JP2013056785A - Seeding method in tgg single crystal growth - Google Patents

Seeding method in tgg single crystal growth Download PDF

Info

Publication number
JP2013056785A
JP2013056785A JP2011194902A JP2011194902A JP2013056785A JP 2013056785 A JP2013056785 A JP 2013056785A JP 2011194902 A JP2011194902 A JP 2011194902A JP 2011194902 A JP2011194902 A JP 2011194902A JP 2013056785 A JP2013056785 A JP 2013056785A
Authority
JP
Japan
Prior art keywords
crystal
tgg
single crystal
seed crystal
seeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194902A
Other languages
Japanese (ja)
Other versions
JP5944639B2 (en
Inventor
Daisuke Dobashi
大輔 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011194902A priority Critical patent/JP5944639B2/en
Publication of JP2013056785A publication Critical patent/JP2013056785A/en
Application granted granted Critical
Publication of JP5944639B2 publication Critical patent/JP5944639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seeding method in TGG single crystal growth capable of producing easily, by the Czochralski method, a paramagnetic garnet crystal (with a composition formula: TbGaO) containing, as a main component, terbium-gallium-garnet (TGG) used as a Faraday rotator for an optical isolator.SOLUTION: In this seeding method in terbium-gallium-garnet (TGG) single crystal growth for bringing a seed crystal into contact with a raw material melt and pulling up a grown crystal by the Cz method (rotating pulling up method), a crystal which is a single crystal having the same garnet structure as TGG, whose melting point is ≥1,750°C, and whose lattice constant difference from TGG is ≤±3% is used as the seed crystal. Since a seed crystal having a specific melting point and a specific lattice constant difference with TGG is used, a problem of dissolution of the seed crystal is not generated when pulling up a crystal by the Cz method, and therefore the success rate of seeding is heightened and a high-quality TGG crystal can be grown.

Description

本発明は、TGG単結晶育成におけるシーディング方法に関し、より詳しくは、光アイソレータ用ファラデー回転子として用いられるテルビウム・ガリウム・ガーネット(TGG)を主成分とする常磁性ガーネット結晶(組成式TbGa12)をチョクラルスキー法によって容易に製造できるTGG単結晶育成におけるシーディング方法に関する。 The present invention relates to a seeding method in TGG single crystal growth, and more specifically, a paramagnetic garnet crystal (compositional formula Tb 3 Ga) mainly composed of terbium gallium garnet (TGG) used as a Faraday rotator for an optical isolator. The present invention relates to a seeding method in TGG single crystal growth in which 5 O 12 ) can be easily produced by the Czochralski method.

光アイソレータや高温超伝導ケーブルなどには、希土類・ガリウム・ガーネット結晶であるネオジム・ガリウム・ガーネット(NGG)結晶、サマリウム・ガリウム・ガーネット(SGG)結晶、ガドリニウム・ガリウム・ガーネット(GGG)結晶等が使用されている。   For optical isolators and high-temperature superconducting cables, rare earth / gallium / garnet crystals such as neodymium / gallium / garnet (NGG) crystals, samarium / gallium / garnet (SGG) crystals, gadolinium / gallium / garnet (GGG) crystals, etc. It is used.

希土類・ガリウム・ガーネット結晶の一般的な製造方法としては、るつぼ中で溶融した原料に種結晶をつけて回転させながら引き上げるというチョクラルスキー法(CZ法:回転引き上げ法)が知られている。このCZ法により、ネオジム・ガリウム・ガーネット(NGG)結晶、サマリウム・ガリウム・ガーネット(SGG)結晶、ガドリニウム・ガリウム・ガーネット(GGG)結晶等が生産されている。そして、ランタン・イッテルビウム・ガリウム・ガーネット(LYGG)結晶をCZ法で製造する方法が提案されている(特許文献1)。
一方、本出願人は、ガドリニウム・ガリウム・ガーネット(GGG)結晶の育成に関して、特に大型の単結晶において、肩部のクラックの発生を抑制し、かつ肩部を直胴部から切断するとき直胴部へのクラック伝播を防止できる育成方法を提案し、種結晶としてGGG結晶を用いて引き上げることで、歪みの少ないガーネット単結晶が得られることを確認している(特許文献2)。このように、従来は種結晶として、育成される結晶と同じ種類の結晶が使用されている。
As a general method for producing a rare earth / gallium / garnet crystal, a Czochralski method (CZ method: rotational pulling method) is known in which a seed crystal is attached to a raw material melted in a crucible and pulled while rotating. By this CZ method, neodymium gallium garnet (NGG) crystal, samarium gallium garnet (SGG) crystal, gadolinium gallium garnet (GGG) crystal and the like are produced. And the method of manufacturing a lanthanum ytterbium gallium garnet (LYGG) crystal | crystallization by CZ method is proposed (patent document 1).
On the other hand, regarding the growth of a gadolinium gallium garnet (GGG) crystal, the present applicant suppresses the occurrence of cracks in the shoulder portion, particularly in a large single crystal, and cuts the shoulder portion from the straight body portion. The growth method which can prevent the crack propagation to a part is proposed, and it has confirmed that a garnet single crystal with few distortions is obtained by pulling up using a GGG crystal as a seed crystal (patent documents 2). Thus, conventionally, the same type of crystal as the crystal to be grown is used as the seed crystal.

ところで、希土類・ガリウム・ガーネット結晶には、希土類にテルビウムを用いたテルビウム・ガリウム・ガーネット結晶(以下TGG結晶と略すことあり)がある。このTGG結晶は、低光損失、高熱伝導率、高ダメージ閾値、高ベルデ定数の結晶として知られており、主に400nm〜1100nm(470nm〜500nmを除く)用のローテーターや光アイソレータなどに利用されている。
前記GGG結晶育成の場合、GGG種結晶は、GGG融液に接触しても容易には溶融しないので、結晶育成を行うことができた。
By the way, the rare earth / gallium / garnet crystal includes a terbium / gallium / garnet crystal (hereinafter sometimes abbreviated as TGG crystal) using terbium as a rare earth. This TGG crystal is known as a crystal with low optical loss, high thermal conductivity, high damage threshold, and high Verde constant, and is mainly used for rotators and optical isolators for 400 nm to 1100 nm (excluding 470 nm to 500 nm). ing.
In the case of the GGG crystal growth, since the GGG seed crystal does not melt easily even when it comes into contact with the GGG melt, it was possible to grow the crystal.

ところが、種結晶と育成結晶が共にTGGの場合は、種結晶としてTGG結晶を用いて、TGG結晶をCZ法によって製造しようとすると、種結晶が溶融してシーディングの成功率が低く、安定した育成が行えなかった。
そのため、光アイソレータ用ファラデー回転子として用いられるテルビウム・ガリウム・ガーネット(TGG)を主成分とする常磁性ガーネット結晶(組成式TbGa12)をチョクラルスキー法によって容易に製造できるTGG単結晶育成におけるシーディング方法が必要とされていた。
However, when both the seed crystal and the grown crystal are TGG, if the TGG crystal is manufactured by the CZ method using the TGG crystal as the seed crystal, the seed crystal melts and the seeding success rate is low and stable. I couldn't train.
Therefore, a TGG single that can be easily manufactured by the Czochralski method using a paramagnetic garnet crystal (composition formula Tb 3 Ga 5 O 12 ) mainly composed of terbium gallium garnet (TGG) used as a Faraday rotator for an optical isolator. There was a need for a seeding method for crystal growth.

特開平10−001397号公報(実施例1)JP-A-10-001397 (Example 1) 特開2005−29400号公報JP 2005-29400 A

本発明の目的は、上記従来技術の課題に鑑み、チョクラルスキー法によってテルビウム・ガリウム・ガーネット(TGG)結晶を、捩れや結晶内の歪を生じることなく容易に製造できる酸化物単結晶の育成方法を提供することにある。   An object of the present invention is to grow an oxide single crystal that can easily produce a terbium gallium garnet (TGG) crystal by the Czochralski method without causing twisting or distortion in the crystal. It is to provide a method.

本発明者らは、上記従来の問題点を解決するために鋭意研究を重ね、テルビウム・ガリウム・ガーネット(TGG)単結晶をCz法(回転引き上げ法)により育成するに当たり、種結晶として異種の組成で、TGGよりも高融点、かつTGGとの格子定数差が特定のものを採用することにより、シーディング時に種結晶が溶解することがなく、シーディング成功率が高くなり、容易に高品質なTGG結晶を製造することができることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned conventional problems, the present inventors have conducted intensive research, and in growing a terbium gallium garnet (TGG) single crystal by the Cz method (rotary pulling method), different compositions as seed crystals. By adopting a material having a higher melting point than TGG and a specific difference in lattice constant from TGG, the seed crystal does not dissolve during seeding, the seeding success rate is increased, and high quality is easily achieved. The present inventors have found that a TGG crystal can be produced and have completed the present invention.

すなわち、本発明の第1の発明によれば、Cz法(回転引き上げ法)により、原料融液に種結晶を接触させて成長結晶を引き上げるテルビウム・ガリウム・ガーネット(TGG)単結晶育成におけるシーディング方法において、種結晶として、TGGと同じガーネット構造の単結晶であり、融点が1750℃以上、かつTGGとの格子定数差が±3%以下である結晶を用いることを特徴とするTGG単結晶育成におけるシーディング方法が提供される。   That is, according to the first invention of the present invention, seeding in terbium gallium garnet (TGG) single crystal growth in which a seed crystal is brought into contact with a raw material melt to pull up a grown crystal by the Cz method (rotary pulling method). In the method, TGG single crystal growth characterized in that a single crystal having the same garnet structure as TGG, a crystal having a melting point of 1750 ° C. or higher and a lattice constant difference of ± 3% or less from TGG is used as a seed crystal. A seeding method is provided.

また、本発明の第2の発明によれば、第1の発明において、種結晶として、YAG単結晶、GGG単結晶又はGSGG単結晶から選ばれるいずれかを用いることを特徴とするTGG単結晶育成におけるシーディング方法が提供される。
また、本発明の第3の発明によれば、第1又は2の発明において、種結晶として、先端直径を3mm以上5mm以下の先細形状とし、先端から5mm以内の表面を算術平均粗さRaで10μm以下に仕上げた単結晶を用いることを特徴とするTGG単結晶育成におけるシーディング方法が提供される。
さらに、本発明の第4の発明によれば、第1〜3のいずれかの発明において、炉内は、酸素を4体積%以下含有する不活性ガス雰囲気とし、ガス流量を1〜5L/分とすることを特徴とするTGG単結晶育成におけるシーディング方法が提供される。
According to the second invention of the present invention, in the first invention, a TGG single crystal growth characterized in that any one selected from a YAG single crystal, a GGG single crystal, or a GSGG single crystal is used as a seed crystal. A seeding method is provided.
According to the third invention of the present invention, in the first or second invention, as a seed crystal, the tip diameter is a tapered shape of 3 mm or more and 5 mm or less, and the surface within 5 mm from the tip is expressed by arithmetic mean roughness Ra. There is provided a seeding method for growing a TGG single crystal characterized by using a single crystal finished to 10 μm or less.
Furthermore, according to the fourth invention of the present invention, in any one of the first to third inventions, the inside of the furnace is an inert gas atmosphere containing 4% by volume or less of oxygen, and the gas flow rate is 1 to 5 L / min. A seeding method for TGG single crystal growth is provided.

本発明によれば、Cz法によって結晶を引き上げる際に、種結晶として、TGGよりも融点が高く、TGGとの格子定数差が特定のものを用いるので種結晶の溶解という問題が生じないので、シーディングの成功率が高くなり、高品質なTGG結晶が育成できる。従来の育成方法ではシーディングの成功率が4割程度であったものが、10割に近い成功率を得ることができる。
また、種結晶の先端形状や表面粗さが特定の物性を有する種結晶を用いてTGG単結晶を育成すれば、クラックの発生が大幅に減少するので、これにより、製造困難であったTGG単結晶を、一般的な製造方法で容易に育成することができる。
そして、これにより得られるTGG結晶は、高品質であることから、可視光波長域光アイソレータの回転子として光特性の優れるTGG単結晶が比較的容易に得られ、可視光波長域用の光アイソレータを実用化することができる。
According to the present invention, when pulling up a crystal by the Cz method, since the melting point is higher than TGG and a specific lattice constant difference from TGG is used as the seed crystal, there is no problem of dissolution of the seed crystal. The success rate of seeding is increased and high quality TGG crystals can be grown. Although the success rate of seeding was about 40% in the conventional breeding method, a success rate close to 100% can be obtained.
In addition, if a TGG single crystal is grown using a seed crystal whose tip shape and surface roughness have specific physical properties, the occurrence of cracks is greatly reduced. Crystals can be easily grown by a general production method.
And since the TGG crystal obtained by this is high quality, the TGG single crystal which is excellent in an optical characteristic as a rotor of a visible light wavelength region optical isolator is obtained comparatively easily, and the optical isolator for visible light wavelength regions is obtained. Can be put into practical use.

本発明の方法に用いられる種結晶の先端形状を示す斜視図である。It is a perspective view which shows the tip shape of the seed crystal used for the method of this invention. 本発明により単結晶を引き上げている状態を示す模式図である。It is a schematic diagram which shows the state which has pulled up the single crystal by this invention.

以下、本発明のTGG単結晶育成におけるシーディング方法について、図面を用いて詳細に説明する。   Hereinafter, the seeding method in the TGG single crystal growth of the present invention will be described in detail with reference to the drawings.

本発明のTGG単結晶育成におけるシーディング方法は、Cz法(回転引き上げ法)により、原料融液に種結晶を接触させて成長結晶を引き上げるテルビウム・ガリウム・ガーネット(TGG)単結晶育成におけるシーディング方法において、種結晶として、TGGと同じガーネット構造の単結晶であり、融点が1750℃以上、かつTGGとの格子定数差が±3%以下である結晶を用いることを特徴とする。   The seeding method for TGG single crystal growth according to the present invention is a seeding for terbium gallium garnet (TGG) single crystal growth in which a seed crystal is brought into contact with a raw material melt and pulled up by a Cz method (rotary pulling method). In the method, the seed crystal is a single crystal having the same garnet structure as TGG, having a melting point of 1750 ° C. or higher and a lattice constant difference with TGG of ± 3% or less.

1.種結晶
本発明におけるTGG育成では、種結晶として、育成するTGGと同じガーネット構造の単結晶ではあるが、育成するTGG単結晶とは組成の異なる結晶であり、かつ、融点が1750℃以上で、TGGとの格子定数差が±3%以下である結晶を使用する。
1. Seed Crystal In the TGG growth in the present invention, the seed crystal is a single crystal having the same garnet structure as the TGG to be grown, but is a crystal having a different composition from the TGG single crystal to be grown and has a melting point of 1750 ° C. or higher. A crystal having a lattice constant difference with TGG of ± 3% or less is used.

本発明では、種結晶の融点が1750℃以上であることが必須要件である。TGG育成の際、結晶欠陥などを避けるため引き上げ軸方向の温度勾配を緩やかとしなければならない場合、機能的にはTGGの融液に接触した種結晶が溶融してはならない。これに適う融点を有する組成の種結晶を選択すると1750℃以上となる。これより融点が低い種結晶を選択すると、種結晶がTGG融液に接触後、溶融するので育成結晶(TGG)の引き上げができなくなる。
また、種結晶がTGG融液に溶けなくても、TGGとの格子定数差が±3%を超えると、育成結晶にクラックが生じるなどの不具合が発生する。したがって、融点が1750〜2000℃で、TGGとの格子定数差が±2.8%以下である結晶が好適である。
In the present invention, it is an essential requirement that the melting point of the seed crystal is 1750 ° C. or higher. When the temperature gradient in the pulling axis direction must be made gentle to avoid crystal defects during TGG growth, the seed crystal in contact with the TGG melt must not be functionally melted. If a seed crystal having a melting point suitable for this is selected, the temperature becomes 1750 ° C. or higher. If a seed crystal having a lower melting point is selected, the seed crystal melts after coming into contact with the TGG melt, so that the grown crystal (TGG) cannot be pulled up.
Even if the seed crystal does not dissolve in the TGG melt, if the lattice constant difference with TGG exceeds ± 3%, defects such as cracks occur in the grown crystal. Accordingly, a crystal having a melting point of 1750 to 2000 ° C. and a difference in lattice constant from TGG of ± 2.8% or less is suitable.

このような好ましい種結晶として、例えば、YAG単結晶(融点1970℃、TGGとの格子定数差2.753%;12.01Å/12.35Å)、GGG単結晶(融点2098℃、TGGとの格子定数差0.24%)、あるいはGSGG単結晶(融点1750〜1850℃、TGGとの格子定数差1.70%;12.56Å/12.35Å)を用いることができる(表1参照)。   As such a preferred seed crystal, for example, a YAG single crystal (melting point 1970 ° C., lattice constant difference 2.753% with TGG; 12.01 ° / 12.35 °), GGG single crystal (melting point 2098 ° C., lattice with TGG) A constant difference of 0.24%) or a GSGG single crystal (melting point: 1750 to 1850 ° C., lattice constant difference of 1.70% with TGG; 12.56 参照 /12.35Å) (see Table 1).

また、育成される結晶は結晶欠陥がないことが望ましいが、欠陥のひとつ「転位」という問題が生じることがある。転位とは、単独の原子が不足したり、余計に存在したりするタイプの欠陥ではなく、線上に並んだ原子の位置がまとまってずれてしまった欠陥のことである。このような転位は、温度変化などによって伸びたり枝分かれしたりして増殖するので対処しにくい。CZ法で大きな結晶を成長しようとすると、中心部と外側で温度差が大きくなって結晶が歪み、これが転位発生の原因になる。
この転位をなくすために、図1のように種結晶のそばの部分の結晶を細くする。このように結晶を細くすると温度差も小さくなり、転位も減り、やがて全くなくすことができる。TGGでは一旦、転位がなくなると、その後かなりの温度差が結晶にかかっても転位が新たに発生しないという性質があるので、大きくても転位のない結晶ができる。
したがって、本発明では、種結晶の先端形状は先端直径を3mm以上5mm以下の先細形状とし、先端から5mm以内の表面を算術平均粗さRaで10μm以下に仕上げたものを使用することが好ましい。
In addition, it is desirable that the crystal to be grown has no crystal defects, but one of the defects, “dislocation”, may occur. A dislocation is not a type of defect in which a single atom is deficient or excessive, but a defect in which the positions of atoms arranged on a line are shifted together. Such dislocations are difficult to deal with because they grow by extending or branching due to temperature changes. When trying to grow a large crystal by the CZ method, the temperature difference between the central portion and the outside increases, and the crystal is distorted, which causes dislocation.
In order to eliminate this dislocation, the crystal near the seed crystal is thinned as shown in FIG. Thus, when the crystal is thinned, the temperature difference is reduced, the dislocation is reduced, and it can be completely eliminated. In TGG, once there is no dislocation, no dislocation is newly generated even if a considerable temperature difference is applied to the crystal.
Therefore, in the present invention, it is preferable to use the tip of the seed crystal having a tapered shape with a tip diameter of 3 mm or more and 5 mm or less, and finishing the surface within 5 mm from the tip to an arithmetic average roughness Ra of 10 μm or less.

Figure 2013056785
Figure 2013056785

2.結晶育成装置
本発明のシーディング方法では、TGG育成に使用されている公知の単結晶育成装置を用いることができる。
2. Crystal Growth Device In the seeding method of the present invention, a known single crystal growth device used for TGG growth can be used.

すなわち、図2に示すような製造装置を用いてシーディングが行われる。この製造装置aは、その外側が保温材bにより覆われ内部に原料cが投入されるルツボdと、上記保温材bの外側に配置されルツボd内の原料を加熱する高周波加熱コイルeと、上記ルツボdの上方側に昇降可能に設けられその先端に種結晶fが保持されると共に矢印方向へ回転する引上げ軸gとでその主要部が構成されており、かつ、これ等構成部材は図示外の密封された圧力容器内に組込まれている。   That is, seeding is performed using a manufacturing apparatus as shown in FIG. The manufacturing apparatus a includes a crucible d whose outside is covered with a heat insulating material b and a raw material c is charged therein, a high-frequency heating coil e which is disposed outside the heat insulating material b and heats the raw material in the crucible d, The crucible d is provided on the upper side of the crucible d so that it can be moved up and down, the seed crystal f is held at the tip of the crucible d, and the main part is composed of a pulling shaft g that rotates in the direction of the arrow. Embedded in an outer sealed pressure vessel.

3.結晶育成
単結晶を製造するには、まず、上記の製造装置のルツボd内に原料cを投入して充填した後、高周波加熱コイルeに通電して上記ルツボdを高周波誘導加熱法により発熱させ、ルツボd内の原料cをその融点以上の温度に加熱して融解させる。
次に、上記引上げ軸gを降下させて融解した原料融液の中心部に種結晶fとなるLN等の単結晶片を接触させる。そして、ルツボdに投入する高周波電力を調節して種結晶fを中心に原料融液を徐々に固化させると同時に、上記種結晶fを回転させながら上昇させるという操作を連続的に行うことにより、略円筒形状の単結晶hを製造する。
3. Crystal Growth In order to manufacture a single crystal, first, the raw material c is charged in the crucible d of the above manufacturing apparatus, and then the high frequency heating coil e is energized to cause the crucible d to generate heat by a high frequency induction heating method. The raw material c in the crucible d is heated to a temperature equal to or higher than its melting point and melted.
Next, a single crystal piece such as LN to be the seed crystal f is brought into contact with the center portion of the raw material melt melted by lowering the pulling shaft g. Then, by adjusting the high frequency power supplied to the crucible d to gradually solidify the raw material melt around the seed crystal f, and continuously raising the seed crystal f while rotating it, A substantially cylindrical single crystal h is manufactured.

(単結晶用原料)
本発明においては、単結晶用原料としては、Tb、又はTbから選ばれるTb酸化物、及びGa酸化物のGaを含む酸化物粉末を使用する。それらの純度は4N以上であることが好ましい。Tb酸化物、及びGa酸化物は、基本的にはTb:Ga:O=3:5:12の比率となる量を用いる。
(Raw material for single crystals)
In the present invention, as the single crystal raw material, an oxide powder containing Tb oxide selected from Tb 2 O 3 or Tb 4 O 7 and Ga 2 O 3 of Ga oxide is used. Their purity is preferably 4N or higher. The amount of Tb oxide and Ga oxide that are basically in the ratio of Tb: Ga: O = 3: 5: 12 is used.

(加熱融解)
次に、この坩堝内の原料粉末を加熱融解させる。その際、炉内雰囲気は、酸素と窒素などの不活性ガスの混合ガス雰囲気にすることが好ましい。混合ガス雰囲気の成分組成、ガス流量は特に制限されるわけではないが、酸素を4体積%以下、さらに好ましくは2体積%以下含有し、ガス流量を1〜5L/分、さらに好ましくは2〜3L/分とすると、酸化ガリウムの昇華、坩堝の酸化抑制の点で好ましい。酸素量が過多の場合、坩堝が酸化して、シードタッチする際に酸化イリジウムが浮遊して酸化イリジウムから結晶の固化が発生し、シードタッチを妨げることがある。
本発明では、種結晶の組成を育成結晶と異ならせるようにしたから、加熱温度、加熱時間は、従来技術の範囲を採用することができる。
(Heat melting)
Next, the raw material powder in the crucible is heated and melted. At that time, the furnace atmosphere is preferably a mixed gas atmosphere of an inert gas such as oxygen and nitrogen. The component composition and gas flow rate of the mixed gas atmosphere are not particularly limited, but oxygen is 4% by volume or less, more preferably 2% by volume or less, and the gas flow rate is 1 to 5 L / min, more preferably 2 to 2%. 3 L / min is preferable in terms of sublimation of gallium oxide and suppression of oxidation of the crucible. When the amount of oxygen is excessive, the crucible is oxidized, and iridium oxide is floated when the seed touch is performed, and solidification of crystals may occur from the iridium oxide, which may hinder the seed touch.
In the present invention, since the composition of the seed crystal is different from that of the grown crystal, the range of the prior art can be adopted for the heating temperature and the heating time.

(シーディング)
原料が融解したら、種結晶軸を適当な回転数で回転させながら降下させ、融液に種結晶を付ける。シーディングとは、種結晶が坩堝内に溶融した融液表面に接触することを表し、育成結晶の引き上げを開始する作業である。これはまた、タッチとも呼ばれる。タッチ温度は、種結晶が融液に接触する際の坩堝底の温度を熱電対の起電力で示したものである。
(Seeding)
When the raw material is melted, the seed crystal axis is lowered while rotating at an appropriate rotation speed, and a seed crystal is attached to the melt. Seeding means that the seed crystal comes into contact with the melt surface melted in the crucible, and is an operation for starting the pulling of the grown crystal. This is also called touch. The touch temperature is the temperature at the bottom of the crucible when the seed crystal is in contact with the melt, and is indicated by the electromotive force of the thermocouple.

本出願人は、従来の方法として、TGG単結晶を種結晶に用い、タッチ温度を様々に変えて、TGG単結晶を育成する方法を試みた。まず、純度99.99%の酸化テルビウム(Tb)原料と、純度99.99%の酸化ガリウム(Ga)とを準備した。この調合物を混合し、イリジウム製のるつぼに投入し、通常の高周波加熱炉を用いて溶融させて、CZ法によって結晶を育成した。
種結晶としては7mm角に切り出したTGG結晶(TbGa12結晶、融点1725℃)を用いた。育成雰囲気は、酸素濃度2%、残りは窒素ガスとした雰囲気で行い、ガス流量は2.5リットル/分とした。その後、溶融物に種結晶を接触させ、種結晶回転速度0.5〜13rpm、引き上げ速度1mm/hで育成結晶を引き上げた。
As a conventional method, the present applicant tried a method of growing a TGG single crystal by using a TGG single crystal as a seed crystal and changing the touch temperature in various ways. First, a terbium oxide (Tb 4 O 7 ) raw material having a purity of 99.99% and a gallium oxide (Ga 2 O 3 ) having a purity of 99.99% were prepared. This preparation was mixed, put into an iridium crucible, melted using a normal high-frequency heating furnace, and crystals were grown by the CZ method.
A TGG crystal (Tb 3 Ga 5 O 12 crystal, melting point 1725 ° C.) cut into a 7 mm square was used as a seed crystal. The growth atmosphere was an atmosphere in which the oxygen concentration was 2% and the rest was nitrogen gas, and the gas flow rate was 2.5 liters / minute. Thereafter, the seed crystal was brought into contact with the melt, and the grown crystal was pulled at a seed crystal rotation speed of 0.5 to 13 rpm and a pulling speed of 1 mm / h.

まず、タッチ温度を10.775mVに設定してTGG種結晶を融液に向かって下降させたところ、タッチ前に融液の固化が始まった。そこで、タッチ温度を10.890mVに漸増させ、再度降下させたが、同様に固化が生じた。そこで、タッチ温度を11.000mVに増加させ、再度降下させたところ、種結晶がタッチ前に溶融し始めた。そこで、タッチ温度を10.847mVに低下させ、再度降下させたところ、融液の固化が始まった。今度は、タッチ温度を10.960mVに漸増させ、再度降下させたところ、種結晶がタッチ前に溶融し始めた。再度、タッチ温度を10.910mVに低下させ、降下させたが、種結晶がタッチ前に溶融し始めた。今度は、タッチ温度を10.860mVに低下させ、再度降下させたところ、種結晶がタッチ前に溶融し始め、最終的に引上げを成功させることはできなかった(比較例2参照)。
タッチ温度が10.860mVで種結晶の溶融が始まり、これよりタッチ温度が高い10.890mVで融液の固化が始まるという温度の逆転が生じる要因の一つに、融液表面に坩堝の表面が酸化して浮遊したものを核として固化が始まるような状況がある。このような要因を排除することは、現実的には困難である。
First, when the touch temperature was set to 10.775 mV and the TGG seed crystal was lowered toward the melt, solidification of the melt started before touching. Therefore, the touch temperature was gradually increased to 10.890 mV and lowered again, but solidification occurred in the same manner. Therefore, when the touch temperature was increased to 11.000 mV and lowered again, the seed crystal began to melt before touching. Therefore, when the touch temperature was lowered to 10.847 mV and lowered again, solidification of the melt started. This time, when the touch temperature was gradually increased to 10.960 mV and lowered again, the seed crystal began to melt before touching. Again, the touch temperature was lowered to 10.910 mV and lowered, but the seed crystal began to melt before touch. This time, when the touch temperature was lowered to 10.860 mV and lowered again, the seed crystal started to melt before the touch, and finally the pulling could not be successfully performed (see Comparative Example 2).
One of the factors that cause the reversal of the temperature is that the melting of the seed crystal starts at a touch temperature of 10.860 mV, and the solidification of the melt starts at a higher touch temperature of 10.890 mV. There is a situation where solidification starts with the floating substance oxidized. It is actually difficult to eliminate such factors.

上記の状態を考察すると、TGG結晶の引上げにおいては、種結晶と育成結晶が同じであるため、融液と種結晶の融点が等しく、そのため、タッチ温度の設定のわずかな違いでシーディングの成否が分かれる結果になったと考えられる。このような状況では、安定したシーディングは望めないので、溶融しない種結晶を採用することとした。TGG融液に溶けない結晶の融点として1750℃以上のものが適切である。しかし、育成結晶と異なる種類の種結晶を使用する場合、両結晶の格子定数の差が大きいと、育成結晶にクラックが生じるなどの不具合が発生する。そこで、上記格子定数の差が±3%以下である結晶を種結晶として採用する必要がある。   Considering the above state, when the TGG crystal is pulled up, the seed crystal and the grown crystal are the same, so the melting point and the seed crystal have the same melting point. It seems that the result was divided. In such a situation, since stable seeding cannot be expected, a seed crystal that does not melt is adopted. A melting point of the crystal that is not soluble in the TGG melt is 1750 ° C. or higher. However, when using a seed crystal of a different type from the grown crystal, if the difference between the lattice constants of both crystals is large, problems such as cracks occur in the grown crystal. Therefore, it is necessary to employ a crystal having a difference in lattice constant of ± 3% or less as a seed crystal.

すなわち、本発明では、種結晶として、TGGと同じガーネット構造の単結晶であり、かつ融点が1750℃以上で、TGGとの格子定数差が±3%以下である結晶、具体的には、YAG単結晶、GGG単結晶あるいはGSGG単結晶を用いることで、上記のような問題点を解消しようとするものである。種結晶として、先端直径を3mm以上5mm以下の先細形状とし、先端から5mm以内の表面を算術平均粗さRaで10μm以下に仕上げた単結晶を用いることが好ましい。
これにより、シーディングの成功率を大幅に高めることが可能となった。
That is, in the present invention, as a seed crystal, a single crystal having the same garnet structure as TGG, a melting point of 1750 ° C. or higher, and a lattice constant difference with TGG of ± 3% or less, specifically, YAG By using a single crystal, a GGG single crystal, or a GSGG single crystal, the above-described problems are to be solved. As the seed crystal, it is preferable to use a single crystal having a tapered shape with a tip diameter of 3 mm or more and 5 mm or less and a surface within 5 mm from the tip finished with an arithmetic average roughness Ra of 10 μm or less.
This made it possible to greatly increase the success rate of seeding.

(単結晶の引き上げ)
単結晶の育成は、チャンバ内を混合ガス雰囲気に保ち、回転数や引き上げ速度を調整して、ネック部および肩部を形成し、引き続き直胴部を形成する。結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度を調整して行う。また、結晶重量の変化を加熱ヒータ投入電力にフィードバックして融液温度をコントロールする。
(Single crystal pulling)
In the growth of the single crystal, the inside of the chamber is maintained in a mixed gas atmosphere, the number of rotations and the pulling speed are adjusted, the neck portion and the shoulder portion are formed, and the straight body portion is subsequently formed. The crystal shape is adjusted by measuring the crystal weight during growth, deriving the diameter, growth rate, and the like by calculation, and adjusting the rotation speed and pulling speed. Further, the melt temperature is controlled by feeding back the change in crystal weight to the electric power supplied to the heater.

TGG結晶では、結晶径が1インチ程度の小径では、比較的形状制御が容易である。ところが、直胴部の結晶径が1インチを大幅に超え、例えば50mm程度まで結晶径を拡大していくと、前記のとおり、捩れや結晶内に歪を生じて、高品質なTGG結晶を製造することができなくなってしまう。
TGGの場合、育成軸方向の温度勾配は、一般的に数十〜100℃/cm程度であり、ガーネット結晶以外のものと比べると一桁以上も急峻である。温度勾配が異なる理由のひとつは、融液の粘性の違いによるもので、TGG結晶の原料融液の粘性が比較的低いので、低温度勾配下では、融液内対流が乱れやすく、安定した結晶成長が困難となることによる。
With a TGG crystal, shape control is relatively easy when the crystal diameter is as small as about 1 inch. However, when the crystal diameter of the straight body part greatly exceeds 1 inch, for example, when the crystal diameter is expanded to about 50 mm, as described above, twist and distortion in the crystal are produced, and a high-quality TGG crystal is manufactured. You will not be able to.
In the case of TGG, the temperature gradient in the growth axis direction is generally about several tens to 100 ° C./cm, and is one or more orders of magnitude sharper than those other than garnet crystals. One of the reasons why the temperature gradient is different is due to the difference in the viscosity of the melt. Since the viscosity of the raw material melt of TGG crystal is relatively low, the convection in the melt tends to be disturbed under a low temperature gradient. This is because growth is difficult.

そのため、結晶の広がり角θを特定の角度以上としながら、前記坩堝の上部で直胴部直径(d)に対して1.3倍以下の内径(D)を持つ平板円環状のジルコニウム製の絞りを通過させることにより、融液表面の径方向温度勾配が強くなるようにすることが好ましい。
結晶肩部の広がり角θは、45°以上、好ましくは60°以上とする。広がり角θが45°未満であると、結晶に捩れ、割れが発生するので好ましくない。また、結晶の直胴部直径に対して絞りの内径が1.3倍を超えても、結晶に捩れ、割れが発生してしまう。捩れが発生した結晶では、サンプルが切り出しても、消光比が光アイソレーターとして使用可能な下限値30dBを下回るので好ましくない。
引き上げ速度は、特に制限されるわけではないが、例えば1〜5mm/hrとし、1〜3mm/hrとするのが好ましい。また、回転速度は、特に制限されるわけではないが、例えば5〜20rpmとし、8〜15rpmとするのが好ましい。
Therefore, a flat plate-shaped zirconium-made diaphragm having an inner diameter (D) of 1.3 times or less of the straight body diameter (d) at the upper part of the crucible while the crystal spreading angle θ is not less than a specific angle. It is preferable that the radial temperature gradient on the melt surface is strengthened by passing the.
The spread angle θ of the crystal shoulder is 45 ° or more, preferably 60 ° or more. If the divergence angle θ is less than 45 °, the crystal is twisted and cracks are not preferable. Even if the inner diameter of the diaphragm exceeds 1.3 times the diameter of the straight body of the crystal, the crystal is twisted and cracked. In a crystal in which twist is generated, even if a sample is cut out, the extinction ratio is less than the lower limit of 30 dB that can be used as an optical isolator.
The pulling speed is not particularly limited, but is preferably 1 to 5 mm / hr, and preferably 1 to 3 mm / hr. The rotation speed is not particularly limited, but is preferably 5 to 20 rpm, for example, and preferably 8 to 15 rpm.

このようにして坩堝内で単結晶が育成され、引き上げられた後、予め設定された結晶長さに成長すると、融液から結晶を切り離す工程に移行し、その後、制御装置のシーケンスパターンにより降温する。   After the single crystal is grown in the crucible in this way and pulled up, and then grown to a preset crystal length, the process proceeds to a step of separating the crystal from the melt, and then the temperature is lowered by the sequence pattern of the control device. .

以下に、実施例を用いて、本発明をさらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。なお、シーディング結果は、種結晶の表面および育成結晶との界面を観察し、△:急成長・固化、×:溶融、○:良好と評価した。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The seeding results were evaluated by observing the surface of the seed crystal and the interface with the grown crystal, and Δ: rapid growth / solidification, X: melting, ○: good.

(比較例1〜10)
まず、純度99.99%の酸化テルビウム(Tb)原料と、純度99.99%の酸化ガリウム(Ga)とを準備した。この原料粉末を混合し、イリジウム製のるつぼに投入し、通常の高周波加熱炉を用いて溶融させて、CZ法によって結晶を育成した。イリジウム製のるつぼ形状は直径約160mm、高さ約160mmで、種結晶としては7mm角に切り出したTGG結晶(TbGa12結晶、融点1725℃)を用いた。育成する結晶の直径は60mm、全長120mmとした。育成雰囲気は、酸素濃度2%、残りは窒素ガスとした雰囲気で行い、ガス流量は2.5リットル/分とした。その後、溶融物に種結晶を接触させ、種結晶回転速度0.5〜13rpm、引き上げ速度1.0mm/hで育成結晶を引き上げた。
比較例1(TG−047)の場合、タッチ温度を10.470mVに設定してTGG種結晶を融液に向かって下降させたところ、タッチ前に融液の固化が始まった。そこで、タッチ温度を10.860mVに漸増させ、再度降下させたところ、種結晶がタッチ前に溶融し始めた。そこで、タッチ温度を10.700mVに低下させ、再度降下させたところ、融液の固化が始まった。今度は、タッチ温度を10.760mVに漸増させ、再度降下させたところ、引上げを成功させることができた。
また、比較例2(TG−048)の場合、同様に7回行ったが、引上げを成功させることができず、再度、タッチ温度を10.855mVに設定して行ったところ、やっと引上げを成功させることができた(比較例3(TG−048再))。
。比較例4〜10でも、同様にして育成を行った。その結果は表2に示したとおり、成功率が低かった。
(Comparative Examples 1-10)
First, a terbium oxide (Tb 4 O 7 ) raw material having a purity of 99.99% and a gallium oxide (Ga 2 O 3 ) having a purity of 99.99% were prepared. This raw material powder was mixed, put into an iridium crucible, melted using a normal high-frequency heating furnace, and a crystal was grown by the CZ method. The iridium crucible had a diameter of about 160 mm and a height of about 160 mm, and a TGG crystal (Tb 3 Ga 5 O 12 crystal, melting point 1725 ° C.) cut into a 7 mm square was used as a seed crystal. The diameter of the crystal to be grown was 60 mm and the total length was 120 mm. The growth atmosphere was an atmosphere in which the oxygen concentration was 2% and the rest was nitrogen gas, and the gas flow rate was 2.5 liters / minute. Thereafter, the seed crystal was brought into contact with the melt, and the grown crystal was pulled at a seed crystal rotation speed of 0.5 to 13 rpm and a pulling speed of 1.0 mm / h.
In the case of Comparative Example 1 (TG-047), when the touch temperature was set to 10.470 mV and the TGG seed crystal was lowered toward the melt, solidification of the melt started before touching. Therefore, when the touch temperature was gradually increased to 10.860 mV and lowered again, the seed crystal began to melt before touching. Therefore, when the touch temperature was lowered to 10.700 mV and lowered again, solidification of the melt started. This time, when the touch temperature was gradually increased to 10.760 mV and then lowered again, the pulling could be successful.
Also, in the case of Comparative Example 2 (TG-048), it was performed seven times in the same manner, but the pulling could not be successful, and when the touch temperature was set to 10.855 mV again, the pulling was finally successful. (Comparative Example 3 (TG-048 re)).
. In Comparative Examples 4 to 10, the growth was performed in the same manner. As a result, as shown in Table 2, the success rate was low.

Figure 2013056785
Figure 2013056785

(実施例1〜4)
まず、純度99.99%の酸化テルビウム(Tb)原料と、純度99.99%の酸化ガリウム(Ga)とを準備した。この原料粉末を混合し、イリジウム製のるつぼに投入し、通常の高周波加熱炉を用いて溶融させて、CZ法によって結晶を育成した。イリジウム製のるつぼ形状は直径約160mm、高さ約160mmで、種結晶としては図1に示されるような7mm角(先端長さ8mm、先端直径3mm)に切り出したGSGG結晶(GdScGa12結晶、融点1750〜1850℃、TGGとの格子定数差1.7%)を用いた。育成する結晶の直径は60mm、全長120mmとした。育成雰囲気は、酸素濃度2%、残りは窒素ガスとした雰囲気で行い、ガス流量は2.5リットル/分とした。その後、溶融物に種結晶を接触させ、種結晶回転速度5.0〜15.0rpm、引き上げ速度1.0〜1.5mm/hで育成結晶を引き上げた。育成の結果は表3に示したとおり、いずれも一度でシーディングが成功し良好であった。
(Examples 1-4)
First, a terbium oxide (Tb 4 O 7 ) raw material having a purity of 99.99% and a gallium oxide (Ga 2 O 3 ) having a purity of 99.99% were prepared. This raw material powder was mixed, put into an iridium crucible, melted using a normal high-frequency heating furnace, and a crystal was grown by the CZ method. The iridium crucible has a diameter of about 160 mm and a height of about 160 mm. As a seed crystal, a GSGG crystal (Gd 3 Sc 2 Ga) cut into a 7 mm square (tip length 8 mm, tip diameter 3 mm) as shown in FIG. 3 O 12 crystal, melting point 1750-1850 ° C., lattice constant difference with TGG 1.7%) was used. The diameter of the crystal to be grown was 60 mm and the total length was 120 mm. The growth atmosphere was an atmosphere in which the oxygen concentration was 2% and the rest was nitrogen gas, and the gas flow rate was 2.5 liters / minute. Thereafter, the seed crystal was brought into contact with the melt, and the grown crystal was pulled at a seed crystal rotation speed of 5.0 to 15.0 rpm and a pulling speed of 1.0 to 1.5 mm / h. As shown in Table 3, the results of the breeding were all good as seeding succeeded once.

(実施例5〜26)
実施例1〜4と同様に、原料粉末を混合し、イリジウム製のるつぼに投入し、通常の高周波加熱炉を用いて溶融させて、CZ法によって結晶を育成した。イリジウム製のるつぼ形状は直径約160mm、高さ約160mmで、種結晶としては7mm角に切り出したYAG結晶(YAl12結晶、融点1970℃、TGGとの格子定数差2.753%)を用いた。育成する結晶の直径は60mm、全長120mmとした。育成雰囲気は、酸素濃度2%、残りは窒素ガスとした雰囲気で行い、ガス流量は2.5リットル/分とした。その後、溶融物に種結晶を接触させ、種結晶回転速度、0.5〜13.0rpm、引き上げ速度0.5〜13.0mm/hで育成結晶を引き上げた。育成の結果は表3に示したとおり、いずれも一度でシーディングが成功し良好であった。
(Examples 5 to 26)
In the same manner as in Examples 1 to 4, raw material powders were mixed, put into an iridium crucible, melted using a normal high-frequency heating furnace, and crystals were grown by the CZ method. The shape of the iridium crucible has a diameter of about 160 mm and a height of about 160 mm. As a seed crystal, a YAG crystal cut into a 7 mm square (Y 3 Al 5 O 12 crystal, melting point 1970 ° C., difference in lattice constant from TGG is 2.753%. ) Was used. The diameter of the crystal to be grown was 60 mm and the total length was 120 mm. The growth atmosphere was an atmosphere in which the oxygen concentration was 2% and the rest was nitrogen gas, and the gas flow rate was 2.5 liters / minute. Thereafter, the seed crystal was brought into contact with the melt, and the grown crystal was pulled at a seed crystal rotation speed of 0.5 to 13.0 rpm and a pulling speed of 0.5 to 13.0 mm / h. As shown in Table 3, the results of the breeding were all good as seeding succeeded once.

そして、実施例9のガーネット結晶から、直径4.2mm、長さ12.6mmの結晶を5個くりぬいて、両端面を鏡面加工として内部を観察した結果、気泡、介在物は見られなかった。このくりぬいた結晶について、消光性能を測定した結果、42、42.5、43、44.5、45dBと非常に良好な値を示し、光アイソレータ用途に問題なく使えることが確認できた。   Then, five crystals having a diameter of 4.2 mm and a length of 12.6 mm were hollowed out from the garnet crystal of Example 9, and both ends were mirror-finished. As a result, no bubbles and inclusions were found. As a result of measuring the quenching performance of this hollowed crystal, it was confirmed that 42, 42.5, 43, 44.5, and 45 dB were very good values, and that it could be used without problems for optical isolator applications.

Figure 2013056785
Figure 2013056785

(実施例27)
種結晶として基部7mm、先端直径3〜5mmに切り出したGGG結晶(GdGa12)の先端5mmまでを表面粗さRa10μm以下に研磨したものを用いて、実施例1と同様に実験を行った。GSGG種結晶やYAG種結晶同様、一度でシーディングが成功した。
(Example 27)
Using a GGG crystal (Gd 3 Ga 5 O 12 ) cut to a tip of 5 mm as a seed crystal and having a tip roughness of 3 to 5 mm polished to a surface roughness Ra of 10 μm or less, an experiment was conducted in the same manner as in Example 1. went. Like GSGG seed crystal and YAG seed crystal, seeding succeeded at once.

「評価」
以上、表3の結果から明らかなように、実施例1〜26では、種結晶として、TGG融液に溶けない結晶の融点として1750℃以上のGSGG、YAG(TGGとの格子定数の差が±3%以下)である結晶を採用したため、一度でシーディングが成功し、高品質のTGG結晶が得られている。また、実施例27では、種結晶として、先細形状で、先端から5mm以内の表面を特定値以下の算術平均粗さRaに仕上げた単結晶を用いており、格子定数においてGGG種結晶はTGG単結晶に最も近いことから、シーディング後の引き上げ工程において、TGG単結晶に格子定数不整合に起因するクラックの発生頻度をより低減させることができる。
これに対して、比較例1〜10では、表2の結果から明らかなように、種結晶として、育成する結晶と同じTGGを用いたために、シーディングの成功率が低く、高品質のTGG結晶を得ることができなかった。
"Evaluation"
As can be seen from the results in Table 3, in Examples 1 to 26, as seed crystals, the difference in lattice constant between GSGG and YAG (TGG) of 1750 ° C. or higher as the melting point of crystals that are not soluble in the TGG melt is ± 3% or less), the seeding succeeded at once and a high quality TGG crystal was obtained. In Example 27, as the seed crystal, a single crystal having a tapered shape and a surface within 5 mm from the tip finished to an arithmetic average roughness Ra of a specific value or less is used. In the lattice constant, the GGG seed crystal is a TGG single crystal. Since it is closest to the crystal, in the pulling step after seeding, the occurrence frequency of cracks due to lattice constant mismatch in the TGG single crystal can be further reduced.
On the other hand, in Comparative Examples 1 to 10, as is clear from the results of Table 2, since the same TGG as the crystal to be grown was used as the seed crystal, the seeding success rate was low, and the high-quality TGG crystal Could not get.

本発明によれば、高品質なTGG結晶が得られることから、小型で特性に優れたローテーターや光アイソレータファラデー回転子など、光学用途の単結晶の製造に適用することができる。   According to the present invention, since a high-quality TGG crystal can be obtained, the present invention can be applied to the production of single crystals for optical use such as a small rotator and an optical isolator Faraday rotator having excellent characteristics.

a 製造装置
b 保温材
c 原料
d ルツボ
e 高周波加熱コイル
f 種結晶
g 引上げ軸
h 単結晶
a Production equipment b Insulating material c Raw material d Crucible e High-frequency heating coil f Seed crystal g Pulling shaft h Single crystal

Claims (4)

Cz法(回転引き上げ法)により、原料融液に種結晶を接触させて成長結晶を引き上げるテルビウム・ガリウム・ガーネット(TGG)単結晶育成におけるシーディング方法において、
種結晶として、TGGと同じガーネット構造の単結晶であり、融点が1750℃以上、かつTGGとの格子定数差が±3%以下である結晶を用いることを特徴とするTGG単結晶育成におけるシーディング方法。
In a seeding method for growing a terbium gallium garnet (TGG) single crystal by bringing a seed crystal into contact with a raw material melt and pulling a grown crystal by the Cz method (rotary pulling method),
Seeding in TGG single crystal growth, characterized in that a single crystal having the same garnet structure as TGG, a melting point of 1750 ° C. or more and a difference in lattice constant from TGG of ± 3% or less is used as a seed crystal. Method.
種結晶として、YAG単結晶、GGG単結晶又はGSGG単結晶から選ばれるいずれかを用いることを特徴とする請求項1に記載のTGG単結晶育成におけるシーディング方法。   The seeding method for growing a TGG single crystal according to claim 1, wherein any one selected from a YAG single crystal, a GGG single crystal, or a GSGG single crystal is used as a seed crystal. 種結晶として、先端直径を3mm以上5mm以下の先細形状とし、先端から5mm以内の表面を算術平均粗さRaで10μm以下に仕上げた単結晶を用いることを特徴とする請求項1又は2に記載のTGG単結晶育成におけるシーディング方法。   3. The single crystal according to claim 1, wherein a single crystal having a tapered shape with a tip diameter of 3 mm or more and 5 mm or less as a seed crystal and having a surface within 5 mm from the tip finished with an arithmetic average roughness Ra of 10 μm or less is used. Seeding method for growing TGG single crystals. 炉内は、酸素を4体積%以下含有する不活性ガス雰囲気とし、ガス流量を1〜5L/分とすることを特徴とする請求項1に記載のTGG単結晶育成におけるシーディング方法。   2. The seeding method for TGG single crystal growth according to claim 1, wherein the inside of the furnace is an inert gas atmosphere containing 4% by volume or less of oxygen, and the gas flow rate is 1 to 5 L / min.
JP2011194902A 2011-09-07 2011-09-07 Seeding method for TGG single crystal growth Expired - Fee Related JP5944639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194902A JP5944639B2 (en) 2011-09-07 2011-09-07 Seeding method for TGG single crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194902A JP5944639B2 (en) 2011-09-07 2011-09-07 Seeding method for TGG single crystal growth

Publications (2)

Publication Number Publication Date
JP2013056785A true JP2013056785A (en) 2013-03-28
JP5944639B2 JP5944639B2 (en) 2016-07-05

Family

ID=48133013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194902A Expired - Fee Related JP5944639B2 (en) 2011-09-07 2011-09-07 Seeding method for TGG single crystal growth

Country Status (1)

Country Link
JP (1) JP5944639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480525A (en) * 2014-12-19 2015-04-01 单县晶瑞光电有限公司 Growth method of terbium gallium garnet magneto-optic crystal
CN110284193A (en) * 2019-07-29 2019-09-27 安徽晶宸科技有限公司 A kind of TGG growing method and TGG crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160379A (en) * 1997-06-10 1999-03-02 Nippon Steel Corp Production of non-dislocation silicon single crystal
JP2009221035A (en) * 2008-03-14 2009-10-01 Shin Etsu Chem Co Ltd Paramagnetic garnet crystal and method for producing the same
JP2009280411A (en) * 2008-05-19 2009-12-03 Tokuyama Corp Seed crystal for producing metal fluoride single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160379A (en) * 1997-06-10 1999-03-02 Nippon Steel Corp Production of non-dislocation silicon single crystal
JP2009221035A (en) * 2008-03-14 2009-10-01 Shin Etsu Chem Co Ltd Paramagnetic garnet crystal and method for producing the same
JP2009280411A (en) * 2008-05-19 2009-12-03 Tokuyama Corp Seed crystal for producing metal fluoride single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480525A (en) * 2014-12-19 2015-04-01 单县晶瑞光电有限公司 Growth method of terbium gallium garnet magneto-optic crystal
CN110284193A (en) * 2019-07-29 2019-09-27 安徽晶宸科技有限公司 A kind of TGG growing method and TGG crystal

Also Published As

Publication number Publication date
JP5944639B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
TW546422B (en) Method of producing silicon wafer and silicon wafer
KR101708131B1 (en) SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
JP5601273B2 (en) Method for producing oxide single crystal
EP2455515A1 (en) Process for producing sic single crystal
JP2001220289A (en) Production unit of high quality silicon single crystal
TW200844272A (en) Single crystal pulling apparatus
JP5935764B2 (en) Garnet-type single crystal and manufacturing method thereof
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP5944639B2 (en) Seeding method for TGG single crystal growth
JP5299395B2 (en) Oxide single crystal growth method
JP4193610B2 (en) Single crystal manufacturing method
JP2018058710A (en) Production method of silicon single crystal, and silicon single crystal
TW201000690A (en) Silicon single crystal wafer, method for fabricating silicon single crystal or method for fabricating silicon single crystal wafer, and semiconductor device
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP4218448B2 (en) Garnet single crystal, its growth method, and garnet substrate for liquid phase epitaxial growth method using the same
JP5489064B2 (en) Method for growing silicon single crystal
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP5090973B2 (en) Paramagnetic garnet crystal and method for producing paramagnetic garnet crystal
JP6922521B2 (en) How to grow non-magnetic garnet single crystal
JP6369453B2 (en) Nonmagnetic garnet single crystal growth method
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP7417501B2 (en) Method for manufacturing oxide single crystal wafers
JP2019167268A (en) Raising method of lithium niobate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150520

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees