JP2016161284A - 回折x線を用いた三次元定量方法及び装置 - Google Patents

回折x線を用いた三次元定量方法及び装置 Download PDF

Info

Publication number
JP2016161284A
JP2016161284A JP2015036982A JP2015036982A JP2016161284A JP 2016161284 A JP2016161284 A JP 2016161284A JP 2015036982 A JP2015036982 A JP 2015036982A JP 2015036982 A JP2015036982 A JP 2015036982A JP 2016161284 A JP2016161284 A JP 2016161284A
Authority
JP
Japan
Prior art keywords
ray
sample
diffraction
dimensional
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015036982A
Other languages
English (en)
Inventor
桑原 章二
Shoji Kuwabara
章二 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015036982A priority Critical patent/JP2016161284A/ja
Publication of JP2016161284A publication Critical patent/JP2016161284A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】既知の複数の結晶相を含む試料中の各結晶相の回折X線強度及び/または重量比の三次元分布を得る三次元定量法及び装置を提供する。【解決手段】X線源1は試料3に単色平行束X線2を照射し、試料内からの回折X線を二次元X線検出器6で検出する。回転走査手段4の回転走査毎且つ微小X線検出素子7毎に測定した測定回折X線強度と、該回転走査毎且つ微小X線検出素子毎に、試料中の三次元単位領域5に含まれる全ての種類の結晶相による回折X線強度と該三次元単位領域の位置と結晶相の種類に応じて回折X線強度を補正する係数とで表した計算回折X線強度とからなる方程式を、未知である回折X線強度の数と同数以上立てて連立方程式とし、X線検出手段6で検出したX線強度データを前記測定回折X線強度として前記連立方程式を解くことにより、試料に含まれる結晶相の回折X線強度及び/または重量比の三次元分布を求める。【選択図】図1

Description

本発明は、試料に含まれる複数種の結晶相の回折X線強度及び重量比の三次元分布を測定するための回折X線を用いた三次元定量装置に関するものである。
工業分野、医用分野など各種分野において、試料に含まれる結晶相の立体的な、つまり三次元的な分布を調べたいという要求は強い。従来、透過X線を利用して三次元画像を得る装置としてコンピュータ断層撮影法(CT)が良く知られている。しかしながら、こうした従来の透過X線CT法では、試料の内部物質の密度および吸収係数の相違を濃淡として或いは色の相違として表現することで三次元画像を再現するものであり、試料に含まれる複数の結晶相がほぼ同じ密度および吸収係数を持つ場合は特にそれらの密度および吸収係数による濃淡が得られないため三次元分布を得ることが困難である。
また、例えば特許文献1に記載の干渉性散乱X線を用いたCT法では、上記の問題を解決するため、異なる結晶相、又は非結晶相による干渉性散乱の強度の違いを測定することにより、試料に含まれる複数の結晶相、又は非結晶相がほぼ同じ密度および吸収係数を持つ場合でも、濃淡のあるCT像が得られている。しかし、この方法では、位置分解能の良い断層像を得るためは、試料を、小さな回転角で必ず360°の角度範囲を等間隔に回転走査する必要があり、さらに三次元分布を得るためには複数の断面によるCT像を取得する必要がある。そのため、試料を360°回転できない場合や、長時間の測定ができない場合には適用できないという問題点がある。
米国特許第6、470、067B1号
松村源太郎訳 「カリティX線回折要論」アグネ 1967年 P392−P395 Princeton Instruments社、〔online〕、〔平成27年2月18日検索〕、インターネット< http://www.princetoninstruments.com/products/xraycam/pixisx/ l>
本発明は上記問題点を解決するものであって、その目的とするところは、試料に含まれる複数種の結晶相の重量比の三次元分布を測定することができる回折X線を用いた三次元定量方法及び装置を提供することである。
上記課題を解決するために成された請求項1に記載の発明は、所定のエネルギーの単色平行束X線を試料に照射するX線照射手段と、前記試料により回折した回折X線を検出するための微小X線素子が二次元状に配置されて成るX線検出手段と、該X線検出手段による検出信号に基づき各微小検出素子毎に回折X線のX線強度データを求める信号処理回路と、試料への入射X線と直交または斜交する軸を中心に前記試料と前記X線照射手段及びX線検出手段との相対位置が変化するように、試料とX線照射手段及びX線検出手段との一方を複数の所定回転角度に回転させる回転走査手段と、を具備するX線測定装置を用いて、試料中の種類が既知である若しくは推定可能である含有結晶相の回折X線強度及び/または重量比の三次元分布を測定するための、回折X線を用いた三次元定量方法及び装置であって、
試料を前記微小X線検出素子の検出面のサイズを考慮したサイズの立方体である三次元単位領域を想定して試料が多数の該三次元単位領域に三次元的に区画されているものとみなし、
回転走査毎且つ微小X線検出素子毎に測定した測定回折X線強度と、該回転走査毎且つ微小X線検出素子毎に、試料中の三次元単位領域に含まれる全ての種類の結晶相による回折X線強度と該三次元単位領域の位置と結晶相の種類に応じた回折線の吸収、回折線の拡がり、回折線の位置と微小X線検出素子の位置との一致度などを補正する係数とで表した計算回折X線強度とからなる方程式を、その三次元単位領域中の全ての種類の結晶相の未知である回折X線強度の数と同数以上立てて連立方程式とし、
試料で回折した回折X線を前記X線検出手段で検出し、それにより得られるX線強度データを前記測定回折X線強度として前記連立方程式に適用して解くことにより、各三次元単位領域中の各結晶相の回折X線強度及び/または重量比を求め、これにより試料に含まれる全ての種類の結晶相の回折X線強度及び/または重量比の三次元分布を測定することを特徴としている。
請求項1に記載の発明によれば、所定のエネルギーの単色平行束X線を試料に照射するX線照射手段と、試料により回折した回折X線を検出するためのX線検出手段として微小X線検出素子が二次元上に配置されて成るものを用いることで試料により回折した回折線の二次元的な測定を可能としている。そして、試料が多数の微小な三次元単位領域から構成されているとみなし、試料に入射したX線が多数の三次元単位領域毎に含まれる結晶相の重量比に応じた回折X線強度で回折し、各三次元単位領域から出た回折X線がX線検出手段の面にそれぞれの位置に応じた位置とリング径でリング状に達すると考える。
したがって、X線検出手段の複数の微小X線検出素子により検出されるリング状のX線強度信号には、試料内の各三次元単位領域に含まれる結晶相の重量比に応じた回折X線強度と位置の情報が含まれている。一方、試料に含まれる結晶相の種類が既知である若しくは推定可能であれば、試料内の各三次元単位領域の位置に対して、X線検出手段の面に入射するリング状の回折X線の位置が計算できる。
そこで、前記複数のX線検出手段の微小X線検出素子で測定された回折X線強度と、該試料中の各三次元単位領域に含まれる全ての種類の結晶相による回折X線強度と該三次元単位領域の位置と結晶相の種類に応じた回折線の吸収、回折線のリング状の径による拡がり、回折線の位置と微小X線検出素子の位置との一致度などを補正する係数とで表した計算回折X線強度とからなる方程式を立てている。さらに試料又はX線照射手段とX線検出手段との組の一方を複数の所定回転角度に回転させて回転走査毎に測定することで、上記方程式の数を未知数である重量比および回折X線強度の数よりも多くすることができ、それら方程式による連立方程式を解くことで重量比および回折X線強度の三次元分布な測定を可能としている。
したがって、請求項1に記載の発明によれば、試料に含まれる複数の結晶相の種類が既知であるか或いは高い精度で推定可能であれば、それら結晶相がほぼ同じ密度および吸収係数を持つ場合であっても、各結晶相の回折X線強度及び重量比を高い精度で以て得ることができる。また、回転走査手段による試料の回転走査は、前記のとおり、方程式の数を未知数と同数以上にすることが目的であるため、従来の透過X線を用いたCT法及び干渉性散乱X線を用いたCT法のように小さな回転角で必ず360°の角度範囲を等間隔に回転走査する必要がなく、360°よりも狭い角度範囲で少ない回転走査で良いため、測定時間も短くできる。これにより、例えば、試料の内部構造や結晶状態を非破壊的に高い精度で三次元画像化することができるため、工業的な検査や医薬品開発など広範な分野に利用することができる。
本発明の実施形態に係る定量装置の概略構成図である。 試料回転軸方向から見た回折X線によるデバイリングに対する試料のボクセル位置と二次元X線検出器のピクセル位置の関係を示す図である。 図2の回折X線によるデバイリングに対する位置関係に対応する二次元X線検出器面での位置関係を示す図である。
以下、図面を参照して本発明に係る回折X線を用いる三次元定量装置の実施形態について説明する。
図1において、放射光やX線管などからのX線を単色化し、平行束とするX線光学素子などで構成されたX線源1から、単色平行束X線2がZ軸方向に放射される。該単色平行束X線2は最大径Rの立体的な形状の試料3に入射する。該単色平行束X線2は断面が例えば一辺の長さ(以下、ビーム径と呼ぶ)Qの矩形であり、ビーム径Qは試料3の最大径Rより大きくなるよう設定されている。試料3中で単色平行束X線2の一部は吸収され、他の一部は散乱され、残りの一部は透過する。試料3中を透過したX線は二次元X線検出器6の前に置かれたビームストッパー13で吸収される。
試料3は複数種の結晶相を含む物質であり、該複数種の結晶相の構造と構成元素は、予め、通常の粉末X線回折法などの測定によって既知である若しくは推定可能であるとする。
試料3中で散乱したX線のうち、試料3中の結晶相の一部の、良く知られたブラッグ条件(2dSinθ=nλ)を満足する結晶により回折した回折X線は、試料3からコーン状に開き角2θでZ軸方向に放射し、試料3の中心から距離Lだけ離れた二次元X線検出器6の検出面にリング状に入射する。ここで、dは結晶相の格子面間隔、θは回折角、λは入射X線波長、nは整数、である。該回折X線によるリングは一般にデバイリングと呼ばれる。二次元X線検出器6の検出面には、試料3中の立体的な形状の異なる位置にある同種の微結晶により、異なる位置に異なるリング径のデバイリング8が入射する。さらに、試料3中の立体的な形状の同じ位置にある異なる種類の結晶によっても、異なる位置に異なるリング径のデバイリング8が入射するため、複数のデバイリングが重なって入射する。
二次元X線検出器6は単色平行束X線2のX線を検出可能な微小X線検出素子7(一般にピクセルと言い、以下、ピクセルと呼ぶ)を横(U軸方向)にI個及び縦(V軸方向)にJ個の二次元状にI×J個配置したものであり、例えば直接X線検出型のCCD素子を用いたCCD検出器などを利用することができる。二次元X線検出器6において、前記回折線による複数のデバイリング8が入射した指数(i、j)(i=1、2、・・I、j=1、2・・J)の各ピクセル7では受光した回折X線の強度Pijに応じた電気信号が発生する。検出信号処理部9は二次元X線検出器6のピクセル7毎に受光した回折X線の強度に対応した値をデータ処理部11に送る。
試料保持回転駆動部4に保持された試料3は、制御部12の制御の下に、入射X線に直行する軸Yを中心にK個の所定回転角度に回転走査される。ここでは、試料3を回転させているが、もちろん、試料を固定してこれを挟んで配置されるX線源1と二次元X線検出器6とを組みしてY軸を中心に回転させてもよい。即ち、上記構成では、試料3がある回転角度で停止しているときに、二次元X線検出器6の各ピクセル7にそれぞれ回折X線強度Pijを取得することができる。このよう試料3を回転走査しながら二次元的な回折X線強度Pijを測定し、データ処理部10に検出信号として送る。
本発明では、図1に示すように、二次元X線検出器6の各ピクセルの受光面形状が一辺の長さがaの正方形(以下、ピクセルサイズがa×aであると言う)のとき、それに対応して、試料3の内部に微小な三次元単位領域(ボクセルと呼ばれ、以下、ボクセルと呼ぶ)5を設定する。また、各ボクセルは一辺がaの立方体(以下、ボクセルサイズがa×a×aであると言う)とする。そして、試料3はこのボクセル5がX軸方向にL個、Y軸方向にM個、Z軸方向にN個、配列されているものと想定する。また、指数(l、m、n)(l=1、2、・・L、m=1、2、・・M、n=1、2、・・N)の各ボクセル5には、ランダムに配向した前記、既知の複数種の結晶、例えばA相の結晶、B相の結晶がそれぞれ重量比、WAlmn、WBlmn含まれており、それぞれがており、入射X線が回折X線強度、Almn、Blmn、で回折するものとする。
ただし、前記直方体のボクセル空間と実際の試料3の形状が一致しておらず、試料3が含まれないボクセルに対しては後述する方法により求められる回折X線強度が零となり、結晶が存在しないという結果になる。したがって、前記に設定する直方体のボクセル空間が必ずしも実際の試料3の立体的な形状と一致している必要はなく、該ボクセル空間に試料3の立体形状が全て含まれていればよい。
一方、試料―二次元X線検出器間距離L、試料3の各ピクセル7の中心座標(x、 y 、z)、試料回転角αk、(k=1、2、・・K)、及びA相、B相の結晶のそれぞれの回折角θ、θなどが既知であれば、検出器面の各ピクセル7(i、i)に入射する複数のデバイリングによる回折X線の強度Qijを強度Almn、Blmn、を使って予め計算することができる。これらの複数回転角での複数ピクセル7(i、j)に対する測定X線強度Pijと計算X線強度Qijとの関係式から、試料内部の各ボクセル(l、m、n)の未知数である回折X線強度Almn、Blmnを求めることができる。
ところで、微結晶の重量比WAlmn、WBlmnと回折X線強度Almn、Blmnとの関係はX線回折の理論(例えば、非特許文献1参照)によれば、以下の式で表される。
Figure 2016161284
ここでμ/ρ、μ/ρはそれぞれA相、B相の質量吸収係数、A、B、はそれぞれA相、B相のみの試料を同じ条件で測定し、求めた1ボクセル当たりの回折X線強度である。したがって、A相、B相の回折X線強度Almn、Blmnが求まれば、前記関係式から濃度WAlmn、WBlmnが得られ、その結果、試料3内のA相、B相の三次元濃度分布を求めることができ、表示部11に表示する。
以下に、本発明の原理について、図1に加えて、図2、図3を用いて、より詳しく説明する。図2、図3では、原理説明のため試料中のボクセル数をL×M×N=5×5×5としている。図2は試料回転軸のY軸方向から見た回折X線によるデバイリングに対する試料3のボクセル位置と二次元X線検出器6のピクセル位置の関係を示している。また、図3は図2の回折X線によるデバイリングに対する位置関係に対応する二次元X線検出器面6での位置関係を示している。
回転角がαkのときに、試料3中のボクセル5(l、m、n)で発生した回折X線が二次元X線検出器に入射したときの検出器面でのA相、B相からのデバイリング半径 rAlmnαk、rBlmnαkはボクセル5(l、m、n)の座標を(xlαk、ymαk、znαk)とすると、以下の式で表すことができ、ボクセル5のZ座標の値が小さい、即ち検出器面から遠くなるほど大きくなる。
Figure 2016161284
また、この時の検出器面でのA相、B相のそれぞれのデバイリングの座標(u、v)は以下の式で与えられる。
Figure 2016161284
このようにA相、B相の回折角θ、θ、回転角αk、ボクセルの座標(xlαk、ymαk、znαk)、試料―二次元X線検出器距離Lが既知であれば、試料3を回転角αkで測定した場合の、試料の各ボクセル5で発生した回折X線強度Almn、Blmnによる二次元X線検出器の検出面上でのデバイリングの座標は計算で求めることができる。その結果、二次元X線検出器の各ピクセル(i、j)に入射する複数のデバイリングによる計算X線強度Qijは複数のボクセル、複数の結晶相からのデバイリングの重なった強度として、以下のように、Almn、Blmnの線形和の式で表すことができる。
Figure 2016161284
例えば、図3に示すように、回転角α=0のときの、二次元X線検出器のピクセル(15、14)で検出する回折X線強度は、ボクセル(1、5、1)のA相、ボクセル(3、3、3)のB相及びボクセル(5、1、5)のA相による三つのデバイリングが重なっているので以下の式で表される。
Figure 2016161284
同様に、二次元X線検出器のピクセル(13、19)、(16、9)で検出する回折X線強度は以下の式で表される。
Figure 2016161284
係数Klmnαkは、回転角αkのときの、ボクセル5(l、m、n)で回折した回折X線に対する、1)各ボクセル5(l、m、n)の位置に応じた試料3内での入射X線の吸収、回折線の吸収、2)各デバイリングの半径の違いによる円周方向への拡がりと後述する単色平行束X線の発散角による拡がり、及び3)各ピクセル7(i、j)とデバイリングの一致度などを考慮した補正係数である。
一方、試料3を入射X線に直行する軸Yを中心にK個の所定回転角度に回転走査し、回転走査毎に、デバイリングが入射する二次元X線検出器の各ピクセル(i、j)で回折X線強度Pijを測定する。好ましくは、予め、同じ試料を通常の粉末X線回折法による測定により、コンプトン散乱、蛍光X線及び非結晶領域での散乱X線によるバックグラウンドを推定し、測定強度から該バックグラウンドを差し引いたネットX線強度として得る。そうして得られた測定回折X線強度Pijと計算回折X線強度Qijとが等しいとした方程式Pij=Qijを立てる。試料3を回転角αkで測定したとき、デバイリングを検出する総ピクセル数をVkとすると、Vk個の方程式Pij=Qijを立てることができる。
未知数Almn、Blmnの総数は前記のとおりボクセルの総数と結晶相の種類数を掛け合わせたL×M×N×2であるが、回転角αkでの関係式は上記のピクセル数Vkであるので、VkがL×M×N×2より小さいときは、未知数Almn、Blmnを求めることができない。しかし、前述のように、試料3を入射X線に直行する軸Yを中心にK個の所定回転角度に回転走査し測定したときに各回転角度αkでデバイリングを検出するピクセル数Vkを合計した総数をΣVkとすると、ΣVk個の方程式Pij=Qijを立てることができる。従って、回転走査の数KをΣVkがL×M×N×2と同数以上になるよう設定すると、未知数と同数以上の関係式を立てることができ、それら連立方程式から未知数Almn、Blmnを求めることができる。
このように、試料3の回転走査は未知数と同数以上の関係式を立てることが目的であるので、従来の透過X線を用いたCT法及び干渉性散乱X線を用いたCT法のように小さな回転角で必ず360°の角度範囲を等間隔に回転走査する必要がなく、360°よりも狭い角度範囲で少ない回転走査数で良い
さらに、前記のように全てのボクセル7に対する回折X線強度Almn、Blmnから各結晶相の濃度WAlmn、WBlmnを求めることができ、その結果、試料3内のA相及びB相の各結晶相の重量比の三次元分布が得られる。
以下に、具体的なX線光学系寸法及び装置構成を記述する。現在、市販されている小さなピクセルサイズの二次元X線検出器は、例えば非特許文献2に示すピクセルサイズ13μm×13μm のPrinceton社製PIXIS−XF:2048Bがある。それを基準に、以下に述べるような、具体的なX線光学系寸法及び装置構成にすることができる。
1)試料関連;試料形状は260μm×260μm×260μm よりも小さいとし、試料内の仮想ボクセルは13μm×13μm×13μm でボクセル数は20×20×20=8000とする。2)単色平行束X線関連;ビーム径は約400μm×400μm とし、入射X線エネルギーは試料回転時の試料の最大厚さ360μm を透過できるエネルギーとする。平行度は15秒以内の発散角とする。この場合、以下に述べる試料―二次元X線検出器間距離Lが20mmの時は二次元X線検出器の検出器面でのデバイリングの拡がりは約1.45μm となり、二次元X線検出器のピクセルの一辺13μm に対して、従ってそれに入射する回折線の強度評価に対して概ね無視できる。
3)X線光学系関連;回折角θは約5〜15度の各結晶相からの低角の回折X線を選ぶ。試料―二次元X線検出器間距離Lは約20mmとする。4)二次元X線検出器関連;二次元X線検出器のピクセルサイズは13μm×13μm で、ピクセル数は2048×2048である。ただし、試料―二次元X線検出器間距離Lを大きくした場合、デバイリングのうち、例えばU−V平面の第一象限だけを検出するようにしてもよい。また、ダイレクトビームが入るデバイリングの中心部を外して複数の二次元X線検出器で構成してもよい。
結晶相の回折X線強度及び重量比の三次元的な分布を識別する位置分解能は、概ね、単色平行束X線の平行度と試料3で設定する仮想ボクセルサイズ及び二次元X線検出器6のピクセルサイズにより決まり、前述のような装置構成の場合の最高位置分解能は約15μm となる。
上記に述べた具体的なX線光学系寸法及び装置構成による装置は、本発明の実施形態の一例であり、別のピクセルサイズの異なる二次元X線検出器を用いて、そのピクセルサイズを基準にX線光学系寸法及び装置構成の装置としても良い。さらに、試料3内に設けるボクセルサイズの一辺も必ずしも二次元X線検出器6のピクセルサイズの一辺と同じにする必要はない。
また、結晶相の種類も前記のようにA相、B相の二種類ではなく三種類以上でも良い。例えば結晶相がH種類の場合、前述と同様に、回転走査の数Kを、計算回折X線強度Qijと測定回折X線強度Pijとの関係式の総数ΣVkが未知数であるボクセル数×Hと同数以上になるよう設定すれば、前記と同様に各相の三次元分布を求めることができる。さらに、試料3に結晶相及び非結晶相が含まれている場合も、結晶相については、前記と同様の方法で回折X線強度を求めることができる。
また、単色平行束X線2の断面におけるX線強度分布の補正や二次元X線検出器6の各ピクセル間の感度の補正など、それら以外にも、本発明の趣旨の範囲で適宜変形、修正或いは追加を行っても本願請求の範囲に包含されることは当然である。
1 X線源
2 単色平行束X線
3 試料
4 試料保持回転駆動部
5 試料内三次元単位領域(ボクセル)
6 二次元X線検出器
7 微小X線検出素子(ピクセル)
8 デバイリング
9 検出信号処理部
10 データ処理部
11 表示部
12 制御部
θ 回折角
θ A相の回折角
θ B相の回折角
試料―二次元X線検出器間距離
X、Y、Z 試料内三次元座標軸
U、V 二次元X線検出器面二次元座標軸
Q 単色平行束X線ビーム径
R 試料最大径
a 検出器ピクセル及び試料内ボクセルサの1辺の長さ
α 試料回転角ステップ
(l、m、n) 試料内ボクセル指数
Almn ボクセル(l、m、n)内A相の重量比
Blmn ボクセル(l、m、n)内B相の重量比
lmn ボクセル(l、m、n)内A相の回折X線強度
lmn ボクセル(l、m、n)内B相の回折X線強度
(i、j) 検出器ピクセル指数
Pij ピクセル(i、j)の測定回折X線強度
Qij ピクセル(i、j)の計算回折X線強度

Claims (1)

  1. 所定のエネルギーの単色平行束X線を試料に照射するX線照射手段と、前記試料により回折した回折X線を検出するための微小X線素子が二次元状に配置されて成るX線検出手段と、該X線検出手段による検出信号に基づき各微小検出素子毎に回折X線のX線強度データを求める信号処理回路と、試料への入射X線と直交または斜交する軸を中心に前記試料と前記X線照射手段及びX線検出手段との相対位置が変化するように、試料とX線照射手段及びX線検出手段との一方を複数の所定回転角度に回転させる回転走査手段と、を具備するX線測定装置を用いて、試料中の種類が既知である若しくは推定可能である含有結晶相の回折X線強度及び/または重量比の三次元分布を測定するための、回折X線を用いた三次元定量方法及び装置であって、
    試料を前記微小X線検出素子の検出面のサイズを考慮したサイズの立方体である三次元単位領域を想定して試料が多数の該三次元単位領域に三次元的に区画されているものとみなし、
    回転走査毎且つ微小X線検出素子毎に測定した測定回折X線強度と、該回転走査毎且つ微小X線検出素子毎に、試料中の三次元単位領域に含まれる全ての種類の結晶相による回折X線強度と該三次元単位領域の位置と結晶相の種類に応じた回折線の吸収、回折線の拡がり、回折線の位置と微小X線検出素子の位置との一致度などを補正する係数とで表した計算回折X線強度とからなる方程式を、その三次元単位領域中の全ての種類の結晶相の未知である回折X線強度の数と同数以上立てて連立方程式とし、
    試料で回折した回折X線を前記X線検出手段で検出し、それにより得られるX線強度データを前記測定回折X線強度として前記連立方程式に適用して解くことにより、各三次元単位領域中の各結晶相の回折X線強度及び/または重量比を求め、これにより試料に含まれる全ての種類の結晶相の回折X線強度及び/または重量比の三次元分布を測定することを特徴とする回折X線を用いた三次元定量方法及び装置。
JP2015036982A 2015-02-26 2015-02-26 回折x線を用いた三次元定量方法及び装置 Pending JP2016161284A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036982A JP2016161284A (ja) 2015-02-26 2015-02-26 回折x線を用いた三次元定量方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036982A JP2016161284A (ja) 2015-02-26 2015-02-26 回折x線を用いた三次元定量方法及び装置

Publications (1)

Publication Number Publication Date
JP2016161284A true JP2016161284A (ja) 2016-09-05

Family

ID=56846781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036982A Pending JP2016161284A (ja) 2015-02-26 2015-02-26 回折x線を用いた三次元定量方法及び装置

Country Status (1)

Country Link
JP (1) JP2016161284A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116879335A (zh) * 2023-09-08 2023-10-13 四川大学 一种组合扫描式xrd/xrf综合成像装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116879335A (zh) * 2023-09-08 2023-10-13 四川大学 一种组合扫描式xrd/xrf综合成像装置及方法
CN116879335B (zh) * 2023-09-08 2023-11-17 四川大学 一种组合扫描式xrd/xrf综合成像方法

Similar Documents

Publication Publication Date Title
JP4614001B2 (ja) 透過x線を用いた三次元定量方法
KR101378757B1 (ko) 물질 원소 정보 획득 및 영상 차원의 선택이 가능한 방사선 영상화 장치
WO2011010750A2 (en) X-ray imaging apparatus and x-ray imaging method
US20150362443A1 (en) X-Ray Diffraction Imaging System Using Debye Ring Envelopes
KR20120062624A (ko) 엑스선 회절장치 및 엑스선 회절측정방법
JP2018517138A (ja) マルチモーダル検出システムおよび方法
JP2011022134A (ja) X線撮像装置およびx線撮像方法
US20070019782A1 (en) Fan-beam coherent-scatter computed tomography
US9063065B2 (en) Sample analysis
JP2005241571A (ja) X線分析装置
JP2019537482A (ja) 位相コントラスト像形成データから多エネルギーデータを生成するための装置
JP2009122043A (ja) 材質識別検査装置および方法
JP2016161284A (ja) 回折x線を用いた三次元定量方法及び装置
JP2009175065A (ja) 中性子即発ガンマ線分析による複数元素の同時3次元分布・可視化観察・計測方法及びその装置
JP2014012131A (ja) X線装置およびx線測定方法
US11604152B2 (en) Fast industrial computed tomography for large objects
JP5610885B2 (ja) X線撮像装置および撮像方法
KR101185786B1 (ko) 단층촬영용 x선 현미경 시스템
JP7437337B2 (ja) 内部状態画像化装置および内部状態画像化方法
US11860319B2 (en) High-resolution detector having a reduced number of pixels
Ewert Current Trends in Digital Industrial Radiography-from Nano to Macro Scale
JP6797762B2 (ja) 放射線画像生成装置及び放射線画像生成方法
JPS61256243A (ja) 単色x線断層撮影装置
Tabary et al. Combining spatially and energy-resolved CdZnTe detectors with multiplexed collimations to improve performance of x-ray diffraction systems for baggage scanning
Bopp et al. X-ray Phase Contrast: Research on a Future Imaging Modality