JP2016166113A - Carbon-metal complex - Google Patents

Carbon-metal complex Download PDF

Info

Publication number
JP2016166113A
JP2016166113A JP2015047409A JP2015047409A JP2016166113A JP 2016166113 A JP2016166113 A JP 2016166113A JP 2015047409 A JP2015047409 A JP 2015047409A JP 2015047409 A JP2015047409 A JP 2015047409A JP 2016166113 A JP2016166113 A JP 2016166113A
Authority
JP
Japan
Prior art keywords
carbon
metal
composite
metal composite
comparative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015047409A
Other languages
Japanese (ja)
Other versions
JP6476019B2 (en
Inventor
勇太 仁科
Yuta Nishina
勇太 仁科
博信 小野
Hironobu Ono
博信 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisina Mat Co Ltd
Nisina Materials Co Ltd
Nippon Shokubai Co Ltd
Original Assignee
Nisina Mat Co Ltd
Nisina Materials Co Ltd
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisina Mat Co Ltd, Nisina Materials Co Ltd, Nippon Shokubai Co Ltd filed Critical Nisina Mat Co Ltd
Priority to JP2015047409A priority Critical patent/JP6476019B2/en
Publication of JP2016166113A publication Critical patent/JP2016166113A/en
Application granted granted Critical
Publication of JP6476019B2 publication Critical patent/JP6476019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material which can improve the performance of a storage battery.SOLUTION: A carbon-metal complex comprises carbon, oxygen, and a metal element as constituent elements. The carbon-metal complex has carbon binding to oxygen, and comprises a metal element of groups 3-14 in the periodic table in an amorphous state.SELECTED DRAWING: None

Description

本発明は、炭素−金属複合体に関する。より詳しくは、電池の電極活物質等として好適に用いることができる炭素−金属複合体に関する。 The present invention relates to a carbon-metal composite. More specifically, the present invention relates to a carbon-metal composite that can be suitably used as an electrode active material of a battery.

昨今、環境問題への関心の高まりを背景に、様々な産業分野で石油や石炭から電気へとエネルギー源の転換が進んでおり、携帯電話やノートパソコン等の電子機器だけでなく、自動車や航空機等の分野をはじめ、様々な分野で電池やキャパシタ等の蓄電装置の使用が広がりをみせている。このような蓄電装置の需要の高まりを受け、より高性能な蓄電装置を実現するための研究が活発に行われている。 In recent years, with the growing interest in environmental issues, energy sources have been shifting from oil and coal to electricity in various industrial fields. In addition to electronic devices such as mobile phones and laptop computers, automobiles and aircraft The use of power storage devices such as batteries and capacitors has been spreading in various fields. In response to such an increase in demand for power storage devices, research for realizing higher performance power storage devices is being actively conducted.

このような蓄電装置の中でも、リチウムイオン二次電池は、高エネルギー密度かつ高作動電圧を有し、また小型化が可能であることから、携帯電話、スマートフォン、モバイルPC、デジタルカメラ、電気自動車等の様々な用途において用いられている。現在、多くのリチウムイオン二次電池では、負極に黒鉛(グラファイト)が用いられている。黒鉛をリチウムイオン二次電池の負極として用いた場合、黒鉛にリチウムイオンを吸蔵したときの組成がLiCとなるため、黒鉛の理論電気容量は372mAh/gとなるが、近年では、このように電極として使用されている炭素材料を改良することで電池性能を向上させる試みがなされており、炭素材料と金属酸化物を複合化したものを電極材料に応用する研究も発表されている(特許文献1、2、非特許文献1〜9参照。)。 Among such power storage devices, lithium ion secondary batteries have a high energy density and a high operating voltage, and can be miniaturized, so mobile phones, smartphones, mobile PCs, digital cameras, electric vehicles, etc. Are used in various applications. Currently, in many lithium ion secondary batteries, graphite is used for the negative electrode. When graphite is used as the negative electrode of a lithium ion secondary battery, the composition when lithium ions are occluded in the graphite is LiC 6, and thus the theoretical electric capacity of graphite is 372 mAh / g. Attempts have been made to improve battery performance by improving the carbon material used as an electrode, and research has also been published on applying a composite of carbon material and metal oxide to the electrode material (Patent Literature). 1, 2, and non-patent documents 1 to 9).

国際公開2012/172623号International Publication No. 2012/172623 国際公開2013/027686号International Publication No. 2013/027686

H.Wang, et.al, Journal of American Chemical Society, 2010, 132, 13978-13980H. Wang, et.al, Journal of American Chemical Society, 2010, 132, 13978-13980 S.Zhu, et.al, RSC Advances, 2013, 3, 6141-6146S.Zhu, et.al, RSC Advances, 2013, 3, 6141-6146 X. Wang, et.al, CARBON, 2011, 49, 133-139X. Wang, et.al, CARBON, 2011, 49, 133-139 W. Gao, et.al, NATURE CHEMISTRY, 2009, 1, 403-408W. Gao, et.al, NATURE CHEMISTRY, 2009, 1, 403-408 J. Yea, et.al, Electrochimica Acta, 2013, 113, 212-217J. Yea, et.al, Electrochimica Acta, 2013, 113, 212-217 G. Wang, et.al, Journal of Power Sources, 2013, 239, 37-44G. Wang, et.al, Journal of Power Sources, 2013, 239, 37-44 Q. Su, et.al, ACS NANO, 2013, 7, 10, 9115-9121Q. Su, et.al, ACS NANO, 2013, 7, 10, 9115-9121 H. Zhang, et.al, RSC Advances, 2014, 4, 495-499H. Zhang, et.al, RSC Advances, 2014, 4, 495-499 Y. Matsumoto, et.al, APPLIED MATERIALS and INTERFACES, 2010, 2, 12, 3461-3466Y. Matsumoto, et.al, APPLIED MATERIALS and INTERFACES, 2010, 2, 12, 3461-3466

リチウムイオン二次電池をはじめとする蓄電池の性能への要求は、用途の広がりとともに益々高くなっており、蓄電池の性能を向上させることができる材料の開発が求められている。 The demand for the performance of storage batteries such as lithium ion secondary batteries is increasing with the spread of applications, and the development of materials that can improve the performance of storage batteries is required.

本発明は、上記現状に鑑みてなされたものであり、蓄電池の性能を更に向上させることができる材料を提供することを目的とする。 This invention is made | formed in view of the said present condition, and aims at providing the material which can further improve the performance of a storage battery.

本発明者は、リチウムイオン二次電池の負極活物質として用いられている黒鉛に注目し、特性を更に向上させることができる材料について種々検討したところ、酸素と結合した炭素を有し、かつ、周期律表3〜14族の金属元素をアモルファス状態で含む炭素−金属複合体の製造に成功した。そして本発明者は、この炭素−金属複合体を負極活物質として用いると、黒鉛よりも高い電池容量を実現できることを見いだし、本発明に到達したものである。 The present inventor paid attention to graphite used as a negative electrode active material of a lithium ion secondary battery, and variously studied a material capable of further improving the characteristics, and has carbon bonded to oxygen, and We have succeeded in producing a carbon-metal composite containing a group 3-14 metal element in an amorphous state. The present inventors have found that when this carbon-metal composite is used as a negative electrode active material, a battery capacity higher than that of graphite can be realized, and the present invention has been achieved.

すなわち本発明は、炭素、酸素、及び、金属元素を構成元素として含む炭素−金属複合体であって、上記炭素−金属複合体は、酸素と結合した炭素を有し、周期律表3〜14族の金属元素をアモルファス状態で含むことを特徴とする炭素−金属複合体である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
That is, the present invention is a carbon-metal composite containing carbon, oxygen, and a metal element as constituent elements, and the carbon-metal composite has carbon bonded to oxygen, and the periodic table 3-14. It is a carbon-metal composite characterized by containing a group metal element in an amorphous state.
The present invention is described in detail below.
A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.

本発明の炭素−金属複合体は、炭素、酸素、及び、金属元素を構成元素として含む炭素−金属複合体であるが、酸素(O)と結合した炭素(C)を有する炭素材料と周期律表3〜14族の金属元素の単体又は該金属元素を有する金属化合物との複合体であることが好ましい。本発明の炭素−金属複合体は、周期律表3〜14族の金属元素をアモルファス状態で含むことを特徴としているが、本発明において、周期律表3〜14族の金属元素をアモルファス状態で含むとは、金属原子(金属単体)、又は、金属元素を含む金属化合物がアモルファス状態にあることを意味する。
本発明の炭素−金属複合体においては、複合体中に含まれる周期律表3〜14族の金属元素の単体又は該金属元素を含む金属化合物の少なくとも一部がアモルファス状態になっていればよい。
周期律表3〜14族の金属元素の単体又は該金属元素を含む金属化合物がアモルファス状態になっていることは、炭素−金属複合体のXRD測定により、周期律表3〜14族の金属元素の単体又は該金属元素を含む金属化合物に帰属されるピークが観測されないことか、周期律表3〜14族の金属元素の単体又は該金属元素を含む金属化合物に帰属されるピークからScherrerの式により算出される結晶子径が1nm未満であることにより確認することができる。
The carbon-metal composite of the present invention is a carbon-metal composite containing carbon, oxygen, and a metal element as constituent elements, and a carbon material having carbon (C) bonded to oxygen (O) and a periodic rule. It is preferable that it is a complex with the simple substance of the metal element of Table 3-14, or the metal compound which has this metal element. The carbon-metal composite of the present invention is characterized in that it contains a metal element of Group 3-14 of the periodic table in an amorphous state. In the present invention, a metal element of Group 3-14 of the periodic table is in an amorphous state. “Contains” means that a metal atom (metal simple substance) or a metal compound containing a metal element is in an amorphous state.
In the carbon-metal composite of the present invention, it is sufficient that at least a part of a metal element of the periodic table group 3-14 included in the composite or at least a part of the metal compound containing the metal element is in an amorphous state. .
The fact that the simple substance of the metal element of the group 3 to 14 of the periodic table or the metal compound containing the metal element is in an amorphous state indicates that the metal element of the group 3 to 14 of the periodic table is measured by XRD measurement of the carbon-metal composite. That a peak attributed to a simple substance or a metal compound containing the metal element is not observed, or from a peak attributed to a simple substance of a group 3-14 metal element or a metal compound containing the metal element, Scherrer's formula It can be confirmed that the crystallite diameter calculated by is less than 1 nm.

上記炭素材料は、酸素(O)と結合した炭素(C)を有する限り特に制限されないが、グラフェン、グラファイト等の黒鉛質の炭素材料に酸素が結合したものが好ましい。より好ましくは、グラフェンの炭素原子に酸素が結合した酸化グラフェンである。
また本発明の炭素−金属複合体は、炭素、酸素、及び、金属元素を構成元素として含む限り、構成元素としてその他の元素を含んでいてもよいが、炭素、酸素、及び、金属元素のみを構成元素とするものであることが好ましい。
なお、一般的にグラフェンとは、sp結合で結合した炭素原子が平面的に並んだ原子1層からなるシートをいい、グラフェンシートが多数積層されたものはグラファイトといわれるが、本発明における酸化グラフェンには、炭素原子1層のみからなるシートのみではなく、数層〜20層程度積層した構造を有するものも含まれる。
The carbon material is not particularly limited as long as it has carbon (C) bonded to oxygen (O), but is preferably a material in which oxygen is bonded to a graphitic carbon material such as graphene or graphite. More preferably, it is graphene oxide in which oxygen is bonded to a carbon atom of graphene.
The carbon-metal composite of the present invention may contain other elements as constituent elements as long as it contains carbon, oxygen, and metal elements as constituent elements, but only carbon, oxygen, and metal elements. A constituent element is preferred.
In general, graphene refers to a sheet composed of one layer of atoms in which carbon atoms bonded by sp 2 bonds are arranged in a plane, and a stack of graphene sheets is referred to as graphite. The graphene includes not only a sheet composed of only one carbon atom layer but also one having a structure in which about several to 20 layers are laminated.

本発明の炭素−金属複合体に用いられる金属元素としては、周期律表3〜14族の金属元素の中でも、周期律表5〜11族の金属元素が好ましい。金属元素としてこれらを用いることで、得られる炭素−金属複合体がより電極活物質として用いた場合の特性により優れたものとなる。より好ましくは、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Mo、Wのいずれかである。
本発明の炭素−金属複合体は、金属元素を1種含むものであってもよく、2種以上含むものであってもよい。
As a metal element used for the carbon-metal composite of the present invention, among the metal elements of Group 3 to 14 of the periodic table, metal elements of Group 5 to 11 of the periodic table are preferable. By using these as metal elements, the carbon-metal composite obtained is more excellent in characteristics when used as an electrode active material. More preferably, it is one of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, and W.
The carbon-metal composite of the present invention may contain one kind of metal element or may contain two or more kinds.

本発明の炭素−金属複合体は、周期律表3〜14族の金属元素を炭素−金属複合体全体に対して1〜40質量%の割合で含むものであることが好ましい。周期律表3〜14族の金属元素をこのような割合で含むことで、炭素−金属複合体となっていることの効果をより充分に発揮することができる。周期律表3〜14族の金属原子の割合は、より好ましくは、炭素−金属複合体全体に対して3〜35質量%であり、更に好ましくは、5〜30質量%である。
炭素−金属複合体中の周期律表3〜14族の金属元素の割合は、熱重量分析(TG)により測定することができる。
The carbon-metal composite of the present invention preferably contains a metal element of Groups 3 to 14 of the periodic table in a proportion of 1 to 40% by mass with respect to the entire carbon-metal composite. By including the metal elements of Groups 3 to 14 in the periodic table in such a ratio, the effect of being a carbon-metal composite can be more fully exhibited. The proportion of the metal atoms belonging to Groups 3 to 14 of the periodic table is more preferably 3 to 35% by mass, and further preferably 5 to 30% by mass with respect to the entire carbon-metal composite.
The ratio of the metal elements of Groups 3 to 14 of the periodic table in the carbon-metal composite can be measured by thermogravimetric analysis (TG).

本発明の炭素−金属複合体は、XPS測定で得られるO1sスペクトルにおけるC−O−C結合由来のピークの面積が、C=O結合由来のピークの面積及びC−O結合由来のピークの面積より小さいことが好ましい。本発明の炭素−金属複合体は、後述するように、酸素と結合した炭素を有する炭素材料を金属化合物と混合して還元することで製造することが好ましい。酸素と結合した炭素材料を還元することで、炭素材料の構造中のC−O−C結合、C=O結合やC−Oが還元されることになるが、本発明の炭素−金属複合体は、XPS測定におけるC−O−C結合由来のピークの面積が、C=O結合由来のピークの面積及びC−O結合由来のピークの面積より小さくなっているもの、すなわち、C−O−C結合がC=O結合やC−O結合に比べて相対的により充分に還元されているものが好ましい。炭素−金属複合体がそのようなものであることで、電極活物質としてより優れた特性を発揮するものとなる。
上記XPS測定で得られるO1sスペクトルにおいて、C−O−C結合由来のピークは、532eV付近に観測され、C=O結合由来のピーク及びC−O結合由来のピークは、それぞれ531eV付近、533.5eV付近に観測される。
In the carbon-metal composite of the present invention, the peak area derived from the C—O—C bond in the O1s spectrum obtained by XPS measurement is such that the peak area derived from the C═O bond and the peak area derived from the C—O bond. Preferably it is smaller. As described later, the carbon-metal composite of the present invention is preferably produced by mixing and reducing a carbon material having carbon bonded to oxygen with a metal compound. By reducing the carbon material bonded to oxygen, C—O—C bonds, C═O bonds, and C—O in the structure of the carbon material are reduced, but the carbon-metal composite of the present invention. Is the one in which the area of the peak derived from C—O—C bond in the XPS measurement is smaller than the area of the peak derived from C═O bond and the peak derived from C—O bond, that is, C—O—. It is preferable that the C bond is relatively more sufficiently reduced than the C═O bond or the C—O bond. When the carbon-metal composite is such, it exhibits more excellent characteristics as an electrode active material.
In the O1s spectrum obtained by the XPS measurement, a peak derived from a C—O—C bond is observed in the vicinity of 532 eV, and a peak derived from a C═O bond and a peak derived from a C—O bond are in the vicinity of 531 eV, respectively. Observed around 5 eV.

本発明の炭素−金属複合体は、XPS測定で得られるO1s領域の全ピーク面積とC1s領域の全ピーク面積との比率が、1/20〜1/1であることが好ましい。これらのピーク面積の比率がこのような範囲にあると、炭素−金属複合体が電極活物質としてより優れた特性を発揮するものとなる。O1s領域の全ピーク面積とC1s領域の全ピーク面積との比率は、より好ましくは、1/10〜1/1.2であり、更に好ましくは、1/5〜1/1.5であり、特に好ましくは、1/40〜1/1.8である。
ここで、O1s領域の全ピーク面積とは、O1s領域に観測される全てのピークの面積の合計のことであり、ベースラインのノイズの幅の2倍以上の高さのピーク全ての面積の合計である。C1s領域の全ピーク面積も同様である。
In the carbon-metal composite of the present invention, the ratio of the total peak area of the O1s region and the total peak area of the C1s region obtained by XPS measurement is preferably 1/20 to 1/1. When the ratio of these peak areas is within such a range, the carbon-metal composite exhibits more excellent characteristics as an electrode active material. The ratio of the total peak area of the O1s region and the total peak area of the C1s region is more preferably 1/10 to 1 / 1.2, more preferably 1/5 to 1 / 1.5, Particularly preferably, it is 1/40 to 1 / 1.8.
Here, the total peak area of the O1s region is the sum of the areas of all peaks observed in the O1s region, and is the sum of the areas of all peaks that are at least twice as high as the noise width of the baseline. It is. The same applies to the total peak area of the C1s region.

本発明の炭素−金属複合体は、XPS測定で得られるC1sスペクトルのC−O結合由来のピークの面積と炭素原子間の結合(C−C結合及びC=C結合)由来のピークの面積との比率が1/10〜10/10であることが好ましい。これらのピーク面積の比率がこのような範囲にあると、炭素−金属複合体が電極活物質としてより優れた特性を発揮するものとなる。C−O結合由来のピークの面積と炭素原子間の結合由来のピークの面積との比率は、より好ましくは、1/10〜8/10であり、更に好ましくは、2/10〜8/10である。
XPS測定で得られるC1sスペクトルのC−O結合由来のピークは、285〜287eV付近、炭素原子間の結合由来のピークは、284〜285eV付近に観測される。
ピーク面積は、バックグラウンド補正をShirley法で行い、フィッティング関数としてVoigt関数を用いたピークフィット(ピーク分離)により求めることができる。
The carbon-metal composite of the present invention has a peak area derived from a C—O bond in a C1s spectrum obtained by XPS measurement and a peak area derived from a bond between carbon atoms (C—C bond and C═C bond). Is preferably 1/10 to 10/10. When the ratio of these peak areas is within such a range, the carbon-metal composite exhibits more excellent characteristics as an electrode active material. The ratio of the area of the peak derived from the C—O bond and the area of the peak derived from the bond between carbon atoms is more preferably 1/10 to 8/10, and further preferably 2/10 to 8/10. It is.
A peak derived from the C—O bond in the C1s spectrum obtained by XPS measurement is observed near 285 to 287 eV, and a peak derived from the bond between carbon atoms is observed near 284 to 285 eV.
The peak area can be obtained by performing a background correction by the Shirley method and performing peak fitting (peak separation) using a Voigt function as a fitting function.

上記炭素−金属複合体は、炭素材料と周期律表3〜14族の金属単体又は該金属元素を有する金属化合物とが充分に複合化されたものであることが好ましい。酸化グラフェンはXRD測定において、2θ=26°より小さい領域、特に2θ=10°付近にピークが観測されるため、炭素−金属複合体を構成する炭素材料として酸化グラフェンを用いた場合、2θ=26°より小さい領域にピークが観測されない場合には、充分に複合化されているということができる。このように、本発明の炭素−金属複合体が、XRD測定において、2θ=26°より小さい領域にピークが観測されないものであることは、本発明の好適な実施形態の1つである。
ここで、ピークが観測されないとは、ベースラインのノイズの幅の2倍以上の高さのピークが観測されないことを意味する。
It is preferable that the carbon-metal composite is a composite of a carbon material and a metal simple substance in the group 3 to 14 of the periodic table or a metal compound having the metal element. In graphene oxide, a peak is observed in a region smaller than 2θ = 26 °, particularly in the vicinity of 2θ = 10 ° in XRD measurement. Therefore, when graphene oxide is used as the carbon material constituting the carbon-metal composite, 2θ = 26. If no peak is observed in a region smaller than °, it can be said that the compound is sufficiently complex. Thus, it is one of the preferred embodiments of the present invention that the carbon-metal composite of the present invention is such that no peak is observed in a region smaller than 2θ = 26 ° in XRD measurement.
Here, the fact that a peak is not observed means that a peak having a height of twice or more the width of the baseline noise is not observed.

本発明の炭素−金属複合体中における周期律表3〜14族の金属元素は、0価より大きい正の価数を有することが好ましい。金属元素が0価より大きい正の価数を有する、すなわち、金属単体ではなく化合物の状態にあることが好ましい。より好ましくは、当該化合物が金属と酸素の結合を有する化合物であることである。炭素−金属複合体がそのようなものであることで、炭素−金属複合体が電極活物質としてより優れた特性を発揮するものとなる。金属元素の価数は、金属元素の種類や金属化合物の種類によるが、1〜7価であることが好ましい。より好ましくは、2〜5価である。
また本発明の炭素−金属複合体中における周期律表3〜14族の金属元素は、単核の状態であることが好ましい。単核の状態であることで、炭素−金属複合体が電極活物質としてより優れた特性を発揮することができる。金属元素が単核の状態にあるとは、金属元素を含む化合物が、構造中に金属の原子を1つだけ含む化合物となっていることを意味する。
金属元素の価数や単核の状態にあるかどうかは、XAFS測定により確認することができる。
It is preferable that the metal elements of Groups 3-14 of the periodic table in the carbon-metal composite of the present invention have a positive valence greater than zero. It is preferable that the metal element has a positive valence greater than zero, that is, in the state of a compound rather than a single metal. More preferably, the compound is a compound having a bond of metal and oxygen. When the carbon-metal composite is such, the carbon-metal composite exhibits more excellent characteristics as an electrode active material. The valence of the metal element depends on the type of metal element and the type of metal compound, but is preferably 1-7. More preferably, it is 2-5.
Moreover, it is preferable that the metal element of the 3-14 group of the periodic table in the carbon-metal composite of this invention is a mononuclear state. By being in a mononuclear state, the carbon-metal composite can exhibit more excellent characteristics as an electrode active material. That the metal element is in a mononuclear state means that the compound containing the metal element is a compound containing only one metal atom in the structure.
Whether the metal element is in a valence or mononuclear state can be confirmed by XAFS measurement.

上記のとおり、本発明の炭素−金属複合体は、酸素(O)と結合した炭素(C)を有する炭素材料と周期律表3〜14族の金属単体又は該金属元素を有する金属化合物との複合体であることが好ましく、酸素(O)と結合した炭素(C)を有する炭素材料としては、酸化グラフェンが好ましく、周期律表3〜14族の金属単体又は該金属元素を有する金属化合物としては、金属と酸素の結合を有する化合物が好ましい。すなわち、本発明の炭素−金属複合体が酸化グラフェンと、金属と酸素の結合を有する化合物との複合体であることは、本発明の炭素−金属複合体の好ましい形態である。 As described above, the carbon-metal composite of the present invention includes a carbon material having carbon (C) bonded to oxygen (O) and a metal simple substance in the periodic table group 3 to 14 or a metal compound having the metal element. It is preferably a composite, and the carbon material having carbon (C) bonded to oxygen (O) is preferably graphene oxide, as a metal simple substance or a metal compound having the metal element of Group 3-14 of the periodic table Is preferably a compound having a bond of metal and oxygen. That is, it is a preferred form of the carbon-metal composite of the present invention that the carbon-metal composite of the present invention is a composite of graphene oxide and a compound having a bond of metal and oxygen.

本発明の炭素−金属複合体の製造方法は特に制限されないが、酸素(O)と結合した炭素(C)を有する炭素材料と周期律表3〜14族の金属単体又は該金属元素を有する金属化合物とを混合する混合工程と、該炭素材料と周期律表3〜14族の金属単体又は該金属元素を有する金属化合物との混合物を還元する還元工程とを含む製造方法が好ましい。還元工程は、混合工程の後に行われてもよく、混合工程の終了前に還元工程が開始してもよい。また、この製造方法は、上記2つの工程を含む限り、その他の工程を含んでいてもよい。 The method for producing the carbon-metal composite of the present invention is not particularly limited, but a carbon material having carbon (C) bonded to oxygen (O) and a metal element having a group of 3 to 14 metals or a metal having the metal element. A production method comprising a mixing step of mixing a compound and a reduction step of reducing a mixture of the carbon material and a metal simple substance of Group 3 to 14 of the periodic table or a metal compound having the metal element is preferable. The reduction step may be performed after the mixing step, and the reduction step may be started before the end of the mixing step. In addition, this manufacturing method may include other steps as long as the two steps are included.

上記炭素−金属複合体の製造方法に用いる周期律表3〜14族の金属単体又は該金属元素を有する金属化合物の量は、炭素−金属複合体が製造されることになる限り特に制限されないが、酸素と結合した炭素を有する炭素材料1gに対して、0.1〜10gであることが好ましい。このような割合で用いることで、金属元素がアモルファス状態で存在し易くなる。より好ましくは、0.3〜5gであり、更に好ましくは、0.5〜3gである。 Although the amount of the metal simple substance of the periodic table group 3-14 used for the manufacturing method of the said carbon-metal composite_body | complex or the metal compound which has this metal element is not restrict | limited especially as long as a carbon-metal composite_body | complex will be manufactured. It is preferable that it is 0.1-10g with respect to 1g of carbon materials which have carbon couple | bonded with oxygen. By using at such a ratio, the metal element is likely to exist in an amorphous state. More preferably, it is 0.3-5g, More preferably, it is 0.5-3g.

上記炭素−金属複合体の製造方法に用いる炭素材料としては、酸素(O)と結合した炭素(C)を有するものであれば特に制限されないが、グラフェン、グラファイト等の黒鉛質の炭素材料に酸素が結合したものが好ましい。より好ましくは、グラフェンの炭素原子に酸素が結合した酸化グラフェンである。
炭素材料として酸化グラフェンを用いる場合、グラファイトの酸化時にグラファイトの質量に対して1〜10倍の質量の酸化剤を添加して得られたものであることが好ましい。より好ましくは、グラファイトの質量に対して1〜5倍の質量の酸化剤を添加して得られたものである。
酸化グラフェンは、グラファイトに酸化剤を添加して酸化することで製造することができ、酸化剤の添加量を変化させることで、酸化グラフェンに導入される酸素原子の量を調整することができる。炭素−金属複合体の製造に使用する金属元素がSn等の特定の元素の場合には、炭素−金属複合体を電極活物質として用いた場合の電池容量が、導入される金属元素の量に影響され、多くの金属原子を導入するほうが電池容量が高くなる場合がある。複合体に導入される金属元素の量は、酸化グラフェンが有する酸素の量に影響されるため、金属元素の種類によっては、酸化剤の添加量を調整することで、得られる炭素−金属複合体を電極活物質として用いた場合の電池容量を調整することが可能となる。
The carbon material used in the method for producing the carbon-metal composite is not particularly limited as long as it has carbon (C) bonded to oxygen (O), but oxygen is added to graphitic carbon materials such as graphene and graphite. Are preferably bonded. More preferably, it is graphene oxide in which oxygen is bonded to a carbon atom of graphene.
When graphene oxide is used as the carbon material, it is preferably obtained by adding an oxidizing agent having a mass of 1 to 10 times the mass of graphite when the graphite is oxidized. More preferably, it is obtained by adding an oxidizing agent having a mass 1 to 5 times the mass of graphite.
Graphene oxide can be produced by adding an oxidizing agent to graphite and oxidizing it, and the amount of oxygen atoms introduced into graphene oxide can be adjusted by changing the amount of the oxidizing agent added. When the metal element used for the production of the carbon-metal composite is a specific element such as Sn, the battery capacity when the carbon-metal composite is used as the electrode active material is the amount of the metal element introduced. In some cases, the battery capacity becomes higher when many metal atoms are introduced. Since the amount of the metal element introduced into the composite is affected by the amount of oxygen contained in the graphene oxide, the carbon-metal composite obtained by adjusting the addition amount of the oxidizing agent depending on the type of the metal element It is possible to adjust the battery capacity when using as an electrode active material.

上記炭素−金属複合体の製造方法に用いる周期律表3〜14族の金属元素は、上述したものと同様のものが好ましい。
炭素−金属複合体の製造方法に用いる周期律表3〜14族の金属元素を有する金属化合物としては、これらの金属元素の酸化物、水酸化物、塩化物、硫酸塩、硝酸塩、炭酸塩、有機酸塩の他、金属原子又は金属酸化物に炭素数1〜10のアルキル基又はアルコキシ基が1〜4つ結合した構造の化合物等が挙げられる。
The same metal elements as those described above are preferred as the metal elements of Groups 3 to 14 of the periodic table used in the method for producing the carbon-metal composite.
Examples of the metal compound having a metal element belonging to Groups 3-14 of the periodic table used in the method for producing a carbon-metal composite include oxides, hydroxides, chlorides, sulfates, nitrates, carbonates of these metal elements, In addition to the organic acid salt, a compound having a structure in which 1 to 4 alkyl groups or alkoxy groups having 1 to 10 carbon atoms are bonded to a metal atom or metal oxide can be used.

上記混合工程において、酸素と結合した炭素を有する炭素材料と周期律表3〜14族の金属元素を有する金属化合物とを混合する方法は特に制限されず、炭素材料に金属化合物を加えて攪拌する方法を用いることができる。混合する際、必要に応じて、溶媒を添加して攪拌することもできる。 In the mixing step, the method for mixing the carbon material having carbon bonded to oxygen and the metal compound having a metal element of Groups 3 to 14 of the periodic table is not particularly limited, and the metal compound is added to the carbon material and stirred. The method can be used. When mixing, if necessary, a solvent may be added and stirred.

上記混合工程で添加する溶媒は、炭素−金属複合体が製造されることになる限り特に制限されず、水、エタノール、DMF、DMSO、エチレングリコール、N−メチルピロリドン、イソプロパノール、アセトン、メタノール、テトラヒドロフラン等の1種又は2種以上を用いることができる。
また、上記混合工程は、必要に応じて酸を添加して行ってもよい。酸としては、塩酸、硫酸、硝酸、酢酸等を用いることができる。
The solvent added in the mixing step is not particularly limited as long as the carbon-metal composite is produced. Water, ethanol, DMF, DMSO, ethylene glycol, N-methylpyrrolidone, isopropanol, acetone, methanol, tetrahydrofuran 1 type, or 2 or more types can be used.
Moreover, you may perform the said mixing process, adding an acid as needed. As the acid, hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like can be used.

上記還元工程で、酸素原子と結合した炭素原子を有する炭素材料を還元する方法は、炭素材料が還元されることになる限り特に制限されないが、還元剤を用いる方法、不活性ガス雰囲気下で加熱する方法、光を照射する方法のいずれかの方法が好ましい。これらはいずれかを用いてもよく、2つ以上の方法を組合せて用いてもよい。
また、還元反応が効率的に進むよう、混合工程で炭素材料と金属化合物とを溶媒を加えて炭素材料と金属化合物との混合溶液を作製し、得られた混合溶液で薄膜を形成して還元工程を行ってもよい。
The method of reducing the carbon material having a carbon atom bonded to an oxygen atom in the reduction step is not particularly limited as long as the carbon material is reduced, but a method using a reducing agent, heating in an inert gas atmosphere Any one of the method of irradiating and the method of irradiating light is preferable. Any of these may be used, or two or more methods may be used in combination.
In addition, in order to make the reduction reaction proceed efficiently, a solvent is added to the carbon material and the metal compound in the mixing step to prepare a mixed solution of the carbon material and the metal compound, and a thin film is formed with the obtained mixed solution to reduce it. You may perform a process.

上記還元剤としては、炭素材料を還元することができるものである限り特に制限されないが、ヒドラジン、水素化ホウ素ナトリウム、ジメチルアミンボラン、アスコルビン酸、シュウ酸、ホルムアルデヒド、アセトアルデヒド等の1種又は2種以上を用いることができる。
還元剤は、酸素原子と結合した炭素原子を有する炭素材料1gに対して、0.1〜10gの割合で用いることが好ましい。より好ましくは、炭素材料1gに対して、0.5〜5gの割合で用いることである。
The reducing agent is not particularly limited as long as it can reduce the carbon material, but one or two of hydrazine, sodium borohydride, dimethylamine borane, ascorbic acid, oxalic acid, formaldehyde, acetaldehyde and the like. The above can be used.
The reducing agent is preferably used at a ratio of 0.1 to 10 g with respect to 1 g of the carbon material having carbon atoms bonded to oxygen atoms. More preferably, it is used at a ratio of 0.5 to 5 g with respect to 1 g of the carbon material.

上記還元剤を用いて還元する場合、還元剤を添加した後、還元反応を充分に進行させるため、必要に応じて加熱及び/又は攪拌をしてもよい。
加熱する場合の温度や時間は、還元剤の種類等に応じて適宜設定することができるが、加熱温度は20〜200℃であることが好ましい。より好ましくは、40〜100℃である。加熱時間は、10〜600分であることが好ましい。より好ましくは、30〜180分である。
When reducing using the above reducing agent, heating and / or stirring may be performed as necessary in order to sufficiently proceed the reduction reaction after adding the reducing agent.
Although the temperature and time in the case of heating can be suitably set according to the kind of reducing agent, etc., it is preferable that heating temperature is 20-200 degreeC. More preferably, it is 40-100 degreeC. The heating time is preferably 10 to 600 minutes. More preferably, it is 30 to 180 minutes.

上記炭素材料を還元する方法として不活性ガス雰囲気下で加熱する方法を用いる場合、炭素材料が還元される限り、加熱する温度は特に制限されないが、100〜500℃であることが好ましい。より好ましくは、200〜400℃である。
また、不活性ガスとしては特に制限されず、窒素、ヘリウム、アルゴン等のいずれの不活性ガスを用いてもよい。
When a method of heating in an inert gas atmosphere is used as a method for reducing the carbon material, the heating temperature is not particularly limited as long as the carbon material is reduced, but is preferably 100 to 500 ° C. More preferably, it is 200-400 degreeC.
Moreover, it does not restrict | limit especially as an inert gas, Any inert gas, such as nitrogen, helium, and argon, may be used.

上記炭素材料を還元する方法として光を照射する方法を用いる場合、照射する光は特に制限されないが、大きなエネルギーの光を照射することが好ましい。光照射の中でも、大きなエネルギーの光を短時間で照射することができる光源を用いると、炭素材料と金属化合物とが充分に複合化した複合体を効率的に製造することができるため好ましい。そのような光源としては、例えば、僅かな電力で300−20000kWの光を作り出せるカメラストロボ等が好適である。 When using the method of irradiating light as a method of reducing the carbon material, the light to be irradiated is not particularly limited, but it is preferable to irradiate light of large energy. Among light irradiations, it is preferable to use a light source that can irradiate light of large energy in a short time because a complex in which a carbon material and a metal compound are sufficiently complexed can be efficiently produced. As such a light source, for example, a camera strobe capable of producing 300 to 20000 kW of light with a small amount of power is suitable.

上記のとおり、本発明の炭素−金属複合体は、電極活物質として用いた場合に優れた性能を発揮することができるものであり、電極活物質の材料として好適に用いることができる。このような、本発明の炭素−金属複合体を含む電極活物質もまた、本発明の1つであり、また、本発明の電極活物質を用いて構成される電極、及び、該電極を用いて構成される電池もまた、本発明の1つである。
本発明の電極活物質を用いて構成される電池の種類は特に制限されないが、現在、リチウムイオン二次電池の多くで黒鉛が負極活物質として用いられていることから、黒鉛に代えて、本発明の炭素−金属複合体をリチウムイオン二次電池の負極活物質として用いることは本発明の好適な実施形態の1つであり、本発明の炭素−金属複合体をリチウムイオン二次電池負極活物質として用いたリチウムイオン二次電池もまた、本発明の1つである。
As described above, the carbon-metal composite of the present invention can exhibit excellent performance when used as an electrode active material, and can be suitably used as a material for an electrode active material. Such an electrode active material containing the carbon-metal composite of the present invention is also one of the present invention, and an electrode configured using the electrode active material of the present invention, and using the electrode A battery configured as described above is also one aspect of the present invention.
The type of battery configured using the electrode active material of the present invention is not particularly limited. However, since graphite is currently used as the negative electrode active material in many lithium ion secondary batteries, The use of the carbon-metal composite of the present invention as a negative electrode active material of a lithium ion secondary battery is one of the preferred embodiments of the present invention, and the carbon-metal composite of the present invention is used as a negative electrode active material for a lithium ion secondary battery. A lithium ion secondary battery used as a substance is also one aspect of the present invention.

本発明の電極の製造方法は特に制限されないが、炭素−金属複合体とバインダー等を含む電極合剤を集電体上に塗布して形成する方法が好適である。
上記バインダーとしては、例えば、ポリ(メタ)アクリル酸塩含有ポリマー、ポリビニルアルコール含有ポリマー、セルロース、酢酸セルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデン含有ポリマー、ポリペンタフルオロエチレン含有ポリマー、ポリマレイン酸塩含有ポリマー、ポリイタコン酸塩含有ポリマー、イオン交換膜性重合体、スルホン酸塩含有ポリマー、第四級アンモニウム塩含有ポリマー、第四級ホスホニウム塩ポリマー等が挙げられる。
上記集電体としては、アルミ集電体、銅箔等を用いることができる。
Although the manufacturing method of the electrode of the present invention is not particularly limited, a method of forming an electrode mixture containing a carbon-metal composite and a binder on a current collector is preferable.
Examples of the binder include poly (meth) acrylate-containing polymers, polyvinyl alcohol-containing polymers, cellulose, cellulose acetate, hydroxyalkyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride-containing polymers, polypentafluoroethylene-containing polymers, and polymaleates. -Containing polymer, polyitaconate-containing polymer, ion exchange membrane polymer, sulfonate-containing polymer, quaternary ammonium salt-containing polymer, quaternary phosphonium salt polymer and the like.
As the current collector, an aluminum current collector, a copper foil, or the like can be used.

本発明の電池を構成する電解液としては、電池の電解液として通常用いられるものを用いることができ、特に制限されないが、例えば、有機溶剤系電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジメトキシメタン、ジエトキシメタン、アセトニトリル、ジメチルスルホキシド、スルホラン、フッ素基含有カーボネート、フッ素基含有エーテル、イオン性液体、ゲル化合物含有電解液、ポリマー含有電解液等が好ましく、水系電解液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液等が挙げられる。電解液は、上記1種又は2種以上使用してもよい。無機固体電解質を使用してもよい。
本発明の電池がリチウムイオン二次電池である場合、電解質としては、LiPF、LiBF、LiClO、LiN(SOF)、LiN(SOCF、LiN(SO、Li(BC)、LiF、LiB(CN)等が挙げられる。
As the electrolytic solution constituting the battery of the present invention, those commonly used as the electrolytic solution of the battery can be used, and are not particularly limited. For example, the organic solvent-based electrolytic solution includes ethylene carbonate, propylene carbonate, dimethyl carbonate. , Diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethoxymethane, diethoxymethane, acetonitrile, dimethyl sulfoxide, sulfolane, fluorine group-containing carbonate, fluorine group-containing ether An ionic liquid, a gel compound-containing electrolytic solution, a polymer-containing electrolytic solution, and the like are preferable. Examples of the aqueous electrolytic solution include a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, and a lithium hydroxide aqueous solution. You may use 1 type, or 2 or more types of said electrolyte solution. An inorganic solid electrolyte may be used.
When the battery of the present invention is a lithium ion secondary battery, the electrolytes include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2). F 5) 2, Li (BC 4 O 8), LiF, LiB (CN) 4 and the like.

本発明の電池を構成するセパレータとしては、特に制限はないが、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、セルロース、酢酸セルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、セロファン、ポリスチレン、ポリアクリロニトリル、ポリアクリルアミド、ポリ塩化ビニル、ポリアミド、ビニロン、ポリ(メタ)アクリル酸等のマイクロポアを有する高分子量体やそれら共重合体、ゲル化合物、イオン交換膜性重合体やそれら共重合体、環化重合体やそれら共重合体、ポリ(メタ)アクリル酸塩含有ポリマーやそれら共重合体、スルホン酸塩含有ポリマーやそれら共重合体、第四級アンモニウム塩含有ポリマーやそれら共重合体、第四級ホスホニウム塩含有ポリマーやそれら共重合体等が挙げられる。 The separator constituting the battery of the present invention is not particularly limited, but polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, cellulose, cellulose acetate, hydroxyalkyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, cellophane, polystyrene, poly High molecular weight polymers having micropores such as acrylonitrile, polyacrylamide, polyvinyl chloride, polyamide, vinylon, poly (meth) acrylic acid, copolymers thereof, gel compounds, ion-exchange membrane polymers, copolymers thereof, rings Polymers, their copolymers, poly (meth) acrylate-containing polymers and their copolymers, sulfonate-containing polymers and their copolymers, quaternary ammonium salt-containing polymers and their copolymers, fourth Grade Phosphonium Salt-containing polymers and their copolymers.

本発明の電池を構成する正極の活物質としては、電池の種類に応じた活物質を適宜選択して用いることになるが、リチウムイオン二次電池の場合、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウム等のリチウムイオン二次電池の正極活物質として機能する種々の化合物を用いることができる。 As the active material of the positive electrode constituting the battery of the present invention, an active material corresponding to the type of battery is appropriately selected and used. In the case of a lithium ion secondary battery, lithium cobaltate, lithium manganate, phosphorus Various compounds that function as a positive electrode active material of a lithium ion secondary battery such as lithium iron oxide can be used.

本発明の炭素−金属複合体は、上述の構成よりなり、電池を構成する電極の活物質として優れた性能を発揮するものであり、各種蓄電池、特に、現在、負極活物質として黒鉛が多く用いられているリチウムイオン二次電池の負極活物質やナトリウムイオン二次電池の負極活物質等に好適に用いることができる。 The carbon-metal composite of the present invention has the above-described configuration, and exhibits excellent performance as an active material of an electrode constituting a battery. Various storage batteries, in particular, graphite is currently widely used as a negative electrode active material. It can be used suitably for the negative electrode active material of the lithium ion secondary battery currently used, the negative electrode active material of a sodium ion secondary battery, etc.

実施例1で製造したSi/rGO複合体(1)のTEM観察結果を示した図である。図1bは、図1aよりも倍率を上げて観察した観察結果である。4 is a diagram showing a TEM observation result of the Si / rGO composite (1) manufactured in Example 1. FIG. FIG. 1b is an observation result observed at a higher magnification than in FIG. 1a. 実施例1で製造したSi/rGO複合体(1)のXRD測定結果を示した図である。図には、複合体の原料として用いた酸化グラフェン、及び、酸化グラフェンをヒドラジンにより還元したもののXRD測定結果も併せて記載した。FIG. 3 is a diagram showing the XRD measurement results of the Si / rGO composite (1) produced in Example 1. The graph also includes graphene oxide used as a raw material for the composite and XRD measurement results of graphene oxide reduced with hydrazine. 比較例1で製造したFe/rGO複合体(比較1)(FeSO・7HOを1mmol使用)のXRD測定結果を示した図である。It is a diagram showing an XRD measurement result of Fe / rGO composites prepared in Comparative Example 1 (Comparative 1) (1 mmol use FeSO 4 · 7H 2 O). 比較例1で製造したFe/rGO複合体(比較1)(FeSO・7HOを1mmol使用)のTEM観察結果(図4a)、比較例2で製造したFe/rGO複合体(比較2)(FeSO・7HOを5mmol使用)のTEM観察結果(図4b)、比較例3で製造したFe/rGO複合体(比較3)(FeSO・7HOを10mmol使用)のTEM観察結果(図4c)を示した図である。TEM observation result (FIG. 4a) of the Fe / rGO composite (Comparative 1) manufactured in Comparative Example 1 (using 1 mmol of FeSO 4 .7H 2 O), the Fe / rGO composite manufactured in Comparative Example 2 (Comparative 2) TEM observation result (FIG. 4 b) of FE observation (using 5 mmol of FeSO 4 .7H 2 O), TEM observation result of Fe / rGO complex (Comparative 3) manufactured in Comparative Example 3 (using 10 mmol of FeSO 4 .7H 2 O) It is the figure which showed (FIG. 4c). 比較例2で製造したFe/rGO複合体(比較2)のXPS測定結果(O1s領域のスペクトル(ナロースキャン、ピーク分離済み))を示した図である。It is the figure which showed the XPS measurement result (O1s area | region spectrum (narrow scan, peak-separated)) of the Fe / rGO composite body manufactured by the comparative example 2 (comparative 2). 比較例2で製造したFe/rGO複合体(比較2)のXPS測定結果(C1s領域のスペクトル(ナロースキャン、ピーク分離済み))を示した図である。It is the figure which showed the XPS measurement result (The spectrum (narrow scan, peak separation completed) of C1s area | region) of the Fe / rGO composite body (comparative 2) manufactured by the comparative example 2. 実施例2で製造したFe/rGO複合体(2)のXPS測定結果(O1s領域のスペクトル(ナロースキャン、ピーク分離済み))を示した図である。It is the figure which showed the XPS measurement result (The spectrum (narrow scan, peak separation completed) of O1s area | region) of the Fe / rGO composite (2) manufactured in Example 2. FIG. 実施例2で製造したFe/rGO複合体(2)のXPS測定結果(C1s領域のスペクトル(ナロースキャン、ピーク分離済み))を示した図である。It is the figure which showed the XPS measurement result (C1s area | region spectrum (narrow scan, peak-separated)) of the Fe / rGO composite (2) manufactured in Example 2. FIG. 実施例3で製造したFe/rGO複合体(3)のXPS測定結果(O1s領域のスペクトル(ナロースキャン、ピーク分離済み))を示した図である。It is the figure which showed the XPS measurement result (The spectrum (narrow scan, peak separation completed) of O1s area | region) of the Fe / rGO composite (3) manufactured in Example 3. 実施例3で製造したFe/rGO複合体(3)のXPS測定結果(C1s領域のスペクトル(ナロースキャン、ピーク分離済み))を示した図である。It is the figure which showed the XPS measurement result (The spectrum (narrow scan, peak separation completed) of the C1s area | region) of the Fe / rGO composite (3) manufactured in Example 3. 実施例2で製造したFe/rGO複合体(2)、実施例3で製造したFe/rGO複合体(3)、比較例5で製造したFe/rGO複合体(比較5)、比較例2で製造したFe/rGO複合体(比較2)、及び、比較例6で製造した炭素材料(比較6)のXRD測定結果を示した図である。In the Fe / rGO composite (2) produced in Example 2, the Fe / rGO composite (3) produced in Example 3, the Fe / rGO composite produced in Comparative Example 5 (Comparative 5), and Comparative Example 2 It is the figure which showed the XRD measurement result of the manufactured Fe / rGO composite (Comparative 2) and the carbon material (Comparative 6) manufactured by the comparative example 6. 実施例2で製造したFe/rGO複合体(2)、実施例3で製造したFe/rGO複合体(3)、比較例5で製造したFe/rGO複合体(比較5)、及び、比較例2で製造したFe/rGO複合体(比較2)のXPS測定結果(C1s領域のスペクトル)を示した図(図12a)、XPS測定結果(O1s領域のスペクトル)を示した図(図12b)である。Fe / rGO composite (2) produced in Example 2, Fe / rGO composite (3) produced in Example 3, Fe / rGO composite produced in Comparative Example 5 (Comparative 5), and Comparative Example Fig. 12 shows the XPS measurement result (C1s region spectrum) of the Fe / rGO composite (Comparative 2) produced in Fig. 2 (Fig. 12a) and Fig. 12 shows the XPS measurement result (O1s region spectrum). is there. 比較例2で製造したFe/rGO複合体(比較2)のTEM観察結果(図13a)、比較例5で製造したFe/rGO複合体(比較5)のTEM観察結果(図13b)、実施例2で製造したFe/rGO複合体(2)のTEM観察結果(図13c)、及び、実施例3で製造したFe/rGO複合体(3)のTEM観察結果(図13d)を示した図である。TEM observation result (FIG. 13a) of the Fe / rGO composite (Comparative 2) produced in Comparative Example 2, TEM observation result (FIG. 13b) of the Fe / rGO composite (Comparative 5) produced in Comparative Example 5, Example 2 shows a TEM observation result (FIG. 13 c) of the Fe / rGO composite (2) manufactured in FIG. 2 and a TEM observation result (FIG. 13 d) of the Fe / rGO composite (3) manufactured in Example 3. is there. 実施例2で製造したFe/rGO複合体(2)、実施例3で製造したFe/rGO複合体(3)、比較例2で製造したFe/rGO複合体(比較2)、及び、比較例5で製造したFe/rGO複合体(比較5)の充放電特性を評価した結果を示した図である。Fe / rGO composite (2) produced in Example 2, Fe / rGO composite (3) produced in Example 3, Fe / rGO composite produced in Comparative Example 2 (Comparative 2), and Comparative Example 5 is a graph showing the results of evaluating the charge / discharge characteristics of the Fe / rGO composite (Comparative 5) manufactured in FIG. 実施例2で製造したFe/rGO複合体(2)、実施例3で製造したFe/rGO複合体(3)、比較例2で製造したFe/rGO複合体(比較2)、及び、比較例6で製造した炭素材料(比較6)の充放電特性を評価した結果を示した図である。Fe / rGO composite (2) produced in Example 2, Fe / rGO composite (3) produced in Example 3, Fe / rGO composite produced in Comparative Example 2 (Comparative 2), and Comparative Example 6 is a graph showing the results of evaluating the charge / discharge characteristics of the carbon material (Comparative 6) manufactured in FIG. 実施例4で製造したFe/rGO複合体(4)、比較例7で製造したFe/rGO複合体(比較7)、及び、比較例2で製造したFe/rGO複合体(比較2)のXRD測定結果を示した図である。XRD of Fe / rGO complex (4) produced in Example 4, Fe / rGO complex produced in Comparative Example 7 (Comparative 7), and Fe / rGO complex produced in Comparative Example 2 (Comparative 2) It is the figure which showed the measurement result. 比較例8で製造したFe/rGO複合体(比較8)のTEM観察結果(図17a)、比較例7で製造したFe/rGO複合体(比較7)のTEM観察結果(図17b)、実施例4で製造したFe/rGO複合体(4)のTEM観察結果(図17c)、及び、実施例4で製造したFe/rGO複合体(4)のTEM観察結果(HAADF−STEM像)(図17d)を示した図である。TEM observation result (FIG. 17a) of the Fe / rGO composite (Comparative 8) produced in Comparative Example 8, TEM observation result (FIG. 17b) of the Fe / rGO composite (Comparative 7) produced in Comparative Example 7, Example TEM observation result (FIG. 17c) of the Fe / rGO composite (4) produced in FIG. 4 and TEM observation result (HAADF-STEM image) of the Fe / rGO composite (4) produced in Example 4 (FIG. 17d) ). 比較例7で製造したFe/rGO複合体(比較7)、比較例8で製造したFe/rGO複合体(比較8)、実施例4で製造したFe/rGO複合体(4)、並びに、二価のFeSO、三価のα−Fe及びγ−FeのXAFS測定結果(図18a)、並びに、EXAFSスペクトル解析結果(図18b)を示した図である。Fe / rGO composite produced in Comparative Example 7 (Comparative 7), Fe / rGO composite produced in Comparative Example 8 (Comparative 8), Fe / rGO composite produced in Example 4 (4), and two valent FeSO 4, trivalent α-Fe 2 O 3 and γ-Fe 2 O 3 of XAFS measurement results (FIG. 18a), and a diagram showing the EXAFS spectrum analysis results (Figure 18b).

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” means “part by weight” and “%” means “mass%”.

実施例における各種測定は、以下の装置で行った。
<XRD測定>
X線回折装置 Rigaku RINT2000(リガク社製)で測定した。
<XPS測定>
AXIS−ULTRA DLD(島津クレートス社製)で測定した。
なお、測定データの解析は、XPS解析ソフト Commom Date Processing System(COMPRO) version11を使用した。
<XAFS測定>
PF−XAFS BL−9Cで測定した。
<電子顕微鏡(TEM)撮影>
透過電子顕微鏡JEOLJEM−2100F(日本電子社製)で測定した。
<電子顕微鏡(STEM)撮影>
走査型透過電子顕微鏡JEOL2100F(日本電子社製)で測定した。
<充放電試験>
HOKUTO HJ1001SD8充放電装置(北斗電工社製)で測定した。
<熱重量測定(TG)>
Rigaku TG8120(リガク社製)で測定した。
Various measurements in the examples were performed with the following apparatuses.
<XRD measurement>
Measurement was performed with an X-ray diffractometer Rigaku RINT2000 (manufactured by Rigaku Corporation).
<XPS measurement>
Measured with AXIS-ULTRA DLD (manufactured by Shimadzu Crates).
In addition, the analysis of measurement data used XPS analysis software Common Date Processing System (COMPRO) version11.
<XAFS measurement>
Measured with PF-XAFS BL-9C.
<Electron microscope (TEM) photography>
It measured with the transmission electron microscope JEOLJEM-2100F (made by JEOL Ltd.).
<Electron microscope (STEM) photography>
The measurement was performed with a scanning transmission electron microscope JEOL2100F (manufactured by JEOL Ltd.).
<Charge / discharge test>
It measured with HOKUTO HJ1001SD8 charging / discharging apparatus (made by Hokuto Denko).
<Thermogravimetry (TG)>
It was measured with Rigaku TG8120 (manufactured by Rigaku Corporation).

合成例1(酸化グラフェン(GO)分散体(1)の製造)
水浴に設置した1Lビーカーに濃硫酸300mlと鱗片状黒鉛(伊藤黒鉛工業製Z−5F)12gを投入し、撹拌翼で撹拌した。ビーカーの周りを氷で冷やしながら36gのKMnOを徐々に加えた後、35℃まで昇温して、35℃で2時間撹拌を続けた。その後、ビーカーの周りを氷で冷やしながら、水300mlをゆっくりと加えた。続いて、濃度30%(w/v)の過酸化水素水18mlを加えて、20℃で30分間撹拌した。撹拌終了後、ビーカー内の液を4本の遠心瓶(500ml)に分けて入れ、遠心分離を行ってから上澄み液を除去して沈殿物を得た。沈殿物が残った遠心瓶に水を入れ、撹拌、振盪により沈殿物を分散させてから再度遠心分離を行う操作を、pHが4程度になるまで10回繰り返して、炭素原料(酸化グラフェン)が水に分散した分散体(1)を得た。
Synthesis Example 1 (Production of graphene oxide (GO) dispersion (1))
A 1 L beaker placed in a water bath was charged with 300 ml of concentrated sulfuric acid and 12 g of scaly graphite (Z-5F manufactured by Ito Graphite Industries) and stirred with a stirring blade. 36 g of KMnO 4 was gradually added while cooling around the beaker with ice, then the temperature was raised to 35 ° C. and stirring was continued at 35 ° C. for 2 hours. Thereafter, 300 ml of water was slowly added while cooling the beaker around with ice. Subsequently, 18 ml of hydrogen peroxide having a concentration of 30% (w / v) was added and stirred at 20 ° C. for 30 minutes. After completion of the stirring, the liquid in the beaker was divided into four centrifuge bottles (500 ml), centrifuged, and the supernatant was removed to obtain a precipitate. The operation of putting water into the centrifuge bottle in which the precipitate remains, dispersing the precipitate by stirring and shaking, and then performing centrifugation again is repeated 10 times until the pH reaches about 4 to obtain a carbon raw material (graphene oxide). A dispersion (1) dispersed in water was obtained.

合成例2(酸化グラフェン(GO)分散体(2)の製造)
水浴に設置した1Lビーカーに濃硫酸300mlと鱗片状黒鉛(伊藤黒鉛工業製Z−5F)12gを投入し、撹拌翼で撹拌した。ビーカーの周りを氷で冷やしながら60gのKMnO4を徐々に加えた後、35℃まで昇温して、35℃で2時間撹拌を続けた。その後、ビーカーの周りを氷で冷やしながら、水300mlをゆっくりと加えた。続いて、濃度30%(w/v)の過酸化水素水30mlを加えて、20℃で30分間撹拌した。撹拌終了後、ビーカー内の液を4本の遠心瓶(500ml)に分けて入れ、遠心分離を行ってから上澄み液を除去して沈殿物を得た。沈殿物が残った遠心瓶に水を入れ、撹拌、振盪により沈殿物を分散させてから再度遠心分離を行う操作を、pHが4程度になるまで10回繰り返して、炭素原料(酸化グラフェン)が水に分散した分散体(2)を得た。
Synthesis Example 2 (Production of graphene oxide (GO) dispersion (2))
A 1 L beaker placed in a water bath was charged with 300 ml of concentrated sulfuric acid and 12 g of scaly graphite (Z-5F manufactured by Ito Graphite Industries) and stirred with a stirring blade. 60 g of KMnO 4 was gradually added while cooling the beaker with ice, and then the temperature was raised to 35 ° C. and stirring was continued at 35 ° C. for 2 hours. Thereafter, 300 ml of water was slowly added while cooling the beaker around with ice. Subsequently, 30 ml of 30% (w / v) hydrogen peroxide solution was added and stirred at 20 ° C. for 30 minutes. After completion of the stirring, the liquid in the beaker was divided into four centrifuge bottles (500 ml), centrifuged, and the supernatant was removed to obtain a precipitate. The operation of putting water into the centrifuge bottle in which the precipitate remains, dispersing the precipitate by stirring and shaking, and then performing centrifugation again is repeated 10 times until the pH reaches about 4 to obtain a carbon raw material (graphene oxide). Dispersion (2) dispersed in water was obtained.

実施例1(Si/rGO複合体(1)の製造)
0.4g相当の炭素原料を含有する合成例1で得られた分散体(1)をエタノール53mLに分散させ、更に(C1633)N(CHBr(CTAB)25mg、水16mL、Si(OC(TEOS)6mLを加えて室温下で4時間撹拌した。その後、HNNH(ヒドラジン)を2mL加え、85℃で4時間撹拌した。遠心分離を行い、上澄みを除去することにより沈殿物を得た。沈殿物を水洗し、遠心分離によって再び沈殿物を得る操作を3回繰り返して得られた沈殿物を50℃で一晩減圧乾燥した。乾燥物を乳鉢で粉砕して複合体(1)を得た。TG測定により、複合体(1)には、ケイ素が含まれていることが推定された。TEM観察(図1a、b)では非晶質粒子が多数観察された。このことから非晶質SiO粒子が生成したと考えられた。複合体(1)をXRD測定で評価したところ、XRD(図2)ではケイ素の単体やケイ素を含む化合物に帰属されるピークが観測されなかった。このことから、ケイ素がアモルファス状態で含まれていることが確認された。
Example 1 (Production of Si / rGO composite (1))
Dispersion (1) obtained in Synthesis Example 1 containing a carbon raw material equivalent to 0.4 g was dispersed in 53 mL of ethanol, and further 25 mg of (C 16 H 33 ) N (CH 3 ) 3 Br (CTAB) and 16 mL of water , 6 mL of Si (OC 2 H 5 ) 4 (TEOS) was added and stirred at room temperature for 4 hours. Thereafter, 2 mL of H 2 NNH 2 (hydrazine) was added and stirred at 85 ° C. for 4 hours. Centrifugation was performed and the supernatant was removed to obtain a precipitate. The operation of washing the precipitate with water and obtaining the precipitate again by centrifugation was repeated three times, and the resulting precipitate was dried under reduced pressure at 50 ° C. overnight. The dried product was pulverized with a mortar to obtain a composite (1). From the TG measurement, it was estimated that the composite (1) contained silicon. In the TEM observation (FIGS. 1a and 1b), many amorphous particles were observed. From this, it was considered that amorphous SiO 2 particles were generated. When the composite (1) was evaluated by XRD measurement, no peak attributed to a simple substance of silicon or a compound containing silicon was observed in XRD (FIG. 2). From this, it was confirmed that silicon was contained in an amorphous state.

比較例1〜4(Fe/rGO複合体(比較1〜4)の製造(ヒドラジン還元))
100mLの水中に1g相当の炭素原料を含有する合成例1で得られた分散体(1)とFeSO・7HOとをそれぞれ1、5、10、20mmol加えた4種類の試料混合液を作成した。これらの試料混合液に対し、室温下、大気中で2時間攪拌した。その後、それぞれの試料混合液に対して遠心分離を行い、上澄みを除去することにより沈殿物を得た。沈殿物を水洗し、遠心分離によって再び沈殿物を得る操作を3回繰り返し、得られた沈殿物を100mLの水に分散させ、ヒドラジンを1mL加えて90℃で2時間加熱攪拌した。その後、遠心分離と水洗を3回繰り返してから、吸引ろ過により試料回収を行い、真空凍結乾燥で乾燥させ、乳鉢で粉砕し、複合体(比較1)〜(比較4)を得た。FeSO・7HOを1mmol加えた試料混合液から得られた複合体(比較1)中の生成した金属酸化物の同定をXRDで行い、FeSO・7HOを1、5、10mmol加えた試料混合液から得られた複合体(比較1)〜(比較3)中の生成粒子の形状、粒子径をTEMを用いて分析した。
XRD測定の結果(図3)、1mmol試料の生成物はγ−Feであることが判った。TEM観察の結果(図4a−c)、1mmol及び5mmolの試料では数nmの微粒子と50nm程度の粒子が混在し一部はかなり凝集していた。一方10mmolの試料では針状の粒子が一様に分散して生成していた。
XRDにおいて、複合体(比較1)〜(比較4)のすべてでγ−Fe由来のピークが確認され、当該ピークからScherrerの式により算出した結晶子径が、すべて1nm以上であったことから、これらの試料では、Feはアモルファス状態となっていないことが確認された。
XPS測定によって得られた複合体(比較2)のO1s領域のスペクトル(ナロースキャン、ピーク分離済み)を図5に、C1s領域のスペクトル(ナロースキャン、ピーク分離済み)を図6に示す。図5及び6より、複合体(比較2)のXPSスペクトルにおける、O1s領域の全ピーク面積とC1s領域の全ピーク面積との比率は0.222(1/4.50)であり、C1sスペクトルのC−O結合由来のピークの面積と炭素原子間の結合由来のピークの面積との比率は0.407(4.07/10)であった。また、複合体(比較2)のXPSスペクトルにおける、Fe2p領域の全ピーク面積とO1s領域およびC1s領域の全ピーク面積との比率は0.040(1/25.00)であった。
Comparative Examples 1 to 4 (Production of Fe / rGO composites (Comparative 1 to 4) (hydrazine reduction))
Four types of sample mixed solutions obtained by adding 1, 5, 10, 20 mmol of the dispersion (1) obtained in Synthesis Example 1 containing 1 g of carbon raw material in 100 mL of water and FeSO 4 .7H 2 O, respectively. Created. These sample mixtures were stirred at room temperature for 2 hours in air. Thereafter, each sample mixture was centrifuged and the supernatant was removed to obtain a precipitate. The operation of washing the precipitate with water and obtaining the precipitate again by centrifugation was repeated three times. The obtained precipitate was dispersed in 100 mL of water, 1 mL of hydrazine was added, and the mixture was heated and stirred at 90 ° C. for 2 hours. Then, after repeating centrifugation and washing three times, the sample was collected by suction filtration, dried by vacuum lyophilization, and pulverized in a mortar to obtain composites (Comparative 1) to (Comparative 4). XRD was used to identify the metal oxide produced in the composite (Comparative 1) obtained from the sample mixture added with 1 mmol of FeSO 4 · 7H 2 O, and 1, 5 and 10 mmol of FeSO 4 · 7H 2 O were added. The shape and particle size of the produced particles in the composites (Comparative 1) to (Comparative 3) obtained from the sample mixture were analyzed using TEM.
As a result of XRD measurement (FIG. 3), it was found that the product of a 1 mmol sample was γ-Fe 2 O 3 . As a result of TEM observation (FIGS. 4a to 4c), in the samples of 1 mmol and 5 mmol, fine particles of several nm and particles of about 50 nm were mixed, and some of them were considerably aggregated. On the other hand, in the 10 mmol sample, acicular particles were uniformly dispersed.
In XRD, a peak derived from γ-Fe 2 O 3 was confirmed in all of the composites (Comparative 1) to (Comparative 4), and the crystallite diameter calculated from the peak by the Scherrer equation was all 1 nm or more. Therefore, it was confirmed that Fe 2 O 3 was not in an amorphous state in these samples.
FIG. 5 shows a spectrum (narrow scan, peak-separated) of the O1s region of the complex (Comparative 2) obtained by XPS measurement, and FIG. 6 shows a spectrum (narrow scan, peak-separated) of the C1s region. 5 and 6, the ratio of the total peak area of the O1s region to the total peak area of the C1s region in the XPS spectrum of the composite (Comparative 2) is 0.222 (1 / 4.50), The ratio of the peak area derived from the C—O bond to the peak area derived from the bond between carbon atoms was 0.407 (4.07 / 10). In the XPS spectrum of the composite (Comparative 2), the ratio between the total peak area of the Fe2p region and the total peak area of the O1s region and the C1s region was 0.040 (1 / 25.00).

実施例2(Fe/rGO複合体(2)の製造(加熱還元))
1g相当の炭素原料を含有する合成例1で得られた分散体(1)を水100mlに分散させ、更に硫酸鉄(FeSO・7HO)を5mmol加えて室温で2時間撹拌した。その後、遠心分離を行い、上澄みを除去することにより沈殿物を得た。この沈殿物を水洗し、遠心分離する操作を3回繰り返し、得られたペースト状の沈殿物を凍結乾燥した後、乳鉢で粉砕した。粉砕後の試料0.5gを入れたアルミナボートを焼成炉に入れ、窒素雰囲気下で5℃/min昇温速度で300℃まで昇温し、温度が300℃に到達した後、そのままの温度で1時間保持して焼成処理を行った。焼成処理後、炉内の温度が室温になってから試料を取出し、乳鉢で粉砕して複合体(2)を得た。TG測定の結果、複合体(2)の鉄量は、9.4wt%(Feとして13.4wt%)であった。XPS測定によって得られた複合体(2)のO1s領域のスペクトル(ナロースキャン、ピーク分離済み)を図7に、C1s領域のスペクトル(ナロースキャン、ピーク分離済み)を図8に示す。図7及び8より、複合体(2)のXPSスペクトルにおける、O1s領域の全ピーク面積とC1s領域の全ピーク面積との比率は0.448(1/2.23)であり、C1sスペクトルのC−O結合由来のピークの面積と炭素原子間の結合由来のピークの面積との比率は0.450(4.50/10)であった。また、複合体(2)のXPSスペクトルにおける、Fe2p領域の全ピーク面積とO1s領域およびC1s領域の全ピーク面積との比率は0.122(1/8.20)であった。
Example 2 (Production of Fe / rGO composite (2) (heat reduction))
Dispersion (1) obtained in Synthesis Example 1 containing 1 g of carbon raw material was dispersed in 100 ml of water, 5 mmol of iron sulfate (FeSO 4 · 7H 2 O) was further added, and the mixture was stirred at room temperature for 2 hours. Thereafter, centrifugation was performed, and the supernatant was removed to obtain a precipitate. The operation of washing the precipitate with water and centrifuging it was repeated three times. The obtained paste-like precipitate was freeze-dried and then pulverized in a mortar. An alumina boat containing 0.5 g of the crushed sample is placed in a firing furnace, heated to 300 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere, and after the temperature reaches 300 ° C., the temperature is kept as it is. The baking treatment was performed by holding for 1 hour. After the baking treatment, the sample was taken out after the temperature in the furnace reached room temperature, and pulverized in a mortar to obtain a composite (2). As a result of TG measurement, the iron content of the composite (2) was 9.4 wt% (13.4 wt% as Fe 2 O 3 ). The spectrum (narrow scan, peak separated) of the O1s region of the complex (2) obtained by XPS measurement is shown in FIG. 7, and the spectrum (narrow scan, peak separated) of the C1s region is shown in FIG. 7 and 8, the ratio of the total peak area of the O1s region to the total peak area of the C1s region in the XPS spectrum of the composite (2) is 0.448 (1 / 2.23), and the C1s spectrum C The ratio of the area of the peak derived from the —O bond and the area of the peak derived from the bond between carbon atoms was 0.450 (4.50 / 10). In the XPS spectrum of the composite (2), the ratio between the total peak area of the Fe2p region and the total peak area of the O1s region and the C1s region was 0.122 (1 / 8.20).

実施例3(Fe/rGO複合体(3)の製造(光還元))
1g相当の炭素原料を含有する合成例1で得られた分散体(1)を水100mlに分散させ、更に硫酸鉄(FeSO・7HO)を5mmol加えて室温で2時間撹拌した。その後、遠心分離を行い、上澄みを除去することにより沈殿物を得た。この沈殿物を水洗し、遠心分離する操作を3回繰り返し、得られたペースト状の沈殿物をアルミ箔上に、ドクターブレード(100mm)を用いて塗布した。風乾後、塗布部を1.5×5cmの面積に切り取った。切り取った塗布膜に、カメラ用ストロボ(MINOLTA PROGRAM 4000AF)を用いて光照射した。光照射後、アルミ箔から試料を剥離させて回収し、乳鉢で粉砕して複合体(3)を得た。TG測定の結果、複合体(3)の鉄量は、9.5wt%(Feとして13.6wt%)であった。XPS測定によって得られた複合体(3)のO1s領域のスペクトル(ナロースキャン、ピーク分離済み)を図9に、C1s領域のスペクトル(ナロースキャン、ピーク分離済み)を図10に示す。図9及び10より、複合体(3)のXPSスペクトルにおける、O1s領域の全ピーク面積とC1s領域の全ピーク面積との比率は0.389(1/2.57)であり、C1sスペクトルのC−O結合由来のピークの面積と炭素原子間の結合由来のピークの面積との比率は0.630(6.30/10)であった。また、複合体(3)のXPSスペクトルにおける、Fe2p領域の全ピーク面積とO1s領域およびC1s領域の全ピーク面積との比率は0.094(1/10.64)であった。
Example 3 (Production of Fe / rGO complex (3) (photoreduction))
Dispersion (1) obtained in Synthesis Example 1 containing 1 g of carbon raw material was dispersed in 100 ml of water, 5 mmol of iron sulfate (FeSO 4 · 7H 2 O) was further added, and the mixture was stirred at room temperature for 2 hours. Thereafter, centrifugation was performed, and the supernatant was removed to obtain a precipitate. The operation of washing this precipitate with water and centrifuging it was repeated three times, and the obtained paste-like precipitate was applied onto an aluminum foil using a doctor blade (100 mm). After air drying, the coated part was cut to an area of 1.5 × 5 cm. The cut coating film was irradiated with light using a camera strobe (MINOLTA PROGRAM 4000AF). After light irradiation, the sample was peeled off from the aluminum foil, collected, and pulverized in a mortar to obtain a composite (3). As a result of TG measurement, the iron content of the composite (3) was 9.5 wt% (13.6 wt% as Fe 2 O 3 ). The spectrum (narrow scan, peak separated) of the O1s region of the complex (3) obtained by XPS measurement is shown in FIG. 9, and the spectrum (narrow scan, peak separated) of the C1s region is shown in FIG. 9 and 10, the ratio of the total peak area of the O1s region to the total peak area of the C1s region in the XPS spectrum of the composite (3) is 0.389 (1 / 2.57), and the C1s spectrum C The ratio of the peak area derived from the —O bond and the peak area derived from the bond between carbon atoms was 0.630 (6.30 / 10). In the XPS spectrum of the composite (3), the ratio of the total peak area of the Fe2p region to the total peak area of the O1s region and the C1s region was 0.094 (1 / 10.64).

比較例5(Fe/rGO複合体(比較5)の製造(NaBH還元))
1g相当の炭素原料を含有する合成例1で得られた分散体(1)を水100mlに分散させ、更に硫酸鉄(FeSO・7HO)を5mmol加えて室温で2時間撹拌した。その後、遠心分離を行い、上澄みを除去することにより沈殿物を得た。この沈殿物を水洗し、遠心分離する操作を3回繰り返し、得られた沈殿物を100mLの水に分散させ、攪拌しながらNaCOを加えて、pHを9〜10に調整した。続いて、NaBHを800mg加えて80℃で2時間加熱攪拌した。その後、遠心分離と水洗を3回繰り返してから、吸引ろ過により試料回収を行い、真空凍結乾燥で乾燥させ、乳鉢で粉砕し、複合体(比較5)を得た。
Comparative Example 5 (Production of Fe / rGO Composite (Comparative 5) (NaBH 4 Reduction))
Dispersion (1) obtained in Synthesis Example 1 containing 1 g of carbon raw material was dispersed in 100 ml of water, 5 mmol of iron sulfate (FeSO 4 · 7H 2 O) was further added, and the mixture was stirred at room temperature for 2 hours. Thereafter, centrifugation was performed, and the supernatant was removed to obtain a precipitate. The operation of washing this precipitate with water and centrifuging it was repeated three times. The obtained precipitate was dispersed in 100 mL of water, and NaCO 3 was added with stirring to adjust the pH to 9-10. Subsequently, 800 mg of NaBH 4 was added and stirred with heating at 80 ° C. for 2 hours. Thereafter, centrifugation and washing were repeated three times, and then the sample was collected by suction filtration, dried by vacuum lyophilization, and pulverized in a mortar to obtain a composite (Comparative 5).

比較例6(炭素材料(比較6)の製造(ヒドラジン還元))
1g相当の炭素原料を含有する合成例1で得られた分散体(1)を水100mlに分散させ、ヒドラジンを1mL加えて90℃で2時間加熱攪拌した。その後、遠心分離と水洗を3回繰り返してから、吸引ろ過により試料回収を行い、真空凍結乾燥で乾燥させ、乳鉢で粉砕し、炭素材料(比較6)を得た。XPS測定の結果、炭素材料(比較6)のXPSスペクトルにおける、C1sスペクトルのC−O結合由来のピークの面積と炭素原子間の結合由来のピークの面積との比率は0.776(7.76/10)であった。
Comparative Example 6 (Production of carbon material (Comparative 6) (hydrazine reduction))
Dispersion (1) obtained in Synthesis Example 1 containing 1 g of carbon raw material was dispersed in 100 ml of water, 1 ml of hydrazine was added, and the mixture was heated and stirred at 90 ° C. for 2 hours. Thereafter, centrifugation and washing with water were repeated three times, and then the sample was collected by suction filtration, dried by vacuum lyophilization, and pulverized in a mortar to obtain a carbon material (Comparative 6). As a result of the XPS measurement, the ratio of the peak area derived from the C—O bond in the C1s spectrum to the peak area derived from the bond between carbon atoms in the XPS spectrum of the carbon material (Comparative 6) was 0.776 (7.76). / 10).

複合体(2)、(3)及び(比較5)の評価はXRD、XPS、TEMの各測定により行った。比較のため、複合体(比較2)(FeSO・7HOを5mmol加えた試料混合液をヒドラジン還元して得られた)についても同じ測定を行った。
XRD測定(図11)の結果、 ヒドラジン還元の場合はγ−Feの結晶が確認されたが、そのほかの試料では酸化鉄系の結晶は確認されなかった。またNaBH還元試料には2θ=10°付近にピークが検出された。これは、酸化グラフェン由来のピークであると考えられる。XPS測定の結果(図12)からもNaBH還元試料はClsの286.6eV付近のC−Oと考えられるピーク、O1s領域の532eV付近のC−O−Cと考えられるピークが観測され、酸化グラフェンの還元が充分に進んでいないと考えられる。一方ヒドラジン還元試料は、Clsの領域においてもC−O、C=O(288ev付近)と考えられるピークはほとんどなく、またO1sの領域では全体のピークが小さくなっており、よく還元されていることがわかった。熱還元、光還元ではO1s領域でC−O−Cと考えられるピーク(532.5eV付近)が顕著に減り、C=Oと考えられるピーク(531.5eV付近)、C−O と考えられるピーク(533.5eV)がかなり残っていた。これらの還元方法はヒドラジン還元とは明らかに結果が異なっており、選択的にC−O−Cを還元する可能性が示唆された。
TEMによる粒子形態観察(図13a−d)では熱還元試料(図13c)には粒子が確認されず、 ヒドラジン還元試料(図13a)とNaBH還元試料(図13b)、そして光還元試料(図13d)に粒子の存在を確認出来た。 熱還元試料、 光還元試料はヒドラジン還元試料と比べて小さな粒子が広範囲に一様に散らばって存在していた。
XRD測定の結果から、N雰囲気下で300℃の加熱還元、及び、カメラ用ストロボを照射による光還元の方法では、ヒドラジン還元の場合のようなγ−Fe由来のピークは確認されず、鉄の単体や鉄を含む他の化合物に帰属されるピークも観測されなかったことから、鉄はアモルファス状態となっていることが確認された。NaBHによる還元では、γ−Fe由来のピークは確認されず、鉄はアモルファス状態となっていることが確認された。
The composites (2), (3), and (Comparative 5) were evaluated by XRD, XPS, and TEM measurements. For comparison, the same measurement was also performed on the composite (Comparative 2) (obtained by hydrazine reduction of a sample mixed solution to which 5 mmol of FeSO 4 · 7H 2 O was added).
As a result of XRD measurement (FIG. 11), in the case of hydrazine reduction, γ-Fe 2 O 3 crystals were confirmed, but no iron oxide-based crystals were confirmed in other samples. In the NaBH 4 reduced sample, a peak was detected in the vicinity of 2θ = 10 °. This is considered to be a peak derived from graphene oxide. From the XPS measurement results (FIG. 12), the NaBH 4 reduced sample has a peak considered to be C—O around 286.6 eV of Cls and a peak considered to be C—O—C around 532 eV in the O1s region. It is thought that the reduction of graphene has not progressed sufficiently. On the other hand, the hydrazine-reduced sample has few peaks that are considered to be C—O and C═O (near 288 ev) even in the Cls region, and the entire peak is small in the O1s region and is well reduced. I understood. In thermal reduction and photoreduction, the peak considered to be C—O—C (near 532.5 eV) is significantly reduced in the O1s region, the peak considered to be C═O (near 531.5 eV), and the peak considered to be C—O. (533.5 eV) remained significantly. These reduction methods clearly differed from the hydrazine reduction, suggesting the possibility of selectively reducing C—O—C.
In the particle morphology observation by TEM (FIGS. 13a-d), particles were not confirmed in the thermally reduced sample (FIG. 13c), but the hydrazine reduced sample (FIG. 13a), the NaBH 4 reduced sample (FIG. 13b), and the photoreduced sample (FIG. 13). The presence of particles was confirmed in 13d). The heat-reduced sample and the photoreduced sample had small particles uniformly scattered over a wide area compared to the hydrazine-reduced sample.
From the results of XRD measurement, the peak derived from γ-Fe 2 O 3 as in the case of hydrazine reduction is confirmed in the method of photoreduction by irradiating a strobe for a camera at 300 ° C. under N 2 atmosphere. In addition, since no peak attributed to iron alone or other compounds containing iron was observed, it was confirmed that iron was in an amorphous state. In the reduction with NaBH 4, no peak derived from γ-Fe 2 O 3 was confirmed, and it was confirmed that iron was in an amorphous state.

充放電特性評価
実施例2、3、比較例5、6で得られた試料を活物質として用いて、ハーフセルを構成し、充放電試験を行った。充放電試験は、比較例2のヒドラジン還元の試料についても行った。ハーフセルの作製方法及び充放電試験の方法は以下の通りである。
以下の方法により実施した充放電試験の結果を図14及び図15に示す。図15には、実施例2、3、比較例2の試料と、Feと複合化していない比較例6の炭素材料(比較6)の充放電試験の結果を示した。鉄がアモルファス状態となっている光還元、熱還元の試料では電池容量、サイクル特性とも良好な特性を発揮した。一方、ヒドラジン還元、NaBH還元試料では、電気容量が低い結果となった。サイクル特性は、光還元試料が最も容量が多い結果となった。
<ハーフセルの作製方法>
活物質(複合体試料)100−150mg程度を量りとり、1−methyl−2−pyrrolidinone(NMP、SIGMA−ALDRICH)を0.1−0.5ml加え、ミキサー(あわとり練太郎、AR−100、株式会社シンキー)でペースト状にしたポリフッ化ビニリデン樹脂(PVDF、KF POLYMER #9130、株式会社クレハ)を、活物質:PVDFが9:1になるように秤量してから加え、ミキサーで混合してペーストを得た。このペーストをガラス板上に広げた銅箔の上に、ドクターブレード(100mm)で塗り広げ、室温で減圧乾燥を2〜3日間行った。乾燥体を16mmφのパンチで打ち抜き、ロールプレス機でプレスして電極とした。電極の重量を計測した後、コインセル2032の正極缶に電極を入れ、それをシュレンク管に入れて、そのまま120℃で一晩減圧乾燥を行った。シュレンク管内を真空に保ったまま、アルゴン雰囲気下のグローブボックスの中に入れた。グローブボックス内で、電極が入った正極缶をシュレンク管から取り出し、対極にリチウム箔、セパレータにガラス繊維フィルター(257nm、Whatman)、電解液に1M−LiPF(溶媒はEC:DMC=1:1)を用いて、コインセルを組み立てた。これを25℃で大気中に一晩置き、測定セルとした。
<充放電試験の方法>
充放電測定は、HOKUTO HJ1001SD8充放電装置(北斗電工社製)を使用し、100mA/gの定電流で行い、カットオフ電圧は0.01−3V、休止時間は2時間とした。評価は、25℃のデシケータ内、大気下で行った。
Charge / Discharge Characteristic Evaluation Samples obtained in Examples 2 and 3 and Comparative Examples 5 and 6 were used as active materials to form a half cell, and a charge / discharge test was performed. The charge / discharge test was also performed on the hydrazine reduction sample of Comparative Example 2. The half cell fabrication method and the charge / discharge test method are as follows.
The result of the charging / discharging test implemented with the following method is shown in FIG.14 and FIG.15. 15 shows, Examples 2 and 3, the sample of Comparative Example 2 showed the results of a charge-discharge test of the Fe 2 O 3 complexed with non carbon material of Comparative Example 6 (Comparative 6). The photoreduction and thermal reduction samples in which iron was in an amorphous state exhibited good battery capacity and cycle characteristics. On the other hand, the hydrazine reduction and NaBH 4 reduction samples resulted in low electric capacity. As for the cycle characteristics, the photoreduced sample had the largest capacity.
<Half cell manufacturing method>
About 100-150 mg of active material (composite sample) is weighed, 0.1-0.5 ml of 1-methyl-2-pyrrolidoneone (NMP, SIGMA-ALDRICH) is added, and a mixer (Awatori Nertaro, AR-100, (Sinky Co., Ltd.) pasted in polyvinylidene fluoride resin (PVDF, KF POLYMER # 9130, Kureha Co., Ltd.), weighed so that the active material: PVDF was 9: 1, and mixed with a mixer A paste was obtained. This paste was spread on a copper foil spread on a glass plate with a doctor blade (100 mm) and dried under reduced pressure at room temperature for 2 to 3 days. The dried body was punched with a 16 mmφ punch and pressed with a roll press to obtain an electrode. After measuring the weight of the electrode, the electrode was placed in the positive electrode can of the coin cell 2032, put in a Schlenk tube, and dried under reduced pressure at 120 ° C. overnight. While keeping the inside of the Schlenk tube in a vacuum, the tube was placed in a glove box under an argon atmosphere. In the glove box, the positive electrode can containing the electrode is taken out from the Schlenk tube, lithium foil is used as the counter electrode, glass fiber filter (257 nm, Whatman) is used as the separator, and 1M-LiPF 6 is used as the electrolyte (solvent is EC: DMC = 1: 1). ) Was used to assemble a coin cell. This was placed in the atmosphere at 25 ° C. overnight to form a measurement cell.
<Method of charge / discharge test>
The charge / discharge measurement was performed using a HOKUTO HJ1001SD8 charge / discharge device (manufactured by Hokuto Denko) at a constant current of 100 mA / g, the cut-off voltage was 0.01-3 V, and the rest time was 2 hours. Evaluation was performed in a 25 ° C. desiccator under the atmosphere.

実施例4(Fe/rGO複合体(4)の製造(光還元))
1g相当の炭素原料を含有する合成例2で得られた分散体(2)を水100mlに分散させ、更に硫酸鉄(FeSO・7HO)を10mmol加えて室温で2時間撹拌した。その後、遠心分離を行い、上澄みを除去することにより沈殿物を得た。この沈殿物を水洗し、遠心分離する操作を3回繰り返し、得られたペースト状の沈殿物をアルミ箔上に、ドクターブレード(100mm)を用いて塗布した。風乾後、塗布部を5×8cmの面積に切り取った。切り取った塗布膜に、ステージ照明用ストロボライト(ST−3000 DMX(PS LASER))を用いて光照射した。光照射後、アルミ箔から試料を剥離させて回収し、乳鉢で粉砕して複合体(4)を得た。TG測定の結果、複合体(4)の鉄量は、16.0wt%(Feとして22.9wt%)であった。
Example 4 (Production of Fe / rGO Complex (4) (Photoreduction))
Dispersion (2) obtained in Synthesis Example 2 containing 1 g of carbon raw material was dispersed in 100 ml of water, and 10 mmol of iron sulfate (FeSO 4 · 7H 2 O) was further added, followed by stirring at room temperature for 2 hours. Thereafter, centrifugation was performed, and the supernatant was removed to obtain a precipitate. The operation of washing this precipitate with water and centrifuging it was repeated three times, and the obtained paste-like precipitate was applied onto an aluminum foil using a doctor blade (100 mm). After air drying, the coated part was cut to an area of 5 × 8 cm. The cut coating film was irradiated with light using a strobe light for stage illumination (ST-3000 DMX (PS LASER)). After light irradiation, the sample was peeled off from the aluminum foil, collected, and pulverized in a mortar to obtain a composite (4). As a result of TG measurement, the iron content of the composite (4) was 16.0 wt% (22.9 wt% as Fe 2 O 3 ).

比較例7(Fe/rGO複合体(比較7)の製造(ヒドラジン還元))
1g相当の炭素原料を含有する合成例2で得られた分散体(2)を水100mlに分散させ、更に硫酸鉄(FeSO・7HO)を10mmol加えて室温で2時間撹拌した。その後、遠心分離を行い、上澄みを除去することにより沈殿物を得た。この沈殿物を水洗し、遠心分離する操作を3回繰り返し、得られた沈殿物を水100mlに分散させ、ヒドラジンを1mL加えて90℃で2時間加熱攪拌した。その後、遠心分離と水洗を3回繰り返してから、吸引ろ過により試料回収を行い、真空凍結乾燥で乾燥させ、乳鉢で粉砕し、複合体(比較7)を得た。TG測定の結果、複合体(比較7)の鉄量は、9.5wt%(Fe2O3として13.6wt%)であった。
Comparative Example 7 (Production of Fe / rGO complex (Comparative 7) (hydrazine reduction))
Dispersion (2) obtained in Synthesis Example 2 containing 1 g of carbon raw material was dispersed in 100 ml of water, and 10 mmol of iron sulfate (FeSO 4 · 7H 2 O) was further added, followed by stirring at room temperature for 2 hours. Thereafter, centrifugation was performed, and the supernatant was removed to obtain a precipitate. The operation of washing this precipitate with water and centrifuging it was repeated three times. The obtained precipitate was dispersed in 100 ml of water, 1 ml of hydrazine was added, and the mixture was heated and stirred at 90 ° C. for 2 hours. Thereafter, centrifugation and washing were repeated three times, and then the sample was collected by suction filtration, dried by vacuum lyophilization, and pulverized in a mortar to obtain a composite (Comparative 7). As a result of TG measurement, the iron content of the composite (Comparative 7) was 9.5 wt% (13.6 wt% as Fe 2 O 3).

比較例8(Fe/rGO複合体(比較8)の製造(還元処理なし))
1g相当の炭素原料を含有する合成例2で得られた分散体(2)を水100mlに分散させ、更に硫酸鉄(FeSO・7HO)を10mmol加えて室温で2時間撹拌した。その後、遠心分離を行ない、上澄みを除去することにより沈殿物を得た。この沈殿物を水洗し、遠心分離する操作を3回繰り返し、得られた沈殿物を真空凍結乾燥で乾燥させ、乳鉢で粉砕し、複合体(比較8)を得た。
Comparative Example 8 (Production of Fe / rGO composite (Comparative 8) (no reduction treatment))
Dispersion (2) obtained in Synthesis Example 2 containing 1 g of carbon raw material was dispersed in 100 ml of water, and 10 mmol of iron sulfate (FeSO 4 · 7H 2 O) was further added, followed by stirring at room temperature for 2 hours. Thereafter, centrifugation was performed, and the supernatant was removed to obtain a precipitate. The operation of washing this precipitate with water and centrifuging it was repeated three times, and the resulting precipitate was dried by vacuum lyophilization and pulverized in a mortar to obtain a composite (Comparative 8).

複合体(4)、(比較7)及び(比較8)は、XRD、TEM、STEM、XAFSを用いて分析検討した。
XRD測定の結果(図16)、複合体(4)は2θ=24°付近と43°付近にブロードなピークが検出されるのみであり、ヒドラジン還元の時のような酸化鉄ピークは現れず、鉄の単体や鉄を含む他の化合物に帰属されるピークも観測されなかったことから、鉄はアモルファス状態となっていることが確認された。ヒドラジン還元を行った場合、複合体(比較2)ではγ−Feが生成し、複合体(比較7)ではα−Feが生成した。複合体(比較7)のα−FeのピークからScherrerの式により算出した結晶子径は、1nm以上であったことから、この試料では、Feはアモルファス状態となっていないことが確認された。また、複合体(比較7)には2θ=13°,20°付近に不明なピークが検出された。TEM観察(図17a−d)ではまず還元処理をしていない複合体(比較8)(図17a)には粒子が観察されなかったことから、還元前には酸化鉄粒子は生成しないものと考えられた。
複合体(4)(図17c)ではぼんやりしたまるい粒子が点在している様子が観察された。これはヒドラジン還元試料の粒子形態(図17b)とも異なり、カメラストロボで光還元した複合体(3)の粒子形態(図13d)とも異なっていた。HAADF−STEM像(図17d)では多くのFeが分散している様子が観察され、一部は5−10nmの粒子として存在しているが、多くがTEMで観察不可能な状態で存在していることがわかった。そこでFeの存在状態をXAFSで解析した(図18a、b)。XANESスペクトル(図18a)の吸収端E0の値を二価のFeSO、三価のα−Fe及びγ−Feと比較すると、 光還元試料、 ヒドラジン試料共に価数は三価であるということがわかった。 またα−Fe, γ−Feと比較して複合体(4)のフーリエ変換処理後のEXAFSスペクトル(図18b)の第二配位圏に秩序性が見られないことから、複合体(4)では、第二配位圏にFeが存在せず、Feは単核の状態であることが確認された。
これらの測定結果から、光還元により製造されたFe/rGO複合体は、鉄がアモルファス状態にあることが確認された。
The composites (4), (Comparative 7), and (Comparative 8) were analyzed using XRD, TEM, STEM, and XAFS.
As a result of the XRD measurement (FIG. 16), in the complex (4), only broad peaks are detected around 2θ = 24 ° and 43 °, and no iron oxide peak as in hydrazine reduction appears, Since no peaks attributed to iron alone or other compounds containing iron were observed, it was confirmed that iron was in an amorphous state. When performing the hydrazine reduction, complex (Comparison 2) In the gamma-Fe 2 O 3 generated by the complex (Comparison 7) In the alpha-Fe 2 O 3 was produced. Since the crystallite diameter calculated by the Scherrer equation from the α-Fe 2 O 3 peak of the composite (Comparative 7) was 1 nm or more, in this sample, Fe 2 O 3 was not in an amorphous state. It was confirmed. In the complex (Comparative 7), unknown peaks were detected at 2θ = 13 ° and around 20 °. In TEM observation (FIGS. 17a-d), no particles were first observed in the unreduced complex (Comparative 8) (FIG. 17a), and it is considered that iron oxide particles are not formed before reduction. It was.
In the composite (4) (FIG. 17c), it was observed that the dim round particles were scattered. This was different from the particle morphology of the hydrazine reduced sample (FIG. 17b) and from the particle morphology of the complex (3) photoreduced with a camera strobe (FIG. 13d). In the HAADF-STEM image (FIG. 17d), it is observed that a large amount of Fe is dispersed, and some exist as 5-10 nm particles, but many exist in a state that cannot be observed by TEM. I found out. Therefore, the presence state of Fe was analyzed by XAFS (FIGS. 18a and b). Comparing the value of the absorption edge E0 of the XANES spectrum (FIG. 18 a) with divalent FeSO 4 , trivalent α-Fe 2 O 3 and γ-Fe 2 O 3 , the valence is 3 for both the photoreduced sample and the hydrazine sample. I found out that it was worth. In addition, since the order coordination is not seen in the second coordination sphere of the EXAFS spectrum (FIG. 18 b) after the Fourier transform processing of the complex (4) as compared with α-Fe 2 O 3 and γ-Fe 2 O 3 . In the complex (4), Fe was not present in the second coordination sphere, and it was confirmed that Fe was in a mononuclear state.
From these measurement results, it was confirmed that the Fe / rGO composite produced by photoreduction is in an amorphous state.

Claims (9)

炭素、酸素、及び、金属元素を構成元素として含む炭素−金属複合体であって、
該炭素−金属複合体は、酸素と結合した炭素を有し、
周期律表3〜14族の金属元素をアモルファス状態で含む
ことを特徴とする炭素−金属複合体。
A carbon-metal composite containing carbon, oxygen, and a metal element as constituent elements,
The carbon-metal composite has carbon bonded to oxygen,
A carbon-metal composite comprising a group 3-14 metal element in the periodic table in an amorphous state.
前記炭素−金属複合体は、周期律表3〜14族の金属元素を炭素−金属複合体全体に対して1〜40質量%の割合で含むことを特徴とする請求項1に記載の炭素−金属複合体。 The carbon-metal composite according to claim 1, wherein the carbon-metal composite contains a metal element belonging to groups 3 to 14 of the periodic table in a ratio of 1 to 40 mass% with respect to the entire carbon-metal composite. Metal composite. 前記炭素−金属複合体は、XPS測定で得られるO1s領域の全ピーク面積とC1s領域の全ピーク面積との比率が、1/20〜1/1であることを特徴とする請求項1又は2に記載の炭素−金属複合体。 The carbon-metal composite has a ratio of the total peak area of the O1s region and the total peak area of the C1s region obtained by XPS measurement to 1/20 to 1/1. A carbon-metal composite as described in 1. 前記炭素−金属複合体は、XPS測定で得られるC1sスペクトルのC−O結合由来のピークの面積と炭素原子間の結合由来のピークの面積との比率が1/10〜10/10であることを特徴とする請求項1〜3のいずれかに記載の炭素−金属複合体。 In the carbon-metal composite, the ratio of the peak area derived from the C—O bond in the C1s spectrum obtained by XPS measurement to the peak area derived from the bond between carbon atoms is 1/10 to 10/10. The carbon-metal composite according to any one of claims 1 to 3. 前記周期律表3〜14族の金属元素は、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Mo、Wのいずれかであることを特徴とする請求項1〜4のいずれかに記載の炭素−金属複合体。 5. The metal element of Groups 3 to 14 of the periodic table is any one of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, and W. A carbon-metal composite as described in 1. 前記炭素−金属複合体中における周期律表3〜14族の金属元素は、0価より大きい正の価数を有することを特徴とする請求項1〜5のいずれかに記載の炭素−金属複合体。 The carbon-metal composite according to any one of claims 1 to 5, wherein the metal element of groups 3 to 14 of the periodic table in the carbon-metal composite has a positive valence greater than zero. body. 前記炭素−金属複合体中における周期律表3〜14族の金属元素は、単核の状態であることを特徴とする請求項1〜6のいずれかに記載の炭素−金属複合体。 The carbon-metal composite according to any one of claims 1 to 6, wherein the metal element of groups 3 to 14 of the periodic table in the carbon-metal composite is in a mononuclear state. 請求項1〜7のいずれかに記載の炭素−金属複合体を含むことを特徴とする電極活物質。 An electrode active material comprising the carbon-metal composite according to claim 1. 請求項8に記載の電極活物質を用いて構成されることを特徴とする電池。 A battery comprising the electrode active material according to claim 8.
JP2015047409A 2015-03-10 2015-03-10 Carbon-metal composite Active JP6476019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047409A JP6476019B2 (en) 2015-03-10 2015-03-10 Carbon-metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047409A JP6476019B2 (en) 2015-03-10 2015-03-10 Carbon-metal composite

Publications (2)

Publication Number Publication Date
JP2016166113A true JP2016166113A (en) 2016-09-15
JP6476019B2 JP6476019B2 (en) 2019-02-27

Family

ID=56897265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047409A Active JP6476019B2 (en) 2015-03-10 2015-03-10 Carbon-metal composite

Country Status (1)

Country Link
JP (1) JP6476019B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177578A (en) * 2017-04-11 2018-11-15 株式会社日本触媒 Method for producing flaky material
CN110422845A (en) * 2019-08-08 2019-11-08 哈尔滨师范大学 The two-dimentional Nb of high pure phase2The preparation method and applications of C-material
JP2020070227A (en) * 2018-09-14 2020-05-07 株式会社日本触媒 Organic-inorganic complex with highly controlled structure
JP2020070228A (en) * 2018-09-14 2020-05-07 株式会社日本触媒 Organic-inorganic complex with highly controlled structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093512A (en) * 1999-09-16 2001-04-06 Ness Co Ltd Metal oxide electrode for super capacitor and method of manufacturing same
JP2011225993A (en) * 2010-04-14 2011-11-10 Korea Advanced Inst Of Science & Technology Graphene/metal nano composite powder, and manufacturing method therefor
JP2013502070A (en) * 2009-08-11 2013-01-17 シーメンス エナジー インコーポレイテッド Porous carbon oxide nanocomposite electrodes for high energy density supercapacitors
JP2013105668A (en) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd Composite and manufacturing method of the same
JP2014136653A (en) * 2013-01-15 2014-07-28 Micc Tec Co Ltd Method of manufacturing reduction type graphene oxide
JP2014172792A (en) * 2013-03-11 2014-09-22 Toray Ind Inc Patterned aromatic carbon film and method for manufacturing the same
WO2014157503A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093512A (en) * 1999-09-16 2001-04-06 Ness Co Ltd Metal oxide electrode for super capacitor and method of manufacturing same
JP2013502070A (en) * 2009-08-11 2013-01-17 シーメンス エナジー インコーポレイテッド Porous carbon oxide nanocomposite electrodes for high energy density supercapacitors
JP2011225993A (en) * 2010-04-14 2011-11-10 Korea Advanced Inst Of Science & Technology Graphene/metal nano composite powder, and manufacturing method therefor
JP2013105668A (en) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd Composite and manufacturing method of the same
JP2014136653A (en) * 2013-01-15 2014-07-28 Micc Tec Co Ltd Method of manufacturing reduction type graphene oxide
JP2014172792A (en) * 2013-03-11 2014-09-22 Toray Ind Inc Patterned aromatic carbon film and method for manufacturing the same
WO2014157503A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177578A (en) * 2017-04-11 2018-11-15 株式会社日本触媒 Method for producing flaky material
JP2020070227A (en) * 2018-09-14 2020-05-07 株式会社日本触媒 Organic-inorganic complex with highly controlled structure
JP2020070228A (en) * 2018-09-14 2020-05-07 株式会社日本触媒 Organic-inorganic complex with highly controlled structure
JP7254544B2 (en) 2018-09-14 2023-04-10 株式会社日本触媒 Highly structurally controlled organic-inorganic composites
JP7254545B2 (en) 2018-09-14 2023-04-10 株式会社日本触媒 Highly structurally controlled organic-inorganic composites
CN110422845A (en) * 2019-08-08 2019-11-08 哈尔滨师范大学 The two-dimentional Nb of high pure phase2The preparation method and applications of C-material

Also Published As

Publication number Publication date
JP6476019B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
KR101902071B1 (en) Negative electrode active particle and method for manufacturing the same
JP4954865B2 (en) Negative electrode active material having improved electrochemical characteristics and electrochemical device including the same
JP4782856B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY
JP4210710B2 (en) Method for producing positive electrode active material for lithium battery
US11462731B2 (en) Lithium metal oxide, negative electrode active material for lithium secondary battery comprising the same, and method of preparing the same
TWI753938B (en) Electrode material for power storage device, electrode for power storage device, and power storage device
JP5756781B2 (en) Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery
JPWO2007043665A1 (en) Mixture of lithium iron phosphate and carbon, electrode including the same, battery including the electrode, method for manufacturing the mixture, and method for manufacturing the battery
CN111403693A (en) Negative active material, and negative electrode sheet, electrochemical device, and electronic device using same
JP6476019B2 (en) Carbon-metal composite
JP7345125B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2014196615A1 (en) Positive electrode material for lithium ion secondary batteries, and method for producing same
JP2020068191A (en) Composite active material for lithium secondary battery and manufacturing method thereof
WO2015182123A1 (en) Silicon material and secondary cell negative electrode
Hamad et al. Synthesis of Layered LiMn1/3Ni1/3Co1/3O2 Oxides for Lithium‐Ion Batteries using Biomass‐Derived Glycerol as Solvent
WO2018131607A1 (en) Silicon nanoparticle-containing hydrogen polysilsesquioxane sintered product, negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery
Zhang et al. Synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode material by a modified sol–gel method for lithium-ion battery
Penki et al. Polymer template-assisted microemulsion synthesis of large surface area, porous Li 2 MnO 3 and its characterization as a positive electrode material of Li-ion cells
JP6065678B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP6136326B2 (en) Positive electrode material for lithium ion secondary battery and manufacturing method thereof
JP2013093259A (en) Negative electrode active material for lithium ion secondary battery and production method therefor and lithium ion secondary battery
CA3145312A1 (en) Nanoporous lithium vanadium fluorophosphate materials and cathodes for fast charging li-ion batteries
CA2950251C (en) Silicon material and negative electrode of secondary battery
CN113078290B (en) Positive pole piece and electrochemical device and electronic device comprising same
CN117038995B (en) Positive electrode active material, preparation method thereof, positive electrode plate, battery and electricity utilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6476019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250