growth furnace 1 and subjected to an annealing process to remove thermal strain, and then cut to a thickness according to the standard. Further, both sides are polished and processed into an SGGG single crystal substrate according to the present invention.

その後、磁気光学効果を有し、ファラデー回転子の材料となる(YbTbBi)3Fe512等のRIG単結晶膜を、液相エピタキシャル法により本発明に係るSGGG単結晶基板上に育成させる。 Thereafter, an RIG single crystal film such as (YbTbBi) 3 Fe 5 O 12 having a magneto-optical effect and serving as a Faraday rotator material is grown on the SGGG single crystal substrate according to the present invention by a liquid phase epitaxial method.

尚、上記SGGG単結晶を切断しかつ両面研磨されて得られた本発明に係るSGGG単結晶基板の格子定数は、エックス線回折装置(Philips社製PANalytical X’pert PRO MRD)を用いて測定されている。   In addition, the lattice constant of the SGGG single crystal substrate according to the present invention obtained by cutting the SGGG single crystal and polishing on both sides thereof was measured using an X-ray diffractometer (PANalitical X'pert PRO MRD manufactured by Philips). Yes.

以下、本発明の実施例について比較例を挙げて具体的に説明する。   Examples of the present invention will be specifically described below with reference to comparative examples.

実施例と比較例に係る育成装置には図1に示す製造装置が用いられ、実施例と比較例に係るSGGG単結晶の直胴部における育成条件は特願2014−182970号明細書に記載された上記条件が採用されている。   The manufacturing apparatus shown in FIG. 1 is used for the growth apparatus according to the example and the comparative example, and the growth conditions in the straight body portion of the SGGG single crystal according to the example and the comparative example are described in Japanese Patent Application No. 2014-182970. The above conditions are adopted.

また、SGGG単結晶の育成方向と直交する任意の2平面については、育成したSGGG単結晶の直胴部における結晶トップ部と結晶ボトム部を選択し、かつ、結晶トップ部と結晶ボトム部内の2次元座標で特定される同一位置における格子定数をエックス線回折装置により測定し、結晶トップ部と結晶ボトム部における格子定数差の大小に基づきSGGG単結晶の良否を評価している。   For any two planes orthogonal to the growth direction of the SGGG single crystal, a crystal top portion and a crystal bottom portion in the straight body portion of the grown SGGG single crystal are selected, and 2 in the crystal top portion and the crystal bottom portion are selected. The lattice constant at the same position specified by the dimensional coordinates is measured with an X-ray diffractometer, and the quality of the SGGG single crystal is evaluated based on the difference in the lattice constant between the crystal top and the crystal bottom.

尚、下記組成式(GdCaGaMgZr)812は、Gd、Ca、Ga、Mg、Zrの各原子のモル数の合計とO原子のモル数との比が「8:12」となることを意味するものとする(以下同様)。 The following composition formula (GdCaGaMgZr) 8 O 12 means that the ratio of the total number of moles of Gd, Ca, Ga, Mg, and Zr atoms to the number of moles of O atoms is “8:12”. (The same shall apply hereinafter.)

[実施例1]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.706:0.330:4.018:0.308:0.638、および、Ca/Mg=0.330/0.308=1.07となるように秤量した。
[Example 1]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.706: 0.330: 4.018. : 0.308: 0.638, and Ca / Mg = 0.330 / 0.308 = 1.07.

尚、Ca=0.330(0.320≦x≦0.330)、および、Mg=0.308(0.308≦y≦0.320)に設定され、実施例1においては上記組成式(1)の要件を満たす組成になっている。 Incidentally, Ca x = 0.330 (0.320 ≦ x ≦ 0.330) and Mg y = 0.308 (0.308 ≦ y ≦ 0.320) are set. The composition satisfies the requirement of formula (1).

また、上記原料については冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、チャンバーを閉めた後、高周波コイルに電力を投入して原料を融解させた。続いて、結晶方位が<111>である棒状種結晶の先端を原料融液に浸け、原料融液表面から引き上げ方向1cmまでの雰囲気における温度勾配が7℃/cm、1cmを越え引き上げ方向10cmまでの雰囲気における温度勾配が19℃/cmの条件でSGGG単結晶を育成した。   In addition, the raw material was subjected to an increase in bulk density by the cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material was charged into an iridium crucible having a diameter of 150 mm and a height of 150 mm, After the chamber was closed, power was supplied to the high frequency coil to melt the raw material. Subsequently, the tip of a rod-shaped seed crystal having a crystal orientation of <111> is immersed in the raw material melt, and the temperature gradient in the atmosphere from the surface of the raw material melt to 1 cm in the pulling direction is 7 ° C./cm. SGGG single crystal was grown under the condition that the temperature gradient in the atmosphere was 19 ° C./cm.

尚、直胴部上端から0mm〜30mmまでの直胴部を育成する際には、種結晶の回転数を22rpmに設定し、直胴部上端から30mmを越えた以降の直胴部を育成する際には、22rpmから一定の比率で回転数を減少させて直胴部上端から83mm直胴部が育成した時点での種結晶の回転数が18rpmとなるように管理しながらSGGG単結晶直胴部の育成を行い、組成式(Gd2.670Ca0.330)(Ga4.054Mg0.308Zr0.638)O12で示される直径83mmで直胴部長80mmのSGGG単結晶(4.7kg)を育成した。 When growing the straight body part from 0 mm to 30 mm from the upper end of the straight body part, the rotational speed of the seed crystal is set to 22 rpm, and the straight body part after 30 mm from the upper end of the straight body part is grown. In this case, the SGGG single crystal straight body is controlled so that the rotational speed of the seed crystal is 18 rpm when the rotational speed is decreased at a constant ratio from 22 rpm and the straight body part is grown 83 mm from the upper end of the straight body part. Part of the SGGG single crystal having a diameter of 83 mm and a straight body part length of 80 mm represented by the composition formula (Gd 2.670 Ca 0.330 ) (Ga 4.054 Mg 0.308 Zr 0.638 ) O 12 (4 .7 kg).

尚、実施例1に係るSGGG単結晶の育成において、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]
=[(4.7kg÷12.6kg)×100]=37.3%
に設定して育成されている。
In the growth of the SGGG single crystal according to Example 1, the solidification rate of the raw material melt at the time of growth [(crystal weight / raw material weight) × 100]
= [(4.7 kg ÷ 12.6 kg) × 100] = 37.3%
It is set up and nurtured.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4970Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4972Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0002Å(12.4972Å−12.4970Å)であった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4970Å, and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, crystal bottom portion) The lattice constant of was 12.497249, and the difference in lattice constant between the crystal bottom portion and the crystal top portion was 0.0002Å (12.4972Å-12.4970Å).

[実施例2]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.712:0.324:4.012:0.314:0.638、および、Ca/Mg=0.324/0.314=1.03となるように秤量した。
[Example 2]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used in an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.712: 0.324: 4.012. : 0.314: 0.638, and Ca / Mg = 0.324 / 0.314 = 1.03.

尚、Ca=0.324(0.320≦x≦0.330)、および、Mg=0.314(0.308≦y≦0.320)に設定され、実施例2においても上記組成式(1)の要件を満たす組成になっている。 Incidentally, Ca x = 0.324 (0.320 ≦ x ≦ 0.330) and Mg y = 0.314 (0.308 ≦ y ≦ 0.320) are set. The composition satisfies the requirement of formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.676Ca0.324)(Ga4.048Mg0.314Zr0.638)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, Hereinafter, the SGGG single crystal was grown under substantially the same conditions as in Example 1, and the diameter represented by the composition formula (Gd 2.676 Ca 0.324 ) (Ga 4.048 Mg 0.314 Zr 0.638 ) O 12 was used. An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、実施例2に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   Note that the SGGG single crystal according to Example 2 is also grown with the solidification rate [(crystal weight ÷ raw material weight) × 100] of the raw material melt at the time of growth set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4965Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4966Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0001Å(12.4966Å−12.4965Å)であった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate obtained from the crystal top portion (namely, crystal top portion) is 12.4965Å, and the SGGG single crystal substrate obtained from the crystal bottom portion (namely, crystal bottom portion) The lattice constant of was 12.4966 Å, and the difference in lattice constant between the crystal bottom portion and the crystal top portion was 0.0001 Å (12.4966 Å-12.4965 Å).

[実施例3]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.716:0.320:4.004:0.320:0.640、および、Ca/Mg=0.320/0.320=1.00となるように秤量した。
[Example 3]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.716: 0.320: 4.004. : 0.320: 0.640, and Ca / Mg = 0.320 / 0.320 = 1.00.

尚、Ca=0.320(0.320≦x≦0.330)、および、Mg=0.320(0.308≦y≦0.320)に設定され、実施例3においても上記組成式(1)の要件を満たす組成になっている。 Incidentally, Ca x = 0.320 (0.320 ≦ x ≦ 0.330) and Mg y = 0.320 (0.308 ≦ y ≦ 0.320) are set. The composition satisfies the requirement of formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.680Ca0.320)(Ga4.040Mg0.320Zr0.640)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, hereinafter, performs development of SGGG single crystal by substantially the same conditions as in example 1, a diameter represented by a composition formula (Gd 2.680 Ca 0.320) (Ga 4.040 Mg 0.320 Zr 0.640) O 12 An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、実施例3に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   In the growth of the SGGG single crystal according to Example 3, the solidification rate [(crystal weight / raw material weight) × 100] of the raw material melt at the time of growth is set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4966Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4967Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0001Å(12.4967Å−12.4966Å)であった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4966Å, and the SGGG single crystal substrate (that is, the crystal bottom portion) obtained from the crystal bottom portion. The lattice constant of was 12.4967Å, and the difference in lattice constant between the crystal bottom portion and the crystal top portion was 0.0001Å (12.4967Å-12.4966Å).

[実施例4]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.716:0.320:4.004:0.320:0.640、および、Ca/Mg=0.320/0.320=1.00となるように秤量した。
[Example 4]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.716: 0.320: 4.004. : 0.320: 0.640, and Ca / Mg = 0.320 / 0.320 = 1.00.

尚、Ca=0.320(0.320≦x≦0.330)、および、Mg=0.320(0.308≦y≦0.320)に設定され、実施例4においても上記組成式(1)の要件を満たす組成になっている。 Incidentally, Ca x = 0.320 (0.320 ≦ x ≦ 0.330) and Mg y = 0.320 (0.308 ≦ y ≦ 0.320) are set. The composition satisfies the requirement of formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.680Ca0.320)(Ga4.040Mg0.320Zr0.640)O12で示される直径83mmで直胴部長100mmのSGGG単結晶(4.7kg×100mm/80mm=5.9kg)を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, hereinafter, performs development of SGGG single crystal by substantially the same conditions as in example 1, a diameter represented by a composition formula (Gd 2.680 Ca 0.320) (Ga 4.040 Mg 0.320 Zr 0.640) O 12 SGGG single crystal (4.7 kg × 100 mm / 80 mm = 5.9 kg) having a straight body length of 100 mm was grown at 83 mm.

尚、実施例4に係るSGGG単結晶の育成においては、原料融液の固化率[(結晶重量÷原料重量)×100]について、37.3%×100mm/80mm=46.6%に設定して育成されている。   In the growth of the SGGG single crystal according to Example 4, the solidification rate [(crystal weight / raw material weight) × 100] of the raw material melt was set to 37.3% × 100 mm / 80 mm = 46.6%. Have been nurtured.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4966Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4968Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0002Å(12.4968Å−12.4966Å)であった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4966Å, and the SGGG single crystal substrate (that is, the crystal bottom portion) obtained from the crystal bottom portion. The lattice constant was 12.4968Å, and the difference in lattice constant between the crystal bottom portion and the crystal top portion was 0.0002Å (12.4968Å-12.4966Å).

[実施例5]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.716:0.320:4.004:0.320:0.640、および、Ca/Mg=0.320/0.320=1.00となるように秤量した。
[Example 5]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.716: 0.320: 4.004. : 0.320: 0.640, and Ca / Mg = 0.320 / 0.320 = 1.00.

尚、Ca=0.320(0.320≦x≦0.330)、および、Mg=0.320(0.308≦y≦0.320)に設定され、実施例5においても上記組成式(1)の要件を満たす組成になっている。 It should be noted that Ca x = 0.320 (0.320 ≦ x ≦ 0.330) and Mg y = 0.320 (0.308 ≦ y ≦ 0.320) are set. The composition satisfies the requirement of formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料15.0kgを直径150mm、高さ180mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.680Ca0.320)(Ga4.040Mg0.320Zr0.640)O12で示される直径83mmで直胴部長115mmのSGGG単結晶(6.8kg)を育成した。 The raw material is subjected to an increase in bulk density by the cold isostatic pressing method and carbon removal treatment by heating, and then 15.0 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 180 mm, hereinafter, performs development of SGGG single crystal by substantially the same conditions as in example 1, a diameter represented by a composition formula (Gd 2.680 Ca 0.320) (Ga 4.040 Mg 0.320 Zr 0.640) O 12 SGGG single crystal (6.8 kg) having a straight body length of 115 mm was grown at 83 mm.

尚、実施例5に係るSGGG単結晶の育成においては、原料融液の固化率[(結晶重量÷原料重量)×100]について、6.8kg/15.0kg×100=45.3%に設定して育成されている。   In the growth of the SGGG single crystal according to Example 5, the solidification rate [(crystal weight / raw material weight) × 100] of the raw material melt is set to 6.8 kg / 15.0 kg × 100 = 45.3%. Have been nurtured.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4969Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4971Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0002Å(12.4971Å−12.4969Å)であった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4969Å, and the SGGG single crystal substrate (that is, the crystal bottom portion) obtained from the crystal bottom portion. The lattice constant of was 12.497149, and the difference in lattice constant between the crystal bottom portion and the crystal top portion was 0.0002Å (12.4971Å-12.4969Å).

尚、本実施例においては、結晶底部にクラックが発生したため、育成された単結晶良品(育成方向でクラックの無い部分)率は82.6%であった。   In this example, since cracks occurred at the bottom of the crystal, the rate of grown single crystal non-defective products (the portion without cracks in the growth direction) was 82.6%.

[比較例1]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.703:0.333:4.031:0.300:0.633、および、Ca/Mg=0.333/0.300=1.11となるように秤量した。
[Comparative Example 1]
In order to grow the SGGG single crystal by the Czochralski method, the raw material represented by the composition formula (GdCaGaMgZr) 8 O 12 is used in the atomic ratio Gd: Ca: Ga: Mg: Zr = 2.703: 0.333: 4.031. : 0.300: 0.633, and Ca / Mg = 0.333 / 0.300 = 1.11.

尚、Ca=0.333(0.320≦x≦0.330)、および、Mg=0.300(0.308≦y≦0.320)に設定され、比較例1においては上記組成式(1)におけるxとyの要件を満たさない組成になっている。 Incidentally, Ca x = 0.333 (0.320 ≦ x ≦ 0.330) and Mg y = 0.300 (0.308 ≦ y ≦ 0.320) are set. The composition does not satisfy the requirements of x and y in the formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.667Ca0.333)(Ga4.067Mg0.300Zr0.633)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, Hereinafter, the SGGG single crystal is grown under substantially the same conditions as in Example 1, and the diameter represented by the composition formula (Gd 2.667 Ca 0.333 ) (Ga 4.067 Mg 0.300 Zr 0.633 ) O 12 is used. An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、比較例1に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   In the growth of the SGGG single crystal according to Comparative Example 1, it is grown with the solidification rate [(crystal weight ÷ raw material weight) × 100] of the raw material melt at the time of growth set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4950Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4960Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0010Å(12.4960Å−12.4950Å)であり、格子定数の差(0.0002Å以下)に係る条件を満たさないものであった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate obtained from the crystal top portion (namely, crystal top portion) is 12.4950Å, and the SGGG single crystal substrate obtained from the crystal bottom portion (namely, crystal bottom portion) Has a lattice constant of 12.4960 、, and the difference between the lattice constant of the crystal bottom portion and the crystal top portion is 0.0010 Å (12.4960 Å-12.4950 Å), and the conditions related to the difference in lattice constant (less than 0.0002 Å) It did not satisfy.

[比較例2]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.706:0.330:4.028:0.303:0.633、および、Ca/Mg=0.330/0.303=1.09となるように秤量した。
[Comparative Example 2]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.706: 0.330: 4.028. : 0.303: 0.633, and Ca / Mg = 0.330 / 0.303 = 1.09.

尚、Ca=0.330(0.320≦x≦0.330)、および、Mg=0.303(0.308≦y≦0.320)に設定され、比較例2においては上記組成式(1)におけるyの要件を満たさない組成になっている。 It should be noted that Ca x = 0.330 (0.320 ≦ x ≦ 0.330) and Mg y = 0.303 (0.308 ≦ y ≦ 0.320) were set. The composition does not satisfy the requirement of y in the formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.670Ca0.330)(Ga4.064Mg0.303Zr0.633)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, Hereinafter, the SGGG single crystal was grown under substantially the same conditions as in Example 1, and the diameter represented by the composition formula (Gd 2.670 Ca 0.330 ) (Ga 4.064 Mg 0.303 Zr 0.633 ) O 12 was used. An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、比較例2に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   In the growth of the SGGG single crystal according to Comparative Example 2, the solidification rate [(crystal weight ÷ raw material weight) × 100] of the raw material melt at the time of growth is set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4954Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4960Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0006Å(12.4960Å−12.4954Å)であり、格子定数の差(0.0002Å以下)に係る条件を満たさないものであった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4954Å, and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, crystal bottom portion) Has a lattice constant of 12.4960 、, and the difference in lattice constant between the crystal bottom portion and the crystal top portion is 0.0006 Å (12.4960 Å-12.4954 Å), and the conditions related to the difference in lattice constant (0.0002 Å or less) It did not satisfy.

[比較例3]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.717:0.319:4.001:0.322:0.641、および、Ca/Mg=0.319/0.322=0.99となるように秤量した。
[Comparative Example 3]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.717: 0.319: 4.001. : 0.322: 0.641, and Ca / Mg = 0.319 / 0.322 = 0.99.

尚、Ca=0.319(0.320≦x≦0.330)、および、Mg=0.322(0.308≦y≦0.320)に設定され、比較例3においても上記組成式(1)におけるxとyの要件を満たさない組成になっている。 It should be noted that Ca x = 0.319 (0.320 ≦ x ≦ 0.330) and Mg y = 0.322 (0.308 ≦ y ≦ 0.320) are set. The composition does not satisfy the requirements of x and y in the formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.681Ca0.319)(Ga4.037Mg0.322Zr0.641)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, Hereinafter, the SGGG single crystal was grown under substantially the same conditions as in Example 1, and the diameter represented by the composition formula (Gd 2.681 Ca 0.319 ) (Ga 4.037 Mg 0.322 Zr 0.641 ) O 12 was used. An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、比較例3に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   In the growth of the SGGG single crystal according to Comparative Example 3, the solidification rate [(crystal weight ÷ raw material weight) × 100] of the raw material melt at the time of growth is set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4966Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4969Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0003Å(12.4969Å−12.4966Å)であり、格子定数の差(0.0002Å以下)に係る条件を満たさないものであった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4966Å, and the SGGG single crystal substrate (that is, the crystal bottom portion) obtained from the crystal bottom portion. Has a lattice constant of 12.4969Å, and the difference in lattice constant between the crystal bottom portion and the crystal top portion is 0.0003Å (12.4969Å-12.4966Å), and the conditions relating to the difference in lattice constant (less than 0.0002Å) It did not satisfy.

[比較例4]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.726:0.310:4.008:0.323:0.633、および、Ca/Mg=0.310/0.323=0.96となるように秤量した。
[Comparative Example 4]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.726: 0.310: 4.008. : 0.323: 0.633, and Ca / Mg = 0.310 / 0.323 = 0.96.

尚、Ca=0.310(0.320≦x≦0.330)、および、Mg=0.323(0.308≦y≦0.320)に設定され、比較例4においても上記組成式(1)におけるxとyの要件を満たさない組成になっている。 It should be noted that Ca x = 0.310 (0.320 ≦ x ≦ 0.330) and Mg y = 0.323 (0.308 ≦ y ≦ 0.320) are set. The composition does not satisfy the requirements of x and y in the formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.690Ca0.310)(Ga4.044Mg0.323Zr0.633)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, Hereinafter, the SGGG single crystal was grown under substantially the same conditions as in Example 1, and the diameter represented by the composition formula (Gd 2.690 Ca 0.310 ) (Ga 4.044 Mg 0.323 Zr 0.633 ) O 12 was used. An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、比較例4に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   Note that the SGGG single crystal according to Comparative Example 4 is also grown with the solidification rate [(crystal weight ÷ raw material weight) × 100] of the raw material melt at the time of growth set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4948Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4953Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0005Å(12.4953Å−12.4948Å)であり、格子定数の差(0.0002Å以下)に係る条件を満たさないものであった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4948Å, and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, crystal bottom portion) Has a lattice constant of 12.4953Å, and the difference in lattice constant between the crystal bottom portion and the crystal top portion is 0.0005Å (12.4953Å-12.49448Å), and the conditions related to the difference in lattice constant (0.0002Å or less) It did not satisfy.

[比較例5]
SGGG単結晶をチョクラルスキー法で育成するため、組成式(GdCaGaMgZr)812で示される原料を、原子比Gd:Ca:Ga:Mg:Zr=2.726:0.310:4.014:0.320:0.630、および、Ca/Mg=0.310/0.320=0.97となるように秤量した。
[Comparative Example 5]
In order to grow an SGGG single crystal by the Czochralski method, a raw material represented by a composition formula (GdCaGaMgZr) 8 O 12 is used as an atomic ratio Gd: Ca: Ga: Mg: Zr = 2.726: 0.310: 4.014. : 0.320: 0.630, and Ca / Mg = 0.310 / 0.320 = 0.97.

尚、Ca=0.310(0.320≦x≦0.330)、および、Mg=0.320(0.308≦y≦0.320)に設定され、比較例5においては上記組成式(1)におけるxの要件を満たさない組成になっている。 Incidentally, Ca x = 0.310 (0.320 ≦ x ≦ 0.330) and Mg y = 0.320 (0.308 ≦ y ≦ 0.320) are set. The composition does not satisfy the requirement of x in Formula (1).

また、上記原料は、冷間等方圧加圧法による嵩密度の増加と、加熱による炭素除去の処理を施した後、該原料12.6kgを直径150mm、高さ150mmのイリジウム坩堝に充填し、以下、実施例1と略同一条件によりSGGG単結晶の育成を行い、組成式(Gd2.690Ca0.310)(Ga4.050Mg0.320Zr0.630)O12で示される直径83mmで直胴部長80mmのSGGG単結晶を育成した。 Further, the raw material is subjected to an increase in bulk density by a cold isostatic pressing method and carbon removal treatment by heating, and then 12.6 kg of the raw material is filled in an iridium crucible having a diameter of 150 mm and a height of 150 mm, Hereinafter, the SGGG single crystal was grown under substantially the same conditions as in Example 1, and the diameter represented by the composition formula (Gd 2.690 Ca 0.310 ) (Ga 4.050 Mg 0.320 Zr 0.630 ) O 12 was used. An SGGG single crystal having a straight body length of 80 mm was grown at 83 mm.

尚、比較例5に係るSGGG単結晶の育成においても、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37.3%に設定して育成されている。   Note that the SGGG single crystal according to Comparative Example 5 is also grown with the solidification rate [(crystal weight ÷ raw material weight) × 100] of the raw material melt at the time of growth set to 37.3%.

次に、育成されたSGGG単結晶の直胴部における結晶トップ部(直胴部の上端)と結晶ボトム部(直胴部の下端)を切断し、かつ、両面研磨加工を施した後、上記エックス線回折装置を用いて、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)と結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数を測定した。   Next, after cutting the crystal top portion (upper end of the straight barrel portion) and the crystal bottom portion (lower end of the straight barrel portion) in the straight barrel portion of the grown SGGG single crystal and performing double-side polishing, Using an X-ray diffractometer, the lattice constants of the SGGG single crystal substrate obtained from the crystal top portion (ie, the crystal top portion) and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, the crystal bottom portion) were measured. .

測定の結果、結晶トップ部から得られたSGGG単結晶基板(すなわち、結晶トップ部)の格子定数は12.4948Å、かつ、結晶ボトム部から得られたSGGG単結晶基板(すなわち、結晶ボトム部)の格子定数は12.4954Åで、結晶ボトム部と結晶トップ部における格子定数の差は0.0006Å(12.4954Å−12.4948Å)であり、格子定数の差(0.0002Å以下)に係る条件を満たさないものであった。   As a result of the measurement, the lattice constant of the SGGG single crystal substrate (that is, the crystal top portion) obtained from the crystal top portion is 12.4948Å, and the SGGG single crystal substrate obtained from the crystal bottom portion (ie, crystal bottom portion) Has a lattice constant of 12.495449, and the difference in lattice constant between the crystal bottom portion and the crystal top portion is 0.0006Å (12.4954Å-12.4948Å), and the conditions related to the difference in lattice constant (0.0002Å or less) It did not satisfy.

本発明に係るSGGG単結晶によれば、結晶トップ部と結晶ボトム部間における格子定数の分布が均一化されていることから、結晶トップ部から得られたSGGG基板と結晶ボトム部から得られたSGGG基板における格子定数の均一性に優れている。そして、LPE法によりRIG単結晶膜を育成する際、結晶トップ部から得られたSGGG基板と結晶ボトム部から得られたSGGG基板とで育成条件を変える必要がない分、RIG単結晶膜における生産性の向上が図れるため、光アイソレータ用ファラデー回転子に用いられるRIG単結晶膜を低コストで提供できる産業上の利用可能性を有している。   According to the SGGG single crystal according to the present invention, since the distribution of the lattice constant between the crystal top portion and the crystal bottom portion is uniform, the SGGG single crystal obtained from the crystal top portion and the crystal bottom portion are obtained. Excellent uniformity of lattice constant in SGGG substrate. Then, when growing the RIG single crystal film by the LPE method, there is no need to change the growth conditions between the SGGG substrate obtained from the crystal top portion and the SGGG substrate obtained from the crystal bottom portion. Therefore, the RIG single crystal film used for the Faraday rotator for optical isolators can be provided at low cost and has industrial applicability.

1 育成炉
2 チャンバー
3 断熱材
4 引き上げ軸
5 ホットゾーン
6 種結晶
7 SGGG単結晶
8 坩堝
9 原料融液
10 高周波コイル
11 結晶トップ部
12 結晶ボトム部
DESCRIPTION OF SYMBOLS 1 Growth furnace 2 Chamber 3 Heat insulating material 4 Lifting shaft 5 Hot zone 6 Seed crystal 7 SGGG single crystal 8 Crucible 9 Raw material melt 10 High frequency coil 11 Crystal top part 12 Crystal bottom part

Claims (7)

チョクラルスキー(CZ:Czochralski)法により育成されたCaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶において、
育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37%〜47%の範囲に設定して育成され、格子定数が12.4945〜12.4975Åであり、かつ、単結晶の育成方向と直交する任意の2平面内の2次元座標で特定される同一位置における格子定数の差が0.0002Å以下であることを特徴とするSGGG単結晶。
In a CaMgZr-substituted gadolinium gallium garnet (SGGG) single crystal grown by the Czochralski (CZ) method,
It is grown by setting the solidification rate of the raw material melt at the time of growth [(crystal weight / raw material weight) × 100] in the range of 37% to 47%, the lattice constant is 12.4945 to 12.4975Å, and A SGGG single crystal, wherein the difference in lattice constant at the same position specified by two-dimensional coordinates in two arbitrary planes orthogonal to the growth direction of the single crystal is 0.0002Å or less.
下記組成式(1)で示される原料融液を用いて育成されていることを特徴とする請求項1に記載のSGGG単結晶。
(Gd3.036−xCa)(Ga4.964−x−2yMgZrx+y)O12 (1)
[但し、組成式(1)中のx、yは、0.320≦x≦0.330、および、0.308≦y≦0.320である。]
The SGGG single crystal according to claim 1, wherein the SGGG single crystal is grown using a raw material melt represented by the following composition formula (1).
(Gd 3.036-x Ca x ) (Ga 4.964-x-2y Mg y Zr x + y ) O 12 (1)
[However, x and y in the composition formula (1) are 0.320 ≦ x ≦ 0.330 and 0.308 ≦ y ≦ 0.320. ]
下記組成式(2)で示されることを特徴とする請求項1または2に記載のSGGG単結晶。
(Gd3−xCa)(Ga5−x−2yMgZrx+y)O12 (2)
[但し、組成式(2)中のx、yは、0.304≦x≦0.336、および、0.259≦y≦0.320である。]
The SGGG single crystal according to claim 1 or 2, which is represented by the following composition formula (2).
(Gd 3-x Ca x) (Ga 5-x-2y Mg y Zr x + y) O 12 (2)
[However, x and y in the composition formula (2) are 0.304 ≦ x ≦ 0.336 and 0.259 ≦ y ≦ 0.320. ]
単結晶の育成方向における結晶方位が<111>であることを特徴とする請求項1〜3のいずれかに記載のSGGG単結晶。   The SGGG single crystal according to any one of claims 1 to 3, wherein a crystal orientation in a growth direction of the single crystal is <111>. 単結晶の育成方向と直交する任意の2平面間における育成方向の長さが100mm以下であることを特徴とする請求項1〜4のいずれかに記載のSGGG単結晶。   The SGGG single crystal according to any one of claims 1 to 4, wherein the length in the growth direction between any two planes orthogonal to the growth direction of the single crystal is 100 mm or less. チョクラルスキー(CZ:Czochralski)法によりSGGG単結晶を育成する方法において、
下記組成式(1)で示される原料融液を用いると共に、育成時における原料融液の固化率[(結晶重量÷原料重量)×100]を37%〜47%の範囲に設定して育成することを特徴とするSGGG単結晶の育成方法。
(Gd3.036−xCa)(Ga4.964−x−2yMgZrx+y)O12 (1)
[但し、組成式(1)中のx、yは、0.320≦x≦0.330、および、0.308≦y≦0.320である。]
In the method of growing SGGG single crystal by the Czochralski (CZ) method,
The raw material melt represented by the following composition formula (1) is used, and the solidification rate [(crystal weight / raw material weight) × 100] of the raw material melt at the time of growth is set within a range of 37% to 47%. A SGGG single crystal growth method characterized by the above.
(Gd 3.036-x Ca x ) (Ga 4.964-x-2y Mg y Zr x + y ) O 12 (1)
[However, x and y in the composition formula (1) are 0.320 ≦ x ≦ 0.330 and 0.308 ≦ y ≦ 0.320. ]
希土類鉄ガーネット単結晶膜を液相エピタキシャル成長法(LPE法)により育成する際に用いられるSGGG単結晶基板において、
請求項4に記載のSGGG単結晶をその育成方向と直交する方向へ切断して製造され、下記組成式(2)で示されると共に、格子定数が12.4945〜12.4975Åであることを特徴とするSGGG単結晶基板。
(Gd3−xCa)(Ga5−x−2yMgZrx+y)O12 (2)
[但し、組成式(2)中のx、yは、0.304≦x≦0.336、および、0.259≦y≦0.320である。]
In the SGGG single crystal substrate used when growing the rare earth iron garnet single crystal film by the liquid phase epitaxial growth method (LPE method),
It is manufactured by cutting the SGGG single crystal according to claim 4 in a direction orthogonal to its growth direction, and is represented by the following composition formula (2) and has a lattice constant of 12.4945 to 12.4975%. SGGG single crystal substrate.
(Gd 3-x Ca x) (Ga 5-x-2y Mg y Zr x + y) O 12 (2)
[However, x and y in the composition formula (2) are 0.304 ≦ x ≦ 0.336 and 0.259 ≦ y ≦ 0.320. ]
JP2015060823A 2015-03-06 2015-03-24 Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate Active JP6547360B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044698 2015-03-06
JP2015044698 2015-03-06

Publications (3)

Publication Number Publication Date
JP2016166118A true JP2016166118A (en) 2016-09-15
JP2016166118A5 JP2016166118A5 (en) 2018-02-15
JP6547360B2 JP6547360B2 (en) 2019-07-24

Family

ID=56897418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060823A Active JP6547360B2 (en) 2015-03-06 2015-03-24 Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate

Country Status (1)

Country Link
JP (1) JP6547360B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149613A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP2019026496A (en) * 2017-07-27 2019-02-21 住友金属鉱山株式会社 Method for growing nonmagnetic garnet single crystal
JP2019099432A (en) * 2017-12-06 2019-06-24 住友金属鉱山株式会社 Growing method of nonmagnetic garnet single crystal
JP2019182682A (en) * 2018-04-04 2019-10-24 住友金属鉱山株式会社 Method for manufacturing nonmagnetic garnet single crystal
JP2021172543A (en) * 2020-04-22 2021-11-01 株式会社Smmプレシジョン Method for growing sggg single crystal, and sggg single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168606A (en) * 1988-09-30 1990-06-28 Shin Etsu Chem Co Ltd Oxide garnet single crystal and microwave element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168606A (en) * 1988-09-30 1990-06-28 Shin Etsu Chem Co Ltd Oxide garnet single crystal and microwave element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEO KIMURA ET AL.: "Minimization of lattice parameter change in Czochralski grown (Gd1-xYx)Ga5O12 garnet single crystal", JOURNAL OF CRYSTAL GROWTH, vol. Volume 119, issue 3-4, JPN6018050762, 1 May 1992 (1992-05-01), pages 313 - 316, XP000275491, DOI: doi:10.1016/0022-0248(92)90685-C *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149613A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP2019026496A (en) * 2017-07-27 2019-02-21 住友金属鉱山株式会社 Method for growing nonmagnetic garnet single crystal
JP2019099432A (en) * 2017-12-06 2019-06-24 住友金属鉱山株式会社 Growing method of nonmagnetic garnet single crystal
JP7017072B2 (en) 2017-12-06 2022-02-08 住友金属鉱山株式会社 How to grow a non-magnetic garnet single crystal
JP2019182682A (en) * 2018-04-04 2019-10-24 住友金属鉱山株式会社 Method for manufacturing nonmagnetic garnet single crystal
JP2021172543A (en) * 2020-04-22 2021-11-01 株式会社Smmプレシジョン Method for growing sggg single crystal, and sggg single crystal

Also Published As

Publication number Publication date
JP6547360B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP5935764B2 (en) Garnet-type single crystal and manufacturing method thereof
JP5601273B2 (en) Method for producing oxide single crystal
TWI677602B (en) β-GaZO single crystal substrate
JP6436073B2 (en) Method for growing CaMgZr-substituted gadolinium / gallium / garnet single crystal
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP5299395B2 (en) Oxide single crystal growth method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP2014015366A (en) SUBSTRATE WITH β-Ga2O3 SINGLE CRYSTAL FILM AND ITS MANUFACTURING METHOD
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2019182682A (en) Method for manufacturing nonmagnetic garnet single crystal
JP7271842B2 (en) Method for producing lithium tantalate single crystal
JP6822109B2 (en) Bismuth-substituted rare earth iron garnet crystal film, its manufacturing method, and optical isolator
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP6922521B2 (en) How to grow non-magnetic garnet single crystal
JP6819862B2 (en) Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP6969091B2 (en) Non-magnetic garnet single crystal, non-magnetic garnet single crystal substrate, non-magnetic garnet single crystal manufacturing method, and non-magnetic garnet single crystal substrate manufacturing method
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP2018030758A (en) Non-magnetic garnet single crystal, and production method thereof
JP2013056785A (en) Seeding method in tgg single crystal growth

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150