JP2016165738A - Bonding method, bonding device and joined body - Google Patents

Bonding method, bonding device and joined body Download PDF

Info

Publication number
JP2016165738A
JP2016165738A JP2015046117A JP2015046117A JP2016165738A JP 2016165738 A JP2016165738 A JP 2016165738A JP 2015046117 A JP2015046117 A JP 2015046117A JP 2015046117 A JP2015046117 A JP 2015046117A JP 2016165738 A JP2016165738 A JP 2016165738A
Authority
JP
Japan
Prior art keywords
pulse laser
members
laser
irradiation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015046117A
Other languages
Japanese (ja)
Other versions
JP6584796B2 (en
Inventor
和田 正紀
Masanori Wada
正紀 和田
靖彦 下間
Yasuhiko Shimoma
靖彦 下間
清貴 三浦
Seiki Miura
清貴 三浦
政明 坂倉
Masaaki Sakakura
政明 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Kyoto University NUC
Original Assignee
Nippon Electric Glass Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Kyoto University NUC filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015046117A priority Critical patent/JP6584796B2/en
Publication of JP2016165738A publication Critical patent/JP2016165738A/en
Application granted granted Critical
Publication of JP6584796B2 publication Critical patent/JP6584796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high bond strength even in bonding heterogeneous materials when bonding two members using ultrashort pulse lasers.SOLUTION: An abutment part 3 of two members 1 and 2 is irradiated with a first pulse laser 11, and a peripheral area 3a of a focal point 11a of the first pulse laser 11 is irradiated with a second pulse laser 13 of which the repeating frequency is different from that of the first pulse laser 11, in such a manner that irradiation periods are at least partially overlapped. In such a case, the repeating frequency of the first pulse laser 11 is set in such a manner that the amount of heating to the abutment part 3 per unit repeating time of a laser pulse becomes greater than a heat diffusion amount at the abutment part 3, and the repeating frequency of the second pulse laser 13 is set in such a manner that the amount of heating to the peripheral area 3a per unit repeating time becomes smaller than a heat diffusion amount in the peripheral area 3a.SELECTED DRAWING: Figure 2

Description

本発明は、接合方法と接合装置、及び接合体に関し、特に超短パルスレーザーを用いた接合技術に関する。   The present invention relates to a bonding method, a bonding apparatus, and a bonded body, and more particularly, to a bonding technique using an ultrashort pulse laser.

近年、パルスレーザーの中でも、ピコ秒(10-12秒)オーダーやフェムト秒(10-15秒)オーダーのいわゆる超短パルスレーザーを利用した接合技術の研究、開発が進められている。 In recent years, research and development of bonding techniques using so-called ultrashort pulse lasers in the order of picoseconds (10 -12 seconds) or femtoseconds (10 -15 seconds) among pulsed lasers have been advanced.

この接合技術は、超短パルスレーザーに対して透明な部材を当接させて、その当接部に集光するように超短パルスレーザーを照射して、当該レーザーの照射領域に多光子吸収現象を生じさせることで、上記照射領域を溶融させて接合するものである(例えば、特許文献1を参照)。   In this bonding technology, a transparent member is brought into contact with the ultrashort pulse laser, and the ultrashort pulse laser is irradiated so as to focus on the contact portion, and a multiphoton absorption phenomenon is applied to the irradiated region of the laser. Is caused to melt and bond the irradiated region (see, for example, Patent Document 1).

また、この際のレーザーの焦点位置を二つの被接合部材の当接部に容易に合わせることのできる方法として、例えば特許文献2には、被接合部材のうち超短パルスレーザーが入射する側に位置する一方の被接合部材を透明材料からなるものとした場合に、超短パルスレーザーの自己集束効果によって一方の被接合部材内にフィラメント領域を生じさせ、かつこのフィラメント領域を二つの被接合部材の当接面に跨って生成する接合方法が提案されている。   In addition, as a method that can easily adjust the focal position of the laser at this time to the abutting portion of the two members to be joined, for example, Patent Document 2 discloses that the ultrashort pulse laser is incident on the member to be joined. When one of the members to be bonded is made of a transparent material, a filament region is formed in one member to be bonded by the self-focusing effect of the ultrashort pulse laser, and the filament region is divided into two members to be bonded. There has been proposed a joining method that is generated across the contact surface.

特開2005−66629号公報JP 2005-66629 A 国際公開2008/035770号公報International Publication No. 2008/035770

このように、従来の超短パルスレーザーを利用した接合技術は何れも、一本の超短パルスレーザーを二つの被接合部材の当接部又はその近傍に向けて集光照射することで当接部を加熱溶融するものであり、その照射時間も非常に短い。そのため、上述の方法で得られる接合部としての溶融凝固部は、当接部に係る各々の部材が一旦溶融した後、各々の溶融部が凝固する際に互いに付着したものに過ぎない。これでは、十分な接合強度を得ることは難しい。   In this way, all conventional joining techniques using ultra-short pulse lasers are brought into contact by condensing and irradiating one ultra-short pulse laser toward or near the abutting part of two members to be joined. The part is heated and melted, and the irradiation time is very short. Therefore, the melt-solidified portion as the joint obtained by the above-described method is merely one that adheres to each other when each melted portion solidifies after each member related to the contact portion is once melted. This makes it difficult to obtain sufficient bonding strength.

また、上述の接合構造だと、当接部に係る各々の部材が一旦溶融した後に凝固する際の付着強度のみで接合強度が付与されているため、特に異種材同士の接合の場合に、同種材同士を接合する場合に比べて付着強度が低くなると、さらなる接合強度の低下を招くおそれがある。   In addition, in the case of the above-described joining structure, since the joining strength is given only by the adhesion strength when each member related to the contact portion is once melted and then solidified, the same kind particularly in the case of joining different materials. If the adhesion strength is lower than when the materials are joined together, the joining strength may be further reduced.

以上の事情に鑑み、本明細書では、超短パルスレーザーを利用して二つの部材を接合するに際し、異種材同士の接合であっても高い接合強度を得ることを本発明により解決すべき技術的課題とする。   In view of the above circumstances, in the present specification, when joining two members using an ultrashort pulse laser, a technique to be solved by the present invention to obtain a high joint strength even when joining different materials. As an objective.

前記課題の解決は、本発明に係る接合方法により達成される。すなわち、この接合方法は、二つの部材の当接部又はその近傍に向けてレーザーを照射して、当接部を溶融することで二つの部材を接合する方法において、レーザーの照射は、第一パルスレーザーを当接部に向けて照射する第一照射ステップと、第一パルスレーザーとは繰り返し周波数の異なる第二パルスレーザーを第一パルスレーザーの焦点の周辺領域に向けて照射する第二照射ステップとを有し、第一照射ステップと第二照射ステップは、各々の照射期間の少なくとも一部が重複するようにして行われ、レーザーパルスの単位繰り返し時間当たりの当接部への加熱量が当接部の熱拡散量よりも大きくなるよう、第一パルスレーザーの繰り返し周波数を設定し、かつ単位繰り返し時間当たりの周辺領域への加熱量が周辺領域の熱拡散量よりも小さくなるよう、第二パルスレーザーの繰り返し周波数を設定する点をもって特徴付けられる。   The solution to the above problem is achieved by the joining method according to the present invention. That is, this joining method is a method in which two members are joined by irradiating a laser toward or near the contact part of two members and melting the contact part. First irradiation step of irradiating the pulse laser toward the contact portion, and second irradiation step of irradiating the second pulse laser having a different repetition frequency from the first pulse laser toward the peripheral region of the focal point of the first pulse laser The first irradiation step and the second irradiation step are performed so that at least a part of each irradiation period overlaps, and the amount of heating to the contact portion per unit repetition time of the laser pulse is applied. The repetition frequency of the first pulse laser is set so that it is larger than the thermal diffusion amount of the contact area, and the heating amount to the peripheral area per unit repetition time is larger than the thermal diffusion quantity of the peripheral area Small so characterized with a point of setting the repetition frequency of the second pulse laser.

このように、本発明は、被接合部材を溶融するための第一パルスレーザーと、第一パルスレーザーとは繰り返し周波数の異なる第二パルスレーザーとを照射し分けることで、これまでにない、新しい形態の接合部を形成することを試みたものである。その結果、本発明者らは、第一及び第二パルスレーザーの照射態様によって、溶融領域の温度分布を制御し得ること、及びこの温度分布の制御によって第一パルスレーザーの照射領域に所定の溶融液の流れを生成し得ることを見出した。これは、第一パルスレーザーの焦点の周辺領域に対するレーザーパルスの単位繰り返し時間当たりの加熱量が当該周辺領域の熱拡散量よりも小さくなるよう、第二パルスレーザーの繰り返し周波数を設定することで、第二パルスレーザーによる光励起直後に急激な温度上昇が生じ、この温度上昇が、第一パルスレーザーの照射領域を中心として生じる温度分布に影響を及ぼす(影響が大きく及ぶ領域ほど温度勾配がなだらかとなる)ためであると考えられる。   As described above, the present invention provides a new, unprecedented new technique by separately irradiating the first pulse laser for melting the member to be joined and the second pulse laser having a different repetition frequency from the first pulse laser. This is an attempt to form a joint of the form. As a result, the present inventors can control the temperature distribution of the melting region according to the irradiation modes of the first and second pulse lasers, and the predetermined melting in the irradiation region of the first pulse laser by controlling the temperature distribution. It has been found that a liquid flow can be generated. This is by setting the repetition frequency of the second pulse laser so that the heating amount per unit repetition time of the laser pulse for the peripheral region of the focal point of the first pulse laser is smaller than the thermal diffusion amount of the peripheral region, A rapid temperature rise occurs immediately after photoexcitation by the second pulse laser, and this temperature rise affects the temperature distribution around the irradiation region of the first pulse laser (the temperature gradient becomes gentler in the region where the influence is large). ).

本発明は以上の知見に基づき成されたものであり、本発明によれば、第一パルスレーザーの照射領域を中心として生じた溶融領域内において溶融液の流動が促進される。そのため、当接部に跨って溶融領域を形成することで、互いに隣り合う一方の部材の溶融液と他方の部材の溶融液とが混ざり合い、凝固することで、溶融前とは異なる組織が当接部に跨って生成される。従って、従来の接合方法に比べて格段に強固な接合組織を双方の部材に跨って形成することができ、接合強度の大幅な向上を図ることが可能となる。   The present invention has been made on the basis of the above findings, and according to the present invention, the flow of the melt is promoted in the melted region generated around the region irradiated with the first pulse laser. Therefore, by forming a molten region across the abutting part, the melt of one member adjacent to the other and the melt of the other member are mixed and solidified, so that a different structure from that before melting is applied. Generated across the tangent. Accordingly, it is possible to form a joint structure that is much stronger than the conventional joining method across both members, and it is possible to significantly improve the joining strength.

また、本発明に係る接合方法は、第二パルスレーザーを、周辺領域内の複数点に向けて照射するものであってもよい。   Moreover, the joining method according to the present invention may irradiate the second pulse laser toward a plurality of points in the peripheral region.

本発明の趣旨が、溶融領域の温度制御にある点に鑑みれば、溶融領域の起点となる第一パルスレーザーの焦点の周辺領域内に相応の数の第二パルスレーザーを照射することが好ましい。この照射態様によれば、より精密に温度分布を制御することができるので、接合すべき部材の材質に応じた適度な温度分布を溶融領域に付与して、強固な溶融凝固部を形成することが可能となる。   In view of the point of the present invention in the temperature control of the melting region, it is preferable to irradiate a suitable number of second pulse lasers in the peripheral region of the focal point of the first pulse laser that becomes the starting point of the melting region. According to this irradiation mode, the temperature distribution can be controlled more precisely. Therefore, an appropriate temperature distribution according to the material of the members to be joined is given to the melting region to form a strong melt-solidified part. Is possible.

また、本発明に係る接合方法は、第二パルスレーザーの焦点を、第一パルスレーザーの焦点位置に対してその照射方向にオフセットした位置に設定するものであってもよい。   Further, the bonding method according to the present invention may set the focal point of the second pulse laser to a position offset in the irradiation direction with respect to the focal position of the first pulse laser.

このように、第二パルスレーザーの焦点を、第一パルスレーザーの焦点位置に対してその照射方向にオフセットした位置に設定することで、オフセットした側に溶融液の流れを誘導することが可能となる。その結果、オフセットした側への所定の元素の移動が活発になり、当該オフセットした側に上記所定の元素が密となる組織を形成することが可能となる。よって、密となる元素の溶融凝固部の強度に対する寄与度が高い場合には、溶融凝固部の更なる強度向上を図ることが可能となる。あるいは、強度に対する寄与度の高い元素が相対的に少ない部材の側に、上記元素が密となる組織を形成するよう第二パルスレーザーのオフセット方向及び量を設定することによっても、溶融凝固部の強度向上を図ることが可能となる。   In this way, by setting the focal point of the second pulse laser to a position offset in the irradiation direction with respect to the focal position of the first pulse laser, it is possible to induce the flow of the melt to the offset side. Become. As a result, the movement of the predetermined element to the offset side becomes active, and it becomes possible to form a structure in which the predetermined element is dense on the offset side. Therefore, when the contribution of the dense elements to the strength of the melt-solidified portion is high, it is possible to further improve the strength of the melt-solidified portion. Alternatively, by setting the offset direction and the amount of the second pulse laser so as to form a dense structure of the element on the side of the member having a relatively small element contributing to the strength, Strength can be improved.

また、この場合、本発明に係る接合方法は、第二パルスレーザーの複数の焦点位置のオフセット量を、その照射方向から見て互いに隣り合う焦点の間で異ならせるものであってもよい。   In this case, the joining method according to the present invention may be such that the offset amounts of the plurality of focal positions of the second pulse laser are different between the focal points adjacent to each other when viewed from the irradiation direction.

上述のように、溶融領域内における所定の元素の三次元分布は、第二パルスレーザーの焦点数及びその位置に大きく左右される。このことから、複数の第二パルスレーザーを照射するに際して、各第二パルスレーザーの焦点位置のオフセット量を、その照射方向から見て互いに隣り合う焦点の間で異ならせることで、溶融凝固部内における所定の元素の三次元分布の形成自由度を高めることが可能となる。よって、例えば上記所定の元素の溶融凝固部の強度に対する寄与度が高い場合、この元素の密となる組織に照射方向の凹凸を持たせた形状とすることで、溶融凝固部に一種のアンカー効果を付与することができ、これにより接合強度の更なる向上を図ることが可能となる。   As described above, the three-dimensional distribution of the predetermined element in the melting region greatly depends on the focal number of the second pulse laser and its position. From this, when irradiating a plurality of second pulse lasers, by changing the offset amount of the focal position of each second pulse laser between the focal points adjacent to each other when viewed from the irradiation direction, It is possible to increase the degree of freedom in forming a three-dimensional distribution of a predetermined element. Therefore, for example, when the degree of contribution of the above-mentioned predetermined element to the strength of the melt-solidified portion is high, it is a kind of anchor effect in the melt-solidified portion by forming a shape in which the dense structure of this element has irregularities in the irradiation direction Thus, it is possible to further improve the bonding strength.

また、本発明に係る接合方法は、第一パルスレーザー及び第二パルスレーザーの照射期間における焦点位置を共に固定するものであってもよい。   Moreover, the joining method according to the present invention may fix both the focal positions in the irradiation period of the first pulse laser and the second pulse laser.

上述のように、本発明に係る接合方法は、溶融領域の温度分布を制御することにより溶融液の所定の流れを誘起可能とするものであるから、温度分布を容易かつ正確に制御する観点からは、第一及び第二パルスレーザーの照射期間中、各々の焦点位置は共に固定されていることが好ましい。   As described above, since the bonding method according to the present invention can induce a predetermined flow of the melt by controlling the temperature distribution in the melting region, from the viewpoint of easily and accurately controlling the temperature distribution. In the irradiation period of the first and second pulse lasers, it is preferable that the respective focal positions are fixed.

また、本発明に係る接合方法は、第一パルスレーザー及び第二パルスレーザーの照射期間を共に1.0秒以上とするものであってもよい。   In the bonding method according to the present invention, both the irradiation periods of the first pulse laser and the second pulse laser may be 1.0 seconds or more.

このように、所定時間以上の照射期間を確保することで、被接合部材の当接部を第一パルスレーザーで十分に溶融すると共に、溶融した領域の温度分布を第二パルスレーザーとの相互干渉効果で適切に制御して、所期の溶融液の流れを発生させることができる。よって、所望の組織を有する溶融凝固部を形成することができ、接合強度の向上を確実に図ることが可能となる。   In this way, by ensuring an irradiation period of a predetermined time or more, the contact portion of the member to be joined is sufficiently melted by the first pulse laser, and the temperature distribution of the melted region is mutually interfered with the second pulse laser. The desired melt flow can be generated by appropriately controlling the effect. Therefore, a melt-solidified part having a desired structure can be formed, and it is possible to reliably improve the bonding strength.

また、本発明に係る接合方法は、第一パルスレーザーと第二パルスレーザーの何れにもフェムト秒レーザーを用いるものであってもよい。   The bonding method according to the present invention may use a femtosecond laser for both the first pulse laser and the second pulse laser.

フェムト秒オーダーのパルス幅を有するパルスレーザーであれば、その集光領域のみにエネルギーを集中させることができるので、例えばガラスなどのパルスレーザーに対して透明な材質からなる部材を接合する場合、当接部又はその近傍のみを溶融することができる。また、実用的な出力の範囲内において、第二パルスレーザーで第一パルスレーザーの焦点の周辺領域を溶融させない程度にかつ第一パルスレーザーにより生成される溶融領域の温度分布に影響を及ぼし得る程度の加熱を施すのにフェムト秒レーザーが好適である。   In the case of a pulse laser having a pulse width of femtosecond order, the energy can be concentrated only in the condensing region. Therefore, for example, when a member made of a transparent material is bonded to a pulse laser such as glass. Only the contact portion or the vicinity thereof can be melted. In addition, within the practical output range, the second pulse laser does not melt the peripheral region of the focus of the first pulse laser and can affect the temperature distribution of the melting region generated by the first pulse laser. A femtosecond laser is suitable for the following heating.

また、本発明は、以上の説明に係る接合方法で二つの部材を接合してなる接合体としても提供することが可能である。   The present invention can also be provided as a joined body formed by joining two members by the joining method according to the above description.

なお、この場合、被接合対象となる二つの部材のうち少なくとも前記双方のパルスレーザーの入射側に位置する一方の部材が板ガラスであることが好ましい。また、本発明に係る二つの部材は互いに異なる材質からなるものであってもよい。   In this case, it is preferable that at least one member located on the incident side of both the pulse lasers among the two members to be joined is a plate glass. The two members according to the present invention may be made of different materials.

また、前記課題の解決は、本発明に係る接合装置によっても達成される。すなわち、この接合装置は、二つの部材の当接部又はその近傍に向けてレーザーを照射して、当接部を溶融することで二つの部材を接合するための装置であって、第一パルスレーザーを照射する第一の光源と、第一パルスレーザーとは繰り返し周波数の異なる第二パルスレーザーを照射する第二の光源と、第一及び第二の光源から照射された第一及び第二パルスレーザーを二つの部材内に集光させるための光学系と、光学系の経路上に配設され、第二パルスレーザーの位相変調を行う空間光位相変調器とを備え、光学系及び空間光位相変調器は、第一パルスレーザーを当接部に向けて照射すると共に、第二パルスレーザーを第一パルスレーザーの焦点の周辺領域に向けて照射可能に構成され、第一パルスレーザーの照射と第二パルスレーザーの照射は、各々の照射期間の少なくとも一部が重複するようにして行われ、レーザーパルスの単位繰り返し時間当たりの当接部への加熱量が当接部の熱拡散量よりも大きくなるよう、第一パルスレーザーの繰り返し周波数が設定され、かつ単位繰り返し時間当たりの周辺領域への加熱量が周辺領域の熱拡散量よりも小さくなるよう、第二パルスレーザーの繰り返し周波数が設定されるものであってもよい。   Moreover, the solution of the above-mentioned problem is achieved by the joining device according to the present invention. That is, this joining apparatus is an apparatus for joining two members by irradiating a laser toward or near the contact part of two members and melting the contact part. A first light source for irradiating a laser, a second light source for irradiating a second pulse laser having a different repetition frequency from the first pulse laser, and first and second pulses emitted from the first and second light sources. An optical system for condensing the laser in two members, and a spatial light phase modulator disposed on the path of the optical system and performing phase modulation of the second pulse laser, the optical system and the spatial light phase The modulator is configured to irradiate the first pulse laser toward the contact portion and to irradiate the second pulse laser toward the peripheral region of the focal point of the first pulse laser. Double pulse laser Irradiation is performed so that at least a part of each irradiation period overlaps, and the amount of heating to the contact portion per unit repetition time of the laser pulse is larger than the amount of thermal diffusion of the contact portion. The repetition frequency of the one-pulse laser is set, and the repetition frequency of the second pulse laser is set so that the amount of heating to the surrounding area per unit repetition time is smaller than the amount of thermal diffusion in the surrounding area. Also good.

上述のように、本発明に係る接合装置によれば、本発明に係る接合方法と同様に、第一パルスレーザーと第二パルスレーザーとの相互干渉効果により、第一パルスレーザーの照射領域を中心として生じた溶融領域内に所定の温度分布が付与され、当該領域内における溶融液の流動が促進される。そのため、当接部に跨って溶融領域を形成することで、互いに隣り合う一方の部材の溶融液と他方の部材の溶融液とが混ざり合い、凝固することで、溶融前とは異なる組織が当接部に跨って生成される。従って、従来の接合方法に比べて格段に強固な接合組織を双方の部材に跨って形成することができ、接合強度の大幅な向上を図ることが可能となる。   As described above, according to the bonding apparatus according to the present invention, the irradiation region of the first pulse laser is centered by the mutual interference effect between the first pulse laser and the second pulse laser, as in the bonding method according to the present invention. As a result, a predetermined temperature distribution is given to the melted region generated as described above, and the flow of the melt in the region is promoted. Therefore, by forming a molten region across the abutting part, the melt of one member adjacent to the other and the melt of the other member are mixed and solidified, so that a different structure from that before melting is applied. Generated across the tangent. Accordingly, it is possible to form a joint structure that is much stronger than the conventional joining method across both members, and it is possible to significantly improve the joining strength.

また、前記課題の解決は、本発明に係る接合体によっても達成される。すなわち、この接合体は、互いに異なる材質からなり、かつ少なくとも一方の部材がガラスからなる二つの部材の当接部に溶融凝固部が形成された接合体において、溶融凝固部は二つの部材に跨って形成されると共に、溶融凝固部のうち一方の部材側の領域では、他方の部材を構成する所定の元素の割合が一方の部材に含まれる所定の元素の割合に比べて増大し、かつ溶融凝固部の他方の部材側の領域では、一方の部材を構成する所定の元素の割合が他方の部材に含まれる所定の元素の割合に比べて増大している点をもって特徴付けられる。   Moreover, the solution of the above problem is achieved by the joined body according to the present invention. That is, this bonded body is a bonded body in which a melted and solidified part is formed at a contact part of two members made of different materials and at least one member is made of glass. In the region on one member side of the melt-solidified portion, the ratio of the predetermined element constituting the other member is increased compared to the ratio of the predetermined element contained in one member, and melting The region on the other member side of the solidified portion is characterized by the fact that the ratio of the predetermined element constituting one member is increased compared to the ratio of the predetermined element contained in the other member.

少なくとも一方の部材がガラスからなる二つの部材を接合して接合体を形成するに際しては、従来、その接合方法に多くの制約があり、実質的に超短パルスレーザーを用いた接合のみが適用可能である。しかしながら、その場合、当接部への集光により生じ得る溶融凝固は、既述の通り、非常に短時間で生じることから、溶融前後で組織(元素分布)を大幅に変化させることは難しかった。これに対して、本発明に係る接合体では、二つの部材に跨って形成される溶融凝固部のうち一方の部材側の領域では、他方の部材を構成する所定の元素の割合が一方の部材に含まれる所定の元素の割合に比べて増大し、かつ溶融凝固部の他方の部材側の領域では、一方の部材を構成する所定の元素の割合が他方の部材に含まれる所定の元素の割合に比べて増大するようにした。このように溶融凝固部における元素の移動を図ることで、溶融凝固部としての組織を均一化することが可能となる。従って、溶融凝固部を強固にして、接合強度の向上を図ることが可能となる。   When joining two members made of glass with at least one member, there are many restrictions on the joining method in the past, and only joining using an ultrashort pulse laser can be applied. It is. However, in that case, the melting and solidification that can occur by condensing on the contact portion occurs in a very short time as described above, and thus it is difficult to change the structure (element distribution) before and after melting. . On the other hand, in the joined body according to the present invention, in the region on one member side of the melt-solidified portion formed across the two members, the ratio of the predetermined element constituting the other member is one member. In the region on the other member side of the melt-solidified portion, the ratio of the predetermined element constituting one member is the ratio of the predetermined element included in the other member. Increased compared to. In this way, by moving the elements in the melt-solidified portion, the structure as the melt-solidified portion can be made uniform. Therefore, it is possible to strengthen the melt-solidified portion and improve the bonding strength.

以上に述べたように、本発明によれば、超短パルスレーザーを利用して二つの部材を接合するに際し、異種材同士の接合であっても高い接合強度を得ることが可能となる。   As described above, according to the present invention, when two members are bonded using an ultrashort pulse laser, it is possible to obtain high bonding strength even when bonding different materials.

本発明の第一実施形態に係る接合装置の全体構成を説明するための図である。It is a figure for demonstrating the whole structure of the joining apparatus which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る接合方法を説明するための要部斜視図である。It is a principal part perspective view for demonstrating the joining method which concerns on 1st embodiment of this invention. 図2に示す被接合部材を各パルスレーザーの照射方向から見た要部平面図である。It is the principal part top view which looked at the to-be-joined member shown in FIG. 2 from the irradiation direction of each pulse laser. 図2に示す被接合部材を各パルスレーザーの照射方向に直交する向きから見た要部側面図である。It is the principal part side view which looked at the to-be-joined member shown in FIG. 2 from the direction orthogonal to the irradiation direction of each pulse laser. 図2に示す態様で各パルスレーザーを照射した際の溶融領域の状態を説明するための要部側面図である。It is a principal part side view for demonstrating the state of the fusion | melting area | region at the time of irradiating each pulse laser in the aspect shown in FIG. 図2に示す態様で各パルスレーザーを照射した際に得られる接合体の、溶融凝固部における所定の元素の三次元分布を示す(a)平面図と、(b)側断面図である。FIG. 3A is a plan view and FIG. 3B is a side sectional view showing a three-dimensional distribution of a predetermined element in a melt-solidified portion of a joined body obtained when each pulse laser is irradiated in the mode shown in FIG. 2. 本発明の第二実施形態に係る接合方法を説明するための要部側面図である。It is a principal part side view for demonstrating the joining method which concerns on 2nd embodiment of this invention. 図7に示す態様で各パルスレーザーを照射した際の溶融領域の状態を説明するための要部側面図である。It is a principal part side view for demonstrating the state of the fusion | melting area | region at the time of irradiating each pulse laser in the aspect shown in FIG. 図7に示す態様で各パルスレーザーを照射した際に得られる接合体の、溶融凝固部における所定の元素の三次元分布を示す側断面図である。It is a sectional side view which shows the three-dimensional distribution of the predetermined element in the melt solidification part of the joining body obtained when each pulse laser is irradiated in the aspect shown in FIG. 本発明の第三実施形態に係る接合方法を説明するための要部斜視図である。It is a principal part perspective view for demonstrating the joining method which concerns on 3rd embodiment of this invention. 図10に示す態様で各パルスレーザーを照射した際に得られる接合体を矢印Aの方向から見た側断面図であって、溶融凝固部における所定の元素の三次元分布を示す側断面図である。FIG. 11 is a side sectional view of a joined body obtained when each pulse laser is irradiated in the mode shown in FIG. 10 as viewed from the direction of arrow A, and a side sectional view showing a three-dimensional distribution of a predetermined element in a melt-solidified portion. is there. 図10に示す態様で各パルスレーザーを照射した際に得られる接合体を矢印Bの方向から見た側断面図であって、溶融凝固部における所定の元素の三次元分布を示す側断面図である。FIG. 11 is a side cross-sectional view of a joined body obtained when each pulse laser is irradiated in the mode shown in FIG. 10 as viewed from the direction of arrow B, showing a three-dimensional distribution of a predetermined element in a melt-solidified portion. is there.

以下、本発明の第一実施形態を、図1〜図6を参照して説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る接合装置10の全体構成を示している。この接合装置10は、第一パルスレーザー11を発振可能な第一の光源としての第一レーザー発振器12と、第二パルスレーザー13を発振可能な照射可能な第二の光源としての第二レーザー発振器14と、第一及び第二レーザー発振器12,14から発振された第一及び第二パルスレーザー11,13を、後述する二つの被接合部材1,2内に集光入射させるための光学系15と、光学系15の経路上に配設され、第二パルスレーザー13の位相変調を行う空間光位相変調器16と、二つの被接合部材1,2を載置するテーブル17とを主に備える。   FIG. 1 shows an overall configuration of a bonding apparatus 10 according to an embodiment of the present invention. The bonding apparatus 10 includes a first laser oscillator 12 as a first light source capable of oscillating a first pulse laser 11 and a second laser oscillator as a second light source capable of irradiating a second pulse laser 13. 14 and an optical system 15 for condensing and entering the first and second pulse lasers 11 and 13 oscillated from the first and second laser oscillators 12 and 14 into two members 1 and 2 to be described later. And a spatial light phase modulator 16 disposed on the path of the optical system 15 and performing phase modulation of the second pulse laser 13, and a table 17 on which the two members 1 and 2 are mounted. .

ここで、接合対象となる二つの被接合部材1,2は任意の材質からなるものでよいが、少なくとも各パルスレーザー11,13が入射する側の一方の被接合部材1は、例えばガラスなど各パルスレーザー11,13に対して透明な材質からなるものが好ましい。   Here, the two members 1 and 2 to be joined may be made of any material, but at least one member 1 on the side on which the pulse lasers 11 and 13 are incident is made of, for example, glass. A material made of a material transparent to the pulse lasers 11 and 13 is preferable.

また、後述するように、これら二つの被接合部材1,2は、互いに隙間なく(本発明に係るレーザー接合において支障を来さない程度の大きさの隙間以下とした状態で、の意である。)当接させるのがよい。例えば二つの被接合部材1,2が共にガラスからなるものである場合、これら二つの被接合部材1,2を、接着剤などを介在させることなく直接密着(いわゆるオプティカルコンタクト)させることにより、相互固定を図るようにしてもよい。   In addition, as will be described later, these two members to be joined 1 and 2 mean that there is no gap between them (in a state where the gap is small enough not to cause trouble in laser joining according to the present invention). .) It is good to contact. For example, when the two members to be bonded 1 and 2 are both made of glass, the two members to be bonded 1 and 2 are brought into direct contact (so-called optical contact) without interposing an adhesive or the like. You may make it aim at fixation.

なお、この際、互いに向き合う一方の被接合部材1の表面1a(図1でいえば下側の表面)と、他方の被接合部材2の表面2a(図1でいえば上側の表面)の表面粗さRaは共に2.0nm以下に設定される。各表面1a,2aの表面粗さRaを上述した範囲に設定することで、二つの被接合部材1,2を互いに位置ずれなく当接させることが可能となる。もちろん、密着性向上の観点からは、1.0nm以下とするのが好ましく、0.2nm以下とするのがより好ましい。   At this time, the surface 1a (the lower surface in FIG. 1) of one of the members 1 facing each other and the surface 2a of the other member 2 to be bonded (upper surface in FIG. 1). The roughness Ra is set to 2.0 nm or less. By setting the surface roughness Ra of each of the surfaces 1a and 2a within the above-described range, the two members 1 and 2 can be brought into contact with each other without being displaced. Of course, from the viewpoint of improving adhesion, the thickness is preferably 1.0 nm or less, and more preferably 0.2 nm or less.

もちろん、当接手段は、上記例示の構成に限定されるものではなく、例えば図示は省略するが、二つの被接合部材1,2を挟持する挟持部材や、二つの被接合部材1,2をテーブル17に向けて押圧する押圧部材などを設けることで、二つの被接合部材1,2の間に当接部3を形成するようにしてもかまわない。あるいは上記例示の手段を組合わせてもかまわない。   Of course, the abutting means is not limited to the above-described configuration. For example, although not shown in the drawing, the holding member that holds the two members 1 and 2 and the two members 1 and 2 are connected. You may make it form the contact part 3 between the two to-be-joined members 1 and 2 by providing the pressing member etc. which press toward the table 17. FIG. Alternatively, the above exemplary means may be combined.

以下、接合装置10の各構成要素の詳細を説明する。   Hereinafter, the detail of each component of the joining apparatus 10 is demonstrated.

光学系15は、複数のミラー18とレンズ19とを有する。また、光学系15は、本実施形態では、図1に示すように、互いに異なる向きから発振された第一パルスレーザー11と第二パルスレーザー13とを合波するビームスプリッター20と、各ミラー18やレンズ19を介して伝達された双方のパルスレーザー11,13を二つの被接合部材1,2内に集光する対物レンズ21とをさらに有する。   The optical system 15 includes a plurality of mirrors 18 and a lens 19. In the present embodiment, as shown in FIG. 1, the optical system 15 includes a beam splitter 20 that combines the first pulse laser 11 and the second pulse laser 13 oscillated from different directions, and each mirror 18. And an objective lens 21 for condensing the two pulse lasers 11 and 13 transmitted through the lens 19 into the two members 1 and 2.

また、空間光位相変調器16は、入光した第一パルスレーザー11と第二パルスレーザー13のうち、第二パルスレーザー13の空間位相分布を変調可能に構成される。具体的には、予め作製しておいた位相ホログラムにより、第二パルスレーザー13を分岐させて、第一パルスレーザー11と共に、二つの被接合部材1,2内の所定の位相(三次元位置)に照射可能に構成される。本実施形態では、図2に示すように、第二パルスレーザー13は四本に分岐すると共に、第一パルスレーザー11の焦点11aの周辺領域3aに照射されるよう、各第二パルスレーザー13の焦点13aの三次元位置が設定される。これを各パルスレーザー11,13の照射方向(図1でいえば板状をなす被接合部材1,2の深さ方向)から見ると、図3に示すように、第一パルスレーザー11の焦点11aに対して回転対称となるように、四本の第二パルスレーザー13の焦点13aの位置が設定される。また、これを各パルスレーザー11,13の照射方向に直交する向き(図1でいえば左右方向)から見ると、図4に示すように、第一パルスレーザー11の焦点11aが二つの被接合部材1,2間の当接部3上に設定されると共に、各第二パルスレーザー13の焦点13aが、第一パルスレーザー11の焦点11aに対してその照射方向、すなわち被接合部材1,2の深さ方向上側(一方の被接合部材1の側)に所定量dだけオフセットした位置に設定される。   The spatial light phase modulator 16 is configured to be able to modulate the spatial phase distribution of the second pulse laser 13 out of the incident first pulse laser 11 and second pulse laser 13. Specifically, the second pulse laser 13 is branched by a phase hologram prepared in advance, and together with the first pulse laser 11, a predetermined phase (three-dimensional position) in the two members 1 and 2 to be joined. It can be irradiated. In the present embodiment, as shown in FIG. 2, the second pulse laser 13 is branched into four, and each second pulse laser 13 is irradiated so as to irradiate the peripheral region 3 a of the focal point 11 a of the first pulse laser 11. The three-dimensional position of the focal point 13a is set. When viewed from the irradiation direction of the pulse lasers 11 and 13 (in the depth direction of the joined members 1 and 2 having a plate shape in FIG. 1), the focal point of the first pulse laser 11 is shown in FIG. The positions of the focal points 13a of the four second pulse lasers 13 are set so as to be rotationally symmetric with respect to 11a. Further, when viewed from the direction orthogonal to the irradiation direction of each of the pulse lasers 11 and 13 (the left-right direction in FIG. 1), as shown in FIG. 4, the focal point 11a of the first pulse laser 11 has two joints. The focal point 13a of each second pulse laser 13 is set on the contact portion 3 between the members 1 and 2 and the irradiation direction of the focal point 11a of the first pulse laser 11, that is, the joined members 1 and 2. Is set at a position offset by a predetermined amount d on the upper side in the depth direction (on the side of one member 1 to be joined).

第一パルスレーザー11と第二パルスレーザー13は共に二つの被接合部材1,2内に集光照射されるものであるが、その繰り返し周波数は互いに異なる大きさに設定される。ここで、第一パルスレーザー11については、そのレーザーパルスの単位繰り返し時間当たりの当接部3への加熱量が、上記単位繰り返し時間当たりの当接部3の熱拡散量よりも大きくなるよう、その繰り返し周波数が設定される。また、第二パルスレーザー13については、そのレーザーパルスの単位繰り返し時間当たりの周辺領域3aへの加熱量が、第一パルスレーザー11の焦点11aの周辺領域3aの熱拡散量よりも小さくなるよう、その繰り返し周波数が設定される。   The first pulse laser 11 and the second pulse laser 13 are both focused and irradiated into the two members 1 and 2, but their repetition frequencies are set to different sizes. Here, for the first pulse laser 11, the amount of heating to the contact portion 3 per unit repetition time of the laser pulse is larger than the thermal diffusion amount of the contact portion 3 per unit repetition time. The repetition frequency is set. For the second pulse laser 13, the amount of heating to the peripheral region 3 a per unit repetition time of the laser pulse is smaller than the thermal diffusion amount of the peripheral region 3 a of the focal point 11 a of the first pulse laser 11. The repetition frequency is set.

一例を挙げると、二つの被接合部材1,2が共にシリケートガラスからなるものである場合、その繰り返し周波数のしきい値は50kHzに設定される。すなわち、第一パルスレーザー11の繰り返し周波数は少なくとも50kHzを超える範囲(例えば50kHz以上でかつ1000kHz以下)に設定される。また、第二パルスレーザー13の繰り返し周波数は少なくとも50kHz未満(例えば0.001kHz以上でかつ10kHz以下)に設定される。もちろん、このしきい値は、接合対象となる被接合部材1,2の材質(特に熱拡散率)や各パルスレーザー11,13の出力等によっても適宜変更されることが望ましい。   For example, when the two members 1 and 2 are both made of silicate glass, the threshold value of the repetition frequency is set to 50 kHz. That is, the repetition frequency of the first pulse laser 11 is set to a range exceeding 50 kHz (for example, 50 kHz or more and 1000 kHz or less). The repetition frequency of the second pulse laser 13 is set to at least less than 50 kHz (for example, 0.001 kHz or more and 10 kHz or less). Of course, it is desirable that this threshold value be appropriately changed depending on the material (particularly the thermal diffusivity) of the members 1 and 2 to be joined, the outputs of the pulse lasers 11 and 13, and the like.

また、その他の照射条件としては、例えば二つの被接合部材1,2が共にシリケートガラスからなるものである場合、第一パルスレーザー11の波長は400nm以上でかつ2000nm以下に設定され、パルス幅は10fs(フェムト秒)以上でかつ10000fs以下に設定され、出力は0.01μJ以上でかつ10μJ以下に設定される。第二パルスレーザー13の波長は400nm以上でかつ2000nm以下に設定され、パルス幅は10fs以上でかつ10000fs以下に設定され、出力は0.01μJ以上でかつ10μJ以下に設定される。また、第一パルスレーザー11の照射期間と第二パルスレーザー13の照射期間とは、本実施形態では全期間で重複し、その長さは例えば0.1秒以上でかつ10秒以下に設定される。なお、この間、テーブル17は固定されており、第一及び第二パルスレーザー11,13の焦点11a,13aの位置は照射期間中変わらないものとする。   Further, as other irradiation conditions, for example, when the two members 1 and 2 are both made of silicate glass, the wavelength of the first pulse laser 11 is set to 400 nm or more and 2000 nm or less, and the pulse width is It is set to 10 fs (femtosecond) or more and 10000 fs or less, and the output is set to 0.01 μJ or more and 10 μJ or less. The wavelength of the second pulse laser 13 is set to 400 nm or more and 2000 nm or less, the pulse width is set to 10 fs or more and 10000 fs or less, and the output is set to 0.01 μJ or more and 10 μJ or less. In addition, the irradiation period of the first pulse laser 11 and the irradiation period of the second pulse laser 13 overlap in the entire period in this embodiment, and the length thereof is set to, for example, not less than 0.1 seconds and not more than 10 seconds. The During this time, the table 17 is fixed, and the positions of the focal points 11a and 13a of the first and second pulse lasers 11 and 13 are not changed during the irradiation period.

以下、上記構成の接合装置10を用いた接合方法の一例を主に図5及び図6に基づいて説明する。   Hereinafter, an example of a bonding method using the bonding apparatus 10 having the above-described configuration will be described mainly based on FIGS. 5 and 6.

まず、上述のように繰り返し周波数等の照射条件を適宜設定した第一パルスレーザー11と第二パルスレーザー13を各々のレーザー発振器12,14から発振する。そして、発振した双方のパルスレーザー11,13をビームスプリッター20で合波した後、空間光位相変調器16により第二パルスレーザー13の位相分布を変調して対物レンズ21を通過させる。これにより、第一パルスレーザー11を当接部3に向けて照射すると共に、複数の第二パルスレーザー13を第一パルスレーザー11の焦点11aの周辺領域3aに向けて照射する(図2〜図4)。   First, as described above, the first pulse laser 11 and the second pulse laser 13 in which the irradiation conditions such as the repetition frequency are appropriately set are oscillated from the respective laser oscillators 12 and 14. Then, after oscillating both pulse lasers 11 and 13 by a beam splitter 20, the spatial light phase modulator 16 modulates the phase distribution of the second pulse laser 13 and passes it through the objective lens 21. Thereby, the first pulse laser 11 is irradiated toward the contact portion 3 and a plurality of second pulse lasers 13 are irradiated toward the peripheral region 3a of the focal point 11a of the first pulse laser 11 (FIG. 2 to FIG. 2). 4).

この際、第一パルスレーザー11の照射領域11bでは、多光子吸収現象に起因して加熱溶融が生じる。よって、この第一パルスレーザー11の照射を継続することで、照射領域11bを中心として溶融領域4が拡大する(図5)。また、第一パルスレーザー11の繰り返し周波数は、上述の通り蓄熱可能な繰り返し周波数のしきい値を超える範囲に設定されているため、当接部3における単位繰り返し時間当たりの加熱量が熱拡散量を常に上回った状態となる。よって、照射領域11b及びその近傍における温度勾配は比較的なだらかになる。   At this time, in the irradiation region 11b of the first pulse laser 11, heating and melting occur due to the multiphoton absorption phenomenon. Therefore, by continuing the irradiation of the first pulse laser 11, the melting region 4 is enlarged around the irradiation region 11b (FIG. 5). Further, since the repetition frequency of the first pulse laser 11 is set in a range that exceeds the threshold of the repetition frequency at which heat can be stored as described above, the amount of heating per unit repetition time in the contact portion 3 is the amount of thermal diffusion. It will be in a state that always exceeds. Therefore, the temperature gradient in the irradiation region 11b and the vicinity thereof becomes relatively gentle.

一方、第二パルスレーザー13の照射領域13bでは、第一パルスレーザー11の照射領域11bと同様に加熱が生じるが、その繰り返し周波数は、蓄熱可能な繰り返し周波数のしきい値未満に設定されているため、周辺領域3aにおける単位繰り返し時間当たりの熱拡散量が加熱量を上回る。よって、照射領域13bには急峻な温度勾配は生じるものの、加熱溶融は生じない。   On the other hand, in the irradiation region 13b of the second pulse laser 13, heating occurs as in the irradiation region 11b of the first pulse laser 11, but the repetition frequency is set to be less than the threshold value of the repetition frequency at which heat can be stored. Therefore, the thermal diffusion amount per unit repetition time in the peripheral region 3a exceeds the heating amount. Therefore, although a steep temperature gradient occurs in the irradiation region 13b, heating and melting do not occur.

よって、図示のように、各々のパルスレーザー11,13の照射により形成された温度勾配が干渉し合う位置に焦点11a,13a(照射領域11b,13b)を設定することで、温度勾配が所定の三次元分布を示し、その分布に応じて溶融領域4内における溶融液の所定の流れが誘起される。本実施形態では、第二パルスレーザー13の焦点13aを、第一パルスレーザー11の焦点11aに対してその照射方向に所定量dだけオフセットした位置に設定したので、例えば第一パルスレーザー11の照射領域11bと第二パルスレーザー13の照射領域13bとの間では、溶融領域4の深さ方向中央側から上端側に向かう流れF1が発生する。このような流れF1が生じることで、溶融領域4の深さ方向上端側には、溶融領域4内において所定の元素、ここでは例えばガラスの主成分であるSiが相対的に多い溶融部4aが生じる。また、これに伴い、第二パルスレーザー13の照射領域13bの外側(焦点11aとは反対側)では、溶融領域4の深さ方向上端側から中央側に向かう流れF2が発生する。この流れF2中の溶融液に含まれるSiは相対的に少ない。このように、溶融領域4内では特定の元素の移動を包含する流れF1,F2が循環的に生じた結果、所定の元素が密となる領域と疎となる領域が徐々に形成されていく。   Therefore, as shown in the figure, by setting the focal points 11a and 13a (irradiation regions 11b and 13b) at positions where the temperature gradients formed by the irradiation of the pulse lasers 11 and 13 interfere with each other, the temperature gradient is predetermined. A three-dimensional distribution is shown, and a predetermined flow of the melt in the melting region 4 is induced according to the distribution. In the present embodiment, since the focal point 13a of the second pulse laser 13 is set at a position offset by a predetermined amount d in the irradiation direction with respect to the focal point 11a of the first pulse laser 11, for example, irradiation with the first pulse laser 11 is performed. Between the region 11b and the irradiation region 13b of the second pulse laser 13, a flow F1 is generated from the center in the depth direction of the melting region 4 toward the upper end. When such a flow F1 occurs, a melting portion 4a having a relatively large amount of a predetermined element in the melting region 4, for example, Si, which is a main component of glass, is present on the upper end side in the depth direction of the melting region 4. Arise. Accordingly, a flow F2 from the upper end side in the depth direction of the melting region 4 toward the center side is generated outside the irradiation region 13b of the second pulse laser 13 (on the side opposite to the focal point 11a). Si contained in the melt in the flow F2 is relatively small. As described above, the flows F1 and F2 including the movement of the specific element are circulated in the melting region 4, and as a result, a region where the predetermined element is dense and a region where the predetermined element is sparse are gradually formed.

図6は、上述した接合方法を実施して得られた接合体5の(a)要部平面図と、(b)要部側断面図である。すなわち、溶融凝固部6は、本実施形態では、図6(b)に示すように、略卵形状をなすもので、第一パルスレーザー11の焦点11aに対して第二パルスレーザー13の焦点13aをオフセットした側が相対的に大径となっている。また、溶融凝固部6の大径側(一方の被接合部材1の側)は、図6(a)に示すように、第二パルスレーザー13の照射態様(焦点13aの位置及び数)の影響を受けた形状、ここでは矩形に近い形状をなしている。   FIGS. 6A and 6B are (a) a plan view and a (b) side sectional view of a principal part of a joined body 5 obtained by performing the above-described joining method. That is, in this embodiment, as shown in FIG. 6B, the melt-solidified portion 6 has a substantially egg shape, and the focal point 13 a of the second pulse laser 13 with respect to the focal point 11 a of the first pulse laser 11. The offset side has a relatively large diameter. Further, the large diameter side (one bonded member 1 side) of the melt-solidified portion 6 is affected by the irradiation mode (position and number of focal points 13a) of the second pulse laser 13, as shown in FIG. 6 (a). In this case, the shape is close to a rectangle.

また、図6(a)及び(b)は、溶融凝固部6内の所定の元素(ここではSi)の相対的な含有比を色分けして示しており、溶融凝固部6内には、図6(b)に示すように、Siが相対的に密となる領域6aが層状に形成されている。このSi密領域6aは、本実施形態では、一方の被接合部材1の側、すなわち第一パルスレーザー11の焦点11aに対して第二パルスレーザー13の焦点13aをオフセットした側に形成されている。その一方で、Si密領域6aとは反対の側、すなわち他方の被接合部材2の側には、Siが相対的に疎となる領域6bが形成されている。   6 (a) and 6 (b) show the relative content ratios of predetermined elements (here, Si) in the melt-solidified portion 6 in different colors. As shown in FIG. 6B, regions 6a where Si is relatively dense are formed in layers. In this embodiment, the Si dense region 6a is formed on the side of one member 1 to be joined, that is, on the side where the focal point 13a of the second pulse laser 13 is offset from the focal point 11a of the first pulse laser 11. . On the other hand, a region 6b where Si is relatively sparse is formed on the side opposite to the Si dense region 6a, that is, on the other member 2 side.

このように、本発明に係る接合方法及び接合装置10によれば、第一パルスレーザー11と第二パルスレーザー13との相互干渉効果により、第一パルスレーザー11の照射領域11bを中心として生じた溶融領域4内に所定の温度分布が付与され、溶融領域4内における溶融液の流動が促進される。そのため、当接部3に跨って溶融領域4を形成することで、互いに隣り合う一方の被接合部材1の溶融液と他方の被接合部材2の溶融液とが混ざり合い、凝固することで、溶融前とは異なる組織としての溶融凝固部6が当接部3に跨って生成される。従って、従来の接合方法に比べて格段に強固な接合組織を双方の部材1,2に跨って形成することができ、接合強度の大幅な向上を図ることが可能となる。   As described above, according to the bonding method and the bonding apparatus 10 according to the present invention, the first pulse laser 11 and the second pulse laser 13 are caused to be centered on the irradiation region 11b of the first pulse laser 11 due to the mutual interference effect. A predetermined temperature distribution is provided in the melting region 4 and the flow of the melt in the melting region 4 is promoted. Therefore, by forming the melted region 4 across the contact portion 3, the melted liquid of one of the joined members 1 adjacent to each other and the melted liquid of the other joined member 2 are mixed and solidified, A melt-solidified portion 6 as a structure different from that before melting is generated across the contact portion 3. Therefore, it is possible to form a significantly stronger bonded structure across both the members 1 and 2 compared to the conventional bonding method, and it is possible to significantly improve the bonding strength.

また、本実施形態では、第二パルスレーザー13を、第一パルスレーザー11の焦点11aの周辺領域3a内の複数点に向けて照射すると共に、第二パルスレーザー13の焦点13aを、第一パルスレーザー11の焦点11aの位置に対してその深さ方向にオフセットした位置に設定した。   In the present embodiment, the second pulse laser 13 is irradiated toward a plurality of points in the peripheral region 3a of the focal point 11a of the first pulse laser 11, and the focal point 13a of the second pulse laser 13 is irradiated to the first pulse. The position was offset in the depth direction with respect to the position of the focal point 11a of the laser 11.

このように、第二パルスレーザー13の焦点13aを、第一パルスレーザー11の焦点11aのまわりに複数設けるようにすれば、その分精密の温度勾配を溶融領域4に付与することができるので、接合すべき部材1,2の材質に応じた適度な温度分布を溶融領域4に付与して、強固な溶融凝固部6を形成することが可能となる。また、上述のように第二パルスレーザー13の焦点13aを、第一パルスレーザー11の焦点11aに対してオフセットした位置に設定することで、オフセットした側に溶融液の流れを誘導することが可能となる。その結果、オフセットした側への所定の元素(例えばSi)の移動が活発になり、当該オフセットした側に上記所定の元素が密となる組織6aを形成することが可能となる。よって、Siのように密となる元素の溶融凝固部6の強度に対する寄与度が高い場合には、溶融凝固部6の更なる強度向上を図ることが可能となる。もちろん、当接部3を跨ぐ中間領域6cについても、各々の被接合部材1,2の溶融領域4に係る部分が溶融し、互いに混ざり合うことで新たに形成された組織であるから、Si密領域6aのように強度に対する寄与度が高い領域が当接部3を跨ぐ部位に形成されていなくても溶融凝固部6全体としての強度は十分に確保され得る。   Thus, if a plurality of focal points 13a of the second pulse laser 13 are provided around the focal point 11a of the first pulse laser 11, a precise temperature gradient can be applied to the melting region 4 accordingly. It is possible to form a strong melt-solidified portion 6 by applying an appropriate temperature distribution according to the material of the members 1 and 2 to be joined to the melt region 4. Further, by setting the focal point 13a of the second pulse laser 13 to an offset position with respect to the focal point 11a of the first pulse laser 11 as described above, the flow of the melt can be induced to the offset side. It becomes. As a result, the movement of the predetermined element (for example, Si) to the offset side becomes active, and it becomes possible to form the structure 6a in which the predetermined element is dense on the offset side. Therefore, when the contribution degree with respect to the intensity | strength of the melt solidification part 6 of the element which becomes dense like Si is high, it becomes possible to aim at the further strength improvement of the melt solidification part 6. FIG. Of course, the intermediate region 6c straddling the contact portion 3 is a newly formed structure by melting the portions to be bonded 4 of each of the members 1 and 2 to be joined and mixing with each other. Even if the region having a high contribution to the strength, such as the region 6a, is not formed in a portion straddling the contact portion 3, the strength of the molten and solidified portion 6 as a whole can be sufficiently ensured.

以上、本発明の第一実施形態を説明したが、この接合方法と接合装置、及び接合体は、当然に本発明の範囲内において任意の形態を採ることができる。   The first embodiment of the present invention has been described above, but the bonding method, the bonding apparatus, and the bonded body can naturally take any form within the scope of the present invention.

図7〜図9はその一例(本発明の第二実施形態)を示すもので、第二パルスレーザー13の焦点13aの位置を第一実施形態と異ならせたものである。すなわち、本実施形態では、図7に示すように、第一パルスレーザー11の焦点11aの周辺領域3aに照射される複数の第二パルスレーザー13の焦点13aが、第一パルスレーザー11の焦点11aに対して被接合部材1,2の深さ方向下側(他方の被接合部材2の側)に所定量dだけオフセットした位置に設定されている。その他の照射条件及び構成は第一実施形態と同じであるのでその説明を省略する。   FIGS. 7 to 9 show an example (second embodiment of the present invention) in which the position of the focal point 13a of the second pulse laser 13 is different from that of the first embodiment. That is, in this embodiment, as shown in FIG. 7, the focal points 13 a of the plurality of second pulse lasers 13 irradiated to the peripheral region 3 a of the focal point 11 a of the first pulse laser 11 are the focal points 11 a of the first pulse laser 11. Is set at a position offset by a predetermined amount d on the lower side in the depth direction of the members 1 and 2 (the other member 2 side). Since other irradiation conditions and configurations are the same as those of the first embodiment, description thereof is omitted.

上述のように第二パルスレーザー13の焦点13aの位置を設定した場合、溶融及び凝固過程において以下のような現象が生じる。すなわち、本実施形態では、第二パルスレーザー13の焦点13aを、第一パルスレーザー11の焦点11aに対してその深さ方向下側に所定量dだけオフセットした位置に設定したので、例えば図8に示すように、第一パルスレーザー11の照射領域11bと第二パルスレーザー13の照射領域13bとの間では、溶融領域4の深さ方向中央側から下端側に向かう流れF3が発生する。このような流れF3が生じることで、溶融領域4の深さ方向下端側には、溶融領域4内において所定の元素(例えばSi)が相対的に多い溶融部4aが生じる。また、これに伴い、第二パルスレーザー13の照射領域13bの外側(焦点11aとは反対側)では、溶融領域4の深さ方向下端側から中央側に向かう流れF4が発生する。この流れF2中の溶融液に含まれるSiは相対的に少ない。上述のように、溶融領域4内では特定の元素の移動を包含する流れF1,F2が循環的に生じた結果、所定の元素が密となる領域が溶融領域4の深さ方向下側に、疎となる領域が溶融領域4の深さ方向上側に徐々に形成されていく。   When the position of the focal point 13a of the second pulse laser 13 is set as described above, the following phenomenon occurs in the melting and solidification process. That is, in the present embodiment, the focal point 13a of the second pulse laser 13 is set at a position offset by a predetermined amount d below the focal point 11a of the first pulse laser 11 in the depth direction. As shown in FIG. 3, between the irradiation region 11b of the first pulse laser 11 and the irradiation region 13b of the second pulse laser 13, a flow F3 from the center side in the depth direction of the melting region 4 toward the lower end side is generated. By generating such a flow F3, a melted portion 4a having a relatively large amount of a predetermined element (for example, Si) in the melted region 4 is generated on the lower end side in the depth direction of the melted region 4. Accordingly, a flow F4 from the lower end in the depth direction of the melting region 4 toward the center is generated outside the irradiation region 13b of the second pulse laser 13 (on the side opposite to the focal point 11a). Si contained in the melt in the flow F2 is relatively small. As described above, the flows F1 and F2 including the movement of the specific element are cyclically generated in the melting region 4, and as a result, the region where the predetermined element is dense is located on the lower side in the depth direction of the melting region 4. A sparse region is gradually formed on the upper side in the depth direction of the melting region 4.

従って、上述した接合方法を実施して得られた接合体5の溶融凝固部6は、図9に示すように、第一実施形態と同様の全体形状をなすものの、その向きが逆になる。すなわち、溶融凝固部6の大径側領域は、第一実施形態では、一方の被接合部材1の側であったのに対し(図6(b))、本実施形態では、他方の被接合部材2の側が相対的に大径となっている。また、溶融凝固部6内の所定の元素(ここではSi)の相対的な含有比を見ると、Siが相対的に密となる領域6aが、第一パルスレーザー11の焦点11aに対して第二パルスレーザー13の焦点13aをオフセットした側、すなわち本実施形態では他方の被接合部材2の側に形成されている。   Accordingly, the melt-solidified portion 6 of the joined body 5 obtained by carrying out the joining method described above has the same overall shape as that of the first embodiment as shown in FIG. 9, but the direction is reversed. That is, the large-diameter side region of the melt-solidified portion 6 is on the side of one member 1 to be joined in the first embodiment (FIG. 6B), whereas in the present embodiment, the other to-be-joined portion is present. The side of the member 2 has a relatively large diameter. Further, when the relative content ratio of the predetermined element (here, Si) in the melt-solidified portion 6 is viewed, the region 6a where Si is relatively dense is the second region with respect to the focal point 11a of the first pulse laser 11. It is formed on the side where the focal point 13a of the two-pulse laser 13 is offset, that is, on the other member 2 side in this embodiment.

このように、第二パルスレーザー13の焦点13aのオフセット方向を異ならせることで、所定の元素が相対的に密となる領域6aの形成位置も変化するため、例えば互いに材質の異なる被接合部材1,2を接合する場合など、そのオフセット方向やオフセット量dを調整することで、被接合部材1,2の組み合わせに応じた適正な構造の溶融凝固部6を形成することができ、組み合わせに制約を受けることなく十分な接合強度を接合体5に付与することが可能となる。   In this way, by changing the offset direction of the focal point 13a of the second pulse laser 13, the formation position of the region 6a where the predetermined element is relatively dense also changes. , 2 and the like, by adjusting the offset direction and the offset amount d, it is possible to form the melt-solidified portion 6 having an appropriate structure according to the combination of the members 1 and 2 to be bonded, and the combination is limited. It becomes possible to give sufficient joining strength to joined object 5 without receiving.

図10〜図12は本発明の第三実施形態に係る接合方法及び接合体を説明するための図であって、第二パルスレーザー13の焦点13aの位置を、第一実施形態と第二実施形態の何れとも異ならせたものである。すなわち、本実施形態では、図10に示すように、第一パルスレーザー11の焦点11aの周辺領域3aに照射される複数(四本)の第二パルスレーザー13の焦点13aの深さ方向位置が互いに異なっている。   10-12 is a figure for demonstrating the joining method and joined body which concern on 3rd embodiment of this invention, Comprising: The position of the focus 13a of the 2nd pulse laser 13 is set to 1st embodiment and 2nd embodiment. It is different from any of the forms. That is, in the present embodiment, as shown in FIG. 10, the depth direction positions of the focal points 13 a of the plurality (four) of the second pulse lasers 13 irradiated to the peripheral region 3 a of the focal point 11 a of the first pulse laser 11 are determined. They are different from each other.

このように第二パルスレーザー13の焦点13aの位置を設定した場合には、溶融領域4に与える温度分布が第一及び第二実施形態とは異なることから、当然に溶融領域4内における溶融液の流動現象にも変化をもたらす。その結果、例えば図11に示すように、接合体5を所定の一方向(図10の矢印Aの方向)から見た場合、Si密組織6aは、第二パルスレーザー13の焦点13aを第一パルスレーザー11の焦点11aに対して深さ方向上側にオフセットした側(図11中、右側)では、第一実施形態と同様、溶融凝固部6の深さ方向上端側に形成される。これに対し、第二パルスレーザー13の焦点13aを第一パルスレーザー11の焦点11aと深さ方向で同レベルの位置に設定した側(図11中、左側)では、第一実施形態の場合よりも、深さ方向下側に位置していることがわかる。この形態は、左右で隣り合う他の焦点13aの位置においても同様に見られた(図12)。   When the position of the focal point 13a of the second pulse laser 13 is set in this way, the temperature distribution given to the melting region 4 is different from that of the first and second embodiments. This also changes the flow phenomenon. As a result, for example, as shown in FIG. 11, when the bonded body 5 is viewed from a predetermined direction (the direction of arrow A in FIG. 10), the Si dense tissue 6 a causes the focal point 13 a of the second pulse laser 13 to be the first. On the side offset to the upper side in the depth direction with respect to the focal point 11a of the pulse laser 11 (right side in FIG. 11), it is formed on the upper end side in the depth direction of the melted and solidified portion 6 as in the first embodiment. On the other hand, on the side (left side in FIG. 11) where the focal point 13a of the second pulse laser 13 is set at the same level position in the depth direction as the focal point 11a of the first pulse laser 11, the case of the first embodiment. It can also be seen that it is located on the lower side in the depth direction. This form was similarly seen at the positions of other focal points 13a adjacent on the left and right (FIG. 12).

このように、本実施形態に係る接合方法及び接合体5によれば、溶融凝固部6内における所定の元素が密となる組織(Si密領域6a)をより三次元的に複雑に分布させることが可能となる。よって、その分だけ、溶融凝固部6に一種のアンカー効果を付与することができ、接合強度の更なる向上を図ることが可能となる。   As described above, according to the bonding method and the bonded body 5 according to the present embodiment, the structure (Si dense region 6a) in which the predetermined element in the melt-solidified portion 6 is densely distributed more complicatedly in three dimensions. Is possible. Therefore, it is possible to give a kind of anchor effect to the melted and solidified portion 6 correspondingly, and it is possible to further improve the bonding strength.

なお、以上の説明では、各パルスレーザー11,13の照射条件(出力、パルス幅、照射時間など)を照射期間中一定とした場合を説明したが、もちろん、途中で適宜変更することも可能である。要は、照射期間中一定か否かを問わず、接合対象となる被接合部材1,2の材質、必要とされる接合強度、接合領域(溶融凝固部6の大きさ、形状)等に応じて、適宜照射条件を調整することが肝要である。   In the above description, the irradiation conditions (output, pulse width, irradiation time, etc.) of the pulse lasers 11 and 13 are set constant during the irradiation period. is there. In short, regardless of whether it is constant during the irradiation period, depending on the material of the members 1 and 2 to be joined, the required joining strength, the joining area (size and shape of the melt-solidified portion 6), etc. Therefore, it is important to adjust the irradiation conditions as appropriate.

1,2 被接合部材
3 当接部
3a 周辺領域
4 溶融領域
5 接合体
6 溶融凝固部
6a Si密 領域
6b Si疎領域
6c 中間領域
10 接合装置
11 第一パルスレーザー
11a 焦点
11b 照射領域
12 第一レーザー発振器
13 第二パルスレーザー
13a 焦点
13b 照射領域
14 第二レーザー発振器
15 光学系
16 空間光位相変調器
17 テーブル
20 ビームスプリッター
21 対物レンズ
1, 2 to-be-joined member 3 contact part 3a peripheral region 4 fusion region 5 joined body 6 fusion solidification part 6a Si dense region 6b Si sparse region 6c intermediate region 10 joining device 11 first pulse laser 11a focus 11b irradiation region 12 Laser oscillator 13 Second pulse laser 13a Focus 13b Irradiation area 14 Second laser oscillator 15 Optical system 16 Spatial light phase modulator 17 Table 20 Beam splitter 21 Objective lens

Claims (12)

二つの部材の当接部又はその近傍に向けてレーザーを照射して、前記当接部を溶融することで前記二つの部材を接合する方法において、
前記レーザーの照射は、第一パルスレーザーを前記当接部に向けて照射する第一照射ステップと、前記第一パルスレーザーとは繰り返し周波数の異なる第二パルスレーザーを前記第一パルスレーザーの焦点の周辺領域に向けて照射する第二照射ステップとを有し、
前記第一照射ステップと前記第二照射ステップは、各々の照射期間の少なくとも一部が重複するようにして行われ、
レーザーパルスの単位繰り返し時間当たりの前記当接部への加熱量が前記当接部の熱拡散量よりも大きくなるよう、前記第一パルスレーザーの繰り返し周波数を設定し、かつ
前記単位繰り返し時間当たりの前記周辺領域への加熱量が前記周辺領域の熱拡散量よりも小さくなるよう、前記第二パルスレーザーの繰り返し周波数を設定することを特徴とする接合方法。
In a method of joining the two members by irradiating a laser toward the contact portion of the two members or the vicinity thereof and melting the contact portion,
The laser irradiation includes a first irradiation step of irradiating the first pulse laser toward the contact portion, and a second pulse laser having a repetition frequency different from that of the first pulse laser. A second irradiation step for irradiating the surrounding area,
The first irradiation step and the second irradiation step are performed such that at least a part of each irradiation period overlaps,
The repetition frequency of the first pulse laser is set so that the amount of heating to the contact portion per unit repetition time of the laser pulse is larger than the amount of thermal diffusion of the contact portion, and the unit repetition time per unit repetition time A joining method, wherein a repetition frequency of the second pulse laser is set so that a heating amount to the peripheral region is smaller than a thermal diffusion amount of the peripheral region.
前記第二パルスレーザーを、前記周辺領域内の複数点に向けて照射する請求項1に記載の接合方法。   The bonding method according to claim 1, wherein the second pulse laser is irradiated toward a plurality of points in the peripheral region. 前記第二パルスレーザーの焦点を、前記第一パルスレーザーの焦点位置に対してその照射方向にオフセットした位置に設定する請求項1又は2に記載の接合方法。   The bonding method according to claim 1, wherein the focal point of the second pulse laser is set at a position offset in the irradiation direction with respect to the focal position of the first pulse laser. 前記第二パルスレーザーの複数の焦点位置の前記オフセット量を、その照射方向から見て互いに隣り合う前記焦点の間で異ならせる請求項3に記載の接合方法。   The bonding method according to claim 3, wherein the offset amounts of the plurality of focal positions of the second pulse laser are made different between the focal points adjacent to each other when viewed from the irradiation direction. 前記第一パルスレーザー及び前記第二パルスレーザーの照射期間における焦点位置を共に固定する請求項1〜4の何れかに記載の接合方法。   The joining method according to any one of claims 1 to 4, wherein a focal position in an irradiation period of the first pulse laser and the second pulse laser is fixed together. 前記第一パルスレーザー及び前記第二パルスレーザーの照射期間を共に1.0秒以上とする請求項1〜5の何れかに記載の接合方法。   The joining method according to any one of claims 1 to 5, wherein both the irradiation periods of the first pulse laser and the second pulse laser are 1.0 seconds or more. 前記第一パルスレーザーと前記第二パルスレーザーの何れにもフェムト秒レーザーを用いる請求項1〜6の何れかに記載の接合方法。   The joining method according to claim 1, wherein a femtosecond laser is used for both the first pulse laser and the second pulse laser. 前記二つの部材を請求項1〜7の何れかに記載の方法で接合してなる接合体。   A joined body formed by joining the two members by the method according to claim 1. 前記二つの部材のうち少なくとも一方の部材が板ガラスである請求項8に記載の接合体。   The joined body according to claim 8, wherein at least one of the two members is a plate glass. 前記二つの部材は互いに異なる材質からなる請求項8又は9に記載の接合体。   The joined body according to claim 8 or 9, wherein the two members are made of different materials. 二つの部材の当接部又はその近傍に向けてレーザーを照射して、前記当接部を溶融することで前記二つの部材を接合するための装置であって、
第一パルスレーザーを照射する第一の光源と、
前記第一パルスレーザーとは繰り返し周波数の異なる第二パルスレーザーを照射する第二の光源と、
前記第一及び第二の光源から照射された前記第一及び第二パルスレーザーを前記二つの部材内に集光させるための光学系と、
前記光学系の経路上に配設され、前記第二パルスレーザーの位相変調を行う空間光位相変調器とを備え、
前記光学系及び前記空間光位相変調器は、前記第一パルスレーザーを前記当接部に向けて照射すると共に、前記第二パルスレーザーを前記第一パルスレーザーの焦点の周辺領域に向けて照射可能に構成され、
前記第一パルスレーザーの照射と前記第二パルスレーザーの照射は、各々の照射期間の少なくとも一部が重複するようにして行われ、
レーザーパルスの単位繰り返し時間当たりの前記当接部への加熱量が前記当接部の熱拡散量よりも大きくなるよう、前記第一パルスレーザーの繰り返し周波数が設定され、かつ
前記単位繰り返し時間当たりの前記周辺領域への加熱量が前記周辺領域の熱拡散量よりも小さくなるよう、前記第二パルスレーザーの繰り返し周波数が設定されることを特徴とする接合装置。
An apparatus for joining the two members by irradiating a laser toward the contact portion of the two members or the vicinity thereof and melting the contact portion,
A first light source for irradiating a first pulse laser;
A second light source for irradiating a second pulse laser having a different repetition frequency from the first pulse laser;
An optical system for condensing the first and second pulse lasers irradiated from the first and second light sources in the two members;
A spatial light phase modulator disposed on the path of the optical system and performing phase modulation of the second pulse laser;
The optical system and the spatial light phase modulator can irradiate the first pulse laser toward the contact portion and irradiate the second pulse laser toward a peripheral region of the focal point of the first pulse laser. Composed of
The irradiation of the first pulse laser and the irradiation of the second pulse laser are performed so that at least a part of each irradiation period overlaps,
The repetition frequency of the first pulse laser is set so that the amount of heating to the contact portion per unit repetition time of the laser pulse is larger than the amount of thermal diffusion of the contact portion, and the unit repetition time per unit repetition time The joining apparatus according to claim 1, wherein a repetition frequency of the second pulse laser is set so that a heating amount to the peripheral region is smaller than a thermal diffusion amount of the peripheral region.
互いに異なる材質からなり、かつ少なくとも一方の部材がガラスからなる二つの部材の当接部に溶融凝固部が形成された接合体において、
前記溶融凝固部は前記二つの部材に跨って形成されると共に、
前記溶融凝固部のうち前記一方の部材側の領域では、前記他方の部材を構成する所定の元素の割合が前記一方の部材に含まれる前記所定の元素の割合に比べて増大し、かつ
前記溶融凝固部の前記他方の部材側の領域では、前記一方の部材を構成する所定の元素の割合が前記他方の部材に含まれる前記所定の元素の割合に比べて増大していることを特徴とする接合体。
In a joined body in which a melt-solidified part is formed at the contact part of two members made of different materials and at least one member made of glass,
The melt-solidified part is formed across the two members,
In the region on the one member side of the melt-solidified portion, a ratio of the predetermined element constituting the other member is increased as compared with a ratio of the predetermined element included in the one member, and the melting In the region on the other member side of the solidified portion, a ratio of the predetermined element constituting the one member is increased as compared with a ratio of the predetermined element included in the other member. Joined body.
JP2015046117A 2015-03-09 2015-03-09 Joining method, joining apparatus, and joined body Active JP6584796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046117A JP6584796B2 (en) 2015-03-09 2015-03-09 Joining method, joining apparatus, and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046117A JP6584796B2 (en) 2015-03-09 2015-03-09 Joining method, joining apparatus, and joined body

Publications (2)

Publication Number Publication Date
JP2016165738A true JP2016165738A (en) 2016-09-15
JP6584796B2 JP6584796B2 (en) 2019-10-02

Family

ID=56897309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046117A Active JP6584796B2 (en) 2015-03-09 2015-03-09 Joining method, joining apparatus, and joined body

Country Status (1)

Country Link
JP (1) JP6584796B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099446A (en) * 2017-12-08 2019-06-24 日本電気硝子株式会社 Processing method of fine periodic structure with pulse laser, and vitreous body
DE102019130973A1 (en) * 2019-11-15 2021-05-20 Trumpf Laser- Und Systemtechnik Gmbh Apparatus and method for creating a melt pool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219590A (en) * 2001-01-26 2002-08-06 Nippon Steel Corp Lap laser beam welding method for galvanized sheet iron
JP2011092944A (en) * 2009-10-27 2011-05-12 Panasonic Corp Fusion welding method and fusion welding apparatus
JP2012045570A (en) * 2010-08-26 2012-03-08 Kobe Steel Ltd Method for manufacturing aluminum joined body
JP2012236228A (en) * 2012-07-23 2012-12-06 Nippon Steel & Sumitomo Metal Corp Laser welding method and laser welding device
US20130344302A1 (en) * 2011-01-10 2013-12-26 David Hélie Laser reinforced direct bonding of optical components
JP2014065061A (en) * 2012-09-26 2014-04-17 Toshiba Corp Surface modification method and structure of nickel base alloy weld metal
JP2015506838A (en) * 2011-11-08 2015-03-05 ピコシス インコーポレイテッドPicosys Incorporated Glass-to-glass, glass-to-plastic and glass-to-ceramic / semiconductor bonding at room temperature

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219590A (en) * 2001-01-26 2002-08-06 Nippon Steel Corp Lap laser beam welding method for galvanized sheet iron
JP2011092944A (en) * 2009-10-27 2011-05-12 Panasonic Corp Fusion welding method and fusion welding apparatus
JP2012045570A (en) * 2010-08-26 2012-03-08 Kobe Steel Ltd Method for manufacturing aluminum joined body
US20130344302A1 (en) * 2011-01-10 2013-12-26 David Hélie Laser reinforced direct bonding of optical components
JP2015506838A (en) * 2011-11-08 2015-03-05 ピコシス インコーポレイテッドPicosys Incorporated Glass-to-glass, glass-to-plastic and glass-to-ceramic / semiconductor bonding at room temperature
JP2012236228A (en) * 2012-07-23 2012-12-06 Nippon Steel & Sumitomo Metal Corp Laser welding method and laser welding device
JP2014065061A (en) * 2012-09-26 2014-04-17 Toshiba Corp Surface modification method and structure of nickel base alloy weld metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099446A (en) * 2017-12-08 2019-06-24 日本電気硝子株式会社 Processing method of fine periodic structure with pulse laser, and vitreous body
JP7067736B2 (en) 2017-12-08 2022-05-16 日本電気硝子株式会社 Processing method of fine periodic structure using pulse laser and glass body
DE102019130973A1 (en) * 2019-11-15 2021-05-20 Trumpf Laser- Und Systemtechnik Gmbh Apparatus and method for creating a melt pool

Also Published As

Publication number Publication date
JP6584796B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CN105392593B (en) By the device and method of laser cutting profile from flat substrate
DK2747984T3 (en) A method and apparatus for laser welding two plastic parts to be joined
JP6799755B2 (en) Laser welding method
JP4527488B2 (en) Laser processing equipment
KR101162028B1 (en) Glass welding method and glass layer fixing method
CN109414789A (en) The method for engaging substrate with component by the structuring of substrate
JP2009226643A (en) Bonding method and bonded body
CN106170365A (en) Use the method and apparatus that laser beam focal line carries out processing based on laser to sheet-like substrates
KR102617598B1 (en) Method for laser welding of transparent workpieces and associated laser processing machine
CN107892469A (en) A kind of multi-laser beam closes the method and equipment of beam glass for bonding material
JP2001334578A (en) Method for welding resin by laser
JP4202836B2 (en) Laser welding method and laser welding apparatus
JP2009255163A (en) Laser processing method
US20210276128A1 (en) Butt welding with ultrashort pulse laser beams, and optical elements joined together from individual parts
JP6584796B2 (en) Joining method, joining apparatus, and joined body
CN110856886A (en) Soldering method for connecting a transparent first substrate and a non-transparent second substrate and use thereof
KR20160003270A (en) Method for soldering a sandwich metal sheet to a solid metal sheet using a laser beam
JP2018537289A (en) Method of joining two components by at least one laser beam in the region of the joining area and method of forming a continuous joining seam
US20210276127A1 (en) Butt welding of two workpieces with an ultrashort pulse laser beam, and associated optical elements
CN114556163A (en) Bonded substrates and methods of separating a portion of the bonded substrates by a bond, e.g. making liquid lens arrays and separating the arrays into individual liquid lenses
JP7067736B2 (en) Processing method of fine periodic structure using pulse laser and glass body
Kahle et al. Glass welding with ultra-short laser pulses and long focal lengths A process model
JP2000288755A (en) Laser beam joining method its device
KR102520939B1 (en) Laser Welding Device and Method for Controlling the Same
JP4674133B2 (en) Method for producing a composite comprising quartz and gold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6584796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250