JP2014086448A - Spintronics device - Google Patents

Spintronics device Download PDF

Info

Publication number
JP2014086448A
JP2014086448A JP2012231849A JP2012231849A JP2014086448A JP 2014086448 A JP2014086448 A JP 2014086448A JP 2012231849 A JP2012231849 A JP 2012231849A JP 2012231849 A JP2012231849 A JP 2012231849A JP 2014086448 A JP2014086448 A JP 2014086448A
Authority
JP
Japan
Prior art keywords
current
spin
member layer
spin current
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012231849A
Other languages
Japanese (ja)
Other versions
JP6143051B2 (en
Inventor
Kazuya Ando
和也 安藤
Eiji Saito
英治 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2012231849A priority Critical patent/JP6143051B2/en
Priority to PCT/GB2013/052736 priority patent/WO2014060781A2/en
Priority to US14/436,724 priority patent/US10018689B2/en
Priority to EP13780396.1A priority patent/EP2909644B1/en
Publication of JP2014086448A publication Critical patent/JP2014086448A/en
Application granted granted Critical
Publication of JP6143051B2 publication Critical patent/JP6143051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spintronics device in which a spin current-current conversion efficiency specified by a spin current-current conversion coefficient αhaving a spin current-electron mutual conversion member is made not less than α.SOLUTION: As a spin current-electron mutual conversion member layer joined to a spin current generating member layer, a conductive member in the electric conductivity in an inflow direction of a spin current is used which is higher than that in the electric conductivity in the other direction.

Description

本発明は、スピントロニクスデバイスに関するものであり、例えば、逆スピンホール効果部材として異方導電性を有する部材を用いてスピン流−電流変換効率を高めたスピントロニクスデバイスに関する。   The present invention relates to a spintronic device, and for example, relates to a spintronic device in which spin current-current conversion efficiency is increased by using a member having anisotropic conductivity as an inverse spin Hall effect member.

現在の半導体装置等のエレクトロニクス分野においては、電子の有する電荷の自由度を利用しているが、電子は電荷以外にスピンという自由度を有している。近年、このスピンの自由度を利用したスピントロニクスが次世代の情報技術の担い手として注目を集めている。   In the current electronics field such as semiconductor devices, the degree of freedom of charge of electrons is used, but electrons have the degree of freedom of spin in addition to charges. In recent years, spintronics using this degree of freedom of spin has been attracting attention as a leader of next-generation information technology.

このスピントロニクスでは電子の電荷とスピンの自由度を同時に利用することによって、従来にない機能や特性を得ることを目指しているが、スピントロニクス機能の多くはスピン流によって駆動される。   This spintronics aims to obtain unprecedented functions and characteristics by simultaneously using the charge of electrons and the degree of freedom of spin, but many of the spintronic functions are driven by spin current.

スピン流はエネルギーの散逸が少ないため、効率の良いエネルギー伝達に利用できる可能性が期待されており、スピン流の生成方法や検出方法の確立が急務になっている。スピン流の生成方法としては、スピンポンピングによるスピン流が提案されており(例えば、非特許文献1参照)、スピン流の検出方法についても、本発明者等により逆スピンホール効果(ISHE)によるスピン流を電流に変換して電圧として取り出すことが提案されている(例えば、非特許文献2参照)。   Since the spin current has little energy dissipation, it is expected that it can be used for efficient energy transfer, and there is an urgent need to establish a spin current generation method and detection method. As a method of generating a spin current, a spin current by spin pumping has been proposed (see, for example, Non-Patent Document 1), and a spin current detection method is also proposed by the present inventors by using the inverse spin Hall effect (ISHE). It has been proposed to convert a current into a current and take it out as a voltage (see, for example, Non-Patent Document 2).

このような逆スピンホール効果を得るために用いる逆スピンホール効果部材としては、Pt、Au、Pd、Ag、Bi、f軌道或いは3d軌道を有する遷移金属を有する元素、若しくはそれらの合金のいずれかを有する元素、或いは、前記各材料とCu、Al、或いは、Siの合金が用いられており、なかでも、逆スピンホール効果の生成効率の高いPt或いはBiドープCuが有望視されている。なお、逆スピンホール効果部材に外部磁場を印加すると外部磁場と直交する方向に逆スピンホール電圧EISHEが発生する。 The reverse spin Hall effect member used for obtaining such a reverse spin Hall effect is any one of an element having a transition metal having Pt, Au, Pd, Ag, Bi, f orbital or 3d orbital, or an alloy thereof. Or an alloy of Cu, Al, or Si with the above-mentioned materials, and Pt or Bi-doped Cu having high reverse spin Hall effect generation efficiency is particularly promising. In addition, when an external magnetic field is applied to the reverse spin Hall effect member, a reverse spin Hall voltage EISHE is generated in a direction orthogonal to the external magnetic field.

このようなスピンホール効果或いは逆スピンホール効果における電子の運動は、下記の式(1)で表わされるボルツマン方程式で記述される。
ここで、vは電子速度であり、fkσは電子の分布関数であり、eは素電荷、Eは外部電場であり、hはプランク常数であり、hスラッシュはh/2πを表し、右辺は、不純物による電子の散乱項である。ここで、kを電子の運動量とし、mを電子の質量とすると、
=(h/2π)k/mで表わされる。
The motion of electrons in the spin Hall effect or the inverse spin Hall effect is described by the Boltzmann equation expressed by the following equation (1).
Here, v k is an electron velocity, f is an electron distribution function, e is an elementary charge, E is an external electric field, h is a Planck constant, h slash represents h / 2π, Is an electron scattering term due to impurities. Here, if k is the momentum of electrons and m is the mass of electrons,
V k = (h / 2π) k / m.

式(1)における右辺の不純物による散乱項は、下記の式(2)で記述される。
なお、式(2)における左項は、k′σ′の運動量・スピン状態からkσの運動量・スピン状態への散乱項であり、右項はkσの運動量・スピン状態からk′σ′の運動量・スピン状態への散乱項である。
The scattering term due to the impurity on the right side in the equation (1) is described by the following equation (2).
The left term in Equation (2) is the k′σ ′ momentum / spin state to the kσ momentum / spin state scattering term, and the right term is the kσ momentum / spin state to k′σ ′ momentum. -It is a scattering term to the spin state.

また、式(2)における右項の分布関数に掛る係数は、下記の式(3)で表わされ、kσの運動量・スピン状態(|kσ>)からk′σ′の運動量・スピン状態(|k′σ′>)への散乱確率を表す。
また、式中のnimpは不純物濃度、T(山記号付き)は散乱マトリクスである。なお、左項の分布関数に掛る係数も、「′」の位置を変えて表わされる。
Further, a coefficient applied to the distribution function of the right term in the equation (2) is expressed by the following equation (3), and from the momentum / spin state (| kσ>) of kσ to the momentum / spin state (kσ ′) | K′σ ′>) represents the scattering probability.
In addition, n imp in the formula is an impurity concentration, and T (with a mountain symbol) is a scattering matrix. The coefficient applied to the distribution function of the left term is also expressed by changing the position of “′”.

このボルツマン方程式を解くことによって、分布fkσは下記の式(4)で記述される。
なお、式(4)におけるσは電気伝導度を表し、τtrは不純物に起因する散乱時間を表し、μ(r)は電気化学ポテンシャルを表し、αはスピン流−電流変換係数を表し、σσσはスピンの向きを表すパウリマトリクスである。
By solving this Boltzmann equation, the distribution f is described by the following equation (4).
In Equation (4), σ represents electrical conductivity, τ tr represents scattering time due to impurities, μ (r) represents electrochemical potential, α H represents spin current-current conversion coefficient, σ σσ is a Pauli matrix representing the spin direction.

また、αは下記の式(5)で表わされる。
式(5)におけるηSOバーは無次元のスピン−軌道結合パラメータを表し、N(0)はフェルミ準位における電子の状態密度を表し、Vimpは不純物ポテンシャルの強度を表す。また、電気化学ポテンシャルμは下記の式(6)で表わされる。
なお、μに付けられた矢印はアップスピン或いはダウンスピンを意味する。また、εはフェルミエネルギーであり、φは電気ポテンシャルであり、φ=−▽Eである。
Α H is expressed by the following formula (5).
In Equation (5), the η SO bar represents a dimensionless spin-orbit coupling parameter, N (0) represents the density of states of electrons in the Fermi level, and V imp represents the intensity of the impurity potential. The electrochemical potential μ is represented by the following formula (6).
Note that the arrow attached to μ means upspin or downspin. Also, ε F is Fermi energy, φ is an electric potential, and φ = −− E.

ここで、x方向のスピン流密度j は下記の式(7)で表わされ、式(7)におけるσ(一般式σ)は下記の式(8)で表わされる。
Here, the spin current density j s x in the x direction is represented by the following formula (7), and σ x (general formula σ i ) in the formula (7) is represented by the following formula (8).

また、スピン流から変換される電流密度jは、下記の式(9)で表わされ、x方向のスピン流に伴うy方向に流れる電流j は下記の式(10)で表わされ、最終的には、
=α・j
となり、逆スピンホール効果による電流密度j はスピン流−電流変換係数αに規定されることになる。
The current density j c converted from the spin current is expressed by the following formula (9), and the current j c y flowing in the y direction accompanying the spin current in the x direction is expressed by the following formula (10). And finally,
j c y = α H · j s x
Next, the current density j c y by inverse spin Hall effect spin current - will be defined in the current conversion coefficient alpha H.

したがって、逆スピンホール効果によって多くの電流を取り出すためには、大きなスピン流−電流変換係数αを有する物質を逆スピンホール効果部材として用いることが重要になる。 Therefore, in order to extract a large amount of current by the reverse spin Hall effect, it is important to use a substance having a large spin current-current conversion coefficient α H as the reverse spin Hall effect member.

Phys.Rev.,B19,p.4382,1979Phys. Rev. B19, p. 4382, 1979 Applied Physics Letters Vol.88,p.182509,2006Applied Physics Letters Vol. 88, p. 182509, 2006

上述のように、逆スピンホール効果による電流j はスピン流−電流変換係数αに規定されることになるため、逆スピンホール効果によって多くの電流を取り出すためには、大きなスピン流−電流変換係数αを有する物質を逆スピンホール効果部材として用いる必要がある。 As described above, the current j c y by inverse spin Hall effect spin current - for that it will be defined in the current conversion coefficient alpha H, to retrieve a number of current by the inverse spin Hall effect, large spin current - It is necessary to use a material having a current conversion coefficient α H as an inverse spin Hall effect member.

しかし、従来、逆スピンホール効果部材として用いられている材料のスピン流−電流変換係数αは、大きくてもPtの10パーセント程度であり、BiドープCuを用いても25%程度が期待できるだけであり、スピン流−電流変換係数の増大には限界がある。 However, the spin current-current conversion coefficient α H of a material conventionally used as an inverse spin Hall effect member is about 10% of Pt at most, and about 25% can be expected even when Bi-doped Cu is used. Therefore, there is a limit in increasing the spin current-current conversion coefficient.

したがって、本発明は、スピン流−電流変換効率をさらに高めることを目的とする。   Therefore, an object of the present invention is to further increase the spin current-current conversion efficiency.

上記課題を解決するために、本発明は、スピントロニクスデバイスであって、エネルギーの供給により純スピン流或いはスピン波スピン流を発生するスピン流発生部材層と、前記スピン流発生部材層に接合し、スピン流を電流に変換する或いは電流をスピン流に変換するスピン流−電流相互変換部材層と、前記スピン流−電流相互変換部材層に設けられ、前記電流の流れる方向の上流側と下流側に設けられた一対の電極とを有し、前記スピン流−電流相互変換部材層が、スピン流の流入方向の電気伝導度が他の方向の電気伝導度より高い異方導電性を有する。   In order to solve the above problems, the present invention is a spintronic device, which is joined to a spin current generating member layer that generates a pure spin current or a spin wave spin current by supplying energy, and the spin current generating member layer, A spin current-current mutual conversion member layer that converts spin current into current or converts current into spin current, and provided in the spin current-current mutual conversion member layer, on the upstream side and the downstream side in the current flow direction. The spin current-current mutual conversion member layer has anisotropic conductivity in which the electrical conductivity in the inflow direction of the spin current is higher than the electrical conductivity in the other direction.

本発明者は、各種の導電性材料のスピン流−電流変換効率に相当するスピンホール角θSHEを実験により確認した結果、通常の導電体では、θSHEであるが、異方導電性を有する導電性材料の場合には、スピン流の流入方向の電気伝導率をσ、それと直交する方向の電気伝導率をσとすると、スピンホール角θSHE
θSHE=(σ/σ)×α
で表わされることを発見した。因みに、異方導電性がない材料の場合にはσ=σとなる。
As a result of confirming the spin hole angle θ SHE corresponding to the spin current-current conversion efficiency of various conductive materials by experiments, the present inventor found that θ SHE = α H in a normal conductor, In the case of a conductive material having a property, assuming that the electric conductivity in the inflow direction of the spin current is σ x and the electric conductivity in the direction orthogonal thereto is σ y , the spin hole angle θ SHE is θ SHE = (σ y / Σ x ) × α H
I found out that Incidentally, in the case of a material having no anisotropic conductivity, σ y = σ x .

したがって、σ>σなる異方導電性を有する材料を逆スピンホール効果部材として用いることによって、従来のαで規定される10%程度のスピン流−電流変換効率(スピンホール角θSHE)を100%以上にすることが可能であることを新規に見出した。また、このことは、電流をスピン流に変換するスピンホール効果においても、電流からスピン流への変換効率を高めることができることを意味する。 Therefore, by using a material having anisotropic conductivity of σ y > σ x as an inverse spin Hall effect member, a spin current-current conversion efficiency (spin hole angle θ SHE) of about 10% defined by conventional α H is used. ) Was newly found to be 100% or more. This also means that the conversion efficiency from current to spin current can be increased even in the spin Hall effect that converts current to spin current.

このような異方導電性を有する逆スピンホール効果部材等のスピン流−電流相互変換部材としては、導電性ポリマー、有機自己組織化膜、有機電荷移動錯体伝導体、金属積層膜、層状遷移金属酸化物、或いは、3次元トポロジカル絶縁体のいずれかを用いれば良い。   Examples of spin current-current mutual conversion members such as reverse spin Hall effect members having anisotropic conductivity include conductive polymers, organic self-assembled films, organic charge transfer complex conductors, metal laminated films, and layered transition metals. Either an oxide or a three-dimensional topological insulator may be used.

特に、導電性ポリマーとしては、PEDOT〔poly(3,4−ethylenedioxythiophene)〕とPSS〔poly(4−styrenesufonate)〕とを混合したポリマーであるPEDOT:PSS、或いは、PBTTT〔poly(2,5−bis(3−alkylthiophen−2−yl)thieno[3,2−b]thiophene〕とF4−TCNQ〔2,3,5,6−tetrafluoro−7,7,8,8−tetracyanoquinodimethane〕とを混合したポリマーであるPBTTT:F4−TCNQが挙げられる。   In particular, as the conductive polymer, PEDOT: PSS, which is a polymer obtained by mixing PEDOT [poly (3,4-ethylenedithiothiophene)] and PSS [poly (4-styreneenesulfonate)], or PBTT [poly (2,5- bis (3-alkylthiophene-2-yl) thieno [3,2-b] thiophene] and F4-TCNQ [2,3,5,6-tetrafluor-7,7,8,8-tetracyanoquinodimethane] And PBTTT: F4-TCNQ.

異方導電性を有するスピン流−電流相互変換部材層を逆スピンホール効果部材層とした場合、逆スピンホール効果部材層を絶縁性基板上に設けるとともに、逆スピンホール効果部材層の上に磁性層を設けても良い。或いは、磁性層を、絶縁性基板上に設けるとともに、磁性層の上に異方導電性を有する逆スピンホール効果部材層を設けても良い。   When the spin current-current mutual conversion member layer having anisotropic conductivity is a reverse spin Hall effect member layer, the reverse spin Hall effect member layer is provided on the insulating substrate, and the magnetic layer is formed on the reverse spin Hall effect member layer. A layer may be provided. Alternatively, the magnetic layer may be provided on the insulating substrate, and the reverse spin Hall effect member layer having anisotropic conductivity may be provided on the magnetic layer.

開示のスピントロニクスデバイスによれば、従来は逆スピンホール効果部材等のスピン流−電流相互変換部材の有するスピン流−電流変換係数αで規定されていたスピン流−電流変換効率をα以上にすることが可能になる。 According to the disclosed spintronic device, the spin current-current conversion efficiency, which has been conventionally defined by the spin current-current conversion coefficient α H of the spin current-current mutual conversion member such as the inverse spin Hall effect member, is set to α H or more. It becomes possible to do.

本発明の実施の形態のスピントロニクスデバイスの構成説明図である。1 is a configuration explanatory diagram of a spintronic device according to an embodiment of the present invention. FIG. 本発明の実施例1のスピン流−電流変換素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the spin current-current conversion element of Example 1 of this invention. PEDOTとPSSの分子構造図である。It is a molecular structure diagram of PEDOT and PSS. 本発明の実施例1のスピン流−電流変換素子の概略的斜視図である。1 is a schematic perspective view of a spin current-current conversion element according to Example 1 of the present invention. 磁場をH方向に印加した場合の特性図である。It is a characteristic view at the time of applying a magnetic field to the H direction. 磁場を−H方向に印加した場合の特性図である。It is a characteristic view at the time of applying a magnetic field to the -H direction. マイクロ波の吸収スペクトル及び出力電圧Vの磁場強度依存性の説明図である。It is explanatory drawing of the absorption spectrum of a microwave, and the magnetic field strength dependence of the output voltage V. 他の諸特性の説明図である。It is explanatory drawing of other various characteristics. 本発明の実施例2のスピン流−電流変換素子の製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the spin current-current conversion element of Example 2 of the present invention. 本発明の実施例2のスピン流−電流変換素子の製造工程の図9以降の説明図である。It is explanatory drawing after FIG. 9 of the manufacturing process of the spin current-current conversion element of Example 2 of this invention. 本発明の実施例2のスピン流−電流変換素子の概略的斜視図である。It is a schematic perspective view of the spin current-current conversion element of Example 2 of the present invention. 本発明の実施例2のスピン流−電流変換素子のマイクロ波吸収特性及び出力電圧の説明図である。It is explanatory drawing of the microwave absorption characteristic and output voltage of the spin current-current conversion element of Example 2 of this invention. 本発明の実施例2のスピン流−電流変換素子の共鳴磁場強度HFMRのマイクロ波周波数依存性及び出力電圧のマイクロ波周波数依存性の説明図である。It is explanatory drawing of the microwave frequency dependence of the resonant magnetic field strength HFMR of the spin current-current conversion element of Example 2 of this invention, and the microwave frequency dependence of an output voltage. 本発明の実施例3のスピン流−電流変換素子の概略的斜図である。It is a schematic oblique view of the spin current-current conversion element of Example 3 of the present invention. PBTTTとF4−TCNQの分子構造図である。It is a molecular structure diagram of PBTT and F4-TCNQ. 本発明の実施例3のスピン流−電流変換素子の出力特性の説明図である。It is explanatory drawing of the output characteristic of the spin current-current conversion element of Example 3 of this invention. 本発明の実施例4のスピン流−電流変換素子の説明図である。It is explanatory drawing of the spin current-current conversion element of Example 4 of this invention. 本発明の実施例5のスピン流−電流変換素子の概略的斜視図である。It is a schematic perspective view of the spin current-current conversion element of Example 5 of the present invention. 本発明の実施例6のスピン流−電流変換素子の概略的斜視図である。It is a schematic perspective view of the spin current-current conversion element of Example 6 of the present invention. 本発明の実施例7のスピンRAMの説明図である。It is explanatory drawing of spin RAM of Example 7 of this invention.

ここで、図1を参照して、本発明の実施の形態のスピントロニクスデバイスを説明する。図1は、本発明の実施の形態のスピントロニクスデバイスの構成説明図であり、図1(a)は、本発明の実施の形態のスピントロニクスデバイスの概念的斜視図であり、図1(b)はスピン流及び電流の状態を示す図である。   Here, a spintronic device according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration explanatory diagram of a spintronic device according to an embodiment of the present invention. FIG. 1A is a conceptual perspective view of a spintronic device according to an embodiment of the present invention. FIG. It is a figure which shows the state of a spin current and an electric current.

図1(a)に示すように、絶縁性基板1上に異方導電性を有するスピン流−電流相互変換部材層2を設け、その上に、エネルギーの供給により純スピン流或いはスピン波スピン流を発生するスピン流発生部材層3を形成するとともに、スピン流−電流相互変換部材層2の両端に一対の電極4,4を形成する。なお、試験測定に際しては、一対の電極4,4に引出電極5,5を介して電圧計6に接続する。 As shown in FIG. 1A, a spin current-current mutual conversion member layer 2 having anisotropic conductivity is provided on an insulating substrate 1, and a pure spin current or a spin wave spin current is supplied thereon by supplying energy. And a pair of electrodes 4 1 and 4 2 are formed at both ends of the spin current-current mutual conversion member layer 2. In the test measurement, the voltmeter 6 is connected to the pair of electrodes 4 1 and 4 2 via the extraction electrodes 5 1 and 5 2 .

このスピントロニクスデバイスをスピン流−電流変換素子として説明すると、上記の一対の電極と直交する方向に磁場を印加した状態でマイクロ波を照射してスピンポンピングを行うことにより、スピン流発生部材層3である磁性層に誘起されたスピン流jがx方向に流れ、スピン流−電流相互変換部材層2である逆スピンホール効果部材層との界面近傍においてスピン−軌道相互作用によってy方向の電流jに変換されて一対の電極4,4の間に起電力EISHEが出力される。 When this spintronic device is described as a spin current-current conversion element, spin pumping is performed by irradiating microwaves in a state in which a magnetic field is applied in a direction orthogonal to the pair of electrodes described above. A spin current j s induced in a magnetic layer flows in the x direction, and a current j in the y direction is generated by spin-orbit interaction in the vicinity of the interface with the reverse spin Hall effect member layer which is the spin current-current mutual conversion member layer 2. The electromotive force E ISHE is output between the pair of electrodes 4 1 and 4 2 after being converted to c .

本願発明者は、大きなスピン流−電流変換効率を実現する過程で、スピン−軌道相互作用がほとんどなく、したがって、スピンホール角θSHEが0に近いと予測される有機導電体についても、逆スピンホール効果の検証を行った。その結果、強いスピン−軌道相互作用を有しているGaAsのスピンホール角θSHEが0.1%程度であるのに対して、0.042%以上という予想外の大きな値が得られた。 The inventor of the present application has no spin-orbit interaction in the process of realizing a large spin current-current conversion efficiency. Therefore, even for an organic conductor in which the spin Hall angle θ SHE is predicted to be close to 0, the reverse spin The Hall effect was verified. As a result, an unexpectedly large value of 0.042% or more was obtained while the spin hole angle θ SHE of GaAs having strong spin-orbit interaction is about 0.1%.

この測定結果について、鋭意検討を行った結果、スピンホール角θSHEはαとイコールではなく、逆スピンホール効果部材の有する異方導電性により、スピン流の流れる方向の電気伝導度をσとし、電流の流れる方向の電気伝導度をσとすると、
θSHE=(σ/σ)×α
で表わされるとの結論に至った。したがって、σ/σの値の大きな異方導電性を有する材料を用いることにより100%以上の変換効率も可能になることを見出した。
As a result of intensive studies on this measurement result, the spin hole angle θ SHE is not equal to α H and equal, but the anisotropic conductivity of the inverse spin Hall effect member makes the electrical conductivity in the direction of flow of the spin current σ x And the electrical conductivity in the direction of current flow is σ y ,
θ SHE = (σ y / σ x ) × α H
It came to the conclusion that it is expressed by. Accordingly, it has been found that conversion efficiency of 100% or more can be achieved by using a material having anisotropic conductivity having a large value of σ y / σ x .

なお、この場合の絶縁性基板1としては、表面が絶縁性であれば何でも良いが、ガラス基板、表面にSiO膜を設けたシリコン基板或いはサファイア基板等が挙げられ、スピン流発生部材層3を単結晶にする場合には、GGG(GdGa12)等の単結晶基板を用いる。 The insulating substrate 1 in this case may be anything as long as the surface is insulative. Examples thereof include a glass substrate, a silicon substrate provided with a SiO 2 film on the surface, a sapphire substrate, and the like, and the spin current generating member layer 3 Is made a single crystal substrate such as GGG (Gd 3 Ga 5 O 12 ).

スピン流発生部材層3を磁性体層とする場合には、原理的には、Ni80Fe20等の金属磁性体でも、磁性半導体でも、或いは、磁性誘電体でも良い。磁性誘電体としては、FeやCoを含むものであれば何でも良いが、ガーネットフェライト、スピネルフェライト、或いは、六方晶フェライト、特に、実用的には、入手が容易で且つスピン角運動量の散逸の小さいYIG(イットリウム鉄ガーネット)やイットリウムガリウム鉄ガーネット、即ち、一般式で表記するとYFe5-xGa12(但し、0≦x<5)からなるガーネットフェライト、或いは、YIGのYサイトをBi等の原子で置換したガーネットフェライト、例えば、Bi3−xFe12等を用いることが望ましい。 When the spin current generating member layer 3 is a magnetic material layer, in principle, it may be a metal magnetic material such as Ni 80 Fe 20 , a magnetic semiconductor, or a magnetic dielectric. The magnetic dielectric material may be anything as long as it contains Fe or Co. However, garnet ferrite, spinel ferrite, or hexagonal ferrite, particularly practically, is easily available and has low dissipation of spin angular momentum. YIG (yttrium iron garnet) or yttrium gallium iron garnet, that is, garnet ferrite consisting of Y 3 Fe 5-x Ga x O 12 (where 0 ≦ x <5) or YIG Y site It is desirable to use garnet ferrite substituted with atoms such as Bi, for example, Bi x Y 3-x Fe 5 O 12 .

また、磁性体層として、YFe5-xGa12(但し、0≦x<5)等の磁性誘電体を用いる場合には、スパッタ法、MOD法(Metal-organic decomposition Method:有機金属塗布熱分解法)、ゾル−ゲル法、液相エピタキシー法、フローティングゾーン法、或いは、エアロゾルデポジッション法のいずれを用いても良い。また、磁性誘電体の結晶性としては単結晶でも良いし或いは多結晶でも良い。 When a magnetic dielectric such as Y 3 Fe 5 -x Ga x O 12 (where 0 ≦ x <5) is used as the magnetic layer, a sputtering method, a MOD method (Metal-organic decomposition method: organic) (Metal coating pyrolysis method), sol-gel method, liquid phase epitaxy method, floating zone method, or aerosol deposition method may be used. The crystallinity of the magnetic dielectric may be single crystal or polycrystal.

MOD法を用いる場合には、例えば、GGG(GdGa12)単結晶基板上に、例えば、YFeGaO12組成のMOD溶液をスピンコート法で塗布する。この場合のスピンコート条件としては、まず、500rpmで5秒間回転させたのち、3000〜4000rpmで30秒間回転させてMOD溶液を焼成後の膜厚が100nmになるように均一に塗布する。なお、MOD溶液としては、例えば、(株)高純度化学研究所製のMOD溶液を用いる。 In the case of using the MOD method, for example, a MOD solution having a Y 3 Fe 4 GaO 12 composition is applied on a GGG (Gd 3 Ga 5 O 12 ) single crystal substrate by a spin coating method, for example. As spin coating conditions in this case, first, after rotating at 500 rpm for 5 seconds, rotating at 3000 to 4000 rpm for 30 seconds, the MOD solution is uniformly applied so that the film thickness after baking becomes 100 nm. As the MOD solution, for example, a MOD solution manufactured by Kojundo Chemical Laboratory Co., Ltd. is used.

次いで、例えば、150℃に加熱したホットプレート上で5分間乾燥させて、MOD溶液に含まれる余分な有機溶媒を蒸発させ、次いで、電気炉中において、例えば、550℃で5分間加熱する仮焼成によって酸化物層とする。   Next, for example, drying is performed on a hot plate heated to 150 ° C. for 5 minutes to evaporate excess organic solvent contained in the MOD solution, and then pre-baking is performed in an electric furnace, for example, at 550 ° C. for 5 minutes. To form an oxide layer.

次いで、電気炉中において、750℃で1〜2時間加熱する本焼成において酸化物層の結晶化を進めてYIG層とする。最後に、YIG層を所定のサイズに切り出せば良い。   Next, in the main firing in which heating is performed at 750 ° C. for 1 to 2 hours in an electric furnace, crystallization of the oxide layer is advanced to form a YIG layer. Finally, the YIG layer may be cut out to a predetermined size.

また、エアロゾルデポジション法を用いる場合には、例えば、平均粒径が1μmのFe、NiO,ZnOそれぞれ、50mol%、27mol%、23mol%のエアロゾル用粉体を用い、例えば、開口が0.4mm×10mmのノズルを用いてキャリガスとなるArガスを1000sccm流して基板上に噴射させて堆積させれば良い。 In the case of using the aerosol deposition method, for example, Fe 2 O 3 , NiO, and ZnO having an average particle diameter of 1 μm are used, and aerosol powders of 50 mol%, 27 mol%, and 23 mol%, respectively, are used. What is necessary is just to deposit Ar gas used as carrier gas at 1000 sccm by spraying it onto the substrate using a nozzle of 0.4 mm × 10 mm.

また、スピン流発生部材は、磁性体に限られるものではなく、エネルギーの供給により純スピン流或いはスピン波スピン流を発生する部材であれば何でも良く、例えば、閃亜鉛鉱型結晶構造を有する半導体、例えば、GaAs等を用いても良い。閃亜鉛鉱型結晶構造を有する半導体は、半導体の有する基礎吸収端よりエネルギーが少し大きな円偏光した光で励起されると、価電子帯から伝導帯にスピン偏極電子が励起されてスピン流が発生する。   Further, the spin current generating member is not limited to a magnetic material, and any member that generates a pure spin current or a spin wave spin current by supplying energy may be used. For example, a semiconductor having a zinc blende crystal structure For example, GaAs or the like may be used. When a semiconductor having a zinc blende type crystal structure is excited by circularly polarized light having a slightly higher energy than the fundamental absorption edge of the semiconductor, spin-polarized electrons are excited from the valence band to the conduction band, resulting in a spin current. Occur.

また、このような異方導電性を有するスピン流−電流相互変換部材をスピンホール効果部材として用いた場合には、発生するスピン流を増大することができ、例えば、磁化スイッチングによる磁気メモリの性能を高めることができる。   Further, when such a spin current-current mutual conversion member having anisotropic conductivity is used as a spin Hall effect member, the generated spin current can be increased. For example, the performance of a magnetic memory by magnetization switching can be increased. Can be increased.

また、異方導電性を有するスピン流−電流相互変換部材としては、導電性ポリマー、有機自己組織化膜、有機電荷移動錯体伝導体、金属積層膜、層状遷移金属酸化物、或いは、3次元トポロジカル絶縁体のいずれかを用いれば良い。   The spin current-current mutual conversion member having anisotropic conductivity includes conductive polymer, organic self-assembled film, organic charge transfer complex conductor, metal laminated film, layered transition metal oxide, or three-dimensional topological Any one of insulators may be used.

導電性ポリマーとしては、π共役系ポリマーが好ましい。電子(ホール)がπ軌道を経由して移動するため、π軌道の方向に起因した電気伝導の異方性を有するからである。π共役系ポリマーとしては、ポリアセチレン等の脂肪族共役系ポリマー、ポリパラフェニレン等の芳香族共役系ポリマー、ポリパラフェニレンビニレン等の混合型共役系ポリマー、ポリチオフィン、ポリピロール、PEDOT〔poly(3,4−ethylenedioxythiophene)〕等の複素環共役系ポリマー、グラフェン等の二次元共役系ポリマーが挙げられる。ポリスチレンスルホン酸(PSS:poly(4−styrenesufonate))を高分子ドーパントにして水や有機溶剤に分散したPEDOT:PSSは、スピンコートという簡便な方法で導電性薄膜を製膜できるため好ましい。PSSに代えてPVS(ポリビニルスルホン酸)を用いても良い。或いは、PBTTT〔poly(2,5−bis(3−alkylthiophen−2−yl)thieno[3,2−b]thiophene〕とF4−TCNQ〔2,3,5,6−tetrafluoro−−7,7,8,8−tetracyanoquinodimethane〕が挙げられる。   As the conductive polymer, a π-conjugated polymer is preferable. This is because the electrons (holes) move through the π orbitals and thus have an electric conduction anisotropy due to the direction of the π orbitals. Examples of the π-conjugated polymer include aliphatic conjugated polymers such as polyacetylene, aromatic conjugated polymers such as polyparaphenylene, mixed conjugated polymers such as polyparaphenylene vinylene, polythiofin, polypyrrole, PEDOT [poly (3,4). -Ethylenediothiophene)] and the like, and two-dimensional conjugated polymers such as graphene. PEDOT: PSS in which polystyrene sulfonic acid (PSS: poly (4-styrenesulfonate)) is used as a polymer dopant and dispersed in water or an organic solvent is preferable because a conductive thin film can be formed by a simple method called spin coating. Instead of PSS, PVS (polyvinyl sulfonic acid) may be used. Alternatively, PBTT [poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,2-b] thiophene] and F4-TCNQ [2,3,5,6-tetrafluor-7,7, 8,8-tetracyanoquinodimethane].

また、金属積層膜としては、Pt/Cu/Pt/Cu・・・等の積層構造膜が挙げられ、層状遷移金属酸化物としてはLa2−xSrCuO等が挙げられる。なお、3次元トポロジカル絶縁体は、名称は絶縁体であるが内部が絶縁性であるだけで、表面は伝導体になっている。 The metal laminate film, include laminated structure film such as Pt / Cu / Pt / Cu ··· , La 2-x Sr x CuO 4 , and the like as the layered transition metal oxides. The three-dimensional topological insulator is an insulator, but the inside is only insulative, and the surface is a conductor.

また、素子の積層構造としては、図1(a)に示した構造に限られるものではなく、絶縁性基板1上にスピン流発生部材層3を形成し、その上に異方導電性を有するスピン流−電流相互変換部材層2を形成しても良い。   Further, the laminated structure of the elements is not limited to the structure shown in FIG. 1A, and the spin current generating member layer 3 is formed on the insulating substrate 1 and has anisotropic conductivity. The spin current-current mutual conversion member layer 2 may be formed.

本発明の実施の形態においては、スピン流−電流相互変換部材として異方導電性を有する部材を用いているので、スピンホール角θSHEは(σ/σ)×αとなり、注入されたスピン流を100%以上の変換効率で電流に変換することができる。また、スピン流−電流相互変換部材層2からスピン流発生部材層3に電流を注入した場合には、注入された電流を100%以上の変換効率でスピン流に変換することができる。 In the embodiment of the present invention, since a member having anisotropic conductivity is used as the spin current-current mutual conversion member, the spin Hall angle θ SHE is (σ y / σ x ) × α H and is injected. The spin current can be converted into a current with a conversion efficiency of 100% or more. Further, when a current is injected from the spin current-current mutual conversion member layer 2 into the spin current generating member layer 3, the injected current can be converted into a spin current with a conversion efficiency of 100% or more.

ここで、図2乃至図8を参照して、本発明の実施例1のスピン流−電流変換素子を説明する。図2は、本発明の実施例1のスピン流−電流変換素子の製造工程の説明図であり、まず、図2(a)に示すように、ガラス基板11上にPEDOT〔poly(3,4−ethylenedioxythiophene)〕とPSS〔poly(4−styrenesufonate)〕とを混合した液を滴化し、スピンコート法によりPEDOT:PSS被膜12を形成する。   Here, with reference to FIG. 2 thru | or FIG. 8, the spin current-current conversion element of Example 1 of this invention is demonstrated. FIG. 2 is an explanatory diagram of a manufacturing process of the spin current-current conversion element according to the first embodiment of the present invention. First, as shown in FIG. 2A, PEDOT [poly (3,4) is formed on a glass substrate 11. -Ethylenedioxythiophene)] and PSS [poly (4-styrenesulfonate)] are mixed to form droplets, and the PEDOT: PSS film 12 is formed by spin coating.

次いで、図2(b)に示すように、電子ビーム蒸着法を用いてPEDOT:PSS被膜12上に2.0mm×2.5mmのサイズのNi80Fe20膜13を堆積する。なお、電子ビーム蒸着法の代わりにスパッタリング法を用いても良い。次いで、図2(c)に示すように、マスク蒸着法を用いて、Ni80Fe20膜13の端部から500μm離れた位置に2.0mm×0.5mmの細部で一対のAu電極14,14を形成することによって、スピン流−電流変換素子の基本構造が完成する。 Next, as shown in FIG. 2B, a Ni 80 Fe 20 film 13 having a size of 2.0 mm × 2.5 mm is deposited on the PEDOT: PSS coating 12 by using an electron beam evaporation method. Note that a sputtering method may be used instead of the electron beam evaporation method. Next, as shown in FIG. 2 (c), a pair of Au electrodes 14 1 with a detail of 2.0 mm × 0.5 mm is located at a position 500 μm away from the end of the Ni 80 Fe 20 film 13 using a mask vapor deposition method. , by forming a 14 2, the spin current - the basic structure of the current converting element is completed.

図3は、PEDOTとPSSの分子構造図であり、図3(a)はPEDOTの分子構造図であり、図3(b)はPSSの分子構造図である。このPEDOT:PSS被膜12は、スピンコートした面内方向の電気伝導度が膜厚方向の電気伝導度より非常に大きくなる。   3 is a molecular structure diagram of PEDOT and PSS, FIG. 3 (a) is a molecular structure diagram of PEDOT, and FIG. 3 (b) is a molecular structure diagram of PSS. This PEDOT: PSS coating 12 has a spin-coated in-plane electrical conductivity that is much greater than the electrical conductivity in the film thickness direction.

図4は、本発明の実施例1のスピン流−電流変換素子の概略的斜視図であり、一対のAu電極14,14を結ぶ線と直交する方向に磁場Hを印加した状態でマイクロ波を照射する。 FIG. 4 is a schematic perspective view of the spin current-current conversion element according to the first embodiment of the present invention, and shows a microscopic state in which a magnetic field H is applied in a direction orthogonal to a line connecting a pair of Au electrodes 14 1 and 14 2. Irradiate waves.

図5は、磁場をH方向に印加した場合の特性図であり、図5(a)は出力電圧Vの磁場強度依存性の説明図であり、共鳴磁場HFMRが136mT近傍にあり、この、共鳴磁場HFMRの近傍で大きな出力電圧が観測された。図5(b)は出力電圧のマイクロ波電力依存性の説明図であり、出力電圧はマイクロ波電力の増大と共にリニアに増大する。PEDOT:PSSは、σ/σ>10であることは知られており、スピン−軌道相互作用が極めて小さいにもかかわらず、このような出力電圧が得られた理由は非常大きな異方導電性にあると考えられる。 Figure 5 is a characteristic diagram when the magnetic field is applied in the H direction, FIG. 5 (a) is an explanatory view of a magnetic field strength dependence of the output voltage V, the resonance magnetic field H FMR is in the vicinity of 136MT, this, A large output voltage was observed in the vicinity of the resonant magnetic field HFMR . FIG. 5B is an explanatory diagram of the dependency of the output voltage on the microwave power, and the output voltage increases linearly as the microwave power increases. PEDOT: PSS is known to have σ y / σ x > 10 5 , and the reason why such an output voltage is obtained even though the spin-orbit interaction is extremely small is very anisotropic. It is considered to be conductive.

図6は、磁場を−H方向に印加した場合の特性図であり、図6(a)は出力電圧Vの磁場強度依存性の説明図であり、図6(b)は出力電圧のマイクロ波電力依存性の説明図であり、出力電圧はマイクロ波電力の増大と共にリニアに増大する。この場合、図4の特性と出力電圧の正負が反対になった特性が得られた。   6 is a characteristic diagram when a magnetic field is applied in the −H direction, FIG. 6A is an explanatory diagram of the magnetic field strength dependence of the output voltage V, and FIG. 6B is a microwave of the output voltage. It is explanatory drawing of electric power dependence, and an output voltage increases linearly with the increase in microwave electric power. In this case, a characteristic in which the characteristic of FIG. 4 and the positive / negative of the output voltage are reversed was obtained.

図7は、図5及び図6の結果をまとめたものであり、図7(a)はマイクロ波の吸収スペクトルであり、136mTの近傍に吸収ピークが見られ、この位置が共鳴磁場HFMRとなる。図7(b)は、出力電圧Vの磁場強度依存性の説明図であり、ここでは、Ni80Fe20膜13とPEDOT:PSS被膜12との間にSiO膜を介在させた試料の測定結果も併せて示している。SiO膜を介在させた試料においては、SiOが絶縁膜であることからNi80Fe20膜13からPEDOT:PSS被膜12にスピン流が注入されないので、出力電圧は0になる。 Figure 7 summarizes the results of FIGS. 5 and 6, FIGS. 7 (a) indicates the absorption spectrum of microwave absorption peak is observed in the vicinity of 136MT, and this position is the resonant magnetic field H FMR Become. FIG. 7B is an explanatory diagram of the magnetic field strength dependence of the output voltage V. Here, measurement of a sample in which a SiO 2 film is interposed between the Ni 80 Fe 20 film 13 and the PEDOT: PSS film 12 is shown. The results are also shown. In the sample in which the SiO 2 film is interposed, since the SiO 2 is an insulating film, the spin current is not injected from the Ni 80 Fe 20 film 13 into the PEDOT: PSS film 12, so the output voltage becomes zero.

図8は、他の諸特性の説明図である。図8(a)は、測定開始から15秒後に100mWのマイクロ波を照射した場合の出力電圧の説明図であり、マイクロ波を照射すると5μV程度の出力電圧ΔV=V100mW−V0mW)が得られた。 FIG. 8 is an explanatory diagram of other characteristics. 8 (a) is an explanatory view of an output voltage when irradiated with microwaves of 100mW from the start of measurement after 15 seconds, the output voltage ΔV = V 100mW -V 0mW about 5μV is irradiated with microwaves) is obtained It was.

図8(b)は出力電圧のスイープレート依存性の説明図であり、スイープレートを1mT/s,3mT/s,5mT/sの3つのレートでマイクロ波を照射しても出力電圧に変化は見られなかった。この結果は、マイクロ波を吸収すると素子温度が上昇するが、出力電圧に変化がないということは、出力電圧に温度は寄与していないことを意味する。なお、スイープレート1mT/sは、1秒間に1mT〔ミリテスラ〕変化させる磁場スイープを表す。   FIG. 8B is an explanatory diagram of the dependence of the output voltage on the sweep rate. Even if the sweep rate is irradiated with microwaves at three rates of 1 mT / s, 3 mT / s, and 5 mT / s, the change in the output voltage does not occur. I couldn't see it. This result shows that the element temperature rises when microwaves are absorbed, but the fact that the output voltage does not change means that the temperature does not contribute to the output voltage. The sweep plate 1 mT / s represents a magnetic field sweep that changes 1 mT [millitesla] per second.

図8(c)は、出力電圧のPEDOT:PSS膜厚依存性の説明図であり、PEDOT:PSSの膜厚が50nmを超えると出力電圧が低下することが実験的にも確認された。これは、スピン−軌道相互作用によるスピン流−電流変換が、Ni80Fe20膜13とPEDOT:PSS被膜12との界面近傍で生じていることを意味する。 FIG. 8C is an explanatory diagram of the dependency of the output voltage on the PEDOT: PSS film thickness. It has also been experimentally confirmed that the output voltage decreases when the PEDOT: PSS film thickness exceeds 50 nm. This means that the spin current-current conversion by the spin-orbit interaction occurs near the interface between the Ni 80 Fe 20 film 13 and the PEDOT: PSS film 12.

このように、本発明の実施例1においては、逆スピン−ホール効果部材として異方導電性の大きなPEDOT:PSSを用いているので、スピン−軌道相互作用が非常に小さいにもかかわらず、大きな出力電圧EISHEが得られた。 Thus, in Example 1 of the present invention, since PEDOT: PSS having a large anisotropic conductivity is used as the reverse spin-Hall effect member, the spin-orbit interaction is very small although it is very small. An output voltage E ISHE was obtained.

次に、図9乃至図13を参照して、本発明の実施例2のスピン流−電流変換素子を説明する。図9及び図10は、本発明の実施例2のスピン流−電流変換素子の製造工程の説明図であり、まず、図9(a)に示すように、GGG(GdGa12)単結晶基板21上に、YFe12組成のMOD溶液をスピンコート法で塗布する。この場合のスピンコート条件としては、5000rpmで60秒間回転させてMOD溶液22を焼成後の膜厚が200nmになるように均一に塗布する。 Next, with reference to FIG. 9 thru | or FIG. 13, the spin current-current conversion element of Example 2 of this invention is demonstrated. FIGS. 9 and 10 are explanatory diagrams of the manufacturing process of the spin current-current conversion element according to the second embodiment of the present invention. First, as shown in FIG. 9A, GGG (Gd 3 Ga 5 O 12 ) A MOD solution having a composition of Y 3 Fe 5 O 12 is applied onto the single crystal substrate 21 by a spin coat method. As spin coating conditions in this case, the MOD solution 22 is uniformly applied so that the film thickness after baking is 200 nm by rotating at 5000 rpm for 60 seconds.

次いで、図9(b)に示すように、例えば、50℃に加熱したホットプレート上で5分間乾燥させて、MOD溶液22に含まれる余分な有機溶媒を蒸発させ、次いで、電気炉中において、例えば、480℃で60分間加熱する仮焼成によって酸化物層23とする。   Next, as shown in FIG. 9B, for example, it is dried on a hot plate heated to 50 ° C. for 5 minutes to evaporate excess organic solvent contained in the MOD solution 22, and then in an electric furnace. For example, the oxide layer 23 is formed by temporary baking at 60 ° C. for 60 minutes.

次いで、図9(c)に示すように、電気炉中において、725℃で10時間加熱する本焼成において酸化物層23の結晶化を進めてYIG層24とする。次いで、図10(d)に示すように、YIG層24を2mm×2mmのサイズにGGG単結晶基板21ごと切り出す。   Next, as shown in FIG. 9C, the oxide layer 23 is crystallized in the main firing in which heating is performed at 725 ° C. for 10 hours in an electric furnace to form the YIG layer 24. Next, as shown in FIG. 10D, the YIG layer 24 is cut out to the size of 2 mm × 2 mm together with the GGG single crystal substrate 21.

次いで、図10(e)に示すように、YIG層24の表面にPEDOTとPSSとを混合した液を滴化し、スピンコート法により厚さが50nmのPEDOT:PSS被膜25を形成する。最後に、図10(f)に示すように、PEDOT:PSS被膜25の両端に一対のAu電極26,26を形成する。 Next, as shown in FIG. 10 (e), a liquid obtained by mixing PEDOT and PSS is dropped on the surface of the YIG layer 24, and a PEDOT: PSS film 25 having a thickness of 50 nm is formed by a spin coating method. Finally, as shown in FIG. 10 (f), a pair of Au electrodes 26 1 and 26 2 are formed on both ends of the PEDOT: PSS coating 25.

図11は、本発明の実施例2のスピン流−電流変換素子の概略的斜視図であり、一対のAu電極26,26を結ぶ線と直交する方向に磁場Hを印加した状態でのマイクロ波を照射する。 FIG. 11 is a schematic perspective view of the spin current-current conversion element according to the second embodiment of the present invention in a state where a magnetic field H is applied in a direction orthogonal to a line connecting a pair of Au electrodes 26 1 and 26 2 . Irradiate microwaves.

図12は、本発明の実施例2のスピン流−電流変換素子のマイクロ波吸収特性及び出力電圧の説明図であり、図12(a)に示すように、この実施例2においても実施例1と同様のマイクロ波吸収特性が得られた。また、図12(b)に示すように、6.5GHzのマイクロ波を照射した場合、実施例1と同様の出力特性が得られた。   FIG. 12 is an explanatory diagram of the microwave absorption characteristics and output voltage of the spin current-current conversion element according to Example 2 of the present invention. As shown in FIG. The same microwave absorption characteristics were obtained. Also, as shown in FIG. 12B, when the 6.5 GHz microwave was irradiated, the same output characteristics as in Example 1 were obtained.

図13は、本発明の実施例2のスピン流−電流変換素子の共鳴磁場強度HFMRのマイクロ波周波数依存性及び出力電圧のマイクロ波周波数依存性の説明図である。図13(a)に示すように、共鳴磁場強度HFMRはマイクロ波周波数の増大と共に増大する。また、図13(b)に示すように、出力電圧はマイクロ波周波数の増大と共に若干低下する。 FIG. 13 is an explanatory diagram of the microwave frequency dependency of the resonance magnetic field strength HFMR and the microwave frequency dependency of the output voltage of the spin current-current conversion element according to Example 2 of the present invention. As shown in FIG. 13 (a), the resonance magnetic field strength HFMR increases as the microwave frequency increases. Further, as shown in FIG. 13B, the output voltage slightly decreases as the microwave frequency increases.

本発明の実施例2においては磁性体として、磁性誘電体を用いているが、金属磁性体を用いた場合と同様に、逆スピンホール効果部材の有する大きな異方導電性によりスピン−軌道相互作用の強さからは予測し得ない程度の大きさの出力電圧が得られた。   In Example 2 of the present invention, a magnetic dielectric is used as the magnetic material, but as in the case of using a metal magnetic material, the spin-orbit interaction is caused by the large anisotropic conductivity of the inverse spin Hall effect member. The output voltage was so large that it could not be predicted from the strength of the.

次に、図14乃至図16を参照して、本発明の実施例3のスピン流−電流変換素子を説明する。図14は、本発明の実施例3のスピン流−電流変換素子の概略的斜図であり、ガラス基板31上にNi80Fe20膜32を形成し、その上に、逆スピンホール効果部材層となるPBTTTとF4−TCNQとを混合した溶液を滴化して、スピンコート法により厚さが50nmのPBTTT:F4−TCNQ膜33を形成する。 Next, a spin current-current conversion element according to Example 3 of the present invention will be described with reference to FIGS. FIG. 14 is a schematic oblique view of a spin current-current conversion element according to Example 3 of the present invention, in which a Ni 80 Fe 20 film 32 is formed on a glass substrate 31, and an inverted spin Hall effect member layer is formed thereon. A PBTT: F4-TCNQ film 33 having a thickness of 50 nm is formed by spin coating using a solution obtained by mixing PBTT and F4-TCNQ.

次いで、PBTTT:F4−TCNQ膜33の両端に一対のAu電極34,34を形成し、一対のAu電極34,34を結ぶ線と直交する方向に磁場Hを印加した状態でのマイクロ波を照射する。 Then, PBTTT: F4-TCNQ film Au electrodes 34 1 both ends of the pair of 33, 34 2 is formed, in a state of applying a magnetic field H in a direction perpendicular to the line connecting the pair of Au electrodes 34 1, 34 2 Irradiate microwaves.

図15は、PBTTTとF4−TCNQの分子構造図であり、図15(a)はPBTTTの分子構造図であり、図15(b)はF4−TCNQの分子構造図である。このPBTTT:F4−TCNQ膜33も、スピンコートした面内方向の電気伝導度が膜厚方向の電気伝導度より非常に大きくなる。   FIG. 15 is a molecular structure diagram of PBTTT and F4-TCNQ, FIG. 15A is a molecular structure diagram of PBTTT, and FIG. 15B is a molecular structure diagram of F4-TCNQ. The PBTTT: F4-TCNQ film 33 also has a spin coated in-plane electrical conductivity that is much greater than the electrical conductivity in the film thickness direction.

図16は、本発明の実施例3のスピン流−電流変換素子の出力特性の説明図であり、この場合も理論計算結果とほぼ一致する出力電圧特性が得られた。   FIG. 16 is an explanatory diagram of the output characteristics of the spin current-current conversion element according to Example 3 of the present invention, and in this case as well, output voltage characteristics almost identical to the theoretical calculation results were obtained.

本発明の実施例3においては、導電性ポリマーとして、PBTTTとF4−TCNQを用いているが、実施例1に示したPEDOT:PSSと同様の出力電圧特性が得られた。このことは、逆スピンホール効果によるスピン流−電流変換効率の増大は、限られた特定の材料によるものではなく、異方導電性を有する部材であれば、同様な結果が得られることを意味する。   In Example 3 of the present invention, PBTT and F4-TCNQ were used as the conductive polymer, but the same output voltage characteristics as PEDOT: PSS shown in Example 1 were obtained. This means that the increase in spin current-current conversion efficiency due to the inverse spin Hall effect is not due to a limited specific material, and a similar result can be obtained if the member has anisotropic conductivity. To do.

次に、図17を参照して、本発明の実施例4のスピン流−電流変換素子を説明する。図17は、本発明の実施例4のスピン流−電流変換素子を説明図であり、図17(a)は本発明の実施例4のスピン流−電流変換素子の概念的斜視図であり、図17(b)は電流とスピン流の関係を示す斜視図である。   Next, with reference to FIG. 17, the spin-current-conversion element of Example 4 of this invention is demonstrated. FIG. 17 is an explanatory diagram of a spin current-current conversion element according to Example 4 of the present invention, and FIG. 17A is a conceptual perspective view of the spin current-current conversion element according to Example 4 of the present invention. FIG. 17B is a perspective view showing the relationship between current and spin current.

図17(a)に示すように、4.7×1018cm−3のSiをドープしたn型GaAs層41の上に、PEDOTとPSSとを混合した液を滴化し、スピンコート法により厚さが50nmのPEDOT:PSS被膜42を形成する。次いで、マスク蒸着法を用いて、2.0mm×0.5mmの細部で一対のAu電極43,43を形成することによって、スピン流−電流変換素子の基本構造が完成する。 As shown in FIG. 17A, a liquid in which PEDOT and PSS are mixed is dropped on an n-type GaAs layer 41 doped with Si of 4.7 × 10 18 cm −3 , and the thickness is increased by spin coating. A PEDOT: PSS film 42 having a thickness of 50 nm is formed. Next, the basic structure of the spin current-current conversion element is completed by forming a pair of Au electrodes 43 1 and 43 2 with details of 2.0 mm × 0.5 mm using a mask vapor deposition method.

このスピン流−電流変換素子に波長λがλ=670nm(hν=1.85eV)で10mWの円偏光光44を照射すると、GaAs層41においてスピン流が発生する。即ち、GaAsの有する基礎吸収端よりエネルギーが少し大きな円偏光光44で励起しているので、価電子帯から伝導帯にスピン偏極電子が励起されてスピン流が発生する。なお、この場合、円偏光光44は、一対のAu電極43,43を結ぶ方向と交差する方向に照射する必要があり、典型的には直交する方向に照射する。 When this spin current-current conversion element is irradiated with 10 mW of circularly polarized light 44 having a wavelength λ of λ = 670 nm (hν = 1.85 eV), a spin current is generated in the GaAs layer 41. That is, since excitation is performed with the circularly polarized light 44 having a slightly higher energy than the fundamental absorption edge of GaAs, spin-polarized electrons are excited from the valence band to the conduction band to generate a spin current. In this case, it is necessary to irradiate the circularly polarized light 44 in a direction intersecting the direction connecting the pair of Au electrodes 43 1 and 43 2 , and typically irradiates in a direction orthogonal to each other.

図17(b)に示すように、発生したスピン流JはPEDOT:PSS被膜42に流入する際に、界面においてスピン−軌道相互作用によって電流に変換され、一対のAu電極43,43の間に起電力EISHEが出力される。この時、PEDOT:PSS被膜42はスピン流Jの流入方向の導電性が高い異方導電性を有しているので、変換効率が高くなる。 As shown in FIG. 17B, when the generated spin current J s flows into the PEDOT: PSS film 42, it is converted into a current by spin-orbit interaction at the interface, and a pair of Au electrodes 43 1 , 43 2. The electromotive force E ISHE is output during In this, PEDOT: PSS film 42 because conductive inflow direction of the spin current J s has a higher anisotropic conductive, conversion efficiency is increased.

この実施例4のスピン流−電流変換素子は、円偏光光の高感度な検出素子として使用することが期待できるともに、環境中の光における円偏光成分を電力変換することも可能になる。   The spin current-current conversion element of Example 4 can be expected to be used as a highly sensitive detection element for circularly polarized light, and can also convert circularly polarized components in light in the environment.

次に、図18を参照して、本発明の実施例5のスピン流−電流変換素子を説明する。図18は、本発明の実施例5のスピン流−電流変換素子の概略的斜視図であり、GGG単結晶基板51上に、YIG層52を形成する。その上に、PEDOTとPSSとを混合した液を滴化し、スピンコート法により厚さが50nmのPEDOT:PSS被膜53を形成する。次いで、マスク蒸着法を用いて、2.0mm×0.5mmの細部で一対のAu電極54,54を形成することによって、スピン流−電流変換素子の基本構造が完成する。 Next, with reference to FIG. 18, the spin-current-conversion element of Example 5 of this invention is demonstrated. FIG. 18 is a schematic perspective view of a spin current-current conversion element according to Example 5 of the present invention, in which a YIG layer 52 is formed on a GGG single crystal substrate 51. A PEDOT: PSS film 53 having a thickness of 50 nm is formed thereon by spin-dropping a liquid obtained by mixing PEDOT and PSS. Next, a basic structure of the spin current-current conversion element is completed by forming a pair of Au electrodes 54 1 and 54 2 with details of 2.0 mm × 0.5 mm using a mask vapor deposition method.

ここで、磁場Hを図において長手方向に印加した状態でPEDOT:PSS被膜53を設けなかった側に熱源55を当接させて、図において長手方向に温度差▽Tを形成すると、スピン−ゼーベック効果により熱的にスピン流が発生し、逆スピンホール効果によりPEDOT:PSS被膜53の両端に設けた一対のAu電極54,54の間に熱起電力が得られる。 Here, when the heat source 55 is brought into contact with the side where the PEDOT: PSS coating 53 is not provided in a state where the magnetic field H is applied in the longitudinal direction in the drawing, and a temperature difference ▽ T is formed in the longitudinal direction in the drawing, the spin-Seebeck thermally spin current is generated due to the effect, PEDOT by reverse spin Hall: thermoelectromotive force between the pair of Au electrodes 54 1, 54 2 provided at both ends of the PSS coating 53 is obtained.

この実施例5のスピン流−電流変換素子は、熱電素子とし機能するので、環境中の熱源、例えば、体温や廃熱を利用した発電が可能になる。   Since the spin current-current conversion element of the fifth embodiment functions as a thermoelectric element, power generation using an environmental heat source such as body temperature and waste heat becomes possible.

次に、図19を参照して、本発明の実施例6のスピン流−電流変換素子を説明する。図19は、本発明の実施例6のスピン流−電流変換素子の概略的斜視図であり、一対の電極63,63で挟まれたPZT層62からなるピエゾ効果素子61上に、YIG層64を設ける。その上に、PEDOTとPSSとを混合した液を滴化し、スピンコート法により厚さが50nmのPEDOT:PSS被膜65を形成する。次いで、マスク蒸着法を用いて、2.0mm×0.5mmの細部で一対のAu電極66,66を形成し、その上にヒートシンクとなるシリコーン樹脂層67を設けることによって、スピン流−電流変換素子の基本構造が完成する。 Next, with reference to FIG. 19, a spin current-current conversion element according to Example 6 of the present invention will be described. FIG. 19 is a schematic perspective view of a spin current-current conversion element according to Example 6 of the present invention. On the piezoelectric effect element 61 including the PZT layer 62 sandwiched between a pair of electrodes 63 1 and 63 2 , a YIG Layer 64 is provided. A PEDOT: PSS film 65 having a thickness of 50 nm is formed thereon by spin-dropping a liquid obtained by mixing PEDOT and PSS. Next, a pair of Au electrodes 66 1 and 66 2 are formed with a detail of 2.0 mm × 0.5 mm using a mask vapor deposition method, and a silicone resin layer 67 serving as a heat sink is provided thereon, thereby providing a spin current − The basic structure of the current conversion element is completed.

ここで、磁場Hを図において長手方向に直交する方向に印加した状態でピエゾ効果素子61に交流電圧を印加するとバルク音波が発生して、YIG層64中に伝達される。YIG層64中においてマグノン−フォノン相互作用により音波からスピン波へエネルギー移行することによって音響誘起のスピン流が発生する。   Here, when an AC voltage is applied to the piezo effect element 61 with the magnetic field H applied in a direction orthogonal to the longitudinal direction in the drawing, a bulk sound wave is generated and transmitted to the YIG layer 64. An acoustically induced spin current is generated in the YIG layer 64 by transferring energy from a sound wave to a spin wave by magnon-phonon interaction.

発生したスピン流は、PEDOT:PSS被膜53に流入して逆スピンホール効果によりPEDOT:PSS被膜65の両端に設けた一対のAu電極66,66の間に起電力が得られる。 The generated spin current flows into the PEDOT: PSS film 53 and an electromotive force is obtained between the pair of Au electrodes 66 1 and 66 2 provided at both ends of the PEDOT: PSS film 65 by the reverse spin Hall effect.

ここでは、原理を明らかにするために、ピエゾ効果素子を設けているが、ピエゾ効果素子の代わりに振動源に対してYIG層/PEDOT:PSS被膜からなるスピン流−電流変換素子を当接することによって、振動源の振動を電圧に変換することができる。   Here, in order to clarify the principle, a piezo effect element is provided, but instead of the piezo effect element, a spin current-current conversion element made of a YIG layer / PEDOT: PSS film is brought into contact with a vibration source. Thus, the vibration of the vibration source can be converted into a voltage.

次に、図20を参照して、本発明の実施例7のスピンRAMを説明するが、スピンRAM自体の構造は、従来のスピンRAMを同様であり、メモリセル部分が異なるだけであるので、メモリセル部分を説明する。なお、この実施例は、逆スピンホール効果を用いるものではなく、電流をスピン流に変換するスピンホール効果を用いるものである。   Next, a spin RAM according to a seventh embodiment of the present invention will be described with reference to FIG. 20. Since the structure of the spin RAM itself is the same as that of the conventional spin RAM, only the memory cell portion is different. The memory cell portion will be described. In this embodiment, the reverse spin Hall effect is not used, but the spin Hall effect that converts a current into a spin current is used.

図20は、本発明の実施例7のスピンRAMの説明図であり、図20(a)はメモリセルを構成する磁気抵抗効果素子近傍の概略的斜視図であり、図20(b)は純スピン流の注入原理の説明図である。図20(a)に示すように、下部電極71上にフリー層73、MgO或いはAl−O等のトンネル絶縁膜74、ピンド層75、及び、反強磁性層76からなるTMR要素72を設け、反強磁性層76に接するようにビット線77を設ける。   FIG. 20 is an explanatory diagram of the spin RAM according to the seventh embodiment of the present invention. FIG. 20 (a) is a schematic perspective view of the vicinity of the magnetoresistive effect element constituting the memory cell, and FIG. It is explanatory drawing of the injection principle of a spin current. As shown in FIG. 20A, a TMR element 72 including a free layer 73, a tunnel insulating film 74 such as MgO or Al—O, a pinned layer 75, and an antiferromagnetic layer 76 is provided on the lower electrode 71. A bit line 77 is provided in contact with the antiferromagnetic layer 76.

一方、フリー層73に接するように層状遷移金属酸化物であるLa2−xSrCuOからなるスピン注入電極78を設け、このスピン注入電極78に対して接続配線79,79を設ける。この場合、スピン注入電極78の長手方向がTMR要素72の長手方向と直交する方向になるように配置する。ここでは、層状遷移金属酸化物であるLa2−xSrCuOの結晶方位を制御することによって、薄膜面直方向の電気伝導度が面内方向の電気伝導度より大きくして、異方導電性を持たせている。 On the other hand, a spin injection electrode 78 made of La 2-x Sr x CuO 4 which is a layered transition metal oxide is provided so as to be in contact with the free layer 73, and connection wirings 79 1 and 79 2 are provided for the spin injection electrode 78. . In this case, the spin injection electrode 78 is arranged so that the longitudinal direction thereof is perpendicular to the longitudinal direction of the TMR element 72. Here, by controlling the crystal orientation of La 2 -x Sr x CuO 4 , which is a layered transition metal oxide, the electric conductivity in the direction perpendicular to the thin film plane is made larger than the electric conductivity in the in-plane direction, and anisotropic It has conductivity.

図20(b)に示すように、スピン注入電極78に対して電流Jを流すと、電流J に垂直な向きに電荷の流れを伴わない純スピン流Jが発生してフリー層73に注入される。この時、純スピン流Jにおけるスピンの向きσは電流J及び純スピン流Jの双方に対して直交する向きとなり、フリー層73の磁化方向Mを変換するように作用する。 As shown in FIG. 20B, when a current J c is passed through the spin injection electrode 78, a pure spin current J s without a charge flow is generated in a direction perpendicular to the current J c and the free layer 73 is generated. Injected into. At this time, the direction of the spin sigma s in pure spin current J s becomes a direction orthogonal to both the current J c and pure spin current J s, it acts to convert the magnetization direction M of the free layer 73.

この実施例7においては、スピン注入電極として異方導電性を有する層状遷移金属酸化物を用いているので、スピン流の注入効率を材料自身が有する電流−スピン流変換効率より大きくすることができる。   In Example 7, since the layered transition metal oxide having anisotropic conductivity is used as the spin injection electrode, the spin current injection efficiency can be made larger than the current-spin current conversion efficiency of the material itself. .

1 絶縁性基板
2 スピン流−電流相互変換部材層
3 スピン流発生部材層
,4 電極
,5 引出電極
6 電圧計
11 ガラス基板
12 PEDOT:PSS被膜
13 Ni80Fe20
14,14 Au電極
21 GGG単結晶基板
22 MOD溶液
23 酸化物層
24 YIG層
25 PEDOT:PSS被膜
26,26 Au電極
31 ガラス基板
32 Ni80Fe20
33 PBTTT:F4−TCNQ膜
34,34 Au電極
41 GaAs層
42 PEDOT:PSS被膜
43,43 Au電極
44 円偏光光
51 GGG単結晶基板
52 YIG層
53 PEDOT:PSS被膜
54,54 Au電極
55 熱源
61 ピエゾ効果素子
62 PZT層
63,63 電極
64 YIG層
65 PEDOT:PSS被膜
66,66 Au電極
67 シリコーン樹脂
71 下部電極
72 TMR要素
73 フリー層
74 トンネル絶縁膜
75 ピンド層
76 反強磁性層
77 ビット線
78 スピン注入電極
79,79 接続配線
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Spin current-current mutual conversion member layer 3 Spin current generating member layer 4 1 , 4 2 Electrode 5 1 , 5 2 Extraction electrode 6 Voltmeter 11 Glass substrate 12 PEDOT: PSS coating 13 Ni 80 Fe 20 film 14 1 , 14 2 Au electrode 21 GGG single crystal substrate 22 MOD solution 23 Oxide layer 24 YIG layer 25 PEDOT: PSS coating 26 1 , 26 2 Au electrode 31 Glass substrate 32 Ni 80 Fe 20 film 33 PBTTTT: F4-TCNQ film 34 1 , 34 2 Au electrode 41 GaAs layer 42 PEDOT: PSS coating 43 1 , 43 2 Au electrode 44 Circularly polarized light 51 GGG single crystal substrate 52 YIG layer 53 PEDOT: PSS coating 54 1 , 54 2 Au electrode 55 Heat source 61 Piezo effect Element 62 PZT layer 63 1 , 63 2 electrode 64 YIG layer 65 PEDOT: PSS Coating 66 1 , 66 2 Au electrode 67 Silicone resin 71 Lower electrode 72 TMR element 73 Free layer 74 Tunnel insulating film 75 Pinned layer 76 Antiferromagnetic layer 77 Bit line 78 Spin injection electrode 79 1 , 79 2 Connection wiring

Claims (9)

エネルギーの供給により純スピン流或いはスピン波スピン流を発生するスピン流発生部材層と、
前記スピン流発生部材層に接合し、スピン流を電流に変換する或いは電流をスピン流に変換するスピン流−電流相互変換部材層と、
前記スピン流−電流相互変換部材層に設けられ、前記電流の流れる方向の上流側と下流側に設けられた一対の電極と
を有し、
前記スピン流−電流相互変換部材層が、スピン流の流入方向の電気伝導度が他の方向の電気伝導度より高い異方導電性を有するスピントロニクスデバイス。
A spin current generating member layer that generates a pure spin current or a spin wave spin current by supplying energy;
A spin current-current mutual conversion member layer that is bonded to the spin current generation member layer and converts a spin current into a current or converts a current into a spin current;
A pair of electrodes provided on the upstream side and the downstream side in the current flow direction, provided in the spin current-current mutual conversion member layer;
A spintronic device in which the spin current-current mutual conversion member layer has an anisotropic conductivity in which an electric conductivity in an inflow direction of a spin current is higher than an electric conductivity in another direction.
前記スピン流発生部材層が磁性体層であり、
前記スピン流−電流相互変換部材層が、逆スピンホール効果部材層である請求項1に記載のスピントロニクスデバイス。
The spin current generating member layer is a magnetic layer;
The spintronic device according to claim 1, wherein the spin current-current mutual conversion member layer is an inverse spin Hall effect member layer.
前記供給されるエネルギーが、熱、マイクロ波、光或いは音波のいずれかである請求項2に記載のスピントロニクスデバイス。   The spintronic device according to claim 2, wherein the supplied energy is any one of heat, microwaves, light, and sound waves. 前記逆スピンホール効果部材層を、絶縁性基板上に設けるとともに、前記逆スピンホール効果部材層の上に前記磁性層を設けた請求項3に記載のスピントロニクスデバイス。   4. The spintronic device according to claim 3, wherein the reverse spin Hall effect member layer is provided on an insulating substrate, and the magnetic layer is provided on the reverse spin Hall effect member layer. 前記磁性層を、絶縁性基板上に設けるとともに、前記磁性層の上に前記逆スピンホール効果部材層を設けた請求項3に記載のスピントロニクスデバイス。   The spintronic device according to claim 3, wherein the magnetic layer is provided on an insulating substrate, and the reverse spin Hall effect member layer is provided on the magnetic layer. 前記スピン流発生部材層が閃亜鉛鉱型結晶構造を有する半導体層であり、
前記スピン流−電流相互変換部材層が、逆スピンホール効果部材層であり、
前記供給されるエネルギーが円偏光光である請求項1に記載のスピントロニクスデバイス。
The spin current generating member layer is a semiconductor layer having a zinc blende type crystal structure;
The spin current-current mutual conversion member layer is an inverse spin Hall effect member layer,
The spintronic device according to claim 1, wherein the supplied energy is circularly polarized light.
前記スピン流発生部材層が磁性体層であり、
前記スピン流−電流相互変換部材層が、スピンホール効果部材層であり、
前記供給されるエネルギーが注入電流である請求項1に記載のスピントロニクスデバイス。
The spin current generating member layer is a magnetic layer;
The spin current-current mutual conversion member layer is a spin Hall effect member layer,
The spintronic device according to claim 1, wherein the supplied energy is an injection current.
前記異方導電性を有するスピン流−電流相互変換部材層が、導電性ポリマー、有機自己組織化膜、有機電荷移動錯体伝導体、金属積層膜、層状遷移金属酸化物、或いは、3次元トポロジカル絶縁体のいずれかからなる請求項1乃至請求項7のいずれか1項に記載のスピントロニクスデバイス。   The spin current-current interconversion member layer having anisotropic conductivity is formed of a conductive polymer, an organic self-assembled film, an organic charge transfer complex conductor, a metal laminated film, a layered transition metal oxide, or a three-dimensional topological insulation. The spintronic device according to any one of claims 1 to 7, comprising any one of a body. 前記導電性ポリマーが、PEDOTとPSSとを混合したポリマーであるPEDOT:PSSまたはPBTTTとF4−TCNQとを混合したポリマーであるPBTTT:F4−TCNQである請求項8に記載のスピントロニクスデバイス。
The spintronic device according to claim 8, wherein the conductive polymer is PEDOT: PSS which is a polymer obtained by mixing PEDOT and PSS, or PBTTTT: F4-TCNQ which is a polymer obtained by mixing PBTTTT and F4-TCNQ.
JP2012231849A 2012-10-19 2012-10-19 Spintronics device Active JP6143051B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012231849A JP6143051B2 (en) 2012-10-19 2012-10-19 Spintronics device
PCT/GB2013/052736 WO2014060781A2 (en) 2012-10-19 2013-10-21 Electronic devices
US14/436,724 US10018689B2 (en) 2012-10-19 2013-10-21 Electronic devices
EP13780396.1A EP2909644B1 (en) 2012-10-19 2013-10-21 Electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231849A JP6143051B2 (en) 2012-10-19 2012-10-19 Spintronics device

Publications (2)

Publication Number Publication Date
JP2014086448A true JP2014086448A (en) 2014-05-12
JP6143051B2 JP6143051B2 (en) 2017-06-07

Family

ID=50789271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231849A Active JP6143051B2 (en) 2012-10-19 2012-10-19 Spintronics device

Country Status (1)

Country Link
JP (1) JP6143051B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767020A (en) * 2015-03-20 2015-07-08 复旦大学 Spin wave directional transmission waveguide structure
KR101831305B1 (en) 2016-05-30 2018-02-23 한국표준과학연구원 Control method for skyrmion magnetization state and using the control method for magnetic memory device
JP2018117104A (en) * 2017-01-20 2018-07-26 国立研究開発法人理化学研究所 Spin flow generation method and spin flow generation device
WO2018155078A1 (en) * 2017-02-27 2018-08-30 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
WO2018155077A1 (en) * 2017-02-27 2018-08-30 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
JP2018190780A (en) * 2017-04-28 2018-11-29 国立大学法人東北大学 Thermoelectric conversion device
JPWO2019159885A1 (en) * 2018-02-19 2020-02-27 Tdk株式会社 Spin element and magnetic memory
WO2020050329A1 (en) * 2018-09-05 2020-03-12 学校法人慶應義塾 Spintronics device, magnetic memory, and electronic apparatus
CN113270542A (en) * 2021-05-13 2021-08-17 上海科技大学 Spin signal detector based on III-V group narrow bandgap semiconductor heterostructure
WO2023224062A1 (en) * 2022-05-19 2023-11-23 慶應義塾 Energy conversion element, electromotive force generation element, elastic wave detection element, surface elastic wave sensor, spin current amplifier, and magnetic resistance element
US11903327B2 (en) 2018-02-19 2024-02-13 Tdk Corporation Spin element and magnetic memory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092412A (en) * 2001-09-17 2003-03-28 Toshiba Corp Spin transistor
JP2009295824A (en) * 2008-06-05 2009-12-17 Keio Gijuku Spintronics device and information transmission method
WO2011118374A1 (en) * 2010-03-25 2011-09-29 日本電気株式会社 Heat-type sensor and platform
WO2013047255A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Thermoelectric conversion element and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092412A (en) * 2001-09-17 2003-03-28 Toshiba Corp Spin transistor
JP2009295824A (en) * 2008-06-05 2009-12-17 Keio Gijuku Spintronics device and information transmission method
WO2011118374A1 (en) * 2010-03-25 2011-09-29 日本電気株式会社 Heat-type sensor and platform
WO2013047255A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Thermoelectric conversion element and method for manufacturing same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767020A (en) * 2015-03-20 2015-07-08 复旦大学 Spin wave directional transmission waveguide structure
CN104767020B (en) * 2015-03-20 2017-11-10 复旦大学 A kind of spin wave directional transmissions waveguiding structure
KR101831305B1 (en) 2016-05-30 2018-02-23 한국표준과학연구원 Control method for skyrmion magnetization state and using the control method for magnetic memory device
JP2018117104A (en) * 2017-01-20 2018-07-26 国立研究開発法人理化学研究所 Spin flow generation method and spin flow generation device
WO2018155078A1 (en) * 2017-02-27 2018-08-30 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
WO2018155077A1 (en) * 2017-02-27 2018-08-30 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
JP6426330B1 (en) * 2017-02-27 2018-11-21 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive element and magnetic memory
CN108886061A (en) * 2017-02-27 2018-11-23 Tdk株式会社 Spin current magnetizes rotating element, magneto-resistance effect element and magnetic memory
JP6450058B1 (en) * 2017-02-27 2019-01-09 Tdk株式会社 Spin current magnetization rotation element, magnetoresistive effect element, and magnetic memory
JP2019068086A (en) * 2017-02-27 2019-04-25 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
JP2018190780A (en) * 2017-04-28 2018-11-29 国立大学法人東北大学 Thermoelectric conversion device
US11538984B2 (en) 2018-02-19 2022-12-27 Tdk Corporation Spin element and magnetic memory
US11031541B2 (en) 2018-02-19 2021-06-08 Tdk Corporation Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
JPWO2019159885A1 (en) * 2018-02-19 2020-02-27 Tdk株式会社 Spin element and magnetic memory
US11903327B2 (en) 2018-02-19 2024-02-13 Tdk Corporation Spin element and magnetic memory
WO2020050329A1 (en) * 2018-09-05 2020-03-12 学校法人慶應義塾 Spintronics device, magnetic memory, and electronic apparatus
CN112640088A (en) * 2018-09-05 2021-04-09 学校法人庆应义塾 Spintronic device, magnetic memory, and electronic apparatus
JPWO2020050329A1 (en) * 2018-09-05 2021-08-30 学校法人慶應義塾 Spintronics devices, magnetic memory and electronics
US20210327485A1 (en) * 2018-09-05 2021-10-21 Keio University Spintronics device, magnetic memory, and electronic apparatus
JP7352293B2 (en) 2018-09-05 2023-09-28 慶應義塾 Spintronics devices, magnetic memory and electronic equipment
US11875832B2 (en) 2018-09-05 2024-01-16 Keio University Spintronics device, magnetic memory, and electronic apparatus
CN113270542A (en) * 2021-05-13 2021-08-17 上海科技大学 Spin signal detector based on III-V group narrow bandgap semiconductor heterostructure
CN113270542B (en) * 2021-05-13 2023-03-21 上海科技大学 Spin signal detector based on III-V group narrow bandgap semiconductor heterostructure
WO2023224062A1 (en) * 2022-05-19 2023-11-23 慶應義塾 Energy conversion element, electromotive force generation element, elastic wave detection element, surface elastic wave sensor, spin current amplifier, and magnetic resistance element

Also Published As

Publication number Publication date
JP6143051B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6143051B2 (en) Spintronics device
JP5585314B2 (en) Thermoelectric conversion element and thermoelectric conversion device
Shin et al. Spin–orbit torque switching in an all‐van der Waals heterostructure
Wu et al. Room-temperature spin-orbit torque from topological surface states
Liu et al. Antiferromagnetic piezospintronics
US8254163B2 (en) Spintronic device and information transmitting method
JP5424273B2 (en) Thermoelectric conversion element
Zhang et al. Multifunctional, self-assembled oxide nanocomposite thin films and devices
US9647193B2 (en) Thermoelectric conversion element and thermoelectric conversion device
Chen et al. Electrically tunable magnetism and unique intralayer charge transfer in Janus monolayer MnSSe for spintronics applications
JP6233320B2 (en) Thermoelectric conversion element and manufacturing method thereof
Yang et al. Linear and nonlinear thermoelectric transport in a magnetic topological insulator nanoribbon with a domain wall
Hou et al. Resistive switching behavior in α-In 2 Se 3 nanoflakes modulated by ferroelectric polarization and interface defects
JP6164658B2 (en) Light-spin current conversion element and manufacturing method thereof
Ren et al. Emergence of insulating ferrimagnetism and perpendicular magnetic anisotropy in 3d–5d perovskite oxide composite films for insulator spintronics
CN109962157B (en) Spinning electronic device and preparation method thereof
Nian et al. Spin caloritronics in a chiral double-strand-DNA-based hybrid junction
Chang et al. Tuning electronic transport in a self-assembled nanocomposite
Wang et al. Room temperature energy-efficient spin-orbit torque switching in wafer-scale all-vdW heterostructure
JP6349863B2 (en) Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device
JP2014239158A (en) Thermoelectric transducer
JP6172434B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2018006546A (en) Thermoelectric conversion element, manufacturing method thereof and thermoelectric conversion device
Yu et al. Reconfigurable spin tunnel diodes by doping engineering VS 2 monolayers
Chen et al. Spintronics phenomena of two-dimensional electron gas at oxide interfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6143051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250