JP2016162881A - Thermoelectric conversion element and manufacturing method thereof - Google Patents

Thermoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP2016162881A
JP2016162881A JP2015040182A JP2015040182A JP2016162881A JP 2016162881 A JP2016162881 A JP 2016162881A JP 2015040182 A JP2015040182 A JP 2015040182A JP 2015040182 A JP2015040182 A JP 2015040182A JP 2016162881 A JP2016162881 A JP 2016162881A
Authority
JP
Japan
Prior art keywords
spin
thermoelectric conversion
conversion element
metal layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015040182A
Other languages
Japanese (ja)
Other versions
JP6519230B2 (en
Inventor
悠真 岩崎
Yuma Iwasaki
悠真 岩崎
石田 真彦
Masahiko Ishida
真彦 石田
明宏 桐原
Akihiro Kirihara
明宏 桐原
和紀 井原
Kazuki Ihara
和紀 井原
染谷 浩子
Hiroko Someya
浩子 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015040182A priority Critical patent/JP6519230B2/en
Publication of JP2016162881A publication Critical patent/JP2016162881A/en
Application granted granted Critical
Publication of JP6519230B2 publication Critical patent/JP6519230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve higher output of a thermoelectric conversion element.SOLUTION: In a thermoelectric conversion element, a magnetic substance layer 502 exhibiting a spin-Seebeck effect and a metal layer 503 exhibiting an inverse spin hole effect are laminated on a substrate 501. The magnetic substance layer 502 has larger spin current rush efficiency in a region on the substrate 501 side in comparison with the region on the metal layer 503 side, and the region on the metal layer 503 side has larger spin current rush efficiency in comparison with the region on the substrate 501 side. In the magnetic substance layer 502, a magnetic material composition continuously changes between the substrate 501 and the metal layer 503.SELECTED DRAWING: Figure 1

Description

本発明は、スピンゼーベック効果及び逆スピンホール効果に基づく熱電変換素子とその製造方法に関する。   The present invention relates to a thermoelectric conversion element based on a spin Seebeck effect and an inverse spin Hall effect, and a manufacturing method thereof.

持続可能な社会に向けた環境・エネルギー問題への取り組みが活発化する中で、熱電変換素子への期待が高まっている。これは、熱は体温、太陽光、エンジン、工業排熱などあらゆる媒体から得ることができる最も一般的なエネルギー源であるためである。そのため、低炭素社会におけるエネルギー利用の高効率化や、ユビキタス端末・センサ等への給電といった用途において、熱電変換素子は今後ますます重要となることが予想される。   Expectations for thermoelectric conversion elements are increasing as efforts to address environmental and energy issues toward a sustainable society are becoming more active. This is because heat is the most common energy source that can be obtained from any medium such as body temperature, sunlight, engine, industrial waste heat. Therefore, thermoelectric conversion elements are expected to become more important in the future in applications such as increasing the efficiency of energy use in a low-carbon society and supplying power to ubiquitous terminals and sensors.

最近の研究により、磁性体における「スピンゼーベック効果(Spin-Seebeck Effect)」の存在が明らかになっている。スピンゼーベック効果とは、磁性体に温度勾配を印加すると、温度勾配と平行方向に電子のスピン角運動量の流れ(スピン流)が発生する現象である[特許文献1]。特許文献1では、強磁性体であるNiFe膜におけるスピンゼーベック効果が報告されており、非特許文献1,2では、イットリウム鉄ガーネット(YIG,Y3Fe5O12)といった磁性絶縁体と金属膜との界面におけるスピンゼーベック効果が報告されている。 Recent research has revealed the existence of the “Spin-Seebeck Effect” in magnetic materials. The spin Seebeck effect is a phenomenon in which, when a temperature gradient is applied to a magnetic material, a flow of spin angular momentum of electrons (spin flow) occurs in a direction parallel to the temperature gradient [Patent Document 1]. Patent Document 1 reports the spin Seebeck effect in NiFe films, which are ferromagnetic materials, and Non-Patent Documents 1 and 2 describe magnetic insulators and metal films such as yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ). The spin Seebeck effect at the interface is reported.

なお、温度勾配によって発生したスピン流は、逆スピンホール効果(Inverse Spin-Hall effect)により、電流に変換される。逆スピンホール効果とは、物質のスピン軌道相互作用(spin orbit coupling)により、スピン流が電流に変換される現象であり、スピン軌道相互作用の大きな物質中(例えばPt,Auなど)において有意に発現する。   The spin current generated by the temperature gradient is converted into a current by the inverse spin-Hall effect. The reverse spin Hall effect is a phenomenon in which a spin current is converted into a current by spin orbit coupling of a substance, and is significant in a substance having a large spin orbit interaction (eg, Pt, Au, etc.). To express.

これらスピンゼーベック効果と逆スピンホール効果を併せて利用することによって、スピンを介して温度勾配を電流に変換する「スピン熱電変換」が近年注目されており、新しい熱電変換素子、「スピン熱電素子」の開発が、期待されている。   In recent years, "spin thermoelectric conversion", which converts the temperature gradient into current via spin by using both the spin Seebeck effect and the inverse spin Hall effect, has attracted attention. A new thermoelectric conversion element, "spin thermoelectric element" Development is expected.

図3は、特許文献1に開示されている熱電変換素子の概略を示した斜視図である。サファイア基板101上に熱スピン流変換部102が形成されている。熱スピン流変換部102は、Ta膜103、PdPtMn膜104およびNiFe膜105の積層構造を有している。さらにNiFe膜105上には、Pt電極106が形成されており、そのPt電極106の両端は端子107-1、107-2にそれぞれ接続されている。このように構成されたスピン熱電素子において、NiFe膜105が、スピンゼーベック効果によって温度勾配からスピン流を生成する役割を果たし、Pt電極106が、逆スピンホール効果によってスピン流から起電力を生成する役割を果たす。   FIG. 3 is a perspective view showing an outline of the thermoelectric conversion element disclosed in Patent Document 1. As shown in FIG. A thermal spin current converter 102 is formed on the sapphire substrate 101. The thermal spin current conversion unit 102 has a laminated structure of a Ta film 103, a PdPtMn film 104, and a NiFe film 105. Further, a Pt electrode 106 is formed on the NiFe film 105, and both ends of the Pt electrode 106 are connected to terminals 107-1 and 107-2, respectively. In the spin thermoelectric device configured as described above, the NiFe film 105 plays a role of generating a spin current from the temperature gradient by the spin Seebeck effect, and the Pt electrode 106 generates an electromotive force from the spin current by the reverse spin Hall effect. Play a role.

具体的にはNiFe膜105の面内方向に温度勾配が印加されると、スピンゼーベック効果により、その温度勾配と平行な方向にスピン流が発生する。すると、NiFe膜105からPt電極106にスピン流が流れ込む、あるいはPt電極106からNiFe層105にスピン流が流れ出す。するとPt電極106では逆スピンホール効果により、スピン流方向とNiFeの磁化方向とに直交する方向に起電力が生成される。その起電力はPt電極106の両端に設けられた端子107-1、107-2から取り出すことができる。   Specifically, when a temperature gradient is applied in the in-plane direction of the NiFe film 105, a spin current is generated in a direction parallel to the temperature gradient due to the spin Seebeck effect. Then, a spin current flows from the NiFe film 105 to the Pt electrode 106, or a spin current flows from the Pt electrode 106 to the NiFe layer 105. Then, an electromotive force is generated in the Pt electrode 106 in a direction orthogonal to the spin current direction and the magnetization direction of NiFe due to the reverse spin Hall effect. The electromotive force can be taken out from terminals 107-1 and 107-2 provided at both ends of the Pt electrode 106.

また、スピン熱電素子の作成方法の一つとして、特許文献2(国際公開第2012/108276号)に記載のような有機金属分解法(MOD(Metal Organic Decomposition)法)がある。図4は特許文献2に記載の熱電変換素子の概略を示す斜視図である。ガドリニウムガリウムガーネット(Gadolinium Gallium Garnet、以降「GGG」と表記する。組成はGd3Ga5O12)基板4上に、Yサイトの一部をBiで置換したイットリウム鉄ガーネット(Yttrium Iron Garnet、以降、「Bix:YIG」と表記する。組成はBixY3-xFe5O12)が含まれているMOD溶液をスピンコートで塗布し、焼結させることでBix:YIG膜12を作成することができる。さらにこの膜上にPt電極3をスパッタにより成膜することで、スピン熱電素子を作成することができる。この素子の面直方向Bに温度勾配ΔTを印加し、面内方向Cに磁場を印加することで、電極7、電極9から、起電力を取り出すことができる。 Further, as one method for producing a spin thermoelectric element, there is an organometallic decomposition method (MOD (Metal Organic Decomposition) method) as described in Patent Document 2 (International Publication No. 2012/108276). FIG. 4 is a perspective view showing an outline of the thermoelectric conversion element described in Patent Document 2. Gadolinium Gallium Garnet (hereinafter referred to as “GGG”. The composition is Gd 3 Ga 5 O 12 ) Substrate 4, Y part of Y site replaced with Bi (Yttrium Iron Garnet, hereinafter referred to as “GGG”) . "Bi x: YIG" and denoted composition Bi x Y 3-x Fe 5 O 12) MOD solution that contains a spin coating a, Bi by sintering x: create a YIG film 12 can do. Further, a spin thermoelectric element can be formed by forming a Pt electrode 3 on this film by sputtering. By applying a temperature gradient ΔT in the perpendicular direction B of this element and applying a magnetic field in the in-plane direction C, the electromotive force can be taken out from the electrodes 7 and 9.

しかしながら、現状スピン熱電素子の出力は小さく、数uV/K程度であるため、実用化には至っていない。そのため、スピン熱電素子の高出力化が大きな課題となっている。スピン熱電素子の高出力化のためには、磁性膜で発生するスピン流の生成効率(スピン流生成効率)が大きく、かつ磁性膜で発生したスピン流が金属膜に突入する際の突入効率(スピン流突入効率)が大きい磁性材料の開発が求められる。しかし、スピン流生成効率とスピン流突入効率はトレードオフの傾向があり、スピン流生成効率とスピン流突入効率が共に大きい磁性材料の開発は難しい。   However, since the current output of the spin thermoelectric element is small and about several uV / K, it has not been put into practical use. For this reason, increasing the output of the spin thermoelectric element is a major issue. In order to increase the output of the spin thermoelectric device, the generation efficiency of the spin current generated in the magnetic film (spin current generation efficiency) is large, and the rush efficiency when the spin current generated in the magnetic film enters the metal film ( Development of magnetic materials with high spin current entry efficiency is required. However, there is a trade-off between spin current generation efficiency and spin current entry efficiency, and it is difficult to develop a magnetic material having both high spin current generation efficiency and spin current entry efficiency.

特許文献3には、基板上に、磁化が一方向に固定された絶縁強磁性体層、金属強磁性層、非磁性金属層がこの順に形成された熱電変換素子が記載されている。非磁性金属層と絶縁強磁性体層の界面よりも、非磁性金属層と金属強磁性層の界面の方が高い界面ミキシング効果を持つので絶縁強磁性体層から非磁性金属層に向かうスピン流が大きくなることが記載されている。それによって高い発電効率を実現できるとしている。   Patent Document 3 describes a thermoelectric conversion element in which an insulating ferromagnetic layer, a metal ferromagnetic layer, and a nonmagnetic metal layer whose magnetization is fixed in one direction are formed in this order on a substrate. Since the interface between the nonmagnetic metal layer and the metal ferromagnetic layer has a higher interface mixing effect than the interface between the nonmagnetic metal layer and the insulating ferromagnetic layer, the spin current from the insulating ferromagnetic layer toward the nonmagnetic metal layer Is described as increasing. As a result, high power generation efficiency can be realized.

特許文献4には、面内方向の磁化成分を有するNiFe、YIG等の磁性体層と、Au、Pt、Pd、Ir等の起電体層との間に、スピン注入層を設けた熱電変換素子が記載されている。このスピン注入層は、例えば酸化鉄、酸化ニッケル等であり、磁性体層から起電体層へのスピン注入効率を向上させるためのインターフェースとして設けられている。   Patent Document 4 describes a thermoelectric conversion in which a spin injection layer is provided between a magnetic layer such as NiFe or YIG having a magnetization component in an in-plane direction and an electromotive layer such as Au, Pt, Pd, or Ir. An element is described. The spin injection layer is made of, for example, iron oxide or nickel oxide, and is provided as an interface for improving the spin injection efficiency from the magnetic layer to the electromotive layer.

特開2009-130070号公報JP 2009-130070 国際公開第2012/108276号International Publication No.2012 / 108276 特開2014-216333号公報JP 2014-216333 A 特開2014-072250号公報Japanese Unexamined Patent Publication No. 2014-072250

Uchida et al. ”Spin Seebeck insulator”, Nature Materials, 2010 vol.9 p.894Uchida et al. “Spin Seebeck insulator”, Nature Materials, 2010 vol.9 p.894 Uchida et al. ”Observation of longitudinal spin-seebeck effect in magnetic insulator”, applied Physics Letters, 2010, vol.97, p172505Uchida et al. “Observation of longitudinal spin-seebeck effect in magnetic insulator”, applied Physics Letters, 2010, vol.97, p172505

特許文献3は絶縁強磁性体層と金属強磁性層の間、特許文献4は磁性体層とスピン流注入層の間に界面が存在し、そこでスピン流が散乱されてしまう。そのため非磁性金属層または起電体層に注入されるスピン流が減少し、熱電特性(熱起電力)向上の妨げとなる。   Patent Document 3 has an interface between the insulating ferromagnetic layer and the metal ferromagnetic layer, and Patent Document 4 has an interface between the magnetic layer and the spin current injection layer, where the spin current is scattered. Therefore, the spin current injected into the nonmagnetic metal layer or the electromotive layer is reduced, which hinders improvement of thermoelectric characteristics (thermoelectromotive force).

本発明の目的は、以上述べた問題点を解決し、より高出力なスピン熱電素子とその製造方法を提供することである。   An object of the present invention is to solve the above-described problems and provide a spin thermoelectric element with higher output and a method for manufacturing the same.

本発明の熱電変換素子は、基板上に、スピンゼーベック効果を発現する磁性体層と、逆スピンホール効果を発現する金属層とが積層された熱電変換素子において、前記磁性体層は前記基板側の領域が前記金属層側の領域に比べてスピン流効率が大きく、前記金属層側の領域が前記基板側の領域に比べてスピン流突入効率が大きく、前記磁性体層は、磁性材料の組成が前記基板と前記金属層の間にかけて連続的に変化していることを特徴とする。   The thermoelectric conversion element of the present invention is a thermoelectric conversion element in which a magnetic layer that exhibits a spin Seebeck effect and a metal layer that exhibits an inverse spin Hall effect are stacked on a substrate, wherein the magnetic layer is on the substrate side. This region has a larger spin current efficiency than the region on the metal layer side, the region on the metal layer side has a higher spin current entry efficiency than the region on the substrate side, and the magnetic layer has a composition of a magnetic material. Is continuously changing between the substrate and the metal layer.

また本発明の熱電変換素子の製造方法は、基板上に、スピンゼーベック効果を発現する磁性体層と、逆スピンホール効果を発現する金属層とが積層された熱電変換素子を製造する方法であって、前記基板上にスピン流効率が大きい磁性材料を含んだ溶液を塗布して乾燥させ、その上にスピン流突入効率が大きい磁性材料を含んだ溶液を塗布して乾燥させ、焼成させることで、前記磁性体層が磁性材料の組成が前記基板と前記金属層の間にかけて連続的に変化するようにし、そのあと前記金属層を形成することを特徴とする。   The method for manufacturing a thermoelectric conversion element of the present invention is a method for manufacturing a thermoelectric conversion element in which a magnetic layer that exhibits a spin Seebeck effect and a metal layer that exhibits an inverse spin Hall effect are laminated on a substrate. Then, a solution containing a magnetic material having a high spin current efficiency is applied on the substrate and dried, and a solution containing a magnetic material having a high spin current entry efficiency is applied thereon, dried, and baked. The magnetic layer is characterized in that the composition of the magnetic material continuously changes between the substrate and the metal layer, and then the metal layer is formed.

本発明によれば、スピン熱電素子のさらなる高出力化が可能となる。   According to the present invention, it is possible to further increase the output of the spin thermoelectric element.

本発明の第一の実施形態に記載のスピン熱電素子の概略を示す斜視図である。It is a perspective view which shows the outline of the spin thermoelectric element as described in 1st embodiment of this invention. 本発明の実施例のPt/BixYby:YIG/GGGスピン熱電素子の概略を示す斜視図ある。Pt / Bi x Yb y embodiment of the present invention: is a perspective view showing an outline of a YIG / GGG spin thermoelectric elements. 特許文献1に開示されている熱電変換素子の概略を示す斜視図である。1 is a perspective view showing an outline of a thermoelectric conversion element disclosed in Patent Document 1. FIG. 特許文献2に記載の熱電変換素子の概略を示す斜視図である。6 is a perspective view showing an outline of a thermoelectric conversion element described in Patent Document 2. FIG.

(第一の実施形態)
本発明の第一の実施形態について図面を参照して以下、詳細に説明する。
[構造の説明]
図1は、本発明の第一の実施形態のスピン熱電素子を概略的に示した斜視図である。基板501と、磁性体層502と金属層503を備えている構造である。磁性体層502はz軸方向つまり素子の積層方向に材料組成変化をつけている。さらに金属層503に端子504および端子505を設ける。
(First embodiment)
A first embodiment of the present invention will be described below in detail with reference to the drawings.
[Description of structure]
FIG. 1 is a perspective view schematically showing the spin thermoelectric element of the first embodiment of the present invention. In this structure, a substrate 501, a magnetic layer 502 and a metal layer 503 are provided. The magnetic layer 502 has a material composition change in the z-axis direction, that is, the stacking direction of the elements. Further, a terminal 504 and a terminal 505 are provided on the metal layer 503.

磁性体層502の基板501側は、磁性体層502の金属層503側に比べて、スピン流生成効率が大きな材料で構成されている。一方、磁性体層502の金属層503側は、磁性体層502の基板501側に比べてスピン流突入効率が大きな材料で構成されている。磁性体層502の組成は、基板501と金属層503の間で連続的に変化している。   The substrate 501 side of the magnetic layer 502 is made of a material having a higher spin current generation efficiency than the metal layer 503 side of the magnetic layer 502. On the other hand, the metal layer 503 side of the magnetic layer 502 is made of a material having a higher spin current entry efficiency than that of the magnetic layer 502 on the substrate 501 side. The composition of the magnetic layer 502 changes continuously between the substrate 501 and the metal layer 503.

スピン流生成効率の大きな材料とは、スピン緩和の大きな材料であり、例えばYIGのcサイトを、軌道角運動量量子数Lを有するCe,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Ybなどの元素のいずれかで置換した磁性材料が該当する。またスピン流突入効率の大きな材料とは、スピン緩和の小さい材料であり、例えばYIGやYIGのcサイトを、軌道角運動量量子数を有していないLa,Gd,Lu,Bi,Ca,Cuなどの元素のいずれかで置換した磁性材料が該当する。また金属層503はスピン軌道相互作用の大きな元素から構成されていることが好ましく、例えばAu,Pt,IrまたはBiなどである。   A material having a large spin current generation efficiency is a material having a large spin relaxation. For example, a c-site of YIG is converted to Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er with orbital angular momentum quantum number L. , Tm, Yb, or any other substituted magnetic material. A material with high spin current entry efficiency is a material with low spin relaxation, for example, the c site of YIG or YIG, La, Gd, Lu, Bi, Ca, Cu, etc. that do not have orbital angular momentum quantum numbers. This corresponds to a magnetic material substituted with one of these elements. The metal layer 503 is preferably composed of an element having a large spin orbit interaction, such as Au, Pt, Ir, or Bi.

この磁性体層502の厚さは熱電発電の用途や温度領域に応じて変えることが可能だが、通常は熱マグノンの拡散長程度の数十nm〜数um程度に設定することが望ましい。また、金属層503の厚さは起電層のスピン拡散長程度の数nm〜数百nmに設定することが望ましい。   The thickness of the magnetic layer 502 can be changed in accordance with the use of thermoelectric power generation and the temperature range, but it is usually desirable to set it to about several tens of nanometers to several um, which is about the diffusion length of thermal magnon. Further, the thickness of the metal layer 503 is preferably set to several nm to several hundred nm, which is about the spin diffusion length of the electromotive layer.

このスピン熱電素子のx方向(素子の積層面内で2つの端子504と505を結ぶ線と垂直な方向)に磁場、z方向(素子の積層方向)に温度勾配を印加することで、スピンゼーベック効果により磁性体層中のz方向にスピン流が発生する。このスピン流が金属層503に突入すると逆スピンホール効果によりスピン流が電流に変換される。これにより、端子504および端子505から起電力を取り出すことができる。
[効果の説明]
以上のように、磁性体層502の基板501付近にスピン流生成効率の大きな材料を使用し、磁性体層502の金属層503付近にスピン流突入効率の大きな材料を使用することで、磁性体層502の基板付近で発生した大きなスピン流を、スピン突入効率の大きな材料を介すことで効率的に金属層503に突入させることができる。そのため、スピン熱電素子のさらなる高出力化が可能となる。
By applying a magnetic field in the x direction (direction perpendicular to the line connecting the two terminals 504 and 505 in the stacking plane of the element) and a temperature gradient in the z direction (stacking direction of the element) of this spin thermoelectric element, spin Seebeck Due to the effect, a spin current is generated in the z direction in the magnetic layer. When this spin current enters the metal layer 503, the spin current is converted into a current by the reverse spin Hall effect. Thereby, the electromotive force can be taken out from the terminal 504 and the terminal 505.
[Description of effects]
As described above, a material having a high spin current generation efficiency is used near the substrate 501 of the magnetic layer 502, and a material having a high spin current entry efficiency is used near the metal layer 503 of the magnetic layer 502. A large spin current generated in the vicinity of the substrate of the layer 502 can efficiently enter the metal layer 503 through a material having a high spin entry efficiency. As a result, the output of the spin thermoelectric element can be further increased.

一方、特許文献3は絶縁強磁性体層と金属強磁性層の間、特許文献4は磁性体層とスピン流注入層の間に界面が存在し、そこでスピン流が散乱されてしまう。そのため非磁性金属層または起電体層に注入されるスピン流が減少し、熱電特性(熱起電力)向上の妨げとなる。しかし特許文献3、4のように界面が存在する場合に比べ、本実施形態のように一つの磁性体層502の中でスピン流生成効率の大きな領域からスピン流突入効率の大きな領域へと組成を連続的に変化させると界面が存在しなくなる。そのため界面でのスピン流の散乱がなくなり、その結果熱電特性が向上する。
[製造方法の説明]
図1を参照して、本実施形態のスピン熱電素子の製造方法の例を説明する。まず、GGG基板501上に有機金属分解法(MOD法)でz軸方向に材料組成変化をつけた磁性体層502を作成する。
On the other hand, Patent Document 3 has an interface between the insulating ferromagnetic layer and the metal ferromagnetic layer, and Patent Document 4 has an interface between the magnetic layer and the spin current injection layer, where the spin current is scattered. Therefore, the spin current injected into the nonmagnetic metal layer or the electromotive layer is reduced, which hinders improvement of thermoelectric characteristics (thermoelectromotive force). However, compared to the case where an interface exists as in Patent Documents 3 and 4, the composition from one region having a high spin current generation efficiency to a region having a high spin current entry efficiency in one magnetic layer 502 as in this embodiment. When is continuously changed, the interface does not exist. Therefore, scattering of the spin current at the interface is eliminated, and as a result, the thermoelectric characteristics are improved.
[Description of manufacturing method]
With reference to FIG. 1, the example of the manufacturing method of the spin thermoelectric element of this embodiment is demonstrated. First, a magnetic layer 502 having a material composition change in the z-axis direction is formed on a GGG substrate 501 by an organometallic decomposition method (MOD method).

その手順は、GGG基板501上にスピン流生成効率の大きな磁性体材料のMOD溶液をスピンコーターで塗布し、その後有機溶剤を除去するために乾燥させる。その上にスピン流突入効率の大きな磁性体材料のMOD溶液をスピンコーターで塗布し、その後乾燥させて有機溶剤を除去する。次に仮焼成をし、有機物を分解、揮発させ、その後、本焼成を行い酸化物化、結晶化を行う。   In this procedure, a MOD solution of a magnetic material having a high spin current generation efficiency is applied on the GGG substrate 501 with a spin coater, and then dried to remove the organic solvent. On top of that, a MOD solution of a magnetic material having a high spin flow entry efficiency is applied by a spin coater, and then dried to remove the organic solvent. Next, provisional baking is performed to decompose and volatilize the organic matter, and then main baking is performed to convert to oxide and crystallize.

このようにスピン流生成効率の大きな材料のMOD溶液とスピン流注入効率の大きな材料のMOD溶液をまとめて焼成することで、基板501側はスピン流生成効率の大きな材料、金属層503側はスピン流突入効率の大きな材料で構成されており、その間の組成がなだらかに変化している磁性体層502を作成することができる。最後に、作成した磁性体層502上に、スピン軌道相互作用の大きな元素(例えばAu,Pt,Ir,Biなど)で構成されている金属層503を作成する。その手法は例えばスパッタ法、蒸着法、メッキ法、スクリーン印刷法などである。   By firing together the MOD solution of the material having a high spin current generation efficiency and the MOD solution of the material having a high spin current injection efficiency in this way, the substrate 501 side is a material having a high spin current generation efficiency and the metal layer 503 side is a spin. It is possible to create a magnetic layer 502 that is made of a material having a high flow entry efficiency and in which the composition changes gently. Finally, a metal layer 503 made of an element having a large spin orbit interaction (for example, Au, Pt, Ir, Bi, etc.) is formed on the magnetic layer 502 thus formed. Examples of the method include a sputtering method, a vapor deposition method, a plating method, and a screen printing method.

このスピン熱電素子のx方向に磁場、z方向に温度勾配を印加することで、端子504および端子505から起電力を取り出すことができる。   By applying a magnetic field in the x direction and a temperature gradient in the z direction of the spin thermoelectric element, an electromotive force can be taken out from the terminal 504 and the terminal 505.

特許文献3、4のように二層に分けて形成する場合に比べて、本実施形態の製造方法ではプロセスが簡易化できる。例えば、MOD法で磁性体層とスピン注入層を別々の層として作成する場合は、合計8プロセス(磁性体層材料のスピンコート⇒乾燥⇒仮焼成⇒焼成⇒スピン注入層材料のスピンコート⇒乾燥⇒仮焼成⇒本焼結)必要になる。しかし本実施形態では、上述したように、合計で6プロセス(磁性体層材料のスピンコート⇒乾燥⇒スピン注入層材料のスピンコート⇒乾燥⇒仮焼成⇒本焼結)で済む。   Compared to the case of forming in two layers as in Patent Documents 3 and 4, the manufacturing method of this embodiment can simplify the process. For example, when creating a magnetic layer and a spin injection layer as separate layers by the MOD method, a total of 8 processes (spin coating of magnetic layer material ⇒ drying ⇒ temporary firing ⇒ firing ⇒ spin coating of spin injection layer material ⇒ drying ⇒ Temporary firing ⇒ Main sintering) However, in this embodiment, as described above, a total of six processes (spin coating of magnetic layer material → drying → spin coating of spin injection layer material → drying → temporary firing → main sintering) are sufficient.

なお、上記スピン熱電素子の製造方法は、単なる一例であり、これに限定されたものではない。   The method for manufacturing the spin thermoelectric element is merely an example, and the present invention is not limited to this.

図2は、基板としてGGG基板601、磁性体層としてYIGのYサイトの一部をYbとBiで置換したBixYby:YIG(BixYbyY2Fe5O12)磁性体層602(以下BixYby:YIG磁性体層602と略称する)、金属層としてPt層603を使用したPt/BixYby:YIG/GGGスピン熱電素子の概略を示す斜視図である。Ybは軌道角運動量量子数Lを有しているためスピン緩和が大きくスピン流生成効率が大きい。また、Biは軌道角運動量量子数Lを有していないためスピン緩和が小さくスピン流突入効率が大きい。 2, GGG substrate 601 as the substrate, YIG and Bi part of and replaced with Yb and Bi Y site x Yb y as magnetic layers: YIG (Bi x Yb y Y 2 Fe 5 O 12) magnetic layers 602 (hereinafter Bi x Yb y: abbreviated as YIG magnetic layer 602), a Pt layer 603 as a metal layer Pt / Bi x Yb y: is a perspective view showing an outline of a YIG / GGG spin thermoelectric elements. Since Yb has an orbital angular momentum quantum number L, spin relaxation is large and spin current generation efficiency is large. In addition, since Bi does not have the orbital angular momentum quantum number L, spin relaxation is small and spin current entry efficiency is large.

まず、GGG基板601上に有機金属分解法(MOD法)でBixYby:YIG磁性体層602を作成する。その手順は、初めにGGG基板601上にYb1:YIGのMOD溶液をスピンコーターで塗布し、その後有機溶剤を除去するために乾燥させる。その上にBi1:YIGのMOD溶液をスピンコーターで塗布し、その後有機溶剤を除去するために乾燥させる。次に仮焼成をし、有機物を分解、揮発させ、その後本焼成を行い酸化物化、結晶化を行う。次に、作成したBixYby:YIG磁性体層602上にPt層603をスパッタリング法で形成する。 First, Bi organometallic decomposition (MOD) method on the GGG substrate 601 x Yb y: Create a YIG magnetic layer 602. The procedure is as follows. First , a Yb 1 : YIG MOD solution is applied onto the GGG substrate 601 with a spin coater, and then dried to remove the organic solvent. On top of this, a Bi 1 : YIG MOD solution is applied with a spin coater and then dried to remove the organic solvent. Next, pre-baking is performed to decompose and volatilize the organic matter, and then main baking is performed to perform oxidation and crystallization. Next, Bi x Yb y created: forming the Pt layer 603 by a sputtering method on YIG magnetic layer 602.

このスピン熱電素子のx方向に磁場、z方向に温度勾配を印加することで、端子604および端子605から起電力を取り出すことができる。   By applying a magnetic field in the x direction and a temperature gradient in the z direction of the spin thermoelectric element, an electromotive force can be taken out from the terminal 604 and the terminal 605.

以上の手順で作成したPt/BixYby:YIG/GGGスピン熱電素子のBixYby:YIG磁性体層602は、GGG基板601側はYbが多くBiが少ない(xが小さくyが大きい)状態であり、Pt層603側はYbが少なくBiが多い(xが大きくyが小さい)状態である。そのためこのPt/BixYby:YIG/GGGスピン熱電素子は、スピン流生成効率とスピン流突入効率が共に大きく、より大きな熱起電力を発生させることができる。 The Bi x Yb y : YIG magnetic layer 602 of the Pt / B i x Yb y : YIG / GGG spin thermoelectric element created by the above procedure has a large amount of Yb and a small amount of Bi on the GGG substrate 601 side (x is small and y is large). The Pt layer 603 side is in a state where Yb is small and Bi is large (x is large and y is small). Therefore the Pt / Bi x Yb y: YIG / GGG spin thermoelectric element, the spin current generator efficiency and spin current inrush efficiency are both large, it is possible to generate a larger thermoelectromotive force.

501 基板
502 磁性体層
503 金属層
504、505 端子
601 GGG基板
602 BixYby:YIG磁性体層
603 Pt層
604、605 端子
501 board
502 Magnetic layer
503 metal layer
504, 505 terminals
601 GGG board
602 Bi x Yb y : YIG magnetic layer
603 Pt layer
604, 605 terminals

Claims (8)

基板上に、スピンゼーベック効果を発現する磁性体層と、逆スピンホール効果を発現する金属層とが積層された熱電変換素子であって、
前記磁性体層は前記基板側の領域が前記金属層側の領域に比べてスピン流効率が大きく、前記金属層側の領域が前記基板側の領域に比べてスピン流突入効率が大きく、
前記磁性体層は、磁性材料の組成が前記基板と前記金属層の間にかけて連続的に変化していることを特徴とする熱電変換素子。
A thermoelectric conversion element in which a magnetic layer expressing a spin Seebeck effect and a metal layer expressing a reverse spin Hall effect are laminated on a substrate,
In the magnetic layer, the region on the substrate side has a higher spin current efficiency than the region on the metal layer side, and the region on the metal layer side has a higher spin current entry efficiency than the region on the substrate side,
The thermoelectric conversion element, wherein the magnetic layer has a composition of a magnetic material that continuously changes between the substrate and the metal layer.
請求項1に記載の熱電変換素子であって、前記磁性体層の前記金属層側の領域は、前記磁性体層の前記基板側の領域に比べてスピン緩和が小さいことを特徴とする熱電変換素子。   2. The thermoelectric conversion device according to claim 1, wherein the region on the metal layer side of the magnetic layer has a smaller spin relaxation than the region on the substrate side of the magnetic layer. 3. element. 請求項1または2に記載の熱電変換素子であって、前記磁性体層の前記金属層側の領域は、YIG、または、YIGのcサイトの一部を軌道角運動量量子数を含まない元素Bi,Cu,Ca,La,GdもしくはLuで置換した磁性材料を使用することを特徴とする熱電変換素子。   3. The thermoelectric conversion element according to claim 1, wherein the region on the metal layer side of the magnetic layer is YIG or a part of the c-site of YIG is an element Bi not including an orbital angular momentum quantum number. A thermoelectric conversion element using a magnetic material substituted with Cu, Ca, La, Gd or Lu. 請求項1から3のいずれか一項に記載の熱電変換素子であって、前記磁性体層の前記基板側の領域は、YIGのcサイトの一部を、軌道角運動量量子数を含む元素Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,YbまたはLuで置換した磁性材料を使用することを特徴とする熱電変換素子。 4. The thermoelectric conversion element according to claim 1, wherein a region on the substrate side of the magnetic layer includes a part of a c-site of YIG and an element Ce including an orbital angular momentum quantum number. 5. A thermoelectric conversion element using a magnetic material substituted with Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or Lu. 請求項1から4のいずれか一項に熱電変換素子であって、前記金属層に2つの端子を設け、前記磁性体層の前記積層面内の方向に磁場を印加し、前記積層方向に温度勾配を印加することで前記2つの端子間から起電力を取り出すことを特徴とする熱電変換素子。   5. The thermoelectric conversion element according to claim 1, wherein two terminals are provided on the metal layer, a magnetic field is applied in a direction in the lamination plane of the magnetic layer, and a temperature is applied in the lamination direction. A thermoelectric conversion element, wherein an electromotive force is taken out between the two terminals by applying a gradient. 請求項1から5のいずれか一項に熱電変換素子であって、前記磁性体層の厚さは熱マグノンの拡散長程度であることを特徴とする熱電変換素子。   6. The thermoelectric conversion element according to claim 1, wherein the thickness of the magnetic layer is about the diffusion length of thermal magnon. 基板上に、スピンゼーベック効果を発現する磁性体層と、逆スピンホール効果を発現する金属層とが積層された熱電変換素子を製造する方法であって、
前記基板上にスピン流効率が大きい磁性材料を含んだ溶液を塗布して乾燥させ、その上に前記スピン流突入効率が大きい磁性材料を含んだ溶液を塗布して乾燥させ、焼成させることで、前記磁性体層が磁性材料の組成が前記基板と前記金属層の間にかけて連続的に変化するようにし、
そのあと前記金属層を形成することを特徴とする熱電変換素子の製造方法。
A method of manufacturing a thermoelectric conversion element in which a magnetic layer that expresses a spin Seebeck effect and a metal layer that expresses a reverse spin Hall effect are laminated on a substrate,
By applying and drying a solution containing a magnetic material having a large spin current efficiency on the substrate, applying and drying a solution containing a magnetic material having a large spin current efficiency on the substrate, and baking it. The magnetic layer is configured so that the composition of the magnetic material continuously changes between the substrate and the metal layer;
Thereafter, the metal layer is formed. A method for manufacturing a thermoelectric conversion element.
請求項7に記載の熱電変換素子の製造方法であって、前記スピン流効率が大きい磁性材料を含んだ溶液はYb:YIGを含んだ溶液であり、前記スピン流突入効率が大きい磁性材料を含んだ溶液はBi:YIGのMOD溶液であることを特徴とする熱電変換素子の製造方法。   8. The method of manufacturing a thermoelectric conversion element according to claim 7, wherein the solution containing a magnetic material having a high spin current efficiency is a solution containing Yb: YIG, and includes the magnetic material having a high spin current entry efficiency. The solution is a Bi: YIG MOD solution, a method for manufacturing a thermoelectric conversion element.
JP2015040182A 2015-03-02 2015-03-02 Thermoelectric conversion element and method of manufacturing the same Active JP6519230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040182A JP6519230B2 (en) 2015-03-02 2015-03-02 Thermoelectric conversion element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040182A JP6519230B2 (en) 2015-03-02 2015-03-02 Thermoelectric conversion element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016162881A true JP2016162881A (en) 2016-09-05
JP6519230B2 JP6519230B2 (en) 2019-05-29

Family

ID=56845460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040182A Active JP6519230B2 (en) 2015-03-02 2015-03-02 Thermoelectric conversion element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6519230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085774A (en) * 2019-11-28 2021-06-03 国立研究開発法人日本原子力研究開発機構 Nuclear battery, nuclear battery system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007343A (en) * 2006-06-27 2008-01-17 Covalent Materials Corp Alumina coated material and method of manufacturing the same
WO2012108276A1 (en) * 2011-02-09 2012-08-16 日本電気株式会社 Thermoelectric conversion element, method for producing thermoelectric conversion element, and thermoelectric conversion method
WO2014041838A1 (en) * 2012-09-12 2014-03-20 日本電気株式会社 Thermoelectric transducer and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007343A (en) * 2006-06-27 2008-01-17 Covalent Materials Corp Alumina coated material and method of manufacturing the same
WO2012108276A1 (en) * 2011-02-09 2012-08-16 日本電気株式会社 Thermoelectric conversion element, method for producing thermoelectric conversion element, and thermoelectric conversion method
WO2014041838A1 (en) * 2012-09-12 2014-03-20 日本電気株式会社 Thermoelectric transducer and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085774A (en) * 2019-11-28 2021-06-03 国立研究開発法人日本原子力研究開発機構 Nuclear battery, nuclear battery system
JP7385260B2 (en) 2019-11-28 2023-11-22 国立研究開発法人日本原子力研究開発機構 Nuclear battery, nuclear battery system

Also Published As

Publication number Publication date
JP6519230B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US9859486B2 (en) Thermoelectric conversion element and manufacturing method for same
JP5585314B2 (en) Thermoelectric conversion element and thermoelectric conversion device
JP6233320B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP5987835B2 (en) Thermoelectric conversion element
JP2014086448A (en) Spintronics device
WO2013047254A1 (en) Member with thermoelectric conversion function, and method for producing same
JP5219046B2 (en) Microwave oscillation device and microwave oscillation device
JP6066091B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6241618B2 (en) Thermoelectric conversion element, thermoelectric conversion system, and method of manufacturing thermoelectric conversion element
JP6233311B2 (en) Thermoelectric conversion element and manufacturing method thereof
WO2017082266A1 (en) Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
JP2014072250A (en) Thermoelectric transducer and method for manufacturing the same
JP6519230B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP6349863B2 (en) Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device
JP6413466B2 (en) Thermoelectric conversion element
WO2018146713A1 (en) Thermoelectric conversion element and method for manufacturing same
JP2015065254A (en) Thermoelectric conversion element and method for manufacturing the same
JP2015185778A (en) Thermoelectric conversion element and method for manufacturing the same
JP6172439B2 (en) Spin current thermoelectric transducer
JP4574274B2 (en) Thermoelectric converter
WO2023054583A1 (en) Thermoelectric body, thermoelectric generation element, multilayer thermoelectric body, multilayer thermoelectric generation element, thermoelectric generator, and heat flow sensor
JP2015142048A (en) Thermoelectric conversion element and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150