JP2016163377A - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
JP2016163377A
JP2016163377A JP2015037583A JP2015037583A JP2016163377A JP 2016163377 A JP2016163377 A JP 2016163377A JP 2015037583 A JP2015037583 A JP 2015037583A JP 2015037583 A JP2015037583 A JP 2015037583A JP 2016163377 A JP2016163377 A JP 2016163377A
Authority
JP
Japan
Prior art keywords
rotor
coil
outer peripheral
peripheral side
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015037583A
Other languages
Japanese (ja)
Inventor
優人 本間
Masahito Homma
優人 本間
光良 江尻
Mitsuyoshi Ejiri
光良 江尻
正一 江島
Shoichi Ejima
正一 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2015037583A priority Critical patent/JP2016163377A/en
Publication of JP2016163377A publication Critical patent/JP2016163377A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a ventilation property in a rotary machine in which a cooling fin is provided to a field magnet winding.SOLUTION: A rotary machine 1 comprises a rotator 20 having a plurality of field poles 30 formed so that a field magnet winding 50 is wound to a magnetic pole core 40 in a circumferential direction. The field magnet winding 50 includes a plurality of cooling fins 82 projected from a coil outer peripheral surface 83, and the plurality of cooling fins 82 is formed so that a projection amount Lc obtained by projecting from the coil outer peripheral surface 83 continuously and intermittently becomes a small toward an inner peripheral side from the outer peripheral side of the rotator 20 (Lc>Lc>Lc>Lc).SELECTED DRAWING: Figure 2

Description

本発明は、界磁巻線における冷却効率を向上させた回転機に関する。   The present invention relates to a rotating machine with improved cooling efficiency in a field winding.

回転機には、種々の冷却構造が設けられており、例えば、回転子の回転軸に通風ファンが設けられ、回転機の駆動に伴って当該通風ファンが回転駆動されることにより、回転機内の通風が良くなり、回転機の冷却効率が向上される(例えば、特許文献1)。   The rotating machine is provided with various cooling structures. For example, a ventilation fan is provided on the rotating shaft of the rotor, and the ventilation fan is driven to rotate as the rotating machine is driven. Ventilation is improved and cooling efficiency of the rotating machine is improved (for example, Patent Document 1).

また、回転機において特に発熱し易い界磁巻線には、コイル外周面からコイルの一部を突出せた冷却フィンが設けられている。このように、界磁巻線に冷却フィンが設けられることによって、界磁巻線のコイル表面積が増加され、界磁巻線における放熱が効果的に行われる。   In addition, the field winding that is particularly likely to generate heat in the rotating machine is provided with a cooling fin that projects a part of the coil from the outer peripheral surface of the coil. Thus, by providing a cooling fin in the field winding, the coil surface area of the field winding is increased, and heat dissipation in the field winding is effectively performed.

特開2008−67542号公報JP 2008-67542 A

しかし、界磁巻線に多数の冷却フィンが設けられた場合には、界磁巻線の周辺は冷却フィンが密集した状態となり、通風性能が低下してしまう。また、通風ファンによって冷却効率が向上された回転機においても、通風ファンによる冷却空気の送風が冷却フィンによって阻害されてしまう虞がある。   However, when a large number of cooling fins are provided in the field winding, the cooling fins are in a dense state around the field winding, and the ventilation performance is degraded. Further, even in a rotating machine whose cooling efficiency is improved by the ventilation fan, there is a possibility that the cooling fins obstruct the blowing of the cooling air by the ventilation fan.

本発明は上記問題に鑑みてなされたもので、界磁巻線に冷却フィンを設けた回転機における通風性能を向上させることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to improve the ventilation performance in a rotating machine in which field fins are provided with cooling fins.

上記課題を解決する第一の発明に係る回転機は、磁極鉄心に界磁巻線が巻装されて成る界磁極を周方向に複数有する回転子を備えた回転機であって、前記界磁巻線は、コイル外周面から突出する複数の冷却フィンを有し、複数の前記冷却フィンは、前記コイル外周面から突出する突出量が前記回転子の外周側から内周側に向かって連続的または断続的に小さくなるように形成されることを特徴とする。   A rotating machine according to a first invention for solving the above-mentioned problems is a rotating machine comprising a rotor having a plurality of field poles in the circumferential direction, in which field windings are wound around a magnetic pole core, and the field magnet The winding has a plurality of cooling fins protruding from the outer peripheral surface of the coil, and the plurality of cooling fins have a protruding amount protruding from the outer peripheral surface of the coil continuously from the outer peripheral side to the inner peripheral side of the rotor. Or it is formed so that it may become small intermittently.

上記課題を解決する第二の発明に係る回転機は、磁極鉄心に界磁巻線が巻装されて成る界磁極を周方向に複数有する回転子を備えた回転機であって、前記界磁巻線は、前記回転子の周方向に隣接する前記界磁極間においてコイル外周面から突出する複数の冷却フィンを有し、複数の前記冷却フィンは、前記コイル外周面から突出する突出量が前記回転子の外周側から内周側に向かって連続的または断続的に小さくなるように形成されることを特徴とする。   A rotating machine according to a second invention for solving the above-mentioned problems is a rotating machine comprising a rotor having a plurality of field poles in the circumferential direction, in which a field winding is wound around a magnetic pole core, and the field magnet The winding has a plurality of cooling fins protruding from the outer peripheral surface of the coil between the field poles adjacent to each other in the circumferential direction of the rotor, and the plurality of cooling fins have a protruding amount protruding from the outer peripheral surface of the coil. The rotor is formed so as to be continuously or intermittently reduced from the outer peripheral side to the inner peripheral side.

上記課題を解決する第三の発明に係る回転機は、第一または第二の発明に係る回転機において、前記回転子が、当該回転子の周方向に隣接して設けられる前記界磁極の間に、当該界磁極における前記界磁巻線を押えるためのコイル押さえ部材を当該回転子の軸方向に複数有するものであり、前記回転子の軸方向端部側に設置される前記コイル押さえ部材が、冷却媒体を前記回転子の軸方向に案内する軸方向案内手段を有するものであり、前記回転子の軸方向端部側以外に設置される前記コイル押さえ部材が、冷却媒体を前記回転子の径方向に案内する径方向案内手段を有するものであることを特徴とする。   A rotating machine according to a third invention for solving the above-mentioned problems is the rotating machine according to the first or second invention, wherein the rotor is disposed between the field poles provided adjacent to each other in the circumferential direction of the rotor. And a plurality of coil pressing members for pressing the field winding of the field magnetic pole in the axial direction of the rotor, and the coil pressing member installed on the end side in the axial direction of the rotor. , Having an axial guide means for guiding the cooling medium in the axial direction of the rotor, and the coil pressing member installed at a position other than the axial end portion of the rotor, It has a radial direction guiding means for guiding in the radial direction.

第一の発明に係る回転機によれば、冷却フィンのコイル外周面から突出する突出量が回転子の外周側から内周側に向かって連続的または断続的に小さくなるので、突出量の小さい(短い)回転子の内周側に冷却空気等の通風空間を確保することができる。よって、回転機内の通風を良くし、回転機の冷却効率を向上させることができる。
例えば、回転子の回転軸に通風ファンが設けられた回転機においては、回転機の駆動に伴って回転駆動される通風ファンによって回転機内に送られる冷却空気が、冷却フィンによって阻害されることなく、上述の通風空間を通ることになり、回転機内の各種機器が効率的に冷却される。
According to the rotating machine according to the first aspect of the invention, the amount of protrusion that protrudes from the outer peripheral surface of the coil of the cooling fin decreases continuously or intermittently from the outer peripheral side to the inner peripheral side of the rotor. A ventilation space such as cooling air can be secured on the inner peripheral side of the (short) rotor. Therefore, the ventilation in a rotary machine can be improved and the cooling efficiency of a rotary machine can be improved.
For example, in a rotating machine in which a ventilation fan is provided on the rotating shaft of the rotor, the cooling air sent into the rotating machine by the ventilation fan that is rotationally driven as the rotating machine is driven is not hindered by the cooling fins. Through the above-described ventilation space, various devices in the rotating machine are efficiently cooled.

第二の発明に係る回転機によれば、界磁極間における冷却フィンのコイル外周面から突出する突出量が回転子の外周側から内周側に向かって連続的または断続的に小さくなるので、突出量の小さい(短い)回転子の内周側、すなわち、界磁極間における回転子の内周側に冷却空気等の通風空間を確保することができる。よって、界磁極間における回転子の内周側の通風を良くし、回転機の冷却効率を向上させることができる。
例えば、回転子の回転軸に通風ファンが設けられた回転機においては、回転機の駆動に伴って回転駆動される通風ファンによって回転機内に送られる冷却空気が、冷却フィンによって阻害されることなく、界磁極間における回転子の内周側に形成される通風空間を通ることになる。つまり、通風ファンによる冷却空気の回転機軸方向への通風性能が向上されるので、回転機内の各種機器が効率的に冷却される。
According to the rotating machine according to the second invention, the amount of protrusion protruding from the outer peripheral surface of the coil of the cooling fin between the field poles decreases continuously or intermittently from the outer peripheral side to the inner peripheral side of the rotor. A ventilation space such as cooling air can be secured on the inner peripheral side of the rotor with a small protrusion (short), that is, on the inner peripheral side of the rotor between the field poles. Therefore, ventilation on the inner peripheral side of the rotor between the field poles can be improved, and the cooling efficiency of the rotating machine can be improved.
For example, in a rotating machine in which a ventilation fan is provided on the rotating shaft of the rotor, the cooling air sent into the rotating machine by the ventilation fan that is rotationally driven as the rotating machine is driven is not hindered by the cooling fins. Then, it passes through the ventilation space formed on the inner peripheral side of the rotor between the field poles. That is, since the ventilation performance of the cooling air by the ventilation fan in the axial direction of the rotating machine is improved, various devices in the rotating machine are efficiently cooled.

第三の発明に係る回転機によれば、回転子の軸方向端部側に設置されるコイル押さえ部材に軸方向案内手段を設けることにより、冷却媒体を積極的に回転子の軸方向中央部側へ送ることができる。よって、例えば、回転子の回転軸に通風ファンが設けられた回転機においては、回転機の駆動に伴って回転駆動される通風ファンによって回転機内に送られる冷却空気が、コイル押さえ部材によって阻害されることなく、回転子の軸方向中央部側に案内され、回転機内の各種機器が効率的に冷却される。
また、回転子の軸方向端部側以外に設置されるコイル押さえ部材に径方向案内手段を設けることにより、冷却媒体を積極的に回転子の径方向へ送ることができる。よって、例えば、回転子の回転軸に通風ファンが設けられた回転機においても、回転機の駆動に伴って回転駆動される通風ファンによって回転機内に送られる冷却空気が、回転子の軸方向中央部側へ案内された後、コイル押さえ部材によって阻害されることなく、回転子の径方向に案内され、回転機内の各種機器が効率的に冷却される。
According to the rotating machine according to the third aspect of the present invention, the axial guide means is provided on the coil pressing member installed on the axial end portion side of the rotor, so that the cooling medium is positively disposed in the axial center portion of the rotor. Can be sent to the side. Therefore, for example, in a rotating machine in which a ventilation fan is provided on the rotating shaft of the rotor, cooling air sent into the rotating machine by the ventilation fan that is rotationally driven as the rotating machine is driven is obstructed by the coil pressing member. Without being guided, it is guided to the axial center part side of the rotor, and various devices in the rotating machine are efficiently cooled.
Further, by providing the radial guide means on the coil pressing member installed on the side other than the axial end of the rotor, the cooling medium can be positively sent in the radial direction of the rotor. Therefore, for example, even in a rotating machine in which a ventilation fan is provided on the rotating shaft of the rotor, the cooling air sent into the rotating machine by the ventilation fan that is rotationally driven as the rotating machine is driven is centered in the axial direction of the rotor. After being guided to the part side, it is guided in the radial direction of the rotor without being hindered by the coil pressing member, and various devices in the rotating machine are efficiently cooled.

実施例1に係る回転機の構造を示す説明図(概略横断面図)である。It is explanatory drawing (schematic cross-sectional view) which shows the structure of the rotary machine which concerns on Example 1. FIG. 実施例1に係る回転機の周方向(界磁極間)に突出する冷却フィンを示す説明図(部分拡大図)である。It is explanatory drawing (partially enlarged view) which shows the cooling fin which protrudes in the circumferential direction (between field poles) of the rotary machine which concerns on Example 1. FIG. 実施例1に係る回転機の軸方向に突出する冷却フィンを示す説明図(部分拡大図)である。It is explanatory drawing (partial enlarged view) which shows the cooling fin which protrudes in the axial direction of the rotary machine which concerns on Example 1. FIG. 実施例1に係る回転機の構造を示す説明図(概略横断面図)である。It is explanatory drawing (schematic cross-sectional view) which shows the structure of the rotary machine which concerns on Example 1. FIG. 実施例1に係る回転機におけるコイル押さえ部材の配置を示す説明図(概略縦断面図)である。It is explanatory drawing (schematic longitudinal cross-sectional view) which shows arrangement | positioning of the coil pressing member in the rotary machine which concerns on Example 1. FIG. 実施例1に係る回転機におけるコイル押さえ部材の配置を示す説明図(概略平面図)である。It is explanatory drawing (schematic top view) which shows arrangement | positioning of the coil pressing member in the rotary machine which concerns on Example 1. FIG.

以下に、本発明に係る回転機の実施例について、添付図面を参照して詳細に説明する。もちろん、本発明は以下の実施例に限定されず、本発明の趣旨を逸脱しない範囲で各種変更が可能であることは言うまでもない。   Embodiments of a rotating machine according to the present invention will be described below in detail with reference to the accompanying drawings. Needless to say, the present invention is not limited to the following examples, and various modifications can be made without departing from the spirit of the present invention.

本実施例に係る回転機の構造について、図1から図6を参照して説明する。   The structure of the rotating machine according to the present embodiment will be described with reference to FIGS.

図1に示すように、回転機1には、図示しないフレーム等に固定される略円筒形状のステータ10と、ステータ10の内周側に回転自在に保持されるロータ20とが備えられている。そして、ステータ10によって回転磁界が作られ、この回転磁界によってロータ20が回転駆動されるようになっている。   As shown in FIG. 1, the rotating machine 1 includes a substantially cylindrical stator 10 that is fixed to a frame or the like (not shown), and a rotor 20 that is rotatably held on the inner peripheral side of the stator 10. . A rotating magnetic field is created by the stator 10, and the rotor 20 is driven to rotate by this rotating magnetic field.

そして、回転機1における回転軸21には、冷却手段としての通風ファン22が設けられており、回転機1の駆動に伴って通風ファン22が回転駆動されることにより、回転機1内に冷却空気が送られるようになっている(図5参照)。   The rotating shaft 21 of the rotating machine 1 is provided with a ventilation fan 22 as a cooling means. The ventilation fan 22 is driven to rotate as the rotating machine 1 is driven to cool the rotating machine 1. Air is sent (see FIG. 5).

図1に示すように、ロータ20には、複数(本実施例においては、四つ)の界磁極30が等角度(本実施例においては、90°)間隔で設けられており、この界磁極30は、磁極鉄心40と当該磁極鉄心40に巻装される界磁巻線50とから構成される。また、周方向に隣接する界磁極30の間には、ロータ20の回転時における界磁巻線50の変形等を防止するために、後述するコイル押さえ部材60,70が設けられている。   As shown in FIG. 1, the rotor 20 is provided with a plurality (four in the present embodiment) of field poles 30 at equiangular intervals (90 degrees in the present embodiment). 30 includes a magnetic core 40 and a field winding 50 wound around the magnetic core 40. Further, between the field poles 30 adjacent to each other in the circumferential direction, coil pressing members 60 and 70 described later are provided in order to prevent deformation of the field winding 50 when the rotor 20 rotates.

図1および図2に示すように、界磁極30における磁極鉄心40は、図示しない鋼板が軸方向に多数積層されて成るものであり、径方向(図2における上下方向)に延びて界磁巻線50が巻装される鉄心部41と、鉄心部41の径方向先端部(図2における上方側端部)に位置して鉄心部41に巻装された界磁巻線50が遠心力によって逸脱するのを防止する突極部42とから成る。なお、突極部42が周方向(図2における左右方向)に突出して略扇形形状に形成されることにより、周方向に隣接する界磁極30における磁極鉄心40(突極部42)間の隙間が小さくなり、回転機1の駆動におけるコギングが低減されるようになっている。   As shown in FIG. 1 and FIG. 2, the magnetic pole core 40 in the field pole 30 is formed by laminating a number of steel plates (not shown) in the axial direction and extends in the radial direction (vertical direction in FIG. 2). The core portion 41 around which the wire 50 is wound, and the field winding 50 wound around the core portion 41 located at the radial tip portion (the upper end portion in FIG. 2) of the core portion 41 are caused by centrifugal force. It consists of salient pole portions 42 that prevent deviation. In addition, the salient pole part 42 protrudes in the circumferential direction (left-right direction in FIG. 2), and is formed in a substantially sector shape, whereby a gap between the magnetic pole cores 40 (salient pole part 42) in the field pole 30 adjacent in the circumferential direction. The cogging in driving the rotating machine 1 is reduced.

図2および図3に示すように、界磁極30における界磁巻線50は、略中央に形成された係合穴部81が磁極鉄心40の鉄心部41に係合して取り付けられる平板形状のコイル片80aと、コイル片80aの外周側(図2および図3における左方側)に平板形状の冷却フィン82が設けられた形状の冷却フィン付きコイル片80bとから成り、コイル片80aが図示しない絶縁紙を介して(挟んで)積層されると共に、このコイル片80aの数枚(または、一枚)毎に冷却フィン付きコイル片80bが図示しない絶縁紙を介して(挟んで)積層されて成る。   As shown in FIGS. 2 and 3, the field winding 50 in the field magnetic pole 30 has a flat plate shape in which an engagement hole 81 formed substantially at the center is engaged with and attached to the iron core 41 of the magnetic pole core 40. The coil piece 80a includes a coil piece 80b with a cooling fin having a shape in which a flat plate-like cooling fin 82 is provided on the outer peripheral side (the left side in FIGS. 2 and 3) of the coil piece 80a. In addition, the coil pieces 80b with cooling fins are laminated (interposed) via insulating paper (not shown) for every several pieces (or one piece) of the coil pieces 80a. It consists of

このように、界磁巻線50においてコイル片80aの数枚(または、一枚)毎に冷却フィン付きコイル片80bが設けられることにより、冷却フィン82が径方向に所定距離離間した状態でコイル外周面(コイル片80aの端部が位置する面)83より突出される。よって、冷却ファン82がコイル外周面83より突出した分だけ、界磁巻線50の表面積(コイル表面積)が増加されるので、界磁巻線50における放熱が効果的に行われるようになる。つまり、界磁巻線50の冷却効率が向上され、通風ファン22による冷却がより効率的に行われる。   Thus, by providing the coil piece 80b with the cooling fin for every several pieces (or one piece) of the coil pieces 80a in the field winding 50, the coil is formed in a state where the cooling fins 82 are separated from each other by a predetermined distance in the radial direction. It protrudes from the outer peripheral surface 83 (surface on which the end of the coil piece 80a is located) 83. Therefore, the surface area (coil surface area) of the field winding 50 is increased by the amount by which the cooling fan 82 protrudes from the coil outer peripheral surface 83, so that the heat radiation in the field winding 50 is effectively performed. That is, the cooling efficiency of the field winding 50 is improved, and the cooling by the ventilation fan 22 is performed more efficiently.

また、図2に示すように、界磁巻線50における複数の冷却フィン付きコイル片80b、すなわち、界磁極30においてコイル片80aの数枚(または、一枚)毎に積層される複数の冷却フィン付きコイル片80bは、コイル外周面83から周方向に突出する長さ、すなわち、冷却フィン82の周方向フィン長さLcを異にするようにそれぞれ形成されている(Lc1,Lc2,Lc3,Lc4)。 Further, as shown in FIG. 2, a plurality of cooling fin-attached coil pieces 80 b in the field winding 50, that is, a plurality of cooling layers stacked every several pieces (or one) of the coil pieces 80 a in the field pole 30. The finned coil pieces 80b are formed to have different lengths protruding in the circumferential direction from the coil outer circumferential surface 83, that is, the circumferential fin lengths Lc of the cooling fins 82 (Lc 1 , Lc 2 , Lc 3 , Lc 4 ).

そして、界磁巻線50において、周方向フィン長さLcの短い冷却フィン付きコイル片80bは、ロータ20の内周側(図2における下方側)に位置し、周方向フィン長さLcの長い冷却フィン付きコイル片80bは、ロータ20の外周側(図2における上方側)に位置するようになっている。つまり、界磁巻線50における複数の冷却フィン付きコイル片80bは、周方向フィン長さLcがロータ20の外周側から内周側へ向かって積層毎に漸減する、すなわち、連続的に小さくなるように(Lc1>Lc2>Lc3>Lc4)、コイル片80aおよび図示しない絶縁紙と共に積層されている。 In the field winding 50, the coil piece 80b with a cooling fin having a short circumferential fin length Lc is located on the inner circumferential side (the lower side in FIG. 2) of the rotor 20 and has a long circumferential fin length Lc. The coil pieces 80b with cooling fins are positioned on the outer peripheral side (upper side in FIG. 2) of the rotor 20. That is, in the plurality of coil pieces 80b with cooling fins in the field winding 50, the circumferential fin length Lc gradually decreases for each lamination from the outer peripheral side to the inner peripheral side of the rotor 20, that is, continuously decreases. (Lc 1 > Lc 2 > Lc 3 > Lc 4 ), the coil piece 80a and the insulating paper (not shown) are laminated together.

このように、界磁巻線50において、周方向フィン長さLcをロータ20の外周側から内周側へ向かって連続的に小さくなる(Lc1>Lc2>Lc3>Lc4)、すなわち、ロータ20の内周側に位置する冷却フィン付きコイル片80bの周方向フィン長さLcをロータ20の外周側に位置する冷却フィン付きコイル片80bの周方向フィン長さLcよりも短くすることにより、周方向に隣接する界磁巻線50(界磁極30)間における内周側に通風空間Sを形成することができる。 As described above, in the field winding 50, the circumferential fin length Lc is continuously reduced from the outer peripheral side to the inner peripheral side of the rotor 20 (Lc 1 > Lc 2 > Lc 3 > Lc 4 ). The circumferential fin length Lc of the coil piece 80b with cooling fin positioned on the inner peripheral side of the rotor 20 is made shorter than the circumferential fin length Lc of the coil piece 80b with cooling fin positioned on the outer peripheral side of the rotor 20. Thus, the ventilation space S can be formed on the inner peripheral side between the field windings 50 (field magnetic poles 30) adjacent in the circumferential direction.

よって、通風ファン22によって送られる冷却空気は、冷却フィン付きコイル片80bの冷却フィン82に阻害されることなく、通風空間Sを流れることができる。つまり、回転機1において、冷却空気が界磁極30間を流れ易く、界磁極30間の通風性能が向上するので、回転機1の冷却効率が向上する。   Therefore, the cooling air sent by the ventilation fan 22 can flow through the ventilation space S without being obstructed by the cooling fins 82 of the coil pieces 80b with cooling fins. That is, in the rotating machine 1, the cooling air easily flows between the field poles 30 and the ventilation performance between the field poles 30 is improved, so that the cooling efficiency of the rotating machine 1 is improved.

また、図3に示すように、界磁巻線50における複数の冷却フィン付きコイル片80b、すなわち、界磁極30においてコイル片80aの数枚(または、一枚)毎に積層される複数の冷却フィン付きコイル片80bは、コイル外周面83から軸方向(図3における左右方向)に突出する長さ、すなわち、冷却フィン82の軸方向フィン長さLaを異にするようにそれぞれ形成されている(La1,La2,La3,La4)。 Further, as shown in FIG. 3, a plurality of cooling fin-attached coil pieces 80 b in the field winding 50, that is, a plurality of cooling layers laminated every several pieces (or one) of the coil pieces 80 a in the field pole 30. The finned coil pieces 80b are formed so as to have different lengths protruding in the axial direction (left and right direction in FIG. 3) from the coil outer peripheral surface 83, that is, the axial fin lengths La of the cooling fins 82. (La 1 , La 2 , La 3 , La 4 ).

そして、界磁巻線50において、軸方向フィン長さLaの短い冷却フィン付きコイル片80bは、ロータ20の内周側(図3における下方側)に位置し、軸方向フィン長さLaの長い冷却フィン付きコイル片80bは、ロータ20の外周側(図3における上方側)に位置するようになっている。つまり、界磁巻線50における複数の冷却フィン付きコイル片80bは、軸方向フィン長さLaがロータ20の外周側から内周側へ向かって積層毎に漸減する、すなわち、連続的に小さくなるように(La1>La2>La3>La4)、コイル片80aおよび図示しない絶縁紙と共に積層されている。 In the field winding 50, the coil piece 80b with the cooling fin having the short axial fin length La is located on the inner peripheral side (the lower side in FIG. 3) of the rotor 20 and has the long axial fin length La. The coil piece 80b with the cooling fin is located on the outer peripheral side (the upper side in FIG. 3) of the rotor 20. That is, in the plurality of coil pieces 80b with cooling fins in the field winding 50, the axial fin length La gradually decreases from stacking toward the inner peripheral side from the outer peripheral side of the rotor 20, that is, continuously decreases. Thus (La 1 > La 2 > La 3 > La 4 ), the coil piece 80a and the insulating paper (not shown) are laminated together.

このように、界磁巻線50において、軸方向フィン長さLaをロータ20の外周側から内周側へ向かって連続的に小さくなる(La1>La2>La3>La4)、すなわち、ロータ20の内周側に位置する冷却フィン付きコイル片80bの軸方向フィン長さLaをロータ20の外周側に位置する冷却フィン付きコイル片80bの軸方向フィン長さLaよりも短くすることにより、通風ファン22によってロータ20の軸方向中央部側へ流れなかった冷却空気が、ロータ20の軸方向端部の近傍に滞留することなく、ステータ10のコイルエンド11に向かって流れる(図3における矢印F参照)。 Thus, in the field winding 50, the axial fin length La is continuously reduced from the outer peripheral side to the inner peripheral side of the rotor 20 (La 1 > La 2 > La 3 > La 4 ), that is, The axial fin length La of the coil piece 80b with the cooling fin positioned on the inner peripheral side of the rotor 20 is made shorter than the axial fin length La of the coil piece 80b with the cooling fin positioned on the outer peripheral side of the rotor 20. As a result, the cooling air that has not flowed to the axially central portion side of the rotor 20 by the ventilation fan 22 flows toward the coil end 11 of the stator 10 without staying in the vicinity of the axial end portion of the rotor 20 (FIG. 3). See arrow F).

つまり、回転機1において、通風ファン22によって送られる冷却空気は、通風空間Sを通ってロータ20の軸方向中央部側へ流れると共に、ロータ20の軸方向端部からステータ10のコイルエンド11に向かって流れる、ロータ20およびコイルエンド11への通風性能が向上するので、回転機1の冷却効率が向上する。   That is, in the rotating machine 1, the cooling air sent by the ventilation fan 22 flows through the ventilation space S toward the axial center of the rotor 20, and from the axial end of the rotor 20 to the coil end 11 of the stator 10. Since the ventilation performance to the rotor 20 and the coil end 11 that flows toward the rotor is improved, the cooling efficiency of the rotating machine 1 is improved.

図1および図4に示すように、コイル押さえ部材60,70は、周方向に隣接する界磁極30間において、固定部材90とボルト91およびナット92によって連結されており、両側の界磁極30に設けられた界磁巻線50の対向する部分(角部)を固定部材90と共に挟持するようになっている。界磁巻線50における冷却フィン付きコイル片80bには、切り欠き部84が設けられており、この切り欠き部84の端部は、コイル片80aの端部と同じ位置(コイル外周面83)に位置するようになっている。つまり、コイル押さえ部材60,70は、冷却フィン付きコイル片80bの切り欠き部84に対応した位置に設置されており、コイル押さえ部材60,70と冷却フィン82とが干渉しないようになっている。   As shown in FIGS. 1 and 4, the coil pressing members 60 and 70 are connected to each other between the field poles 30 adjacent to each other in the circumferential direction by a fixing member 90, a bolt 91, and a nut 92. Opposing portions (corner portions) of the provided field winding 50 are sandwiched together with the fixing member 90. The coil piece 80b with the cooling fin in the field winding 50 is provided with a notch 84, and the end of the notch 84 is located at the same position as the end of the coil piece 80a (coil outer peripheral surface 83). It is supposed to be located in. That is, the coil pressing members 60 and 70 are installed at positions corresponding to the notches 84 of the coil pieces 80b with cooling fins, so that the coil pressing members 60 and 70 and the cooling fins 82 do not interfere with each other. .

また、図5および図6に示すように、コイル押さえ部材60,70は、ロータ20の軸方向(図5および図6における左右方向)に複数(本実施例においては、四つ)設けられており、その設置位置に応じて形状を異にしている(本実施例においては、形状を異にする第一のコイル押さえ部材60と第二のコイル押さえ部材70とから成る)。なお、冷却フィン付きコイル片80bの切り欠き部84は、コイル押さえ部材60,70と同じく、ロータ20の軸方向に複数(本実施例においては、四つ)設けられている。   Further, as shown in FIGS. 5 and 6, a plurality (four in this embodiment) of coil pressing members 60 and 70 are provided in the axial direction of the rotor 20 (left and right direction in FIGS. 5 and 6). The shape is different depending on the installation position (in the present embodiment, the first coil pressing member 60 and the second coil pressing member 70 having different shapes are used). Note that a plurality of (in the present embodiment, four) cutout portions 84 of the coil pieces 80b with cooling fins are provided in the axial direction of the rotor 20, like the coil pressing members 60 and 70.

界磁極30間においてロータ20の軸方向端部側に設置される第一のコイル押さえ部材60は、軸方向に非対称な形状から成り、隣接する界磁極30に設けられた界磁巻線50を押えるための押さえ部61と、押さえ部61の軸方向端部側に設けられて通風ファン22によって送られる冷却空気をロータ20の軸方向に案内する軸方向案内部62と、押さえ部61の軸方向中央部側(軸方向端部側以外)に設けられて通風ファン22によって送られる冷却空気をロータ20の径方向(図5における上方向および図6における上下方向)に案内する径方向案内部63とを備えている。   The first coil pressing member 60 installed on the end side in the axial direction of the rotor 20 between the field poles 30 has an asymmetric shape in the axial direction, and includes the field winding 50 provided in the adjacent field pole 30. A pressing portion 61 for pressing, an axial guide portion 62 provided on the axial end portion side of the pressing portion 61 and guiding cooling air sent by the ventilation fan 22 in the axial direction of the rotor 20, and the shaft of the pressing portion 61 A radial guide portion that is provided on the center side in the direction (other than the axial end portion side) and guides the cooling air sent by the ventilation fan 22 in the radial direction of the rotor 20 (upward in FIG. 5 and up and down in FIG. 6). 63.

第一のコイル押さえ部材60の押さえ部61は、略三角柱形状から成り、隣接する界磁極30に設けられた両界磁巻線50のコイル外周面83に絶縁板93を介して当接するように設けられている。また、押さえ部61は、固定部材90との間に隙間を設けた状態で取り付けられており、通風ファン22によって送られる冷却空気は、押さえ部材61と固定部材90との間の隙間、および、固定部材90の更に内周側の空間を通ってロータ20の軸方向へ通風可能となっている。   The pressing portion 61 of the first coil pressing member 60 has a substantially triangular prism shape, and is in contact with the coil outer peripheral surface 83 of both field windings 50 provided on the adjacent field magnetic pole 30 via an insulating plate 93. Is provided. The pressing portion 61 is attached in a state where a gap is provided between the holding member 90 and the cooling air sent by the ventilation fan 22 is a gap between the holding member 61 and the fixing member 90, and Ventilation is possible in the axial direction of the rotor 20 through the space on the inner peripheral side of the fixing member 90.

第一のコイル押さえ部材60の軸方向案内部62は、略四角柱形状から成り、押さえ部61の軸方向端部側に突出するように設けられている。また、軸方向案内部62は、押さえ部61の外周側に寄って設けられており、軸方向案内部62の内周側(図5における下方側)には、所定の空間S62が形成されている。よって、通風ファン22から送られて軸方向案内部62の近傍を通る冷却空気は、軸方向案内部62によってロータ20の径方向外周側(図5における上方側)への流通が妨げられ、押さえ部材61と固定部材90との間の隙間、および、固定部材90の更に内周側の空間を通ってロータ20の軸方向中央部側へ案内されるようになっている(図5および図6における矢印F62参照)。 The axial guide portion 62 of the first coil pressing member 60 has a substantially quadrangular prism shape and is provided so as to protrude toward the axial end portion of the pressing portion 61. Moreover, the axial direction guide part 62 is provided near the outer peripheral side of the holding | suppressing part 61, and the predetermined space S62 is formed in the inner peripheral side (downward side in FIG. 5) of the axial direction guide part 62. ing. Therefore, the cooling air sent from the ventilation fan 22 and passing through the vicinity of the axial guide portion 62 is prevented from flowing to the radially outer peripheral side (the upper side in FIG. 5) of the rotor 20 by the axial guide portion 62. It is guided to the axially central portion side of the rotor 20 through the gap between the member 61 and the fixing member 90 and the space on the inner peripheral side of the fixing member 90 (FIGS. 5 and 6). see arrow F 62 in).

第一のコイル押さえ部材60の径方向案内部63は、略三角錐台形状から成り、押さえ部61の軸方向端部側に突出するように設けられている。径方向案内部63は、押さえ部61における内周側から軸方向中央部側かつ外周側に傾斜する傾斜部63aを有している。よって、通風ファン22から軸方向案内部62によって軸方向中央部側へ案内された冷却空気は、径方向案内部63によってロータ20の外周側へ案内されるようになっている(図5および図6における矢印F63参照)。 The radial guide portion 63 of the first coil pressing member 60 has a substantially triangular frustum shape and is provided so as to protrude toward the axial end portion of the pressing portion 61. The radial direction guide part 63 has an inclined part 63 a that is inclined from the inner peripheral side of the pressing part 61 toward the axially central part side and the outer peripheral side. Therefore, the cooling air guided from the ventilation fan 22 to the axial central portion side by the axial guide portion 62 is guided to the outer peripheral side of the rotor 20 by the radial guide portion 63 (FIGS. 5 and 5). (See arrow F 63 in FIG . 6).

軸方向中央側に設置される第二のコイル押さえ部材70は、軸方向に対称な形状から成り、隣接する界磁極30に設けられた界磁巻線50を押えるための押さえ部71と、押さえ部71に設けられて通風ファン22によって送られる冷却空気を径方向に案内する径方向案内部72とを備えている。   The second coil pressing member 70 installed on the center side in the axial direction has a symmetrical shape in the axial direction, a pressing portion 71 for pressing the field winding 50 provided in the adjacent field magnetic pole 30, and a pressing member. And a radial guide portion 72 that is provided in the portion 71 and guides the cooling air sent by the ventilation fan 22 in the radial direction.

第二のコイル押さえ部材70の押さえ部71は、第一のコイル押さえ部材60の押さえ部61と同様に、略三角柱形状から成り、隣接する界磁極30に設けられた両界磁巻線50のコイル外周面83に絶縁板93を介して当接するように設けられている。また、押さえ部71は、固定部材90との間に隙間を設けた状態で取り付けられており、通風ファン22から送られる冷却空気は、押さえ部材71と固定部材90との間の隙間、および、固定部材90の更に内周側の空間を通ってロータ20の軸方向へ通風可能となっている。   The pressing portion 71 of the second coil pressing member 70 is formed in a substantially triangular prism shape, like the pressing portion 61 of the first coil pressing member 60, and includes both field windings 50 provided on the adjacent field pole 30. The coil outer peripheral surface 83 is provided so as to contact with the insulating plate 93 therebetween. Further, the pressing portion 71 is attached in a state where a gap is provided between the holding member 90 and the cooling air sent from the ventilation fan 22 is a gap between the holding member 71 and the fixing member 90, and Ventilation is possible in the axial direction of the rotor 20 through the space on the inner peripheral side of the fixing member 90.

第二のコイル押さえ部材70の径方向案内部72は、第一のコイル押さえ部材60の径方向案内部63と同様に、略三角錐台形状から成り、押さえ部71の軸方向に突出するように設けられている。径方向案内部72は、押さえ部71における内周側から軸方向中央部側かつ外周側に傾斜する傾斜部72aを有している。よって、第二のコイル押さえ部材70の近傍を通る冷却空気は、径方向案内部72によってロータ20の外周側へ案内されるようになっている(図5および図6における矢印F72参照)。 The radial guide portion 72 of the second coil pressing member 70 has a substantially triangular frustum shape, like the radial guide portion 63 of the first coil pressing member 60, and protrudes in the axial direction of the pressing portion 71. Is provided. The radial direction guide part 72 has an inclined part 72 a that is inclined from the inner peripheral side of the pressing part 71 toward the axially central part side and the outer peripheral side. Therefore, the cooling air passing through the vicinity of the second coil pressing member 70 is guided to the outer peripheral side of the rotor 20 by the radial guide portion 72 (see arrow F 72 in FIGS. 5 and 6).

本発明の実施例1に係る回転機の動作について、図1から図6を参照して説明する。   The operation of the rotating machine according to the first embodiment of the present invention will be described with reference to FIGS.

ステータ20によって回転磁界が作られ、この回転磁界によってロータ20が回転駆動することにより、回転機1は駆動される(図1参照)。回転機1が駆動されると、回転機1の駆動に伴って回転軸21に設けられた通風ファン22が回転駆動され、回転機1内に冷却空気が送られる(図5参照)。   A rotating magnetic field is created by the stator 20, and the rotor 20 is driven to rotate by the rotating magnetic field, whereby the rotating machine 1 is driven (see FIG. 1). When the rotating machine 1 is driven, the ventilation fan 22 provided on the rotating shaft 21 is driven to rotate as the rotating machine 1 is driven, and cooling air is sent into the rotating machine 1 (see FIG. 5).

このとき、ロータ20の界磁極30において磁極鉄心40に巻装された界磁巻線50は、図示しない絶縁紙を介して(挟んで)積層されるコイル片80aと、このコイル片80aの数枚(または、一枚)毎に図示しない絶縁紙を介して(挟んで)積層される冷却フィン付きコイル片80bとから構成されているので、界磁巻線50の放熱が効果的に行われる(図1から図3参照)。つまり、界磁巻線50の放熱効率が向上されるので、通風ファン22による冷却がより効率的に行われる。   At this time, the field winding 50 wound around the magnetic pole core 40 in the field pole 30 of the rotor 20 includes coil pieces 80a stacked via (not sandwiched) insulating paper (not shown), and the number of the coil pieces 80a. Since each sheet (or one sheet) is composed of coil pieces 80b with cooling fins stacked via insulating paper (not shown), the field winding 50 is effectively radiated. (See FIGS. 1 to 3). That is, since the heat dissipation efficiency of the field winding 50 is improved, cooling by the ventilation fan 22 is performed more efficiently.

また、図2に示すように、界磁巻線50における複数の冷却フィン付きコイル片80bは、周方向フィン長さLcを異にするようにそれぞれ形成されており(Lc1,Lc2,Lc3,Lc4)、周方向フィン長さLcが外周側から内周側へ向かって積層毎に連続的に小さくなるように(Lc1>Lc2>Lc3>Lc4)、コイル片80aおよび図示しない絶縁紙と共に積層されているので、通風ファン22によって送られる冷却空気は、冷却フィン付きコイル片80bの冷却フィン82に阻害されることなく、通風空間Sを流れることになる。よって、界磁極30間における通風性能が向上されるので、回転機1の冷却効率が向上される。 Further, as shown in FIG. 2, the plurality of coil pieces 80b with cooling fins in the field winding 50 are formed so as to have different circumferential fin lengths Lc (Lc 1 , Lc 2 , Lc). 3 , Lc 4 ), the circumferential fin length Lc is continuously reduced from the outer peripheral side toward the inner peripheral side for each stack (Lc 1 > Lc 2 > Lc 3 > Lc 4 ), the coil piece 80a and Since it is laminated with insulating paper (not shown), the cooling air sent by the ventilation fan 22 flows through the ventilation space S without being blocked by the cooling fins 82 of the coil pieces 80b with cooling fins. Therefore, since the ventilation performance between the field poles 30 is improved, the cooling efficiency of the rotating machine 1 is improved.

もちろん、本発明における冷却フィンは、本実施例のように周方向フィン長さLcが全て異なる長さであり、外周側から内周側へ向かって積層毎に連続的に小さくしたもの(Lc1>Lc2>Lc3>Lc4)に限定されない。本発明における冷却フィンとして、周方向フィン長さ(突出量)を全て異なる長さとせず、外周側から内周側へ向かって段階的(断続的)に小さくしたもの、例えば、隣接する一部の冷却フィンの周方向フィン長さLcを同じ長さとし(Lc2=Lc3)、複数の冷却フィンが全体として外周側から内周側へ向かって小さくしたもの(Lc1>Lc2=Lc3>Lc4)であっても良い。 Of course, the cooling fins in the present invention have different circumferential fin lengths Lc as in this embodiment, and are continuously reduced from the outer peripheral side to the inner peripheral side for each stack (Lc 1 > Lc 2 > Lc 3 > Lc 4 ). As the cooling fins in the present invention, the circumferential fin lengths (projection amounts) are not all different lengths, but are reduced stepwise (intermittently) from the outer peripheral side toward the inner peripheral side, for example, adjacent parts The cooling fins have the same circumferential fin length Lc (Lc 2 = Lc 3 ), and a plurality of cooling fins are reduced from the outer peripheral side toward the inner peripheral side as a whole (Lc 1 > Lc 2 = Lc 3). > Lc 4 ).

また、図3に示すように、界磁巻線50における複数の冷却フィン付きコイル片80bは、軸方向フィン長さLaを異にするようにそれぞれ形成されており(La1,La2,La3,La4)、軸方向フィン長さLaが外周側から内周側へ向かって積層毎に連続的に小さくなるように(La1>La2>La3>La4)、コイル片80aおよび図示しない絶縁紙と共に積層されているので、通風ファン22によってロータ20の軸方向中央部側へ流れなかった冷却空気は、ロータ20の軸方向端部の近傍に滞留することなく、ステータ10のコイルエンド11に向かって流れることになる(図3における矢印F参照)。よって、冷却空気の滞留が抑制されると共に、コイルエンド11の冷却効率が向上される。つまり、回転機1内およびコイルエンド11への通風性能が向上され、回転機1の冷却効率が向上される。 Further, as shown in FIG. 3, the plurality of coil pieces 80b with cooling fins in the field winding 50 are formed so as to have different axial fin lengths La (La 1 , La 2 , La 3 , La 4 ), the axial fin length La is continuously decreased from the outer peripheral side toward the inner peripheral side for each lamination (La 1 > La 2 > La 3 > La 4 ), the coil piece 80a and Since it is laminated together with insulating paper (not shown), the cooling air that has not flowed to the axially central portion of the rotor 20 by the ventilation fan 22 does not stay near the axial end of the rotor 20, and the coil of the stator 10. It flows toward the end 11 (see arrow F in FIG. 3). Therefore, the retention of cooling air is suppressed and the cooling efficiency of the coil end 11 is improved. That is, the ventilation performance in the rotating machine 1 and the coil end 11 is improved, and the cooling efficiency of the rotating machine 1 is improved.

もちろん、本発明における冷却フィンは、本実施例のように軸方向フィン長さLaが全て異なる長さであり、外周側から内周側へ向かって積層毎に連続的に小さくしたもの(La1>La2>La3>La4)に限定されない。本発明における冷却フィンとして、軸方向フィン長さ(突出量)を全て異なる長さとせず、外周側から内周側へ向かって段階的(断続的)に小さくしたもの、例えば、隣接する一部の冷却フィンの軸方向フィン長さLaを同じ長さとし(La2=La3)、複数の冷却フィンが全体として外周側から内周側へ向かって小さくしたもの(La1>La2=La3>La4)であっても良い。 Of course, the cooling fins according to the present invention have different axial fin lengths La as in this embodiment, and are continuously reduced from the outer peripheral side to the inner peripheral side for each stack (La 1 > La 2 > La 3 > La 4 ). As the cooling fins in the present invention, the axial fin lengths (projection amounts) are not all different lengths, but are reduced stepwise (intermittently) from the outer peripheral side toward the inner peripheral side, for example, adjacent parts The cooling fins have the same axial length La (La 2 = La 3 ), and a plurality of cooling fins are reduced from the outer peripheral side toward the inner peripheral side as a whole (La 1 > La 2 = La 3). > La 4 ).

また、図4から図6に示すように、通風ファン22によってロータ22の軸方向端部から軸方向中央部側へ送られる冷却空気は、まず、第一のコイル押さえ部材60の軸方向案内部62によってロータ20の径方向外周側への流通が妨げられ、押さえ部材61と固定部材90との間の隙間、および、固定部材90の更に内周側の空間を通ってロータ20の軸方向中央部側へ案内される(図5および図6における矢印F62参照)。 Further, as shown in FIGS. 4 to 6, the cooling air sent from the axial end portion of the rotor 22 to the axial central portion side by the ventilation fan 22 is first the axial guide portion of the first coil pressing member 60. 62 prevents the rotor 20 from flowing to the outer peripheral side in the radial direction, passes through the gap between the pressing member 61 and the fixing member 90, and the space further on the inner peripheral side of the fixing member 90, and the axial center of the rotor 20. It is guided to the part side (see arrow F 62 in FIGS. 5 and 6).

次に、第一のコイル押さえ部材60の軸方向案内部62によってロータ20の軸方向中央部側へ案内された冷却空気は、第一のコイル押さえ部材60の径方向案内部63(傾斜部63a)および第二のコイル押さえ部材70の径方向案内部73(傾斜部73a)によってロータ20の外周側へ案内される(図5および図6における矢印F63およびF72参照)。 Next, the cooling air guided to the axial central portion side of the rotor 20 by the axial guide portion 62 of the first coil pressing member 60 is the radial guide portion 63 (inclined portion 63a) of the first coil pressing member 60. ) and is guided to the outer peripheral side of the rotor 20 by the second radial guide portion 73 of the coil holding member 70 (the inclined portion 73a) (see the arrow F 63 and F 72 in Figures 5 and 6).

以上のようにして、本実施例に係る回転機1によれば、界磁巻線50に冷却フィン82を設けていても、回転機1における通風性能が向上され、通風ファン22等による冷却効率が向上される。   As described above, according to the rotating machine 1 according to the present embodiment, even if the field winding 50 is provided with the cooling fins 82, the ventilation performance in the rotating machine 1 is improved, and the cooling efficiency by the ventilation fan 22 and the like is improved. Is improved.

本発明における冷却フィンは、本実施例のようにロータ20の周方向に隣接する界磁極30間およびロータ20の軸方向においてコイル外周面83から突出するものに限定されず、ロータ20の周方向に隣接する界磁極30間またはロータ20の軸方向のいずれか一方においてコイル外周面83から突出するものであっても良い。   The cooling fins in the present invention are not limited to those that protrude from the coil outer peripheral surface 83 between the field poles 30 adjacent to each other in the circumferential direction of the rotor 20 and in the axial direction of the rotor 20 as in the present embodiment. May protrude from the outer peripheral surface 83 of the coil between the field poles 30 adjacent to each other or in the axial direction of the rotor 20.

ロータ20の周方向に隣接する界磁極30間においてコイル外周面83から突出する冷却フィン82の周方向フィン長さ(突出量)Lcのみをロータ20の外周側から内周側に向かって連続的または断続的に小さくなるように形成した場合においても、本実施例と同様に、通風ファン22によって回転機1内に送られる冷却空気は、冷却フィン82によって阻害されることなく、界磁極30間におけるロータ20の内周側に形成される通風空間Sを流れる。よって、界磁極30間の通風性能、および、通風ファン22による冷却空気の回転機1軸方向への通風性能が向上されるので、回転機1内の各種機器が効率的に冷却される。   Only the circumferential fin length (projection amount) Lc of the cooling fin 82 protruding from the coil outer peripheral surface 83 between the field poles 30 adjacent to each other in the circumferential direction of the rotor 20 is continuous from the outer peripheral side of the rotor 20 toward the inner peripheral side. Even in the case where it is formed to be intermittently small, the cooling air sent into the rotating machine 1 by the ventilation fan 22 is not obstructed by the cooling fins 82 as in the present embodiment. Flows through the ventilation space S formed on the inner peripheral side of the rotor 20. Therefore, the ventilation performance between the field poles 30 and the ventilation performance of the cooling air in the axial direction of the rotating machine by the ventilation fan 22 are improved, so that various devices in the rotating machine 1 are efficiently cooled.

一方、ロータ20の軸方向に突出する冷却フィン82の軸方向フィン長さ(突出量)Laのみをロータ20の外周側から内周側に向かって連続的または断続的に小さくなるように形成した場合においても、本実施例と同様に、通風ファン22によってロータ20の軸方向中央部側へ流れなかった冷却空気は、ロータ20の軸方向端部の近傍に滞留することなく、ステータ10のコイルエンド11に向かって流れる。よって、冷却空気の滞留が抑制されると共に、コイルエンド11の冷却効率が向上される。つまり、回転機1内およびコイルエンド11への通風性能が向上され、回転機1の冷却効率が向上される。   On the other hand, only the axial fin length (projection amount) La of the cooling fin 82 protruding in the axial direction of the rotor 20 is formed so as to decrease continuously or intermittently from the outer peripheral side to the inner peripheral side of the rotor 20. Even in this case, similarly to the present embodiment, the cooling air that has not flowed to the axially central portion of the rotor 20 by the ventilation fan 22 does not stay near the axial end of the rotor 20, and the coil of the stator 10. It flows toward the end 11. Therefore, the retention of cooling air is suppressed and the cooling efficiency of the coil end 11 is improved. That is, the ventilation performance in the rotating machine 1 and the coil end 11 is improved, and the cooling efficiency of the rotating machine 1 is improved.

1 回転機
10 ステータ
11 コイルエンド
20 ロータ(回転子)
21 回転軸
22 通風ファン
30 界磁極
40 磁極鉄心
41 鉄心部
42 突極部
50 界磁巻線
60 第一のコイル押さえ部材
61 押さえ部
62 軸方向案内部(軸方向案内手段)
63 径方向案内部(径方向案内手段)
70 第一のコイル押さえ部材
71 押さえ部
72 径方向案内部(径方向案内手段)
80a コイル片
80b 冷却フィン付きコイル片
81 界磁巻線の係合穴部
82 界磁巻線の冷却フィン
83 界磁巻線のコイル外周面
84 界磁巻線の切り欠き部
90 固定部材
91 ボルト
92 ナット
93 絶縁板
Lc 周方向フィン長さ(突出量)
La 軸方向フィン長さ(突出量)
1 Rotating machine 10 Stator 11 Coil end 20 Rotor (rotor)
DESCRIPTION OF SYMBOLS 21 Rotating shaft 22 Ventilation fan 30 Field magnetic pole 40 Magnetic pole core 41 Iron core part 42 Salient pole part 50 Field winding 60 First coil pressing member 61 Holding part 62 Axial direction guide part (Axial direction guide means)
63 Radial direction guide (radial direction guide means)
70 First coil pressing member 71 Pressing portion 72 Radial guide portion (radial guide means)
80a Coil piece 80b Coil piece with cooling fin 81 Field hole engagement hole 82 Field winding cooling fin 83 Field winding coil outer peripheral surface 84 Field winding notch 90 Fixing member 91 Bolt 92 Nut 93 Insulating plate Lc Circumferential fin length (projection amount)
La Axial fin length (projection amount)

Claims (3)

磁極鉄心に界磁巻線が巻装されて成る界磁極を周方向に複数有する回転子を備えた回転機であって、
前記界磁巻線は、コイル外周面から突出する複数の冷却フィンを有し、
複数の前記冷却フィンは、前記コイル外周面から突出する突出量が前記回転子の外周側から内周側に向かって連続的または断続的に小さくなるように形成される
ことを特徴とする回転機。
A rotating machine comprising a rotor having a plurality of field poles formed by winding field windings around a magnetic pole core in the circumferential direction,
The field winding has a plurality of cooling fins protruding from the outer peripheral surface of the coil,
The plurality of cooling fins are formed such that the amount of protrusion protruding from the outer peripheral surface of the coil decreases continuously or intermittently from the outer peripheral side to the inner peripheral side of the rotor. .
磁極鉄心に界磁巻線が巻装されて成る界磁極を周方向に複数有する回転子を備えた回転機であって、
前記界磁巻線は、前記回転子の周方向に隣接する前記界磁極間においてコイル外周面から突出する複数の冷却フィンを有し、
複数の前記冷却フィンは、前記コイル外周面から突出する突出量が前記回転子の外周側から内周側に向かって連続的または断続的に小さくなるように形成される
ことを特徴とする回転機。
A rotating machine comprising a rotor having a plurality of field poles formed by winding field windings around a magnetic pole core in the circumferential direction,
The field winding has a plurality of cooling fins protruding from the outer peripheral surface of the coil between the field poles adjacent to each other in the circumferential direction of the rotor,
The plurality of cooling fins are formed such that the amount of protrusion protruding from the outer peripheral surface of the coil decreases continuously or intermittently from the outer peripheral side to the inner peripheral side of the rotor. .
前記回転子が、当該回転子の周方向に隣接して設けられる前記界磁極の間に、当該界磁極における前記界磁巻線を押えるためのコイル押さえ部材を当該回転子の軸方向に複数有するものであり、
前記回転子の軸方向端部側に設置される前記コイル押さえ部材が、冷却媒体を前記回転子の軸方向に案内する軸方向案内手段を有するものであり、
前記回転子の軸方向端部側以外に設置される前記コイル押さえ部材が、冷却媒体を前記回転子の径方向に案内する径方向案内手段を有するものである
ことを特徴とする請求項1または請求項2に記載の回転機。
The rotor has a plurality of coil pressing members in the axial direction of the rotor between the field poles provided adjacent to the circumferential direction of the rotor in order to press the field winding of the field magnetic pole. Is,
The coil pressing member installed on the end side in the axial direction of the rotor has axial guide means for guiding a cooling medium in the axial direction of the rotor,
The coil holding member installed on a side other than the axial end of the rotor has radial guide means for guiding a cooling medium in a radial direction of the rotor. The rotating machine according to claim 2.
JP2015037583A 2015-02-27 2015-02-27 Rotary machine Pending JP2016163377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037583A JP2016163377A (en) 2015-02-27 2015-02-27 Rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037583A JP2016163377A (en) 2015-02-27 2015-02-27 Rotary machine

Publications (1)

Publication Number Publication Date
JP2016163377A true JP2016163377A (en) 2016-09-05

Family

ID=56845646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037583A Pending JP2016163377A (en) 2015-02-27 2015-02-27 Rotary machine

Country Status (1)

Country Link
JP (1) JP2016163377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209370A1 (en) 2021-04-02 2022-10-06 三菱重工業株式会社 Coil for motor, method for manufacturing coil for motor, and motor
CN117811264A (en) * 2024-02-23 2024-04-02 山东天瑞重工有限公司 Stator, magnetic suspension bearing system and magnetic suspension motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209370A1 (en) 2021-04-02 2022-10-06 三菱重工業株式会社 Coil for motor, method for manufacturing coil for motor, and motor
CN117811264A (en) * 2024-02-23 2024-04-02 山东天瑞重工有限公司 Stator, magnetic suspension bearing system and magnetic suspension motor

Similar Documents

Publication Publication Date Title
JP5367258B2 (en) Rotating electric machine
JP5869826B2 (en) Ventilation rotor and stator for electric machine
JP4763320B2 (en) Synchronous induction motor rotor and compressor
JP5548046B2 (en) Permanent magnet rotating electric machine
US20180358849A1 (en) Rotary electrical machine
JP2014155314A (en) Rotary electric machine
JP6472765B2 (en) Rotating electric machine
US20140139058A1 (en) Stator structure
JP2015208172A (en) Permanent magnet type rotary electric machine
JP4209885B2 (en) Motor stator structure
JP2016163377A (en) Rotary machine
JP7050234B2 (en) motor
CA3071259A1 (en) Stators comprising air flow slots
JP2010028882A (en) Rotating electric machine
JP2020096474A (en) Rotor of rotary electric machine
WO2014155914A1 (en) Dynamo-electric machine
JP2012065493A (en) Electric motor
JP2016129447A (en) Rotary electric machine
JP5375647B2 (en) Electric motor
JP2009142024A (en) Reluctance motor
JP4424135B2 (en) Stator structure of axial gap type rotating electrical machine
JP2008283737A (en) Salient-pole rotating electrical machine
JP7151602B2 (en) Rotating electric machine
JP6169496B2 (en) Permanent magnet rotating electric machine
WO2020066900A1 (en) Coil mounting structure, stator, and motor