JP2016161409A - Radar system and radar signal processing method of the same - Google Patents

Radar system and radar signal processing method of the same Download PDF

Info

Publication number
JP2016161409A
JP2016161409A JP2015040458A JP2015040458A JP2016161409A JP 2016161409 A JP2016161409 A JP 2016161409A JP 2015040458 A JP2015040458 A JP 2015040458A JP 2015040458 A JP2015040458 A JP 2015040458A JP 2016161409 A JP2016161409 A JP 2016161409A
Authority
JP
Japan
Prior art keywords
radar
target
transmission
frequency
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015040458A
Other languages
Japanese (ja)
Other versions
JP6352837B2 (en
Inventor
晋一 竹谷
Shinichi Takeya
晋一 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015040458A priority Critical patent/JP6352837B2/en
Publication of JP2016161409A publication Critical patent/JP2016161409A/en
Application granted granted Critical
Publication of JP6352837B2 publication Critical patent/JP6352837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To output the accurate position and speed of a target.SOLUTION: In a radar system of an embodiment, a transmission-reception radar device is configured to transmit-receive a radar wave by an FMICW, and one or more reception radar device is configured to acquire position information and transmission information on the transmission-reception radar device to receive a reflection wave of the radar wave to be transmitted from the transmission-reception radar device. The transmission-reception radar device and the reception radar device are configured to implement a range finding and measure a speed for an object target by means of MRAV processing from a sweep modulation component of a reception signal, respectively; obtain a frequency deviation due to a Doppler frequency of the object target from a single frequency modulation component of the reception signal; correct a value having the speed measured on the basis of the frequency deviation; and output the corrected value together with the value having the speed measured. An integration processing device is configured to output a distance, speed and angle of the target determined to be mutually identical on the basis of results of the range finding, measured speed and measurement angle of a detection target obtained by the transmission-reception radar device and the reception radar device, respectively as target information.SELECTED DRAWING: Figure 1

Description

本実施形態は、マルチスタティック方式により目標の位置及び速度を検出するレーダシステム及びそのレーダ信号処理方法に関する。   The present embodiment relates to a radar system that detects a target position and velocity by a multistatic method and a radar signal processing method thereof.

近時、レーダシステムにあっては、1または複数のレーダ波送信装置及び複数の受信レーダ装置を互いに離間して配置し、各受信レーダ装置の観測結果により目標の位置及び速度を検出するマルチスタティック方式が開発されている。この種のレーダシステムでは、離隔したレーダ波送信装置及び受信レーダ装置間の時刻同期が不十分な場合には、観測位置の誤差が大きくなってしまう課題があった。また、レーダ波送信装置・受信レーダ装置間のローカル信号の中心周波数にずれが生じる場合には、ドップラ周波数による速度精度が不十分であつた。   Recently, in a radar system, one or a plurality of radar wave transmitting devices and a plurality of receiving radar devices are arranged apart from each other, and a multi-static method is used to detect the target position and velocity based on the observation results of each receiving radar device. A method has been developed. In this type of radar system, there is a problem that an error in the observation position becomes large when time synchronization between the separated radar wave transmitting apparatus and the receiving radar apparatus is insufficient. In addition, when a deviation occurs in the center frequency of the local signal between the radar wave transmitting apparatus and the receiving radar apparatus, the speed accuracy by the Doppler frequency is insufficient.

バイスタティックレーダのドップラ周波数、M.Skolnik、Radar Handbook 3rd、McGraw hill、pp23.14-23.17(2008)Bistatic radar Doppler frequency, M. Skolnik, Radar Handbook 3rd, McGraw hill, pp23.14-23.17 (2008) 位相モノパルス(位相比較モノパルス)方式、電子情報通信学会、改訂レーダ技術、pp.262-264(1996)Phase monopulse (phase comparison monopulse) method, IEICE, revised radar technology, pp.262-264 (1996) 振幅モノパルス(振幅比較モノパルス)方式、電子情報通信学会、改訂レーダ技術、pp.260-262(1996)Amplitude monopulse (amplitude comparison monopulse) system, IEICE, revised radar technology, pp.260-262 (1996) テーラー分布、電子情報通信学会、改訂レーダ技術、pp.134-135(1996)Taylor distribution, IEICE, Revised radar technology, pp.134-135 (1996) FMICW、FRED E.Nathanson, 'RADAR DESIGN PRINCIPLES second edition', Scitech, p452-454(1999)FMICW, FRED E. Nathanson, 'RADAR DESIGN PRINCIPLES second edition', Scitech, p452-454 (1999) FMCW、電子情報通信学会、改訂レーダ技術、ppp.274-275(1996)FMCW, IEICE, revised radar technology, p.274-275 (1996)

特開2009−121902号公報JP 2009-121902 A

以上述べたように、従来のマルチスタティック方式のレーダシステムでは、レーダ波送信装置・受信レーダ装置間の時刻同期ずれや中心周波数のずれ等の影響で、距離精度や速度精度が不十分であるという課題があった。   As described above, in the conventional multistatic radar system, the distance accuracy and speed accuracy are insufficient due to the effects of time synchronization deviation and center frequency deviation between the radar wave transmitting device and the receiving radar device. There was a problem.

本実施形態は上記課題に鑑みなされたもので、レーダ波送信装置・受信レーダ装置間の時刻同期ずれや中心周波数のずれ等の影響を軽減し、高精度な位置及び速度を出力するレーダシステム及びそのレーダ信号処理方法を提供することを目的とする。   The present embodiment has been made in view of the above problems, and a radar system that reduces the influence of a time synchronization shift and a center frequency shift between a radar wave transmission device and a reception radar device, and outputs a highly accurate position and velocity. An object of the present invention is to provide a radar signal processing method.

上記の課題を解決するために、本実施形態に係るレーダシステムは、少なくとも1つの単一周波数のパルス波と周波数スイープ勾配を持つアップスイープまたはダウンスイープの少なくとも1つのパルス波をレーダ波として送信する、少なくとも1台の送信装置と、前記送信装置とは少なくとも異なる位置に配置され、少なくとも前記送信装置の位置、送信ビーム方向、送信周波数、送信波形の情報を取得し、前記送信装置から送信されるレーダ波の反射波を受信するNr台(Nr≧1)の受信レーダ装置と、前記受信レーダ装置の出力を統合処理する統合処理装置とを具備し、前記送信装置は、前記レーダ波を対象目標のドップラ周波数に応じてクラッタの影響が少なくなるように選定して送信し、前記Nr台の受信レーダ装置は、前記レーダ波の反射波を受信し、その受信信号の前記パルス波の成分からMRAV(Measurement Range After measurement Velocity)処理により前記対象目標について測距及び測速を行い、前記受信信号の前記連続波の成分から前記対象目標のドップラ周波数から周波数ずれを求め、前記測速した値を前記周波数ずれに基づいて補正して、前記測距した値と共に出力し、前記統合処理装置は、前記Nr台の受信レーダ装置それぞれで得られた検出目標の測距、測速、測角結果に基づいて互いに同一と判別された目標の距離、速度及び角度を目標情報として出力する。   In order to solve the above problem, the radar system according to the present embodiment transmits at least one pulse wave of at least one single frequency and at least one pulse wave of up sweep or down sweep having a frequency sweep gradient as a radar wave. And at least one transmission device and the transmission device are arranged at least at different positions, and acquire at least information on the position of the transmission device, transmission beam direction, transmission frequency, and transmission waveform, and are transmitted from the transmission device. Nr units (Nr ≧ 1) of receiving radar devices that receive the reflected wave of the radar wave, and an integrated processing device that integrates the output of the receiving radar device, and the transmitting device targets the radar wave as a target target In accordance with the Doppler frequency, the transmission is selected and transmitted so that the influence of the clutter is reduced. A reflected wave of a da wave is received, and ranging and speed measurement are performed on the target target by MRAV (Measurement Range After measurement Velocity) processing from the pulse wave component of the received signal, and from the continuous wave component of the received signal A frequency shift is obtained from the target Doppler frequency, the speed-measured value is corrected based on the frequency shift, and is output together with the distance-measured value, and the integrated processing device is provided for each of the Nr receiving radar devices. The target distance, speed, and angle determined to be identical to each other based on the distance measurement, speed measurement, and angle measurement results of the detection target obtained in step S5 are output as target information.

第1の実施形態に係るレーダシステムの構成を示すブロック図。1 is a block diagram showing a configuration of a radar system according to a first embodiment. 第1の実施形態において、レーダ送信信号として生成される、CW信号とスイープ信号のパルス変調されたFMICWによる変調波を示す波形図。The wave form diagram which shows the modulation wave by FMICW by which pulse modulation of the CW signal and the sweep signal produced | generated as a radar transmission signal in 1st Embodiment. 第1の実施形態のMRAVによる測距・測速の手順を示すフローチャート。6 is a flowchart showing a procedure of distance measurement / speed measurement by MRAV according to the first embodiment. 第1の実施形態のスイープ信号送信サイクルを説明するためのタイミング図。FIG. 3 is a timing chart for explaining a sweep signal transmission cycle according to the first embodiment. 第1の実施形態の位相モノパルスによる周波数軸上のΣ、Δビーム分布を示す周波数分布図。The frequency distribution figure which shows (SIGMA) and (DELTA) beam distribution on the frequency axis by the phase monopulse of 1st Embodiment. 第1の実施形態の位相モノパルスによる周波数軸上のΣ、Δビームから目標の周波数を抽出する様子を示す周波数分布図。The frequency distribution figure which shows a mode that the target frequency is extracted from the (SIGMA) and (DELTA) beam on the frequency axis by the phase monopulse of 1st Embodiment. 第1の実施形態の位相モノパルスによる誤差電圧算出処理を説明するための周波数分布図及び特性図。The frequency distribution figure and characteristic figure for demonstrating the error voltage calculation process by the phase monopulse of 1st Embodiment. 第1の実施形態の単位サイクル内におけるスイープ処理について説明するための図。The figure for demonstrating the sweep process in the unit cycle of 1st Embodiment. 第1の実施形態のアップ・ダウンスイープそれぞれに対するクラッタの広がり方向を示す図。The figure which shows the spread direction of the clutter with respect to each of the up / down sweep of 1st Embodiment. 第1の実施形態の送信側と受信側が速度ベクトルを持つ場合の送信装置、受信装置、クラッタ反射点の位置関係を示す図。The figure which shows the positional relationship of a transmitter, a receiver, and a clutter reflection point when the transmission side and receiving side of 1st Embodiment have a velocity vector. 第2の実施形態に係るレーダシステムの構成を示すブロック図。The block diagram which shows the structure of the radar system which concerns on 2nd Embodiment. 第2の実施形態の時刻同期処理を説明するための波形図。The wave form diagram for demonstrating the time synchronous process of 2nd Embodiment. 第2の実施形態の時刻同期と中心周波数の補正後、1台の送受信レーダ装置、2台の受信レーダ装置によるマルチスタティック方式により目標位置を算出する手法を説明するための概念図。The conceptual diagram for demonstrating the method of calculating a target position by the multistatic system by one transmission / reception radar apparatus and two reception radar apparatuses after the time synchronization and center frequency correction | amendment of 2nd Embodiment. 第2の実施形態の時刻同期と中心周波数の補正後、1台の送受信レーダ装置、1台の受信レーダ装置によるマルチスタティック方式により目標位置を算出する手法を説明するための概念図。The conceptual diagram for demonstrating the method of calculating a target position by the multistatic system by one transmission / reception radar apparatus and one receiving radar apparatus after the time synchronization and center frequency correction of 2nd Embodiment. 第2の実施形態の時刻同期と中心周波数の補正後、1台の送信レーダ装置、2台の受信レーダ装置によるマルチスタティック方式により目標位置を算出する手法を説明するための概念図。The conceptual diagram for demonstrating the method of calculating a target position by the multistatic system by one transmission radar apparatus and two receiving radar apparatuses after the time synchronization and center frequency correction | amendment of 2nd Embodiment.

以下、実施形態について、図面を参照して説明する。尚、各実施形態の説明において、同一部分には同一符号を付して示し、重複する説明を省略する。   Hereinafter, embodiments will be described with reference to the drawings. In the description of each embodiment, the same portions are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態)(MRAVとCWによる周波数・速度補正)
図1乃至図10を参照して、第1の実施形態に係るレーダシステムを説明する。
First Embodiment (Frequency / Speed Correction by MRAV and CW)
The radar system according to the first embodiment will be described with reference to FIGS.

図1は上記レーダシステムの系統構成を示すブロック図、図2はFMICW(Frequency Modulated Interrupted Continuous Wave、非特許文献5参照)による変調波を示す波形図、図3はMRAVによる測距・測速の手順を示すフローチャート、図4はスイープ信号送信サイクルを説明するためのタイミング図、図5(a),(b)はそれぞれ位相モノパルスによる周波数軸上のΣ、Δビーム分布を示す周波数分布図、図6は位相モノパルスによる周波数軸上のΣ、Δビームから目標の周波数を抽出する様子を示す周波数分布図、図7(a),(b)はそれぞれ位相モノパルスによる誤差電圧算出処理を説明するための周波数分布図及び特性図、図8(a),(b)は単位サイクル内におけるスイープ処理について説明するための概念図、図9はアップ・ダウンスイープそれぞれに対するクラッタの広がり方向を示す図、図10は送信側と受信側が速度ベクトルを持つ場合の送信側装置、受信側装置、クラッタ反射点の位置関係を示す図である。   FIG. 1 is a block diagram showing a system configuration of the radar system, FIG. 2 is a waveform diagram showing a modulated wave by FMICW (Frequency Modulated Interrupted Continuous Wave, see Non-Patent Document 5), and FIG. 3 is a procedure for distance measurement and speed measurement by MRAV. 4 is a timing diagram for explaining a sweep signal transmission cycle, FIGS. 5A and 5B are frequency distribution diagrams showing Σ and Δ beam distributions on the frequency axis by phase monopulses, and FIG. Is a frequency distribution diagram showing how the target frequency is extracted from the Σ and Δ beams on the frequency axis by the phase monopulse, and FIGS. 7A and 7B are frequencies for explaining the error voltage calculation processing by the phase monopulse, respectively. Distribution diagram and characteristic diagram, FIGS. 8A and 8B are conceptual diagrams for explaining the sweep process in a unit cycle, and FIG. 9 is an up / down diagram. FIG. 10 is a diagram showing the positional relationship between the transmission side device, the reception side device, and the clutter reflection point when the transmission side and the reception side have velocity vectors.

図1に示すレーダシステムは、一つの送受信レーダ装置Aと、この送受信レーダ装置Aから送信されたレーダ信号の反射波を受信可能な位置に配置される複数(ここでは2台)の受信レーダ装置B,Cを備える。   The radar system shown in FIG. 1 includes one transmission / reception radar apparatus A and a plurality (two in this case) of reception radar apparatuses arranged at positions where the reflected wave of the radar signal transmitted from the transmission / reception radar apparatus A can be received. B and C are provided.

送受信レーダ装置Aにおいて、アンテナA1は複数のアンテナ素子を配列して大開口アレイを形成してなるフェーズドアレイアンテナである。送受信器A2において、送受信部A21は、図2に示す単一周波数により変調されたパルス波と周波数スイープ勾配を持つアップスイープまたはダウンスイープで周波数変調されたパルス波(FMICW:Frequency Modulated Interrupted Continuous Wave、非特許文献5参照))を生成し、ビーム制御部A22は、アンテナA1により送信されるビームを目標方向に指向させる。送受信部A21は、目標から反射した信号を受信して、送信波形と同様の変調波信号を用いたローカル信号により復調し、ベースバンドに周波数変換する。このようにして得られたスイープ受信信号は信号処理器A3に送られる。   In the transmission / reception radar apparatus A, the antenna A1 is a phased array antenna in which a plurality of antenna elements are arranged to form a large aperture array. In the transmitter / receiver A2, the transmitter / receiver A21 includes a pulse wave modulated by a single frequency shown in FIG. 2 and a pulse wave (FMICW: Frequency Modulated Interrupted Continuous Wave, frequency modulated by an up sweep or a down sweep having a frequency sweep gradient). The non-patent document 5)) is generated, and the beam control unit A22 directs the beam transmitted by the antenna A1 in the target direction. The transmission / reception unit A21 receives the signal reflected from the target, demodulates it with a local signal using a modulated wave signal similar to the transmission waveform, and converts the frequency to baseband. The sweep reception signal obtained in this way is sent to the signal processor A3.

上記受信レーダ装置B,Cは、いずれも送受信レーダ装置Aの送信機能を除いて同構成である。すなわち、受信レーダ装置B,Cにおいて、アンテナB1,C1は複数のアンテナ素子を配列して大開口アレイを形成してなる受信用のフェーズドアレイアンテナであり、送受信レーダ装置Aから繰り返し送信される特定周波数のレーダ信号の反射波を受信する。受信器B2,C2では、受信部B21,C21において、アンテナB1,C1で受信された信号をビーム制御部B22,C22からの指示に従って位相制御を施し合成することで、任意の方向に受信ビームを形成してPRF受信信号を取得し、ベースバンドに周波数変換する。このようにして得られたスイープ受信信号は信号処理器B3,C3に送られ、送受信レーダ装置Aと同様に、Σビーム系統とΔビーム系統に分配されて、CFAR検出目標における測距、測角演算が行われる。   The reception radar devices B and C have the same configuration except for the transmission function of the transmission / reception radar device A. That is, in the receiving radar apparatuses B and C, the antennas B1 and C1 are receiving phased array antennas in which a plurality of antenna elements are arranged to form a large aperture array, and are specified to be repeatedly transmitted from the transmitting / receiving radar apparatus A. A reflected wave of a frequency radar signal is received. In the receivers B2 and C2, in the receiving units B21 and C21, the signals received by the antennas B1 and C1 are subjected to phase control in accordance with instructions from the beam control units B22 and C22 to synthesize a received beam in an arbitrary direction. The PRF received signal is formed and frequency-converted to baseband. The sweep reception signals obtained in this way are sent to the signal processors B3 and C3 and distributed to the Σ beam system and the Δ beam system in the same manner as the transmission / reception radar apparatus A, and the distance measurement and angle measurement at the CFAR detection target are performed. An operation is performed.

上記送受信レーダ装置Aの信号処理器A3、上記受信レーダ装置B,Cの信号処理器B3,C3はいずれも同構成であり、入力されたスイープ受信信号をΣビーム系統とΔビーム系統に分配する。Σビーム系統に入力されたスイープ受信信号は、AD(Analog-Digital)変換部A31,B31,C31でディジタル信号に変換され、FFT用Σ・Δウェイト乗算部A32,B32,C32でFFT用のΣウェイト及びΔウェイトが乗算され、FFT処理部A33,B33,C33で周波数領域の信号に変換され、CFAR検出部A34,B34,C34で所定のスレショルドを超えるセル(時間サンプル)の検出が実行される。このCFAR検出セルで検出されたセルのスイープ信号はMRAV(Measurement Range after measurement Velocity)処理部A35,B35,C35に送られ、CW信号はCW速度演算部A36,B36,C36に送られる。MRAV処理部A35,B35,C35は入力スイープ信号から目標の測距・測速演算を行い、CW速度演算部A36,B36,C36は入力CW信号から目標のドップラ速度演算を行う。MRAV処理部A35,B35,C35で得られた目標の測距・測速結果は速度補正部A37,B37,C37でCW速度演算部A36,B36,C36で得られたドップラ速度に基づいて速度補正されて測角部A38,B38,C38に送られる。   The signal processor A3 of the transmission / reception radar apparatus A and the signal processors B3 and C3 of the reception radar apparatuses B and C have the same configuration, and distribute the input sweep reception signal to the Σ beam system and Δ beam system. . The sweep reception signal input to the Σ beam system is converted into a digital signal by AD (Analog-Digital) converters A31, B31, and C31, and the Σ for FFT by the Σ · Δ weight multipliers A32, B32, and C32 for FFT. Weights and Δ weights are multiplied, converted into frequency domain signals by FFT processing units A33, B33, and C33, and detection of cells (time samples) exceeding a predetermined threshold is executed by CFAR detection units A34, B34, and C34. . The cell sweep signal detected by the CFAR detection cell is sent to MRAV (Measurement Range after Measurement Velocity) processing units A35, B35, and C35, and the CW signal is sent to CW speed calculation units A36, B36, and C36. The MRAV processing units A35, B35, and C35 perform target distance measurement / speed measurement calculations from the input sweep signal, and the CW speed calculation units A36, B36, and C36 perform target Doppler speed calculations from the input CW signal. The target distance measurement / speed measurement results obtained by the MRAV processing units A35, B35, C35 are speed-corrected by the speed correction units A37, B37, C37 based on the Doppler speeds obtained by the CW speed calculation units A36, B36, C36. Are sent to the angle measuring sections A38, B38, C38.

一方、Δビーム系統に入力されたPRF受信信号は、AD変換部A39,B39,C39でディジタル信号に変換され、FFT用Σウェイト乗算部A3a,B3a,C3aでFFT用のΣウェイト及びΔウェイトが乗算され、FFT処理部A3b,B3b,C3bで周波数領域の信号に変換されて、測角部A38,B38,C38に送られる。この測角部A38,B38,C38は、Σビーム系統のMRAV処理により得られた測距・測速演算結果とΔビーム系統で得られたΔ検出信号とに基づいて測角演算を行う。各レーダ装置A,B,Cで得られた検出目標の測距、測速、測角結果は統合処理装置Dに送られ、互いに同一と判別された目標の距離、速度及び角度が目標情報として出力される。   On the other hand, the PRF reception signal input to the Δ beam system is converted into a digital signal by the AD conversion units A39, B39, and C39, and the FFT Σ weight multipliers A3a, B3a, and C3a have the FFT Σ weight and Δ weight. The signals are multiplied, converted into frequency domain signals by the FFT processing units A3b, B3b, and C3b, and sent to the angle measuring units A38, B38, and C38. The angle measuring units A38, B38, and C38 perform angle calculation based on the distance measurement / speed measurement calculation results obtained by the MRAV processing of the Σ beam system and the Δ detection signal obtained by the Δ beam system. The distance measurement, speed measurement, and angle measurement results of the detection targets obtained by the radar apparatuses A, B, and C are sent to the integrated processing apparatus D, and the target distance, speed, and angle determined to be identical to each other are output as target information. Is done.

上記構成において、図3乃至図10を参照して、レーダ装置A,B,C間の時刻同期ずれや中心周波数のずれ等の影響を軽減するための処理動作を説明する。   In the above configuration, a processing operation for reducing the influence of a time synchronization shift, a center frequency shift, and the like between the radar apparatuses A, B, and C will be described with reference to FIGS.

まず、MRAVによる測距・測速の手順について、図3を参照して説明する。ここでは、送信信号波形として、図4に示すように、時間間隔T12の2回のダウンスイープの場合で述べるが、ダウン−アップスイープの連続波形として、そのうちのダウンスイープのみ、またはアップスイープのみの処理をする場合でもよい。また、簡単のため2回のスイープの場合について述べるが、N(N≧2)回の場合でも同様であるのは言うまでもない。   First, the distance measurement / speed measurement procedure by MRAV will be described with reference to FIG. Here, as shown in FIG. 4, the transmission signal waveform is described in the case of two down sweeps at the time interval T12. However, as a down-up sweep continuous waveform, only one of the down sweeps or only the up sweeps is shown. It may be when processing. For simplicity, the case of two sweeps will be described, but it goes without saying that the same applies to N (N ≧ 2) times.

図3において、図4に示す周波数を連続的にスイープする信号1,2を送受信すると(ステップS10)、スイープ1,2のサンプル系列をFFT処理してモノパルス演算を行い(ステップS11)、スレッショルド検出(ステップS12)によってピーク信号をもつビート周波数fpを抽出し保存する(ステップS13)。ステップS14,S15によりスイープ信号1,2の処理が完了すると、スイープ1とスイープ2のビート周波数fpを用いて、次式より相対距離R1とR2を算出し、速度vを算出する(ステップS16)。

Figure 2016161409
In FIG. 3, when the signals 1 and 2 for continuously sweeping the frequency shown in FIG. 4 are transmitted and received (step S10), the sample sequence of the sweeps 1 and 2 is subjected to FFT processing to perform monopulse calculation (step S11), and threshold detection is performed. The beat frequency fp having the peak signal is extracted and stored in (Step S12) (Step S13). When the processing of the sweep signals 1 and 2 is completed in steps S14 and S15, the relative distances R1 and R2 are calculated from the following equations using the beat frequencies fp of the sweep 1 and the sweep 2, and the velocity v is calculated (step S16). .
Figure 2016161409

次に、ビート周波数fpと速度vを用いて、次の連立方程式により、目標の距離Rと速度Vを算出する(ステップS16,S17)。

Figure 2016161409
Next, the target distance R and speed V are calculated by the following simultaneous equations using the beat frequency fp and the speed v (steps S16 and S17).
Figure 2016161409

以上の方式は、ビート周波数により速度を算出した後、距離を算出することからMRAV(Measurement Range after measurement Velocity)(特許文献1参照)方式と呼ぶ。   The above method is called a MRAV (Measurement Range after Measurement Velocity) method (refer to Patent Document 1) because the distance is calculated after the velocity is calculated based on the beat frequency.

上記の処理により速度v、距離Rを算出したのち、目標情報として保存する(ステップS18)。上記ステップS16〜S18を全目標について行い(ステップS19,S20)、次のサイクルの処理に移行する。   After calculating the speed v and the distance R by the above processing, it is stored as target information (step S18). The above steps S16 to S18 are performed for all targets (steps S19 and S20), and the process proceeds to the next cycle.

ここで、上記ビート周波数の観測精度を向上する方式がある。特に、目標速度が低い場合等、スイープ間でビート周波数が同一バンク内になる場合には、同一バンク内で精度よくビート周波数を算出する必要がある。この対策として図5(a),(b)及び図6に示すように、角度軸で用いる位相モノパルス(非特許文献2参照)をビート周波数として周波数軸に用いてバンク内の周波数を高精度に観測する手法である。以下に手順を示す。   Here, there is a method for improving the observation accuracy of the beat frequency. In particular, when the beat frequency is within the same bank between sweeps, such as when the target speed is low, it is necessary to calculate the beat frequency accurately within the same bank. As a countermeasure against this, as shown in FIGS. 5A, 5B, and 6, the phase monopulse used on the angle axis (see Non-Patent Document 2) is used as the beat frequency on the frequency axis so that the frequency in the bank can be accurately set. This is an observation method. The procedure is shown below.

(1)周波数軸モノパルス
抽出した目標の周波数のΣ(fp)とΔ(fp)を用いて、次式の誤差電圧εを算出する(図7(a),(b)参照)。

Figure 2016161409
(1) Frequency axis monopulse Using the extracted target frequency Σ (fp) and Δ (fp), an error voltage ε of the following equation is calculated (see FIGS. 7A and 7B).
Figure 2016161409

(2)ビート周波数抽出
予め保存してあるΣとΔの周波数特性を用いて算出した誤差電圧の基準値ε0をテーブル化(ε0と周波数fの対応)しておき、その基準テーブルを用いて、上記の観測値εから、高精度なビート周波数fpの値を抽出する。
(2) Beat frequency extraction The error voltage reference value ε0 calculated using the previously stored frequency characteristics of Σ and Δ is tabulated (corresponding to ε0 and frequency f), and using the reference table, A highly accurate beat frequency fp value is extracted from the observed value ε.

(3)目標までの距離と速度の算出
上記ビート周波数fpを用いて、図3に示す手順((1)(2)による演算手順)により、距離Rと速度Vを算出する。なお、重みづけについては、−1または1以外に、サイドローブを低減するためにテーラーウェイト(非特許文献4参照)等のウェイトを乗算してもよい。
(3) Calculation of distance to target and speed Using the beat frequency fp, the distance R and speed V are calculated by the procedure shown in FIG. 3 (the calculation procedure according to (1) and (2)). In addition, about weighting, in addition to -1 or 1, you may multiply weights, such as a tailor weight (refer nonpatent literature 4), in order to reduce a side lobe.

以上の処理は、2スイープの場合について述べたが、一般的に複数スイープの場合でもよい。例として、4スイープの場合を図8(a),(b)に示す。スイープ時間に対する4点のビート周波数の勾配より速度を算出する際に、直線フィッティング等を用いればよい。   Although the above processing has been described for the case of two sweeps, it may generally be a case of multiple sweeps. As an example, the case of four sweeps is shown in FIGS. When calculating the speed from the gradient of the beat frequency at four points with respect to the sweep time, linear fitting or the like may be used.

また、MRAV手法として、周波数軸上の位相モノパルスの場合について述べたが、隣接バンクを用いて振幅モノパルス演算(非特許文献3参照)により高精度なビート周波数を得る方式でもよい。   Moreover, although the case of the phase monopulse on the frequency axis was described as the MRAV technique, a method of obtaining a highly accurate beat frequency by amplitude monopulse calculation (see Non-Patent Document 3) using an adjacent bank may be used.

次にスイープの選定手法について述べる。FMICWでは、クラッタが距離方向に広がっている場合は、各距離によりビート周波数成分が異なるため、CW信号の場合と異なり、図9(a),(b),(c)に示すように、クラッタが広がる形となる。これは、スイープ信号が反射点の距離に応じて時間遅延が生じ、その分周波数がずれたビート周波数として観測されることによる(非特許文献6参照)。この広がる向きは、図9(b)に示すダウンスイープ(ドップラ周波数が高い方向)と図9(c)に示すアップスイープ(ドップラ周波数低い方向)では異なる。このため、目標信号とクラッタの周波数軸上の関係に従って、目標がクラッタに埋もれないようにダウンスイープ、アップスイープのいずれかを選定すればよい。   Next, the sweep selection method is described. In the FMICW, when the clutter spreads in the distance direction, the beat frequency component differs depending on each distance. Therefore, unlike the case of the CW signal, as shown in FIGS. 9A, 9B, and 9C, the clutter Will spread out. This is because the sweep signal is observed as a beat frequency in which a time delay occurs according to the distance of the reflection point and the frequency is shifted by that amount (see Non-Patent Document 6). This spreading direction is different between the down sweep shown in FIG. 9B (the direction in which the Doppler frequency is high) and the up sweep shown in FIG. 9C (the direction in which the Doppler frequency is low). For this reason, according to the relationship between the target signal and the clutter on the frequency axis, either down sweep or up sweep may be selected so that the target is not buried in the clutter.

メインローブクラッタの周波数は、図10に示すように、送信側と受信側が速度ベクトルを持つ場合の一般式として、次式で算出することができる(非特許文献1参照)。

Figure 2016161409
As shown in FIG. 10, the frequency of the main lobe clutter can be calculated by the following equation as a general equation when the transmission side and the reception side have velocity vectors (see Non-Patent Document 1).
Figure 2016161409

送信側と受信側が固定の場合は、クラッタ中心周波数は0となり、クラッタの速度分散に従って、ドップラ周波数の分散をもつスペクトルとなる。   When the transmitting side and the receiving side are fixed, the clutter center frequency is 0, and the spectrum has a Doppler frequency dispersion according to the speed dispersion of the clutter.

上記メインローブクラッタの周波数fcと観測した目標ドップラ周波数ftの関係より、fc≧ftの場合には、クラッタドップラ周波数が高い方向に広がるダウンスイープを、fc<ftの場合には、クラッタドップラ周波数が低い方向に広がるアップスイープを選定する。このクラッタの周波数算出とスイープ選定は、目標のドップラ周波数を把握する統合処理Dで行い、ビーム制御部A22,B22,C22によりスイープ方向を制御する。なお、目標のドップラ周波数とクラッタ周波数を把握できれば、例えば速度補正部A37,B37,C37でスイープ選定し、ビーム制御部A22,B22,C22を制御するようにしてもよい。   From the relationship between the frequency fc of the main lobe clutter and the observed target Doppler frequency ft, when fc ≧ ft, a down sweep that spreads in the direction in which the clutter Doppler frequency increases is high, and when fc <ft, the clutter Doppler frequency is Select an up sweep that extends in the lower direction. The clutter frequency calculation and sweep selection are performed by the integration process D for grasping the target Doppler frequency, and the sweep direction is controlled by the beam control units A22, B22, and C22. If the target Doppler frequency and clutter frequency can be grasped, the beam control units A22, B22, and C22 may be controlled by selecting a sweep using, for example, the speed correction units A37, B37, and C37.

以上の手法により、クラッタ環境下でも、目標とのドップラ周波数の関係によって、クラッタの影響を受けないスイープを選定して、MRAVにより目標速度を観測することができ、次式によりドップラ周波数を算出することができる。

Figure 2016161409
With the above method, even in a clutter environment, a sweep that is not affected by clutter can be selected according to the relationship with the Doppler frequency with the target, and the target speed can be observed by MRAV. The Doppler frequency is calculated by the following equation: be able to.
Figure 2016161409

一方、スイープ勾配の無い単一周波数のCW信号のFFT結果をCFAR処理して検出すると、ドップラ周波数fdcwを抽出できる。このfdcwには、送信と受信の中心周波数のずれによる誤差を含んでいる。これを補正するには、fdmravを正しい値として、fdcwとの差分を補正周波数fdcalとして補正すると、ドップラ周波数誤差を補正できる。

Figure 2016161409
On the other hand, the Doppler frequency fdcw can be extracted by detecting the FFT result of a single frequency CW signal without a sweep gradient by performing CFAR processing. This fdcw includes an error due to a difference between the center frequencies of transmission and reception. In order to correct this, Doppler frequency error can be corrected by correcting fdmrav as a correct value and correcting the difference from fdcw as the correction frequency fdcal.
Figure 2016161409

fdcalを決めると、以後、観測したドップラ周波数fdmを補正し、中心周波数による誤差の無いドップラ周波数fdを算出できる。

Figure 2016161409
When fdcal is determined, the observed Doppler frequency fdm can be corrected thereafter, and the Doppler frequency fd having no error due to the center frequency can be calculated.
Figure 2016161409

また、補正後のドップラ速度から、(5)式と同様の関係により、精度の高い目標速度を算出することができる。   In addition, a highly accurate target speed can be calculated from the corrected Doppler speed by the same relationship as the equation (5).

角度軸のモノパルス演算は、Σ信号を用いてCFAR処理部A34,B34,C34でCFAR処理して検出したセルについて行う。また、ビーム出力のΣとΔを用いて測角部A38,B38,C38で測角演算を行い、Az角及びEL角を算出する。   The monopulse calculation of the angle axis is performed on the cells detected by the CFAR processing by the CFAR processing units A34, B34, and C34 using the Σ signal. In addition, the angle measuring units A38, B38, and C38 perform angle measurement using the beam outputs Σ and Δ to calculate the Az angle and the EL angle.

以上のように、第1の実施形態に係るレーダシステムでは、1台の送信レーダ装置Aと2台の受信レーダ装置B,Cを用いて、送信レーダ装置Aの位置、送信ビーム方向θ、送信周波数、送信波形等を必要に応じて、受信レーダ装置B,Cに通信回線により伝送し、送信レーダ装置Aにより、少なくとも1つの単一周波数のパルス波と周波数スイープ勾配をもつアップスイープまたはダウンスイープの少なくとも1つのパルス波(FMICW)を対象目標のドップラ周波数に応じて、クラッタの影響が少ないように選定して送信し、受信レーダ装置でMRAV処理により測速した値と単一周波数のドップラ周波数より、周波数ずれを算出して補正し、速度と距離を出力する。このように、MRAV処理により、相対距離の変化を用いて目標速度を観測し、CWにより目標速度(ドップラ)を観測するため、中心周波数差(目標速度差)を補正することができる。   As described above, in the radar system according to the first embodiment, using one transmission radar apparatus A and two reception radar apparatuses B and C, the position of the transmission radar apparatus A, the transmission beam direction θ, the transmission The frequency, transmission waveform, etc. are transmitted to the receiving radar devices B and C through a communication line as necessary, and the transmission radar device A performs up sweep or down sweep having at least one single frequency pulse wave and frequency sweep gradient. At least one pulse wave (FMICW) is selected and transmitted according to the target Doppler frequency so that the influence of the clutter is small, and the speed measured by the MRAV processing in the receiving radar device and the Doppler frequency of a single frequency Calculates and corrects the frequency deviation, and outputs the speed and distance. Thus, since the target speed is observed using the change in relative distance by MRAV processing and the target speed (Doppler) is observed by CW, the center frequency difference (target speed difference) can be corrected.

(第2の実施形態)(時刻同期)
本実施形態では、レーダ装置間が離隔しているため、時刻同期の調整方法について述べる。系統を図11に示す。図11において、図1と同一部分には同一符号を付して示し、ここでは異なる部分について説明する。
Second Embodiment (Time Synchronization)
In this embodiment, since the radar apparatuses are separated from each other, a method for adjusting time synchronization will be described. The system is shown in FIG. 11, the same parts as those in FIG. 1 are denoted by the same reference numerals, and different parts will be described here.

本実施形態において、第1の実施形態と異なる点は、受信レーダ装置B,Cにおいて、時刻同期制御部B3c,C3cを備え、Σ系列のFFT処理部B33,C33で周波数領域に変換されたスイープ出力を取り込んでスイープの開始時刻を判別し、その判別結果に基づいて、受信器B2,C2に設けられたタイミング制御部B23,C23を通じて、スイープ周波数の開始時刻を変化させ、時刻誤差を修正(時刻同期)する。   This embodiment differs from the first embodiment in that the receiving radar devices B and C include time synchronization control units B3c and C3c, and are swept into the frequency domain by the Σ series FFT processing units B33 and C33. The output is captured to determine the start time of the sweep, and based on the determination result, the start time of the sweep frequency is changed through the timing controllers B23 and C23 provided in the receivers B2 and C2, and the time error is corrected ( Time synchronization).

上記構成において、時刻同期方法を図12を参照して説明する。ここでは、信号波形として、図に示すようにアップ(ダウン)スイープの波形で説明するが、アップスイープとダウンスイープを組み合わせて、いずれかのスイープを選定する方法でもよい。   In the above configuration, a time synchronization method will be described with reference to FIG. Here, the signal waveform is described as an up (down) sweep waveform as shown in the figure, but a method of selecting either sweep by combining an up sweep and a down sweep may be used.

受信レーダ装置B,C側では、送受信レーダ装置Aの送信波形は既知であるが、GPSと原子時計により時刻同期調整しても時刻誤差は生じる。このため、図12(a)に示す変調側のスイープ周波数の開始時刻に対して、図12(b)に示すように復調側のスイープ周波数の開始時刻ΔtをNt通り変えて、図12(c)に示すようにそれぞれのFFT後の目標信号検出し、最大値となるΔtselを選定する。このΔtselには、送信レーダ装置〜目標〜受信レーダ装置の時間遅延差と時刻ずれが含まれる。

Figure 2016161409
On the receiving radar devices B and C side, the transmission waveform of the transmission / reception radar device A is known, but a time error occurs even if the time is synchronized with the GPS and the atomic clock. Therefore, with respect to the start time of the modulation side sweep frequency shown in FIG. 12A, the start time Δt of the demodulation side sweep frequency is changed Nt as shown in FIG. ), The target signal after each FFT is detected, and Δtsel which is the maximum value is selected. This Δtsel includes a time delay difference and a time shift between the transmission radar device, the target, and the reception radar device.
Figure 2016161409

この選定したΔtselを用いて、(8)式の関係を用いて、Δterrを算出し、次式により受信レーダ装置の時刻を補正する。

Figure 2016161409
Using this selected Δtsel, Δterr is calculated using the relationship of equation (8), and the time of the receiving radar device is corrected by the following equation.
Figure 2016161409

この時刻tcalを用いて、第1の実施形態の処理を実施して、目標の距離、速度を算出する。 Using this time tcal, the processing of the first embodiment is performed to calculate the target distance and speed.

以上の時刻同期と中心周波数の補正後、マルチスタティック方式により目標位置を算出する手法について、図13及び図14を参照して説明する。   A method of calculating the target position by the multistatic method after the above time synchronization and center frequency correction will be described with reference to FIGS.

図13は、送受信レーダ装置1台(RDR1)と受信レーダ装置2台(RDR2,RDR3)の場合に目標存在領域を計測する様子を示している。このように受信レーダ装置を2台とすると、受信レーダ装置RDR2及びRDR3についても送受信レーダ装置RDR1と同様の処理を行うことで、送信RDR1〜受信RDR1、送信RDR1〜受信RDR2と送信RDR1〜受信RDR3までの各々の距離として、R1、R12、R13を得ることができる。   FIG. 13 shows how the target presence area is measured in the case of one transmission / reception radar apparatus (RDR1) and two reception radar apparatuses (RDR2, RDR3). When two reception radar devices are provided in this way, the same processing as the transmission / reception radar device RDR1 is performed for the reception radar devices RDR2 and RDR3, thereby transmitting RDR1 to reception RDR1, transmission RDR1 to reception RDR2, and transmission RDR1 to reception RDR3. R1, R12, and R13 can be obtained as the respective distances up to.

これらの距離R1、R12、R13を用いて、図13に示すように、目標位置(x,y,z)を算出する。この手法としては、R1の球面とR12及びR13の楕円球面の交点となる。その中で、送受信レーダ装置により観測した距離、AZ角、EL角より算出した3次元の位置を中心に、所定の範囲内を目標存在領域として、その中の交点を算出する。解で算出できない場合は、目標存在領域内の点を(x,y,z)の格子点に分割し、各々の点で次式の値が最小となる点(x,y,z)を算出する。

Figure 2016161409
Using these distances R1, R12, and R13, a target position (x, y, z) is calculated as shown in FIG. This method is an intersection of the spherical surface of R1 and the elliptical spherical surfaces of R12 and R13. Among them, an intersection is calculated by setting a predetermined range as a target existence area around a three-dimensional position calculated from the distance, AZ angle, and EL angle observed by the transmission / reception radar apparatus. If the solution cannot be calculated, the points in the target existence area are divided into (x, y, z) grid points, and the point (x, y, z) at which the value of the following expression is the minimum at each point is calculated. To do.
Figure 2016161409

なお、送受信レーダ装置が1台、受信レーダ装置が1台の場合には、図14に示すようにR1の球面とR12の楕円球面の交線では3次元の位置を特定できない。この場合には、送受信レーダ装置の距離と測角値から算出した目標存在領域の中で、受信レーダ装置の測角値による範囲との共通範囲を抽出して目標存在領域とし、その目標存在領域内の(x,y,z)の格子点の中で、送信RDR1〜受信RDR2の観測距離により、次式により(x,y,z)を観測位置として出力する。

Figure 2016161409
When there is one transmission / reception radar apparatus and one reception radar apparatus, the three-dimensional position cannot be specified by the intersection line of the spherical surface R1 and the elliptical spherical surface R12 as shown in FIG. In this case, in the target existence area calculated from the distance and the angle measurement value of the transmission / reception radar apparatus, a common area with the range based on the angle measurement value of the reception radar apparatus is extracted as the target existence area, and the target existence area Among the lattice points (x, y, z), (x, y, z) is output as an observation position according to the following equation according to the observation distance of transmission RDR1 to reception RDR2.
Figure 2016161409

また、他の例として、図15に示すように、レーダ波送信装置が1台、受信レーダ装置が2台の場合について述べる。この例では、送受信レーダ装置が無いため、図13で示した処理はできず、第1の実施形態の周波数補正のみの場合となる。この場合は、2台の既知の位置にある受信レーダ装置から観測したAZ/EL角の交点により目標存在領域の中心点を算出できるため、それを中心に(x,y,z)の格子点を設定して、その中で次式により格子点の位置を選定すればよい。

Figure 2016161409
As another example, as shown in FIG. 15, a case where there is one radar wave transmission device and two reception radar devices will be described. In this example, since there is no transmission / reception radar device, the processing shown in FIG. 13 cannot be performed, and only the frequency correction of the first embodiment is performed. In this case, since the center point of the target existence area can be calculated from the intersection of the AZ / EL angles observed from the two receiving radar devices at known positions, the lattice point of (x, y, z) is centered on the center point. And the position of the grid point may be selected by the following equation.
Figure 2016161409

本実施形態の手法は、マルチスタティックの装置間の中心周波数のずれ、時刻同期を行い、目標位置及び目標速度の精度を向上する手法であり、補正後の観測値を用いて位置及び速度を算出する手法であれば、格子点を設定しない手法として、受信装置からのAZ/EL測角値のみから位置を算出する手法等でもよい。   The method of the present embodiment is a method of improving the accuracy of the target position and target speed by performing a center frequency shift and time synchronization between multi-static devices, and calculating the position and speed using the corrected observation values. If it is a method to do this, a method of calculating a position only from the AZ / EL angle measurement value from the receiving device may be used as a method of not setting a grid point.

すなわち、第2の実施形態では、少なくとも1台の送受信装置1とNr台(Nr>=1)の受信レーダ装置において、FFT(Fast Fourier Transform)の開始時間を複数通り変えた場合のFFT出力が最大となる開始時間を選定して時刻同期させて、MRAV処理により測速した値と単一周波数のドップラ周波数より、周波数ずれを算出して補正し、速度と距離を出力するようにしている。このため、スイープ信号によるFFT出力の最大値になるスイープ開始時間を抽出することで、時刻を同期させることができる。   That is, in the second embodiment, the FFT output when the FFT (Fast Fourier Transform) start time is changed in a plurality of ways in at least one transmission / reception device 1 and Nr (Nr> = 1) reception radar devices. The maximum start time is selected and the time is synchronized, and the frequency deviation is calculated and corrected from the value measured by MRAV processing and the single frequency Doppler frequency, and the speed and distance are output. For this reason, time can be synchronized by extracting the sweep start time which becomes the maximum value of the FFT output by the sweep signal.

以上のことから明らかなように、本実施形態のレーダシステムは、レーダ間の中心周波数差を補正(同調)し、時刻同期できるマルチスタティックレーダシステムを実現できる。   As is clear from the above, the radar system of the present embodiment can realize a multistatic radar system that can correct (tune) the center frequency difference between the radars and synchronize time.

尚、上記実施形態では、CW信号やスイープ信号を用いており、ドップラ周波数補正や時刻同期とともに、目標を検出し、目標位置及び速度を観測できる。しかしながら、本手法を協調動作時のみに用いて、目標観測においては、例えばチャープ変調によるパルスを用いた送受信を行ってもよいのは言うまでもない。   In the above embodiment, a CW signal or a sweep signal is used, and the target position and speed can be observed together with Doppler frequency correction and time synchronization. However, it goes without saying that this method may be used only during cooperative operation, and in target observation, for example, transmission / reception using pulses by chirp modulation may be performed.

その他、本実施形態は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   In addition, the present embodiment is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

A…送受信レーダ装置、A1…アンテナ、A2…送受信器、A21…送受信部、A22…ビーム制御部、A3…信号処理器、A31,A39…AD変換部、A32,A3a…ウェスト乗算部、A33,A3b…FFT処理部、A34…CFAR検出部、A35…MRAV処理部、A36…CW速度演算部、A37…速度補正部、A38…測角部、
B…受信レーダ装置、B1…アンテナ、B2…受信器、B21…受信部、B22…ビーム制御部、B23…タイミング制御部、B3…信号処理器、B31,B39…AD変換部、B32,B3a…ウェスト乗算部、B33,B3b…FFT処理部、B34…CFAR検出部、B35…MRAV処理部、B36…CW速度演算部、B37…速度補正部、B38…測角部、
C…受信レーダ装置、C1…アンテナ、C2…受信器、C21…受信部、C22…ビーム制御部、C23…受信復調部、C3…信号処理器、C31,C39…AD変換部、C32,C3a…ウェスト乗算部、C33,C3b…FFT処理部、C34…CFAR検出部、C35…MRAV処理部、C36…CW速度演算部、C37…速度補正部、C38…測角部、D…統合処理装置。
A ... transmission / reception radar device, A1 ... antenna, A2 ... transmission / reception unit, A21 ... transmission / reception unit, A22 ... beam control unit, A3 ... signal processor, A31, A39 ... AD conversion unit, A32, A3a ... west multiplication unit, A33, A3b ... FFT processing unit, A34 ... CFAR detection unit, A35 ... MRAV processing unit, A36 ... CW speed calculation unit, A37 ... speed correction unit, A38 ... angle measuring unit,
B ... reception radar device, B1 ... antenna, B2 ... receiver, B21 ... reception unit, B22 ... beam control unit, B23 ... timing control unit, B3 ... signal processor, B31, B39 ... AD conversion unit, B32, B3a ... West multiplier, B33, B3b ... FFT processor, B34 ... CFAR detector, B35 ... MRAV processor, B36 ... CW speed calculator, B37 ... Speed corrector, B38 ... Angle detector,
C ... Receiving radar device, C1 ... antenna, C2 ... receiver, C21 ... receiving unit, C22 ... beam control unit, C23 ... receiving demodulating unit, C3 ... signal processor, C31, C39 ... AD converting unit, C32, C3a ... West multiplier, C33, C3b ... FFT processor, C34 ... CFAR detector, C35 ... MRAV processor, C36 ... CW speed calculator, C37 ... speed corrector, C38 ... angle measuring unit, D ... integrated processor.

Claims (4)

少なくとも1つの単一周波数のパルス波と周波数スイープ勾配を持つアップスイープまたはダウンスイープの少なくとも1つのパルス波をレーダ波として送信する、少なくとも1台の送信装置と、
前記送信装置とは少なくとも異なる位置に配置され、少なくとも前記送信装置の位置、送信ビーム方向、送信周波数、送信波形の情報を取得し、前記送信装置から送信されるレーダ波の反射波を受信するNr台(Nr≧1)の受信レーダ装置と、
前記受信レーダ装置の出力を統合処理する統合処理装置と
を具備し、
前記送信装置は、前記レーダ波を対象目標のドップラ周波数に応じてクラッタの影響が少なくなるように選定して送信し、
前記Nr台の受信レーダ装置は、前記レーダ波の反射波を受信し、その受信信号の前記周波数スイープ勾配を持つパルス波の成分からMRAV(Measurement Range After measurement Velocity)処理により前記対象目標について測距及び測速を行い、前記受信信号の前記単一周波数のパルス波の成分から前記対象目標のドップラ周波数から周波数ずれを求め、前記測速した値を前記周波数ずれに基づいて補正して、前記測距した値と共に出力し、
前記統合処理装置は、前記Nr台の受信レーダ装置それぞれで得られた検出目標の測距、測速、測角結果に基づいて互いに同一と判別された目標の距離、速度及び角度を目標情報として出力するレーダシステム。
At least one transmitter for transmitting at least one single-frequency pulse wave and at least one up-sweep or down-sweep pulse wave having a frequency sweep gradient as a radar wave;
Nr that is arranged at least at a position different from that of the transmission device, obtains at least information on the position of the transmission device, a transmission beam direction, a transmission frequency, and a transmission waveform, and receives a reflected wave of a radar wave transmitted from the transmission device A receiving radar device (Nr ≧ 1);
An integrated processing device for integrated processing of the output of the receiving radar device,
The transmission device selects and transmits the radar wave according to the Doppler frequency of the target target so that the influence of clutter is reduced,
The Nr receiving radar devices receive the reflected wave of the radar wave, and measure the target target by MRAV (Measurement Range After Measurement Velocity) processing from the pulse wave component having the frequency sweep gradient of the received signal. And measuring the speed, obtaining a frequency deviation from the Doppler frequency of the target target from the pulse wave component of the single frequency of the received signal, correcting the measured value based on the frequency deviation, and measuring the distance Output with the value,
The integrated processing device outputs, as target information, the target distance, speed, and angle determined to be the same based on the distance measurement, speed measurement, and angle measurement results of the detection target obtained by each of the Nr receiving radar devices. Radar system.
少なくとも1つの単一周波数のパルス波と周波数スイープ勾配を持つアップスイープまたはダウンスイープの少なくとも1つのパルス波をレーダ波として送信し、そのレーダ波の反射波を受信する、少なくとも1台の送受信レーダ装置と、
前記送受信レーダ装置とは少なくとも異なる位置に配置され、少なくとも前記送受信レーダ装置の位置、送信ビーム方向、送信周波数、送信波形の情報を取得し、前記送受信レーダ装置から送信されるレーダ波の反射波を受信するNr台(Nr≧1)の受信レーダ装置と、
前記少なくとも1台の送受信レーダ装置及び前記Nr台の受信レーダ装置の出力を統合処理する統合処理装置と
を具備し、
前記送受信レーダ装置は、前記レーダ波を対象目標のドップラ周波数に応じてクラッタの影響が少なくなるように選定して送信し、
前記送受信レーダ装置及び前記Nr台の受信レーダ装置は、前記レーダ波の反射波を受信し、その受信信号の前記周波数スイープ勾配を持つパルス波の成分からMRAV(Measurement Range After measurement Velocity)処理により前記対象目標について測距及び測速を行い、前記受信信号の前記単一周波数のパルス波の成分から前記対象目標のドップラ周波数から周波数ずれを求め、前記測速した値を前記周波数ずれに基づいて補正して、前記測距した値と共に出力し、
前記Nr台の受信レーダ装置は、受信信号を複数の開始時間でFFT(Fast Fourier Transform)処理し、FFT出力が最大となる開始時間を選定して受信タイミングを制御することで前記送受信レーダ装置との時刻同期を行い、
前記統合処理装置は、前記送受信レーダ装置及び前記Nr台の受信レーダ装置それぞれで得られた検出目標の測距、測速、測角結果に基づいて互いに同一と判別された目標の距離、速度及び角度を目標情報として出力するレーダシステム。
At least one transmitting / receiving radar apparatus that transmits at least one pulse wave of at least one single frequency and an up sweep or down sweep having a frequency sweep gradient as a radar wave and receives a reflected wave of the radar wave When,
Arranged at least at a position different from the transmission / reception radar apparatus, obtains information on at least the position, transmission beam direction, transmission frequency, transmission waveform of the transmission / reception radar apparatus, and reflects the reflected wave of the radar wave transmitted from the transmission / reception radar apparatus. Nr units (Nr ≧ 1) of receiving radar devices for receiving;
An integrated processing device that performs integrated processing on outputs of the at least one transmission / reception radar device and the Nr reception radar devices;
The transmission / reception radar device selects and transmits the radar wave according to the Doppler frequency of the target target so that the influence of clutter is reduced,
The transmitting / receiving radar device and the Nr receiving radar devices receive the reflected wave of the radar wave, and perform MRAV (Measurement Range After Measurement Velocity) processing from the component of the pulse wave having the frequency sweep gradient of the received signal. Ranging and measuring the target target, obtaining a frequency shift from the Doppler frequency of the target target from the single-frequency pulse wave component of the received signal, and correcting the measured value based on the frequency shift , Output together with the measured value,
The Nr reception radar devices perform FFT (Fast Fourier Transform) processing on a received signal at a plurality of start times, select a start time at which the FFT output is maximized, and control the reception timing. Time synchronization,
The integrated processing device is configured such that the target distance, velocity, and angle determined to be identical to each other based on the distance measurement, velocity measurement, and angle measurement results of the detection target obtained by the transmission / reception radar device and the Nr reception radar devices, respectively. System that outputs as target information.
少なくとも1つの単一周波数のパルス波と周波数スイープ勾配を持つアップスイープまたはダウンスイープの少なくとも1つのパルス波をレーダ波として送信する、少なくとも1台の送信装置と、
前記送信装置とは少なくとも異なる位置に配置され、少なくとも前記送信装置の位置、送信ビーム方向、送信周波数、送信波形の情報を取得し、前記送信装置から送信されるレーダ波の反射波を受信するNr台(Nr≧1)の受信レーダ装置と、
前記受信レーダ装置の出力を統合処理する統合処理装置と
を具備するレーダシステムに適用され、
前記送信装置により、前記レーダ波を対象目標のドップラ周波数に応じてクラッタの影響が少なくなるように選定して送信し、
前記Nr台の受信レーダ装置により、前記レーダ波の反射波を受信し、その受信信号の前記周波数スイープ勾配を持つパルス波の成分からMRAV(Measurement Range After measurement Velocity)処理により前記対象目標について測距及び測速を行い、前記受信信号の前記単一周波数のパルス波の成分から前記対象目標のドップラ周波数から周波数ずれを求め、前記測速した値を前記周波数ずれに基づいて補正して、前記測距した値と共に出力し、
前記統合処理装置により、前記Nr台の受信レーダ装置それぞれで得られた検出目標の測距、測速、測角結果に基づいて互いに同一と判別された目標の距離、速度及び角度を目標情報として出力するレーダシステムのレーダ信号処理方法。
At least one transmitter for transmitting at least one single-frequency pulse wave and at least one up-sweep or down-sweep pulse wave having a frequency sweep gradient as a radar wave;
Nr that is arranged at least at a position different from that of the transmission device, obtains at least information on the position of the transmission device, a transmission beam direction, a transmission frequency, and a transmission waveform, and receives a reflected wave of a radar wave transmitted from the transmission device A receiving radar device (Nr ≧ 1);
Applied to a radar system comprising an integrated processing device for integrated processing of the output of the receiving radar device;
By the transmission device, the radar wave is selected and transmitted so as to reduce the influence of clutter according to the Doppler frequency of the target,
The Nr reception radar devices receive the reflected wave of the radar wave, and measure the target target by MRAV (Measurement Range After Measurement Velocity) processing from the pulse wave component having the frequency sweep gradient of the received signal. And measuring the speed, obtaining a frequency deviation from the Doppler frequency of the target target from the pulse wave component of the single frequency of the received signal, correcting the measured value based on the frequency deviation, and measuring the distance Output with the value,
The integrated processing device outputs, as target information, the target distance, velocity, and angle determined to be identical to each other based on the distance measurement, velocity measurement, and angle measurement results of the detection target obtained by each of the Nr receiving radar devices. A radar signal processing method for a radar system.
少なくとも1つの単一周波数のパルス波と周波数スイープ勾配を持つアップスイープまたはダウンスイープの少なくとも1つのパルス波をレーダ波として送信し、そのレーダ波の反射波を受信する、少なくとも1台の送受信レーダ装置と、
前記送受信レーダ装置とは少なくとも異なる位置に配置され、少なくとも前記送受信レーダ装置の位置、送信ビーム方向、送信周波数、送信波形の情報を取得し、前記送受信レーダ装置から送信されるレーダ波の反射波を受信するNr台(Nr≧1)の受信レーダ装置と、
前記受信レーダ装置の出力を統合処理する統合処理装置と
を具備するレーダシステムに適用され、
前記送受信レーダ装置により、前記レーダ波を対象目標のドップラ周波数に応じてクラッタの影響が少なくなるように選定して送信し、
前記送受信レーダ装置及び前記Nr台の受信レーダ装置により、前記レーダ波の反射波を受信し、その受信信号の前記周波数スイープ勾配を持つパルス波の成分からMRAV(Measurement Range After measurement Velocity)処理により前記対象目標について測距及び測速を行い、前記受信信号の前記単一周波数のパルス波の成分から前記対象目標のドップラ周波数から周波数ずれを求め、前記測速した値を前記周波数ずれに基づいて補正して、前記測距した値と共に出力し、
前記Nr台の受信レーダ装置は、受信信号を複数の開始時間でFFT(Fast Fourier Transform)処理し、FFT出力が最大となる開始時間を選定して受信タイミングを制御することで前記送受信レーダ装置との時刻同期を行い、
前記統合処理装置により、前記送受信レーダ装置及び前記Nr台の受信レーダ装置それぞれで得られた検出目標の測距、測速、測角結果に基づいて互いに同一と判別された目標の距離、速度及び角度を目標情報として出力するレーダシステムのレーダ信号処理方法。
At least one transmitting / receiving radar apparatus that transmits at least one pulse wave of at least one single frequency and an up sweep or down sweep having a frequency sweep gradient as a radar wave and receives a reflected wave of the radar wave When,
Arranged at least at a position different from the transmission / reception radar apparatus, obtains information on at least the position, transmission beam direction, transmission frequency, transmission waveform of the transmission / reception radar apparatus, and reflects the reflected wave of the radar wave transmitted from the transmission / reception radar apparatus. Nr units (Nr ≧ 1) of receiving radar devices for receiving;
Applied to a radar system comprising an integrated processing device for integrated processing of the output of the receiving radar device;
The transmission / reception radar device selects and transmits the radar wave according to the Doppler frequency of the target target so that the influence of the clutter is reduced,
The reflected wave of the radar wave is received by the transmission / reception radar apparatus and the Nr reception radar apparatuses, and the received signal is subjected to MRAV (Measurement Range After Measurement Velocity) processing from the pulse wave component having the frequency sweep gradient. Ranging and measuring the target target, obtaining a frequency shift from the Doppler frequency of the target target from the single-frequency pulse wave component of the received signal, and correcting the measured value based on the frequency shift , Output together with the measured value,
The Nr reception radar devices perform FFT (Fast Fourier Transform) processing on a received signal at a plurality of start times, select a start time at which the FFT output is maximized, and control the reception timing. Time synchronization,
Target distance, velocity, and angle determined to be the same by the integrated processing device based on the distance measurement, velocity measurement, and angle measurement results of the detection target obtained by the transmission / reception radar device and the Nr reception radar devices, respectively. Radar signal processing method for a radar system that outputs a target as target information.
JP2015040458A 2015-03-02 2015-03-02 Radar system and radar signal processing method thereof Active JP6352837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040458A JP6352837B2 (en) 2015-03-02 2015-03-02 Radar system and radar signal processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040458A JP6352837B2 (en) 2015-03-02 2015-03-02 Radar system and radar signal processing method thereof

Publications (2)

Publication Number Publication Date
JP2016161409A true JP2016161409A (en) 2016-09-05
JP6352837B2 JP6352837B2 (en) 2018-07-04

Family

ID=56845056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040458A Active JP6352837B2 (en) 2015-03-02 2015-03-02 Radar system and radar signal processing method thereof

Country Status (1)

Country Link
JP (1) JP6352837B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870320A (en) * 2016-09-28 2018-04-03 罗伯特·博世有限公司 For analyzing and processing the method and radar equipment of radar beam
JP2018084432A (en) * 2016-11-21 2018-05-31 株式会社東芝 Radar system and radar signal processing method thereof
JP2019078749A (en) * 2017-10-11 2019-05-23 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radar method and system for determining angular position, location, and/or velocity, in particular vectorial velocity, of target
KR102156401B1 (en) * 2019-09-30 2020-09-15 충남대학교 산학협력단 A multi static radar system for stealth aircraft detection
JP2021526215A (en) * 2018-06-07 2021-09-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Radar sensor system
CN113514804A (en) * 2021-06-29 2021-10-19 安徽隼波科技有限公司 Security radar angle measurement correction method based on FMCW
US11275169B2 (en) 2018-09-03 2022-03-15 Samsung Electronics Co., Ltd. Method and apparatus for processing radar data
CN116840805A (en) * 2023-08-30 2023-10-03 长沙莫之比智能科技有限公司 Human vital sign detection method based on MIMO radar and beam forming

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192575A (en) * 2006-01-17 2007-08-02 Mitsubishi Electric Corp Target positioning apparatus
JP2010236951A (en) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The Measuring device of radio distance and speed
JP2010271115A (en) * 2009-05-20 2010-12-02 Toshiba Corp Radar device
US20140087757A1 (en) * 2011-05-18 2014-03-27 Lambda:4 Entwicklungen Gmbh Method to determine the location of a receiver
JP2015059808A (en) * 2013-09-18 2015-03-30 株式会社東芝 Object monitoring device and object monitoring system
JP2016045072A (en) * 2014-08-22 2016-04-04 株式会社東芝 Radar system and method for processing radar signal thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192575A (en) * 2006-01-17 2007-08-02 Mitsubishi Electric Corp Target positioning apparatus
JP2010236951A (en) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The Measuring device of radio distance and speed
JP2010271115A (en) * 2009-05-20 2010-12-02 Toshiba Corp Radar device
US20140087757A1 (en) * 2011-05-18 2014-03-27 Lambda:4 Entwicklungen Gmbh Method to determine the location of a receiver
JP2015059808A (en) * 2013-09-18 2015-03-30 株式会社東芝 Object monitoring device and object monitoring system
JP2016045072A (en) * 2014-08-22 2016-04-04 株式会社東芝 Radar system and method for processing radar signal thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870320A (en) * 2016-09-28 2018-04-03 罗伯特·博世有限公司 For analyzing and processing the method and radar equipment of radar beam
JP2018084432A (en) * 2016-11-21 2018-05-31 株式会社東芝 Radar system and radar signal processing method thereof
JP2019078749A (en) * 2017-10-11 2019-05-23 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radar method and system for determining angular position, location, and/or velocity, in particular vectorial velocity, of target
JP7221640B2 (en) 2017-10-11 2023-02-14 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radar methods and systems for determining the angular position, position and/or velocity of targets, in particular vector velocity
JP7256211B2 (en) 2018-06-07 2023-04-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング radar sensor system
JP2021526215A (en) * 2018-06-07 2021-09-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Radar sensor system
US11747459B2 (en) 2018-06-07 2023-09-05 Robert Bosch Gmbh Radar sensor system
US11275169B2 (en) 2018-09-03 2022-03-15 Samsung Electronics Co., Ltd. Method and apparatus for processing radar data
KR102156401B1 (en) * 2019-09-30 2020-09-15 충남대학교 산학협력단 A multi static radar system for stealth aircraft detection
CN113514804B (en) * 2021-06-29 2023-06-30 安徽隼波科技有限公司 FMCW-based security radar angle measurement correction method
CN113514804A (en) * 2021-06-29 2021-10-19 安徽隼波科技有限公司 Security radar angle measurement correction method based on FMCW
CN116840805A (en) * 2023-08-30 2023-10-03 长沙莫之比智能科技有限公司 Human vital sign detection method based on MIMO radar and beam forming
CN116840805B (en) * 2023-08-30 2023-11-10 长沙莫之比智能科技有限公司 Human vital sign detection method based on MIMO radar and beam forming

Also Published As

Publication number Publication date
JP6352837B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6352837B2 (en) Radar system and radar signal processing method thereof
JP6716984B2 (en) Target detection device
US10613197B2 (en) Antenna specification estimation device and radar device
JP6430215B2 (en) Radar system and radar signal processing method thereof
US20170299711A1 (en) Radar device and position-determination method
JP6629180B2 (en) Radar apparatus and radar signal processing method thereof
EP3264131A1 (en) A vehicle radar for environmental detection
WO2020196575A1 (en) Radar device and method for determining range side lobe
JP2014182010A (en) Radar apparatus
JP2011242182A (en) Passive radar system and passive radar method
JP6462365B2 (en) Radar apparatus and radar signal processing method thereof
JP2016008852A (en) Doppler radar device and radar signal processing method thereof
CN102680975A (en) Space-based step frequency time-sharing angle measurement radar spatial non-cooperative target imaging method
CN114002673A (en) Satellite-borne passive SAR non-cooperative signal sensing system and multi-dimensional parameter estimation method
US7961139B2 (en) Digital beam forming using frequency-modulated signals
JP2017219483A (en) Radar system and radar signal processing method
JP6382635B2 (en) Radar system and radar signal processing method thereof
KR102158740B1 (en) SYSTEM AND METHOD FOR ESTIMATING RADAR DoA
JP6305259B2 (en) Radar system and radar signal processing method thereof
JP6367134B2 (en) Radar apparatus and radar signal processing method
JP2001272464A (en) Radar device
Makhoul et al. Evaluation of state-of-the-art GMTI techniques for future spaceborne SAR systems-Simulation validation
JP6363524B2 (en) Radar apparatus and radar signal processing method
JPH11271434A (en) Phase monopulse radar apparatus
JP6516645B2 (en) Radar equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150