JP2014065061A - Surface modification method and structure of nickel base alloy weld metal - Google Patents

Surface modification method and structure of nickel base alloy weld metal Download PDF

Info

Publication number
JP2014065061A
JP2014065061A JP2012212424A JP2012212424A JP2014065061A JP 2014065061 A JP2014065061 A JP 2014065061A JP 2012212424 A JP2012212424 A JP 2012212424A JP 2012212424 A JP2012212424 A JP 2012212424A JP 2014065061 A JP2014065061 A JP 2014065061A
Authority
JP
Japan
Prior art keywords
weld metal
base alloy
nickel
surface modification
alloy weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012212424A
Other languages
Japanese (ja)
Inventor
Mikiro Ito
幹郎 伊藤
Wataru Kono
渉 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012212424A priority Critical patent/JP2014065061A/en
Publication of JP2014065061A publication Critical patent/JP2014065061A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance health and reliability of a structure like an atomic reactor by suppressing generation and development of a stress corrosion crack of a nickel base alloy weld metal in a weld zone of the structure.SOLUTION: A nickel base alloy weld metal 4 with a columnar crystal structure in a weld zone 1 of a structure is melted, and then the melted weld metal is agitated to modify a columnar crystal structure 4a into a granular structure 5.

Description

本発明は、原子炉等の構造物に用いられるニッケル基合金溶接金属の表面改質方法及び構造物に関する。   The present invention relates to a surface modification method and structure for a nickel-base alloy weld metal used in a structure such as a nuclear reactor.

一般の沸騰水型原子炉(以後BWRと称す)では、原子炉建屋内に原子炉格納容器が設置されており、この原子炉格納容器内には原子炉圧力容器がペデスタル上に設置されている。原子炉圧力容器内には炉心および冷却水が収容されており、この冷却水は炉心の下方から上方に流通する際、炉心の核反応熱を奪い昇温する。昇温した冷却水は蒸気と水との二相流状態になり炉心の上方に設けられた気水分離器内に流入する。気水分離器で水と蒸気に分離され、分離された蒸気は気水分離器の上方に設けられた蒸気乾燥器で乾燥されて乾燥蒸気となり、上記原子炉圧力容器に接続された主蒸気配管を介してタービン系に供され、タービン系を駆動する。一方、分離された水は炉心の下方に流下して、再度炉心の下方から上方に向かって流通し、以下同様のサイクルを繰り返す。   In a general boiling water reactor (hereinafter referred to as BWR), a reactor containment vessel is installed in the reactor building, and a reactor pressure vessel is installed on the pedestal in the reactor containment vessel. . A reactor core and cooling water are accommodated in the reactor pressure vessel, and when this cooling water flows from the lower side to the upper side of the reactor core, the temperature rises by taking away the nuclear reaction heat of the core. The heated cooling water is in a two-phase flow state of steam and water, and flows into a steam separator provided above the core. The steam is separated into water and steam by the steam separator, and the separated steam is dried by the steam dryer provided above the steam separator to become dry steam, which is connected to the reactor pressure vessel. Is provided to the turbine system via the turbine to drive the turbine system. On the other hand, the separated water flows down below the core and flows again from below to above the core, and the same cycle is repeated thereafter.

上記原子炉圧力容器は、容器本体と、この容器本体の上部開口を閉塞するように設けられた蓋体と冷却水を取水し、主蒸気を導出する配管から構成されている。この圧力容器本体は円筒状の胴体と、この胴体下端に接続された下鏡とから構成されている。   The reactor pressure vessel is composed of a vessel main body, a lid provided so as to close the upper opening of the vessel main body, and piping for taking cooling water and leading out main steam. The pressure vessel body is composed of a cylindrical body and a lower mirror connected to the lower end of the body.

上記原子炉圧力容器内の内部構造物、接続配管セーフエンド、炉内計装管や制御棒駆動機構案内管の貫通部等の構造物、及び原子炉圧力容器内面の肉盛オーバレイ部などの溶接部には、溶接金属として主にニッケル基合金が用いられている(特許文献1)。   Welding of internal structures in the reactor pressure vessel, connection pipe safe end, structures such as in-core instrumentation tubes and control rod drive mechanism guide tube penetrations, and overlay overlays on the inner surface of the reactor pressure vessel A nickel-based alloy is mainly used as the weld metal in the part (Patent Document 1).

このようなニッケル基合金を溶接金属として用いた溶接継手部の例を図6に示す。この溶接継手部1は、母材2、3と、母材2、3に突き合わせ溶接されたニッケル基合金からなる溶接金属4から構成される。   An example of a welded joint using such a nickel-based alloy as a weld metal is shown in FIG. The weld joint 1 is composed of base metals 2 and 3 and a weld metal 4 made of a nickel-base alloy that is butt welded to the base materials 2 and 3.

特開2000−312969号公報JP 2000-312969 A

ところで、ニッケル基合金からなる溶接金属4は高耐食性材料であるが、高温純水中で応力腐食割れ(SCC)感受性を示すことが知られている。600合金では母材が粒状組織であるのに対し、182合金のような溶接金属は、図6に示すように柱状晶4aが形成された方向性を持った金属組織であり、接液部となる表面から溶接金属内部に向う方向性を有している。   By the way, although the weld metal 4 made of a nickel-based alloy is a highly corrosion-resistant material, it is known to exhibit stress corrosion cracking (SCC) sensitivity in high-temperature pure water. In 600 alloy, the base metal has a granular structure, whereas a weld metal such as 182 alloy has a directional metal structure in which columnar crystals 4a are formed as shown in FIG. Direction from the surface to the inside of the weld metal.

このような金属組織の182合金からなるニッケル基合金溶接金属4は、原子炉冷却水のような高温水中で柱状晶に沿った粒界型のSCC感受性を有し、有意な進展速度を示すことが知られている。もしも供用運転中に、仮に、応力腐食割れによるき裂が発生した場合は、溶接部の残留応力に依存して柱状晶に沿ったき裂の進展が生じ、構造物の健全性が損なわれる可能性がある。   The nickel-base alloy weld metal 4 made of 182 alloy having such a metal structure has a grain boundary type SCC sensitivity along a columnar crystal in high-temperature water such as reactor cooling water, and exhibits a significant growth rate. It has been known. If a crack due to stress corrosion cracking occurs during in-service operation, the crack progresses along the columnar crystals depending on the residual stress in the weld, and the soundness of the structure may be impaired. There is.

本発明は、上記課題を解決するためになされたもので、原子炉等の構造物の溶接継手部や肉盛オーバレイ部等の溶接部における柱状晶組織のニッケル基合金からなる溶接金属の表面を改質することにより、耐応力腐食割れ性を向上させ、構造物の健全性及び信頼性を高めることができるニッケル基合金溶接金属の表面改質方法及び構造物を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The surface of a weld metal made of a nickel-based alloy having a columnar crystal structure in a welded joint portion such as a welded joint portion or a built-up overlay portion of a structure such as a nuclear reactor is provided. An object of the present invention is to provide a nickel-base alloy weld metal surface modification method and structure capable of improving the stress corrosion cracking resistance and improving the soundness and reliability of the structure by modification.

上記課題を解決するために、本発明に係るニッケル基合金溶接金属の表面改質方法は、構造物の溶接部における柱状晶組織のニッケル基合金溶接金属を溶融し、次に溶融した溶接金属を攪拌することにより柱状晶組織を粒状組織に改質することを特徴とする。   In order to solve the above-mentioned problems, a surface modification method for a nickel-base alloy weld metal according to the present invention involves melting a nickel-base alloy weld metal having a columnar crystal structure in a welded portion of a structure, and then melting the weld metal. The columnar crystal structure is modified to a granular structure by stirring.

本発明によれば、原子炉等の構造物の溶接部におけるニッケル基合金溶接金属の応力腐食割れの発生、進展を抑制することにより、構造物の健全性及び信頼性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the soundness and reliability of a structure can be improved by suppressing generation | occurrence | production and progress of the stress corrosion crack of the nickel base alloy weld metal in the weld part of structures, such as a nuclear reactor.

第1の実施形態に係る表面改質装置の模式図。The schematic diagram of the surface modification apparatus which concerns on 1st Embodiment. 第1の実施形態において、ローレンツ力の作用方向を示す模式図。The schematic diagram which shows the action direction of Lorentz force in 1st Embodiment. 第1の実施形態に係る表面改質後のニッケル基合金溶接金属の断面模式図。The cross-sectional schematic diagram of the nickel base alloy weld metal after the surface modification which concerns on 1st Embodiment. 第2の実施形態に係る表面改質装置の模式図。The schematic diagram of the surface modification apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る表面改質後のニッケル基合金溶接金属の断面模式図。The cross-sectional schematic diagram of the nickel base alloy weld metal after the surface modification which concerns on 3rd Embodiment. 柱状晶組織の溶接金属及び溶接部の断面模式図。The cross-sectional schematic diagram of the weld metal of a columnar crystal structure, and a welding part.

以下、本発明に係るニッケル基合金溶接金属の表面改質方法及び構造物の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a surface modification method and a structure of a nickel-base alloy weld metal according to the present invention will be described with reference to the drawings.

[第1の実施形態]
第1の実施形態に係るニッケル基合金溶接金属の表面改質方法を図1乃至図3により説明する。
[First Embodiment]
A surface modification method for a nickel-base alloy weld metal according to the first embodiment will be described with reference to FIGS.

(構成)
本実施形態では、構造材の溶接部として溶接継手部1に本実施形態の表面改質方法を適用した例について説明する。
(Constitution)
This embodiment demonstrates the example which applied the surface modification method of this embodiment to the welded joint part 1 as a weld part of a structural material.

溶接継手部1は、例えば600合金等のニッケル基合金からなる母材2、3が、例えば182合金等からなるニッケル基合金溶接金属4で突き合わせ溶接されている。このニッケル基合金溶接金属4は柱状晶の金属組織であり、本実施形態では図1に示すようにティグアークを用いた表面改質装置により表面改質をおこなう。   In the welded joint portion 1, for example, base materials 2 and 3 made of nickel-base alloy such as 600 alloy are butt welded with nickel-base alloy weld metal 4 made of 182 alloy or the like. The nickel-base alloy weld metal 4 has a columnar crystal structure, and in this embodiment, the surface is reformed by a surface reforming apparatus using a TIG arc as shown in FIG.

この表面改質装置は、ティグトーチ6と、その周囲に配置された磁性材料7と、磁性材料7の外周に巻回された励磁コイル8と、交流矩形波発生電源9と、外部電源10とから構成される。   This surface modifying apparatus includes a TIG torch 6, a magnetic material 7 disposed around the TIG torch 6, an exciting coil 8 wound around the outer periphery of the magnetic material 7, an AC rectangular wave generating power source 9, and an external power source 10. Composed.

(作用)
柱状晶の金属組織であるニッケル基合金溶接金属4の表面改質を行う際は、被対象物である溶接継手部1とティグトーチ6の間に外部電源10から電圧を印加することによりティグアークを発生させ、ニッケル基合金溶接金属4の表面に溶融池11を形成させる。
(Function)
When the surface modification of the nickel-base alloy weld metal 4 which is a columnar crystal metal structure is performed, a TIG arc is generated by applying a voltage from the external power source 10 between the weld joint 1 and the TIG torch 6 which is an object. The molten pool 11 is formed on the surface of the nickel-base alloy weld metal 4.

この溶融池11が形成されている状態で、交流矩形波発生電源9より励磁コイル8に電流を流し、ティグトーチ6を移動するのに合わせて励磁コイル8を巻回した磁性材料7を移動する。この時、磁場強度、磁場周波数を調整することにより、交流磁場12を前記溶融池11に対して垂直方向に形成することができる(図1の矢印で示す方向)。   In a state where the molten pool 11 is formed, a current is supplied from the AC rectangular wave generating power source 9 to the exciting coil 8, and the magnetic material 7 around which the exciting coil 8 is wound is moved in accordance with the movement of the TIG torch 6. At this time, the AC magnetic field 12 can be formed in a direction perpendicular to the molten pool 11 by adjusting the magnetic field strength and the magnetic field frequency (direction indicated by the arrow in FIG. 1).

これによって、図2に示すように、溶融池11内を流れる溶接電流13との関係でローレンツ力14の作用方向が周期的に逆転し、上記溶融池11内が効果的に攪拌される。この攪拌により柱状晶の成長が抑えられ、図3に示すように、溶融、凝固した表面改質層5に粒状組織が形成されることになり、SCC発生、進展に対する抵抗が高くなる。   As a result, as shown in FIG. 2, the action direction of the Lorentz force 14 is periodically reversed in relation to the welding current 13 flowing in the molten pool 11, and the inside of the molten pool 11 is effectively stirred. By this stirring, the growth of columnar crystals is suppressed, and as shown in FIG. 3, a granular structure is formed in the surface modified layer 5 that has been melted and solidified, and resistance to the occurrence and progress of SCC is increased.

この粒状組織の表面改質層5の厚みは、ニッケル基合金溶接金属4に形成される溶融池11の深さに関連するが、ニッケル基合金溶接金属4の接液側に所定厚みの表面改質層が形成されればよく、その厚みは接液水の水質等の周囲の環境に応じて適宜設定される。   The thickness of the surface-modified layer 5 having the granular structure is related to the depth of the molten pool 11 formed in the nickel-base alloy weld metal 4, but the surface modification having a predetermined thickness is formed on the liquid contact side of the nickel-base alloy weld metal 4. A quality layer may be formed, and the thickness thereof is appropriately set according to the surrounding environment such as the quality of the wetted water.

(効果)
本実施形態によれば、冷却水等に接する柱状晶組織のニッケル基合金溶接金属4の表面層が溶融、攪拌、凝固され、その結果、ニッケル基合金溶接金属4に粒状組織の表面改質層5が形成されるため、応力腐食割れの発生、進展を効果的に抑制することが可能となる。これにより、構造物の健全性、信頼性を向上させることができる。
(effect)
According to this embodiment, the surface layer of the nickel-base alloy weld metal 4 having a columnar crystal structure in contact with cooling water or the like is melted, stirred, and solidified. As a result, the surface-modified layer having a granular structure is formed on the nickel-base alloy weld metal 4. 5 is formed, it is possible to effectively suppress the occurrence and development of stress corrosion cracking. Thereby, the soundness and reliability of the structure can be improved.

[第2の実施形態]
第2の実施形態に係る溶接金属の表面改質方法及び構造物を図4により説明する。
(構成)
本第2の実施形態ではレーザー光を用いて表面改質を行うことを特徴とする。
[Second Embodiment]
The weld metal surface modification method and structure according to the second embodiment will be described with reference to FIG.
(Constitution)
The second embodiment is characterized in that surface modification is performed using laser light.

本実施形態では、表面改質装置として、溶融用のレーザー光15と攪拌用のレーザー光17をそれぞれ発振する2台のレーザー発振器(図示せず)と、レーザー光15を集光する集光光学系16と、レーザー光17を集光する集光光学系18と、溶融部にシールドガス19を供給するシールドガスノズル20と、から構成される第1及び第2のレーザー光照射装置を用いて表面改質をおこなう。   In the present embodiment, as a surface modification device, two laser oscillators (not shown) that respectively oscillate melting laser light 15 and stirring laser light 17, and condensing optics that condenses the laser light 15. Surface using first and second laser light irradiation devices comprising a system 16, a condensing optical system 18 for condensing the laser light 17, and a shield gas nozzle 20 for supplying a shield gas 19 to the melting part Reform.

(作用)
柱状晶の金属組織であるニッケル基合金溶接金属4の表面改質をおこなう際は、第1のレーザー光照射手段のレーザー発振器から発振されたレーザー光15を集光光学系16にて集光し、表面改質の対象部であるニッケル基合金溶接金属4の表面を照射する。そのレーザー光15の進行方向前方から、溶接金属の酸化を防止するためにシールドガス19を供給する。これにより、レーザー光照射部分は溶融し、溶融池11が形成される。
(Function)
When the surface modification of the nickel-base alloy weld metal 4 which is a columnar crystal metal structure is performed, the laser light 15 oscillated from the laser oscillator of the first laser light irradiation means is condensed by the condensing optical system 16. Then, the surface of the nickel-base alloy weld metal 4 that is a target portion for surface modification is irradiated. A shield gas 19 is supplied from the front in the traveling direction of the laser beam 15 to prevent oxidation of the weld metal. Thereby, a laser beam irradiation part melt | dissolves and the molten pool 11 is formed.

なお、溶接用のレーザー光には、例えばYAGレーザーが用いられる。また、集光光学系に放物面ミラーのような集光ミラーを用いても良い。さらに、YAGレーザーの代わりにCO2レーザーを用いても良い。 For example, a YAG laser is used as the laser beam for welding. A condensing mirror such as a parabolic mirror may be used for the condensing optical system. Further, a CO 2 laser may be used instead of the YAG laser.

この第1のレーザー光照射手段による溶融に合わせて、第2のレーザー光照射手段のパルスレーザー発振器から発振されたレーザー光17を集光光学系18にて集光し、凝固直前の溶融池11に照射する。この第2のレーザー光照射手段のレーザー光17は、通常のパルスよりもパルス幅が短く、ピークパワーの高いQスイッチレーザー等が用いられる。このレーザー光17により発生した衝撃波は溶融池11に攪拌作用を与え、凝固した溶接金属表面層において柱状晶の成長が阻止され、図3に示すように、溶融、凝固した表面改質層5に粒状組織が形成されることになる。   In accordance with the melting by the first laser light irradiation means, the laser light 17 oscillated from the pulse laser oscillator of the second laser light irradiation means is condensed by the condensing optical system 18, and the molten pool 11 just before solidification is collected. Irradiate. As the laser beam 17 of the second laser beam irradiation means, a Q-switch laser or the like having a pulse width shorter than that of a normal pulse and a high peak power is used. The shock wave generated by this laser beam 17 gives a stirring action to the molten pool 11, and the growth of columnar crystals is prevented in the solidified weld metal surface layer, and as shown in FIG. A granular structure will be formed.

(効果)
本実施形態によれば、レーザー光の移動に合わせて、上記第1及び第2のレーザー光照射手段により溶融池11を形成し、攪拌することにより、ニッケル基合金溶接金属4の表面に粒状組織の表面改質層5が形成され、SCC発生、進展に対する抵抗を向上させることができる。これにより、構造物の健全性、信頼性を向上させることができる。
(effect)
According to the present embodiment, in accordance with the movement of the laser beam, the molten pool 11 is formed by the first and second laser beam irradiation means and stirred, whereby a granular structure is formed on the surface of the nickel-base alloy weld metal 4. The surface modification layer 5 is formed, and the resistance to SCC generation and progress can be improved. Thereby, the soundness and reliability of the structure can be improved.

[第3の実施形態]
第3の実施形態に係る溶接金属の表面改質方法及び構造物を図5により説明する。
本第3の実施形態は、図5に示すように、上記実施形態の表面改質方法を施工した後、最終的に得られた表面改質層5の材料よりも耐食性の高いERNiCrFe−7、ERNiCrFe−7A、又はそれよりもNb濃度が高いCr含有Ni基溶接金属を肉盛溶接して高耐食性最外層22を形成する。これにより、耐食性がさらに向上し、SCC発生、進展に対する抵抗が高くなるため、構造物の健全性、信頼性をさらに向上させることができる。
[Third Embodiment]
A weld metal surface modification method and structure according to a third embodiment will be described with reference to FIG.
In the third embodiment, as shown in FIG. 5, after applying the surface modification method of the above embodiment, ERNiCrFe-7 having higher corrosion resistance than the material of the surface modification layer 5 finally obtained, The high corrosion resistance outermost layer 22 is formed by overlay welding of ERNiCrFe-7A or a Cr-containing Ni-based weld metal having a higher Nb concentration than that of ERNiCrFe-7A. Thereby, since corrosion resistance further improves and resistance to SCC generation and progress increases, the soundness and reliability of the structure can be further improved.

[変形例]
上記実施形態では表面改質法を構造材の溶接継手部のニッケル基合金溶接金属に適用した例を説明したが、これに限定されず、圧力容器の内面を改質するために肉盛溶接されたオーバレイ部のニッケル基合金溶接金属4に適用してもよい。
[Modification]
In the above embodiment, the example in which the surface modification method is applied to the nickel-base alloy weld metal of the weld joint portion of the structural material has been described. However, the present invention is not limited to this, and overlay welding is performed to modify the inner surface of the pressure vessel. Further, it may be applied to the nickel-base alloy weld metal 4 in the overlay portion.

また、ニッケル基合金溶接金属4にSCCなどの欠陥が既に存在する場合でも、その部分に本実施形態の表面改質方法を適用することができる。その場合、欠陥も含めた部分が溶融、凝固されて、欠陥が消失するのと合わせて組織の粒状化が生じ、上述した実施形態と同様な効果が得られる。   Even when a defect such as SCC already exists in the nickel-base alloy weld metal 4, the surface modification method of the present embodiment can be applied to that portion. In that case, the part including the defect is melted and solidified, and the granulation of the structure occurs together with the disappearance of the defect, and the same effect as the above-described embodiment can be obtained.

以上、説明したように本実施形態に係るニッケル基合金溶接金属の表面改質方法によれば、原子炉圧力容器等の構造物の溶接部におけるニッケル基合金溶接金属に対し、接液部となる溶接金属表面を溶融、凝固させ、その過程で攪拌力を作用させることにより、表層の金属組織を粒状化させ、これにより、SCCの発生、進展に対する抵抗を向上させ、構造物としての健全性及び信頼性を向上することができる。また、原子炉全体の信頼性及び安全性を大幅に向上させることが可能となる等その効果は大である。   As described above, according to the surface modification method for a nickel-base alloy weld metal according to the present embodiment, it becomes a wetted part with respect to the nickel-base alloy weld metal in a weld part of a structure such as a reactor pressure vessel. By melting and solidifying the surface of the weld metal and applying a stirring force in the process, the surface metallographic structure is granulated, thereby improving the resistance to the occurrence and progress of SCC, the soundness of the structure and Reliability can be improved. In addition, the reliability and safety of the entire nuclear reactor can be greatly improved, and the effect is great.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…溶接継手部、2、3…母材、4…ニッケル基合金溶接金属、5…表面改質層、6…ティグトーチ、7…磁性材料、8…磁励コイル、9…交流矩形波発生電源、10…外部電源、11…溶融池、12…交流磁場、13…溶接電流、14…ローレンツ力、15、17…レーザー光、16、18…集光光学系、19…シールドガス、20…シールドガスノズル、22…高耐食性最外層。   DESCRIPTION OF SYMBOLS 1 ... Welded joint part, 2, 3 ... Base material, 4 ... Nickel base alloy weld metal, 5 ... Surface modification layer, 6 ... Tig torch, 7 ... Magnetic material, 8 ... Magnet excitation coil, 9 ... AC rectangular wave generation power supply DESCRIPTION OF SYMBOLS 10 ... External power supply, 11 ... Molten pool, 12 ... AC magnetic field, 13 ... Welding current, 14 ... Lorentz force, 15, 17 ... Laser beam, 16, 18 ... Condensing optical system, 19 ... Shield gas, 20 ... Shield Gas nozzle, 22 ... outermost layer with high corrosion resistance.

Claims (8)

構造物の溶接部における柱状晶組織のニッケル基合金溶接金属を溶融し、次に溶融した溶接金属を攪拌することにより柱状晶組織を粒状組織に改質することを特徴とするニッケル基合金溶接金属の表面改質方法。   A nickel-base alloy weld metal characterized by melting a nickel-base alloy weld metal having a columnar crystal structure in a welded portion of a structure and then reforming the columnar crystal structure to a granular structure by stirring the molten weld metal. Surface modification method. 前記溶接金属をティグアークにより溶融し、溶融した溶接金属を電磁誘導手段により攪拌することを特徴とする請求項1記載のニッケル基合金溶接金属の表面改質方法。   2. The surface modification method for a nickel-base alloy weld metal according to claim 1, wherein the weld metal is melted by a TIG arc, and the melted weld metal is stirred by electromagnetic induction means. 前記溶接金属を第1のレーザー光照射手段により溶融し、溶融した溶接金属を第2のレーザー光照射手段により攪拌することを特徴とする請求項1記載のニッケル基合金溶接金属の表面改質方法。   2. The surface modification method for a nickel-base alloy weld metal according to claim 1, wherein the weld metal is melted by a first laser light irradiation means, and the molten weld metal is stirred by a second laser light irradiation means. . 前記粒状組織に改質された表面改質層の上部にこの表面改質層の材料よりも耐食性の高い高耐食性最外層を形成したことを特徴とする請求項1乃至3いずれか1項に記載のニッケル基合金溶接金属の表面改質方法。   The high corrosion-resistant outermost layer having higher corrosion resistance than the material of the surface-modified layer is formed on the surface-modified layer modified into the granular structure. Method for surface modification of nickel-base alloy weld metal. 前記高耐食性最外層は、ERNiCrFe−7、ERNiCrFe−7A、又はそれよりもNb濃度が高いCr含有Ni基溶接金属からなることを特徴とする請求項4記載のニッケル基合金溶接金属の表面改質方法。   5. The surface modification of a nickel-base alloy weld metal according to claim 4, wherein the high corrosion-resistant outermost layer is made of ERNiCrFe-7, ERNiCrFe-7A, or a Cr-containing Ni-base weld metal having a higher Nb concentration. Method. 前記構造物の溶接部は溶接継手部又は肉盛オーバレイ部であることを特徴とする請求項1乃至5いずれか1項に記載のニッケル基合金溶接金属の表面改質方法。   The method for modifying the surface of a nickel-base alloy weld metal according to any one of claims 1 to 5, wherein the welded portion of the structure is a welded joint portion or an overlay overlay portion. 請求項1乃至3および6のいずれか1項に記載のニッケル基合金溶接金属の表面改質方法を用いて、溶接部の表面が粒状組織に改質されたことを特徴とする構造物。   A structure characterized in that the surface of the welded portion is modified into a granular structure using the surface modification method for a nickel-base alloy weld metal according to any one of claims 1 to 3 and 6. 請求項4乃至6のいずれか1項に記載のニッケル基合金溶接金属の表面改質方法を用いて、溶接部の改質された粒状組織から成る表面改質層の上部に高耐食性最外層を形成したことを特徴とする構造物。   A highly corrosion-resistant outermost layer is formed on the upper part of the surface-modified layer having a grain structure with a modified welded portion using the method for surface-modifying a nickel-base alloy weld metal according to any one of claims 4 to 6. A structure characterized by formation.
JP2012212424A 2012-09-26 2012-09-26 Surface modification method and structure of nickel base alloy weld metal Pending JP2014065061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212424A JP2014065061A (en) 2012-09-26 2012-09-26 Surface modification method and structure of nickel base alloy weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212424A JP2014065061A (en) 2012-09-26 2012-09-26 Surface modification method and structure of nickel base alloy weld metal

Publications (1)

Publication Number Publication Date
JP2014065061A true JP2014065061A (en) 2014-04-17

Family

ID=50741965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212424A Pending JP2014065061A (en) 2012-09-26 2012-09-26 Surface modification method and structure of nickel base alloy weld metal

Country Status (1)

Country Link
JP (1) JP2014065061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165738A (en) * 2015-03-09 2016-09-15 日本電気硝子株式会社 Bonding method, bonding device and joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165738A (en) * 2015-03-09 2016-09-15 日本電気硝子株式会社 Bonding method, bonding device and joined body

Similar Documents

Publication Publication Date Title
US5688419A (en) Method for mitigating residual stresses in welded metal components using high torch travel speeds
JP2011161459A (en) Method of welding material with high-corrosion resistance
JP2008055461A (en) Welding method for nuclear power generation plant structural material
JP2006247673A (en) Method of welding procedure for pipe
JP2014121722A (en) Laser welding method and laser welding apparatus
Yu et al. Effects of post-weld heat treatment on microstructure and mechanical properties of laser welds in GH3535 superalloy
JP2015131326A (en) Welding method, repair method, and nuclear reactor vessel
TW309618B (en)
Buddu et al. Investigations of microstructure and mechanical properties of 60-mm-thick type 316L stainless steel welded plates by multipass tungsten inert gas welding and electron beam welding for fusion reactor applications
Wang et al. Bubble evolution in ultrasonic wave-assisted underwater wet FCAW
JP2014065061A (en) Surface modification method and structure of nickel base alloy weld metal
Lee et al. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments
JPH08104949A (en) Formation of structure having surface treated layer and surface treated layer
Yoo Recent study of materials and welding methods for nuclear power plant
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
JP2005230838A (en) Laser beam welding method and equipment for nickel-based alloy welded structure
Sun et al. Narrow gap welding for thick titanium plates: a review
JP3199960B2 (en) Quality improvement method of metal parts by spot welding
Yang et al. Welding process and welding consumable of generation III nuclear island main equipment
White et al. Underwater cladding with laser beam and plasma arc welding
JP4412533B2 (en) Method for improving and repairing stress corrosion cracking of high nickel alloy
Murugan et al. Dissimilar and Similar Laser Beam and GTA Welding of Nuclear Fuel Pin Cladding Tube to End Plug Joint
JP2654235B2 (en) Method of preventing stress corrosion cracking of long housing
JP2015031619A (en) Method of manufacturing control rod for reactor
JP2010240690A (en) Surfacing welding method and apparatus thereof