JP2016161268A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2016161268A
JP2016161268A JP2015043096A JP2015043096A JP2016161268A JP 2016161268 A JP2016161268 A JP 2016161268A JP 2015043096 A JP2015043096 A JP 2015043096A JP 2015043096 A JP2015043096 A JP 2015043096A JP 2016161268 A JP2016161268 A JP 2016161268A
Authority
JP
Japan
Prior art keywords
evaporator
air
refrigeration
compartment
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015043096A
Other languages
Japanese (ja)
Other versions
JP6343576B2 (en
Inventor
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
大平 昭義
Akiyoshi Ohira
昭義 大平
利広 小松
Toshihiro Komatsu
利広 小松
真也 岩渕
Shinya Iwabuchi
真也 岩渕
暢志郎 小池
Nobushiro Koike
暢志郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015043096A priority Critical patent/JP6343576B2/en
Publication of JP2016161268A publication Critical patent/JP2016161268A/en
Application granted granted Critical
Publication of JP6343576B2 publication Critical patent/JP6343576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator increased in energy-saving performance.SOLUTION: A refrigerator includes: a refrigeration temperature flow ventilation passage 11 including first storage rooms 2 and 6; a freezing temperature flow ventilation passage 12 including a second storage room 60; and a first evaporator 7L and a second evaporator 7R. The refrigeration temperature flow ventilation passage has a refrigeration side air confluent part in which air cooled with the first and second evaporators can converge at a first storage room side, and a refrigeration side return air splitting part 25b for splitting air which has passed the second storage room into a first evaporator side and a second evaporator side. The freezing temperature flow ventilation passage has a freezing side air confluent part in which air cooled with the first and second evaporators can converge at a second storage room side, and a freezing side return air splitting part for splitting air which has passed the second storage room into the first evaporator side and the second evaporator side. There are also included: a first fan 9a on a downstream side of the refrigeration side air confluent part and on an upstream side of the refrigeration side return air splitting part; and a second fan 9b on a downstream side of the freezing side air confluent part and on an upstream side of the freezing side return air splitting part.SELECTED DRAWING: Figure 6

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2004−324943(特許文献1)がある。特許文献1は、ダンパ(バッフル)及び各蒸発器14,15に対応させて設けたファン16,17を利用して貯蔵室に冷気を供給している(段落0024、0025、0029、0030、図1−3)。また、一個の蒸発器を冷凍用蒸発温度とし、他の蒸発器を霜や氷の生成しない冷蔵用蒸発温度として所定時間運転した後、前記の蒸発器を冷凍用蒸発温度から霜や氷の融解する冷蔵用温度に切り替えると共に、後記の蒸発器を冷蔵用蒸発温度から冷凍用蒸発温度に切り替える(要約)。   As background art of this technical field, there is JP-A-2004-324943 (Patent Document 1). In Patent Document 1, cold air is supplied to a storage chamber using fans 16 and 17 provided corresponding to dampers (baffles) and evaporators 14 and 15 (paragraphs 0024, 0025, 0029, 0030, FIG. 1-3). In addition, one evaporator is set as the evaporating temperature for refrigeration, and the other evaporator is operated as a refrigerated evaporating temperature that does not generate frost or ice for a predetermined time, and then the evaporator is melted from the evaporating temperature for frost or ice. The evaporator is switched from the refrigeration evaporation temperature to the refrigeration evaporation temperature (summary).

ファン、蒸発器、ダンパは、上流側からこの順に設けられている。すなわち、ファンによって昇圧された冷気は、その後、冷凍室側及び冷蔵室側のダンパによって進路が振り分けられることになる(図1)。   The fan, the evaporator, and the damper are provided in this order from the upstream side. That is, the course of the cool air boosted by the fan is distributed by the dampers on the freezer compartment side and the refrigerator compartment side (FIG. 1).

特開2004−324943号公報JP 2004-324943 A

蒸発器を除霜している最中に冷蔵室扉や冷凍室扉が開放されると、開放された貯蔵室内の温度が上昇する。このとき、食品の保存性の観点等から、温度上昇した貯蔵室を優先して冷却し、早期に両貯蔵室を適正な温度にすることが望まれる。しかしながら、特許文献1でダンパ制御によって振り分けられる冷気は、ファンで昇圧された後のものである。この場合、蒸発器を通過した冷気は、蒸発器から冷凍室まで及び蒸発器から冷蔵室までのそれぞれの流路抵抗(風路抵抗)に応じて分配されるため、冷却がより望まれる貯蔵室への風量を優先して増加させることが難しい。ダンパの開度調整により或る程度の流路抵抗の制御、すなわち冷気分配量の制御をし得るが、分配する冷気量の比率の上下限範囲や、上下限範囲内における制御精度に改善の余地があった。   If the refrigerator door or the freezer door is opened while the evaporator is defrosted, the temperature of the opened storage chamber rises. At this time, from the viewpoint of food storage stability, it is desired to cool the storage chambers whose temperature has risen preferentially and to quickly bring both storage chambers to appropriate temperatures. However, the cool air distributed by the damper control in Patent Document 1 is after being boosted by the fan. In this case, the cold air that has passed through the evaporator is distributed according to the flow path resistance (air path resistance) from the evaporator to the freezer compartment and from the evaporator to the refrigerating room. It is difficult to increase the air flow to The flow resistance can be controlled to some extent by adjusting the opening of the damper, that is, the amount of cold air distributed can be controlled, but there is room for improvement in the upper and lower limits of the ratio of the amount of cold air distributed and the control accuracy within the upper and lower limits. was there.

上記事情に鑑みてなされた本発明は、冷蔵温度帯の第一の貯蔵室を含む冷蔵温度流通風路と、冷凍温度帯の第二の貯蔵室を含む冷凍温度流通風路と、第一の蒸発器を有する第一の蒸発器室と、第二の蒸発器を有する第二の蒸発器室と、を備える冷蔵庫であって、前記冷蔵温度流通風路は、前記第一の蒸発器で冷却された空気と前記第二の蒸発器で冷却された空気とが、前記第一の蒸発器及び前記第二の蒸発器より前記第一の貯蔵室側で合流可能な冷蔵側空気合流部と、前記第一の貯蔵室を通過した空気を前記第一の蒸発器側と前記第二の蒸発器側とに分流させる冷蔵側戻り空気分流部と、を有し、前記冷凍温度流通風路は、前記第一の蒸発器で冷却された空気と前記第二の蒸発器で冷却された空気とが、前記第一の蒸発器及び前記第二の蒸発器より前記第二の貯蔵室側で合流可能な冷凍側空気合流部と、前記第二の貯蔵室を通過した空気を前記第一の蒸発器側と前記第二の蒸発器側とに分流させる冷凍側戻り空気分流部と、を有し、前記冷蔵側空気合流部より下流、かつ、前記冷蔵側戻り空気分流部より上流に、第一のファンを有し、前記冷凍側空気合流部より下流、かつ、前記冷凍側戻り空気分流部より上流に、第二のファンを有することを特徴とする。   The present invention made in view of the above circumstances includes a refrigeration temperature circulation air passage including a first storage chamber in a refrigeration temperature zone, a refrigeration temperature circulation air passage including a second storage chamber in a refrigeration temperature zone, and a first A refrigerator comprising a first evaporator chamber having an evaporator and a second evaporator chamber having a second evaporator, wherein the refrigeration temperature circulation air passage is cooled by the first evaporator. A refrigeration-side air merging section capable of joining the air thus cooled and the air cooled by the second evaporator on the first storage chamber side from the first evaporator and the second evaporator; A refrigerating-side return air diverting section for diverting the air that has passed through the first storage chamber to the first evaporator side and the second evaporator side, The air cooled by the first evaporator and the air cooled by the second evaporator are the first evaporator and the second evaporation. A refrigeration-side air merging section that can be merged on the second storage chamber side, and a refrigeration for diverting the air that has passed through the second storage chamber to the first evaporator side and the second evaporator side. A side return air diverting section, having a first fan downstream from the refrigeration side air merging section and upstream from the refrigeration side air merging section, downstream from the refrigeration side air merging section, And it has a 2nd fan upstream from the said freezing side return air distribution part, It is characterized by the above-mentioned.

本発明によれば、省エネ性能を高めた冷蔵庫を提供できる。
上記した以外の構成及び効果は、以下の実施例の説明により明らかにされる。
According to the present invention, a refrigerator with improved energy saving performance can be provided.
Configurations and effects other than those described above will become apparent from the description of the following examples.

実施例1に関する冷蔵庫の正面図。The front view of the refrigerator regarding Example 1. FIG. 図1のA−A断面図。AA sectional drawing of FIG. 実施例1に関する風路を示す正面図。FIG. 3 is a front view showing an air passage relating to the first embodiment. 実施例1に関する冷凍室内部の正面図(風路構成部材80、81aを省略)。The front view of the inside of the freezer compartment regarding Example 1 (The air-path structural members 80 and 81a are abbreviate | omitted). 実施例1に関する冷凍室内部の正面図(風路構成部材80、81a、81b、仕切り壁28、29を省略)。The front view of the inside of the freezer compartment regarding Example 1 (The air-path structural member 80, 81a, 81b, the partition walls 28 and 29 are abbreviate | omitted). 冷凍サイクル構成図。Refrigeration cycle block diagram. 実施例1に関する風路構成を示す概略図。FIG. 3 is a schematic diagram illustrating an air path configuration related to the first embodiment. 除霜運転時の各運転モードを示した模式図。The schematic diagram which showed each operation mode at the time of a defrost operation. 運転モードCにおける冷蔵室側ファン9aと冷凍室側ファン9bの回転速度を変えた場合の空気の流れ(冷蔵室側ファン9aを低速、冷凍室側ファン9bを高速)。Flow of air when the rotation speeds of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b are changed in the operation mode C (the refrigerator compartment side fan 9a is low speed and the refrigerator compartment side fan 9b is high speed). 運転モードCにおける冷蔵室側ファン9aと冷凍室側ファン9bの回転速度を変えた場合の空気の流れ(冷蔵室側ファン9aを高速、冷凍室側ファン9bを低速)。Flow of air when the rotation speeds of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b are changed in the operation mode C (the refrigerator compartment side fan 9a is high speed and the refrigerator compartment side fan 9b is low speed). 実施例2に関する冷蔵庫の正面図。The front view of the refrigerator regarding Example 2. FIG. 実施例2に関する風路を示す正面図。The front view which shows the air path regarding Example 2. FIG. 実施例3に関する風路構成を示す外略図。FIG. 6 is a schematic diagram showing an air path configuration related to Example 3. 実施例4に関する風路構成を示す概略図。FIG. 6 is a schematic diagram showing a wind path configuration related to Example 4; 実施例5に関する風路構成を示す概略図。FIG. 10 is a schematic diagram showing an air path configuration related to Example 5.

以下、本発明の実施例を、添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Similar components are denoted by the same reference numerals, and the same description will not be repeated.

≪冷蔵庫≫
まず、図1から図6を用いて、冷蔵庫1の基本的な構成を説明する。
図1は実施例1に関する冷蔵庫の正面図、図2は図1のA−A断面図、図3は風路を示す正面図、図4a及び図4bは冷凍室内部の正面図である。冷蔵庫1は、貯蔵室として上方から順に、冷蔵室2、製氷室3と上段冷凍室4、下段冷凍室5、野菜室6を備えている。冷蔵室2及び野菜室6は冷蔵温度帯(0℃以上)の第一の貯蔵室である。冷凍室60は、製氷室3、上段冷凍室4、下段冷凍室5の総称で、冷凍温度帯(0℃以下)の第二の貯蔵室である。本実施の形態例では、冷蔵室2は約4℃、野菜室6は約7℃、冷凍室60は約−18℃になるように制御している。
≪Refrigerator≫
First, the basic configuration of the refrigerator 1 will be described with reference to FIGS. 1 to 6.
1 is a front view of a refrigerator relating to Example 1, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, FIG. 3 is a front view showing an air passage, and FIGS. 4a and 4b are front views of the inside of the freezer compartment. The refrigerator 1 includes a refrigerator room 2, an ice making room 3, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 in order from the top as a storage room. The refrigerator compartment 2 and the vegetable compartment 6 are first storage rooms in a refrigerator temperature zone (0 ° C. or higher). The freezing room 60 is a generic name for the ice making room 3, the upper freezing room 4, and the lower freezing room 5, and is a second storage room in a freezing temperature zone (0 ° C. or lower). In the present embodiment, the refrigerator compartment 2 is controlled to be about 4 ° C., the vegetable compartment 6 is about 7 ° C., and the freezer compartment 60 is about −18 ° C.

冷蔵室2は前面側に左右に分割された観音開きの冷蔵室扉2a、2bを備え、製氷室3と、上段冷凍室4と、下段冷凍室5と、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a、2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを、単に扉2a、2b、3a、4a、5a、6aと呼ぶ。   The refrigerating room 2 is provided with doors 2a and 2b that are separated from each other on the front side, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer type ice making. The room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are provided. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.

各部材の詳細は後述するが、図3、図4a、図4bでは、扉2a、2b、3a、4a、5a、6a、収納容器3b、4b、5b、6b、及び仕切り壁30を省略している。また図4aでは風路構成部材80、81aを省略し、図4bでは風路構成部材80、81a、81b及び仕切り壁28、29を省略している。なお、以下では図2を中心に説明する。   Although details of each member will be described later, the doors 2a, 2b, 3a, 4a, 5a, 6a, the storage containers 3b, 4b, 5b, 6b, and the partition wall 30 are omitted in FIGS. Yes. In FIG. 4a, the airway constituent members 80 and 81a are omitted, and in FIG. 4b, the airway constituent members 80, 81a and 81b and the partition walls 28 and 29 are omitted. In the following, description will be made mainly with reference to FIG.

冷蔵庫1の庫内と庫外は、例えば、発泡ウレタンを充填することにより形成された断熱箱体10と、前述の扉2a、2b、3a、4a、5a、6aによって隔てられている。冷蔵庫1の断熱箱体10の内部には複数の真空断熱材26を実装している。
冷凍室60及び野菜室6には、それぞれ扉3a、4a、5a、6aと一体に引き出される収納容器3b(図示せず)、4b、5b、6bを備えている。また、冷蔵室2には、冷蔵室2内を複数に区画する棚39を設け、また扉2a、2bに複数のポケット32を設けている。
The inside and the outside of the refrigerator 1 are separated by, for example, a heat insulating box 10 formed by filling with urethane foam and the doors 2a, 2b, 3a, 4a, 5a, and 6a. A plurality of vacuum heat insulating materials 26 are mounted inside the heat insulating box 10 of the refrigerator 1.
The freezer compartment 60 and the vegetable compartment 6 are each provided with a storage container 3b (not shown), 4b, 5b, 6b that is pulled out integrally with the doors 3a, 4a, 5a, 6a. Further, the refrigerator compartment 2 is provided with a shelf 39 that divides the refrigerator compartment 2 into a plurality of compartments, and a plurality of pockets 32 are provided on the doors 2a and 2b.

冷蔵庫1は、扉2aの前面側に温度設定器15を備え、ユーザーの指示により冷蔵室2、冷凍室60の温度の設定や、後述する高い冷却能力で冷蔵室2を冷却する急速冷却運転の指示を行うことができる。冷蔵庫1の上部には、扉2a、2bを回動可能にするために、冷蔵庫1に固定する扉ヒンジ(図示せず)が設けられており、扉ヒンジは扉ヒンジカバー38で覆われている。   The refrigerator 1 includes a temperature setter 15 on the front side of the door 2a, and sets the temperature of the refrigerator compartment 2 and the freezer compartment 60 according to a user's instruction or performs a rapid cooling operation for cooling the refrigerator compartment 2 with a high cooling capacity described later. You can give instructions. In the upper part of the refrigerator 1, a door hinge (not shown) that is fixed to the refrigerator 1 is provided so that the doors 2 a and 2 b can be rotated, and the door hinge is covered with a door hinge cover 38. .

冷蔵室2と冷凍室60の間には仕切り壁28を設け、冷凍室60と野菜室6との間には仕切り壁29を設けている。また、製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室の前面側には、扉3a、4a、5aの隙間から冷凍室60内の空気が庫外へ漏れないように、仕切り壁30を設けている。なお、野菜室6が冷え過ぎた場合には、仕切り壁29の下部に設けた野菜室ヒータ27によって野菜室6を加熱し、所定の温度に保持している。   A partition wall 28 is provided between the refrigerator compartment 2 and the freezer compartment 60, and a partition wall 29 is provided between the freezer compartment 60 and the vegetable compartment 6. In addition, on the front side of each storage room of the ice making room 3, the upper freezing room 4, and the lower freezing room 5, so that the air in the freezing room 60 does not leak out from the gap between the doors 3a, 4a, 5a. A partition wall 30 is provided. When the vegetable compartment 6 is too cold, the vegetable compartment 6 is heated by the vegetable compartment heater 27 provided at the lower part of the partition wall 29 and kept at a predetermined temperature.

[センサ]
冷蔵室2、冷凍室60、冷凍室6の庫内背面側には、それぞれ冷蔵室温度センサ33、冷凍室温度センサ34、野菜室温度センサ35を設けている。例えば図4bに示すように、第一の蒸発器7Lの上部には第一の蒸発器温度センサ36Lを設け、第二の蒸発器7Rの上部には第二の蒸発器温度センサ36Rを設けている。各センサにより、各貯蔵室及び第一の蒸発器7L、第二の蒸発器7Rの温度を検知している。また、冷蔵庫1には、扉ヒンジカバー38の内部に設けた庫外の温度を検知する外気温度センサ37や、各扉の開閉状態をそれぞれ検知する扉センサ(図示せず)も設けている。
[Sensor]
On the rear side of the refrigerator compartment 2, the freezer compartment 60, and the freezer compartment 6, a refrigerator compartment temperature sensor 33, a freezer compartment temperature sensor 34, and a vegetable compartment temperature sensor 35 are provided. For example, as shown in FIG. 4b, a first evaporator temperature sensor 36L is provided above the first evaporator 7L, and a second evaporator temperature sensor 36R is provided above the second evaporator 7R. Yes. The temperature of each storage chamber, the first evaporator 7L, and the second evaporator 7R is detected by each sensor. The refrigerator 1 is also provided with an outside air temperature sensor 37 that detects the temperature outside the box provided inside the door hinge cover 38 and a door sensor (not shown) that detects the open / closed state of each door.

また、冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ33、冷凍室温度センサ34、野菜室温度センサ35、第一の蒸発器温度センサ36L、第二の蒸発器温度センサ36R等と接続され、前述のCPUは、これらの出力値、及び温度設定器15の設定と、前述のROMに予め記録されたプログラムを基に、圧縮機24や冷蔵室側ファン9a、冷凍室側ファン9b、各ダンパ50L、50R、52L、52R、53L、53R、後述する三方弁201の制御等を行っている。   In addition, a control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like, which are a part of the control device, are arranged is arranged on the top of the refrigerator 1. The control board 31 is connected to a refrigerator temperature sensor 33, a freezer temperature sensor 34, a vegetable room temperature sensor 35, a first evaporator temperature sensor 36L, a second evaporator temperature sensor 36R, and the like. Based on these output values and the setting of the temperature setting unit 15 and the program recorded in advance in the ROM, the compressor 24, the refrigerator compartment side fan 9a, the freezer compartment side fan 9b, and the dampers 50L, 50R, 52L , 52R, 53L, 53R, and a three-way valve 201 described later.

[機械室]
野菜室6の背面側には、圧縮機24を備える機械室20を設けている。また、蒸発器室8の下部には、樋21を設けている。第一の蒸発器7L及び第二の蒸発器7Rに付着した霜を解かす除霜運転の際に、霜が解けて生じた除霜水は、樋21から排水管22を介して、機械室20に配された蒸発皿23に排出される。機械室20は庫外の空気が流入流出できるようにしており、蒸発皿23に排出された除霜水は、圧縮機24などの熱により蒸発して庫外に排出される。
[machine room]
A machine room 20 including a compressor 24 is provided on the back side of the vegetable room 6. In addition, a trough 21 is provided in the lower part of the evaporator chamber 8. In the defrosting operation for defrosting the frost adhering to the first evaporator 7L and the second evaporator 7R, the defrost water generated by melting the frost is passed through the drainage pipe 22 from the gutter 21 to the machine room. 20 is discharged to the evaporating dish 23 arranged at 20. The machine room 20 allows air outside the warehouse to flow in and out, and the defrost water discharged to the evaporating dish 23 is evaporated by the heat of the compressor 24 and discharged to the outside.

≪冷凍サイクル≫
次に、冷蔵庫1の冷凍サイクルについて説明する。
図5は冷蔵庫1に関する冷凍サイクル構成図である。冷蔵庫1には、冷媒と庫内の空気を熱交換させる第一の蒸発器7Lと、同じく冷媒と庫内の空気を熱交換させる第二の蒸発器7Rの2つの蒸発器を設けている。なお、以下では、符号にLを伴うものは第一の蒸発器7Lに関わる部材、Rを伴うものは第二の蒸発器7Rに関わる部材とする。
≪Refrigeration cycle≫
Next, the refrigeration cycle of the refrigerator 1 will be described.
FIG. 5 is a refrigeration cycle configuration diagram for the refrigerator 1. The refrigerator 1 is provided with two evaporators, a first evaporator 7L for exchanging heat between the refrigerant and the air in the cabinet, and a second evaporator 7R for exchanging heat between the refrigerant and the air in the cabinet. In the following description, those with L in the code are members related to the first evaporator 7L, and those with R are members related to the second evaporator 7R.

冷蔵庫1では、圧縮機24、放熱器41、減圧手段であるキャピラリチューブ42、三方弁201の流入口201iが順次接続されている。三方弁201の流出口は流出口201Lと流出口201Rの2つあり、流出口201Lは第一の蒸発器7Lと接続され、第一の蒸発器7Lの下流側は、逆止弁202、冷媒合流部204の順に接続されている。一方、三方弁201の流出口201Rは、第二の蒸発器7Rと接続され、第二の蒸発器7Rの下流側は、逆止弁203、冷媒合流部204の順に接続され、第一の蒸発器7L側の流路と合流している。冷媒合流部204は圧縮機24と接続されており、以上により冷凍サイクルが形成されている。   In the refrigerator 1, the compressor 24, the radiator 41, the capillary tube 42 that is a decompression unit, and the inlet 201 i of the three-way valve 201 are sequentially connected. The three-way valve 201 has two outlets, an outlet 201L and an outlet 201R. The outlet 201L is connected to the first evaporator 7L. The downstream side of the first evaporator 7L includes a check valve 202, a refrigerant. The junctions 204 are connected in this order. On the other hand, the outlet 201R of the three-way valve 201 is connected to the second evaporator 7R, and the downstream side of the second evaporator 7R is connected to the check valve 203 and the refrigerant merging portion 204 in this order, and the first evaporation. It merges with the flow path on the vessel 7L side. The refrigerant junction portion 204 is connected to the compressor 24, and a refrigeration cycle is formed as described above.

ここで、三方弁201は流入口201iと、2つの流出口201L、201Rの何れか一方、または両方を連通させる冷媒制御手段であり、第一の蒸発器7L及び第二の蒸発器7Rへの冷媒の流入を制御することができる。逆止弁202、203は、冷媒を一方向にのみ流す部材であり、冷媒合流部204から第一の蒸発器7L及び第二の蒸発器7Rへの冷媒の流入を抑制できる。   Here, the three-way valve 201 is a refrigerant control means for communicating one or both of the inflow port 201i and the two outflow ports 201L and 201R, and is connected to the first evaporator 7L and the second evaporator 7R. The inflow of the refrigerant can be controlled. The check valves 202 and 203 are members that allow the refrigerant to flow only in one direction, and can suppress the inflow of the refrigerant from the refrigerant joining portion 204 to the first evaporator 7L and the second evaporator 7R.

流入口201iと流出口201Lを接続した状態で圧縮機24を運転すると、圧縮機24から吐出した冷媒は、放熱器41、キャピラリチューブ42、三方弁201、第一の蒸発器7L、逆止弁202、冷媒合流部204の順に流れて圧縮機24に戻る。第一の蒸発器7Lを通過する空気は冷却されて、庫内を冷やすことができる。   When the compressor 24 is operated with the inlet 201i and the outlet 201L connected, the refrigerant discharged from the compressor 24 is the radiator 41, the capillary tube 42, the three-way valve 201, the first evaporator 7L, the check valve. It flows in order of 202 and the refrigerant | coolant merge part 204, and returns to the compressor 24. FIG. The air passing through the first evaporator 7L is cooled to cool the interior.

また、流入口201iと流出口201Rを接続した場合は、第二の蒸発器7Rを通過する空気が冷却されて、庫内を冷やすことができる。
さらに、三方弁201の流入口201iと、2つの流出口201L、201Rの両方を接続し、第一の蒸発器7Lと第二の蒸発器7Rの両方に冷媒を流すこともできる。
Moreover, when the inflow port 201i and the outflow port 201R are connected, the air which passes the 2nd evaporator 7R is cooled, and the inside of a store | warehouse | chamber can be cooled.
Furthermore, both the inflow port 201i of the three-way valve 201 and the two outflow ports 201L and 201R can be connected to allow the refrigerant to flow through both the first evaporator 7L and the second evaporator 7R.

≪風路構造≫
次に、空気が循環する風路の構造について説明する。冷蔵庫1は、冷蔵温度帯の貯蔵室である冷蔵室2や野菜室6を含む冷蔵温度流通風路と、冷凍温度帯の貯蔵室である冷凍室60を含む冷凍温度流通風路とを有する。各風路に、蒸発器7L,7Rそれぞれで冷やされた空気が分配される。
≪Airway structure≫
Next, the structure of the air path through which air circulates will be described. The refrigerator 1 has a refrigeration temperature circulation air passage including a refrigeration room 2 and a vegetable compartment 6 which are storage rooms in a refrigeration temperature zone, and a refrigeration temperature circulation air passage including a freezer compartment 60 which is a storage room in a refrigeration temperature zone. Air cooled by the evaporators 7L and 7R is distributed to each air passage.

[蒸発器室仕切り壁25]
冷凍室60の背面側で、冷凍室60と断熱箱体10の背面壁との間には、第二の蒸発器室8Rと、第一の蒸発器室8L(例えば図4bに図示)を形成している。第一の蒸発器室8Lと第二の蒸発器室8Rは、蒸発器室仕切り壁25により、左右に分割されて形成されている。第一の蒸発器7Lは第一の蒸発器室8Lに収納され、第二の蒸発器7Rは第二の蒸発器室8Rに収納されている。
[Evaporator chamber partition wall 25]
On the back side of the freezer compartment 60, between the freezer compartment 60 and the back wall of the heat insulating box 10, a second evaporator chamber 8R and a first evaporator chamber 8L (for example, shown in FIG. 4b) are formed. doing. The first evaporator chamber 8 </ b> L and the second evaporator chamber 8 </ b> R are divided into left and right by an evaporator chamber partition wall 25. The first evaporator 7L is accommodated in the first evaporator chamber 8L, and the second evaporator 7R is accommodated in the second evaporator chamber 8R.

[蒸発器室の風路]
図6は風路構成を示す概略図である。図6に示す各構成要素は、図2、図3、図4に示した各部材を概略的に示したものである。
第一の蒸発器室8Lのうち、第一の蒸発器7Lよりも下部(上流側)の空間を風路8La、上部(下流側)の空間を風路8Lbとする。また、第二の蒸発器室8Rのうち、第二の蒸発器7Rよりも下部(上流側)の空間を風路8Ra、上部(下流側)の空間を風路8Rbとする。
[Vapor passage in the evaporator room]
FIG. 6 is a schematic diagram showing a wind path configuration. Each component shown in FIG. 6 schematically shows each member shown in FIGS. 2, 3, and 4.
Of the first evaporator chamber 8L, the lower (upstream) space than the first evaporator 7L is referred to as an air passage 8La, and the upper (downstream) space is referred to as an air passage 8Lb. Further, in the second evaporator chamber 8R, the space below (upstream) the second evaporator 7R is referred to as an air passage 8Ra, and the space above (downstream) is referred to as an air passage 8Rb.

風路8Laは、蒸発器仕切り壁25の風路15側の端部25dから第一の蒸発器7Lまでの区間と、蒸発器仕切り壁25の風路14側の端部25bから第一の蒸発器7Lまでの区間とを合わせた区間である。風路8Raは、端部25dから第二の蒸発器7Rまでの区間と、端部25bから第二の蒸発器7Rまでの区間とを合わせた区間である。   The air path 8La includes a section from the end 25d of the evaporator partition wall 25 on the air path 15 side to the first evaporator 7L and a first evaporation from the end 25b of the evaporator partition wall 25 on the air path 14 side. It is a section combined with the section up to the vessel 7L. The air path 8Ra is a section obtained by combining a section from the end 25d to the second evaporator 7R and a section from the end 25b to the second evaporator 7R.

また、風路8Lbは、蒸発器7Lから蒸発器仕切り壁25の風路11側の端部25aまでの区間と、蒸発器7Lから蒸発器仕切り壁25の風路12側の端部25cまでの区間とを合わせた区間である。風路8Rbは、蒸発器7Rから蒸発器仕切り壁25の風路11側の端部25aまでの区間と、蒸発器7Rから蒸発器仕切り壁25の風路12側の端部25cまでの区間とを合わせた区間である。   Further, the air path 8Lb is a section from the evaporator 7L to the end 25a of the evaporator partition wall 25 on the air path 11 side, and from the evaporator 7L to the end 25c of the evaporator partition wall 25 on the air path 12 side. It is a section combined with the section. The air path 8Rb includes a section from the evaporator 7R to the end 25a of the evaporator partition wall 25 on the air path 11 side, and a section from the evaporator 7R to the end 25c of the evaporator partition wall 25 on the air path 12 side. It is the section which put together.

蒸発器室8L(8La,8Lb)と蒸発器室8R(8Ra,8Rb)は、蒸発器室仕切り壁25で区画されているため、風路8La,8Lbを流れる空気と風路8Ra,8Rbを流れる空気との熱交換が抑制されている。   Since the evaporator chamber 8L (8La, 8Lb) and the evaporator chamber 8R (8Ra, 8Rb) are partitioned by the evaporator chamber partition wall 25, the air flowing through the air passages 8La, 8Lb and the air passages 8Ra, 8Rb flow. Heat exchange with air is suppressed.

[空気合流部11a,12a]
各蒸発器7で冷却された空気が合流する部分を空気合流部と呼ぶこととする。蒸発器室仕切り壁25は、風路11側と風路12側とにそれぞれ端部を有している。第一の蒸発器7Lで冷却された空気は、端部25aより下流の風路11aと、端部25cより下流の風路12aに流れることができる。同様に、第二の蒸発器7Rで冷却された空気は、端部25aより下流の風路11aと、端部25cより下流の風路12aに流れることができる。すなわち、各蒸発器室7L,7Rで冷却された空気は、それぞれ風路11a,12aに分配でき、また風路11a,12aにて、それぞれの空気が合流できる構成としている。本実施例では風路11aが冷蔵室側の空気合流部の一例であり、風路12aが冷凍室側の空気合流部の一例である。
[Air confluence 11a, 12a]
The part where the air cooled by each evaporator 7 joins is called an air joining part. The evaporator chamber partition wall 25 has ends on the air passage 11 side and the air passage 12 side, respectively. The air cooled by the first evaporator 7L can flow into the air passage 11a downstream from the end portion 25a and the air passage 12a downstream from the end portion 25c. Similarly, the air cooled by the second evaporator 7R can flow into the air passage 11a downstream from the end portion 25a and the air passage 12a downstream from the end portion 25c. That is, the air cooled in each of the evaporator chambers 7L and 7R can be distributed to the air passages 11a and 12a, and the air can be merged in the air passages 11a and 12a. In this embodiment, the air passage 11a is an example of an air merging portion on the refrigerator compartment side, and the air passage 12a is an example of an air merging portion on the freezer compartment side.

なお、冷蔵庫1は、例えば風路11aの上流や風路12aの上流に、後述する送風制御部を備えることがある。このため、後述するモードの実行状態によっては、風路11a,12aを流れる空気が、第一の蒸発器7Lで冷却された空気のみであったり、第二の蒸発器7Rで冷却された空気のみであることがある。空気合流部は、第一の蒸発器7L及び第二の蒸発器7Rそれぞれで冷却された空気が合流可能な領域を示す。   In addition, the refrigerator 1 may be provided with the ventilation control part mentioned later, for example in the upstream of the air path 11a, or the upstream of the air path 12a. For this reason, depending on the execution state of the mode described later, the air flowing through the air passages 11a and 12a is only the air cooled by the first evaporator 7L or only the air cooled by the second evaporator 7R. It may be. The air merging portion indicates a region where the air cooled by the first evaporator 7L and the second evaporator 7R can merge.

[風路11]
冷蔵室2の背面側には、冷蔵室2の温度を検知する冷蔵室温度センサ33を備えた風路構成部材80と、風路構成部材80と断熱箱体10により構成された風路11が設けられている。冷蔵室2の背面下部には、冷蔵室戻り口62が備えられている。
[Airway 11]
On the back side of the refrigerating room 2, there are an air passage constituting member 80 provided with a refrigerating room temperature sensor 33 for detecting the temperature of the refrigerating room 2, and an air passage 11 constituted by the air passage constituting member 80 and the heat insulating box 10. Is provided. A refrigeration chamber return port 62 is provided at the lower back of the refrigeration chamber 2.

風路11は、第一の蒸発器7L又は第二の蒸発器7Rで低温になった空気を冷蔵室2に導く風路である。冷蔵室2には冷蔵室2と風路11を連通させる冷蔵室吐出口61と、冷蔵室2と風路13を連通させる冷蔵室戻り口62が設けられており、風路11には第一の蒸発器7L又は第二の蒸発器7Rで冷却された空気を冷蔵室2と野菜室6に送風する第一のファンである冷蔵室側ファン9aが設けられている。ここで、風路11のうち冷蔵室側ファン9aの吸込側を風路11a、吐出側を風路11bと呼ぶ。冷蔵室側ファン9aは、端部25aより下流側、すなわち蒸発器7L,7Rで冷却された空気が何れも流通可能な領域に位置している。冷蔵室側ファン9aは、後述するCPU(図示せず)の指示により回転速度が変更可能なファンを用いている。なお、冷蔵室戻り口62と野菜室吐出口63を結ぶ風路13を介して、冷蔵室2の空気が野菜室6に供給される。   The air path 11 is an air path that guides the air that has become low temperature in the first evaporator 7 </ b> L or the second evaporator 7 </ b> R to the refrigerator compartment 2. The refrigerating chamber 2 is provided with a refrigerating chamber discharge port 61 for communicating the refrigerating chamber 2 and the air passage 11, and a refrigerating chamber return port 62 for communicating the refrigerating chamber 2 and the air passage 13. The refrigerator 9L or the second evaporator 7R is provided with a refrigerator compartment side fan 9a which is a first fan for blowing the air cooled by the evaporator 7L or the second evaporator 7R to the refrigerator compartment 2 and the vegetable compartment 6. Here, in the air passage 11, the suction side of the refrigerator compartment side fan 9a is called the air passage 11a, and the discharge side is called the air passage 11b. The refrigerator compartment side fan 9a is located on the downstream side of the end portion 25a, that is, in a region where both the air cooled by the evaporators 7L and 7R can flow. As the refrigerator compartment side fan 9a, a fan whose rotation speed can be changed by an instruction of a CPU (not shown) described later is used. Note that the air in the refrigerator compartment 2 is supplied to the vegetable compartment 6 through the air passage 13 connecting the refrigerator compartment return port 62 and the vegetable compartment outlet 63.

[風路13,14,15]
野菜室6の背面には野菜室吐出口63が設けられ、野菜室吐出口63は風路13により冷蔵室戻り口62と連通している。野菜室6の前面側には、風路14と野菜室6を連通させる野菜室戻り口64が設けられている。風路14は第一の蒸発器室8L及び第二の蒸発器室8Rと連通している。
[Airways 13, 14, 15]
A vegetable chamber discharge port 63 is provided on the back surface of the vegetable chamber 6, and the vegetable chamber discharge port 63 communicates with the refrigerator compartment return port 62 through the air passage 13. On the front side of the vegetable compartment 6, a vegetable compartment return port 64 that connects the air passage 14 and the vegetable compartment 6 is provided. The air passage 14 communicates with the first evaporator chamber 8L and the second evaporator chamber 8R.

ここで、前述した冷蔵温度流通風路端部25aより下流側かつ蒸発器仕切り壁25の風路14側の端部25bより上流側の領域である。すなわち、蒸発器室8及び冷蔵室2を結ぶ風路11と、冷蔵室2と、冷蔵室2と野菜室6を結ぶ風路13と、野菜室6と、野菜室6と風路8La,8Rbを結ぶ風路14とをまとめて冷蔵温度流通風路と称する。冷蔵室側ファン9aは、冷蔵温度流通風路に配している。   Here, it is a region on the downstream side of the refrigeration temperature circulation air passage end portion 25a and on the upstream side of the air passage 14 side end portion 25b of the evaporator partition wall 25. That is, the air passage 11 connecting the evaporator chamber 8 and the refrigerator compartment 2, the refrigerator compartment 2, the air passage 13 connecting the refrigerator compartment 2 and the vegetable compartment 6, the vegetable compartment 6, the vegetable compartment 6 and the air passages 8La, 8Rb. Are collectively referred to as a refrigeration temperature circulation air passage. The refrigerator compartment side fan 9a is arranged in the refrigerator temperature distribution air passage.

風路15は、冷凍室戻り口66と戻り空気合流部25dの下流に位置する風路8La,8Raを連通している。   The air passage 15 communicates the air passages 8La and 8Ra located downstream of the freezer compartment return port 66 and the return air merging portion 25d.

[風路12]
冷凍室60と第一の蒸発器室8L、及び第二の蒸発器室8Rの間には、風路構成部材81a、及び81bにより風路12が設けられている。風路12には第一の蒸発器7L又は第二の蒸発器7Rで冷却された空気を冷凍室60に送風する第二のファンである冷凍室側ファン9bが設けられている。ここで、風路12のうち、冷凍室側ファン9bの吸込側を風路12a、吐出側を風路12bと呼ぶ。冷凍室側ファン9bは、端部25cより下流側、すなわち蒸発器7L,7Rで冷却された空気が何れも流通可能な領域に位置している。冷凍室側ファン9bも、冷蔵室側ファン9aと同様に、後述するCPU(図示せず)の指示により回転速度が変更可能なファンを用いている。
[Airway 12]
Between the freezer compartment 60, the first evaporator chamber 8L, and the second evaporator chamber 8R, an air passage 12 is provided by air passage constituent members 81a and 81b. The air passage 12 is provided with a freezer compartment side fan 9b which is a second fan for blowing air cooled by the first evaporator 7L or the second evaporator 7R to the freezer compartment 60. Here, in the air passage 12, the suction side of the freezer compartment side fan 9b is called an air passage 12a, and the discharge side is called an air passage 12b. The freezer compartment side fan 9b is located downstream of the end 25c, that is, in a region where both the air cooled by the evaporators 7L and 7R can flow. Similarly to the refrigerator compartment side fan 9a, the freezer compartment side fan 9b uses a fan whose rotational speed can be changed by an instruction of a CPU (not shown) described later.

ここで、前述した冷凍温度流通風路は、端部25cより下流側かつ端部25dより上流側の領域である。すなわち、蒸発器室8と冷凍室60の吐出口65を結ぶ風路12と、冷凍室60と、冷凍室60の戻り口66と戻り側ツインダンパ53を結ぶ風路15とをまとめて冷凍温度流通風路と称する。冷凍室側ファン9bは、冷凍温度流通風路に配している。   Here, the refrigeration temperature circulation air passage described above is a region downstream of the end portion 25c and upstream of the end portion 25d. In other words, the air passage 12 connecting the evaporator chamber 8 and the discharge port 65 of the freezing chamber 60, the freezing chamber 60, and the air passage 15 connecting the return port 66 of the freezing chamber 60 and the return side twin damper 53 are collectively combined with the freezing temperature. It is called a distribution air channel. The freezer compartment fan 9b is arranged in the freezing temperature circulation air passage.

[戻り空気分流部25b,25d]
各貯蔵室を冷却した後に蒸発器室8に戻る戻り空気が風路8Laと風路8Raに向かって分流する部分を、戻り空気分流部と呼ぶこととする。冷凍室60からの戻り空気は、風路15を通過して、蒸発器仕切り壁25の風路15側の端部25dによって、風路8Laと風路8Raに向かって分流する。端部25dは、冷凍室側の戻り空気分流部の一例である。
[Return air diverter 25b, 25d]
A portion where the return air returning to the evaporator chamber 8 after cooling each storage chamber is diverted toward the air passage 8La and the air passage 8Ra is referred to as a return air diverting portion. The return air from the freezer compartment 60 passes through the air passage 15 and is diverted toward the air passage 8La and the air passage 8Ra by the end 25d of the evaporator partition wall 25 on the air passage 15 side. The end portion 25d is an example of a return air diversion portion on the freezer compartment side.

同様に、野菜室6からの戻り空気は、風路14を通過して、端部25bによって、風路8Laと風路8Raに向かって分流する。端部25bは、野菜室側の戻り空気分流部の一例である。   Similarly, the return air from the vegetable compartment 6 passes through the air passage 14 and is diverted toward the air passage 8La and the air passage 8Ra by the end 25b. The end 25b is an example of a return air diversion part on the vegetable room side.

[送風制御部]
ツインダンパとは2つの送風制御手段を1つのステッピングモータで制御する部材である。風路11aの下方(上流)にはツインダンパ50が設けられている。例えば図4aに示すように、ツインダンパ50には、第一の蒸発器7Lから冷蔵室2への空気の送風を制御する第一のダンパであるダンパ50Lと、第二の蒸発器7Rから冷蔵室2への空気の送風を制御する第二のダンパであるダンパ50Rを設けており、1つのステッピングモータ(図示せず)でこの2つのダンパ50L、50Rを制御する。
[Blower control unit]
The twin damper is a member that controls two air blowing control means with one stepping motor. A twin damper 50 is provided below (upstream) the air passage 11a. For example, as shown in FIG. 4 a, the twin damper 50 includes a damper 50 </ b> L that is a first damper that controls air blowing from the first evaporator 7 </ b> L to the refrigerator compartment 2, and a refrigerator that is refrigerated from the second evaporator 7 </ b> R. A damper 50R, which is a second damper that controls the blowing of air to the chamber 2, is provided, and the two dampers 50L and 50R are controlled by a single stepping motor (not shown).

本実施例の冷蔵庫1では、送風制御部として、合計で6つのダンパ50L(第一の蒸発器と第一の貯蔵室の吐出口の間のダンパ)、50R(第二の蒸発器と第一の貯蔵室の吐出口の間のダンパ)、52L(第一の蒸発器と第二の貯蔵室の吐出口の間のダンパ)、52R(第二の蒸発器と第二の貯蔵室の吐出口の間のダンパ)、53L(第一の蒸発器と第二の貯蔵室の戻り口の間のダンパ)、53R(第二の蒸発器と第二の貯蔵室の戻り口の間のダンパ)を備える。より具体的には、端部25a近傍に位置して、冷蔵温度帯の貯蔵室の吐出口への送風を制御するツインダンパ50と、端部25c近傍に位置して、冷凍温度帯の貯蔵室の吐出口への送風を制御するツインダンパ52と、端部25d近傍に位置して、戻り口からの送風を制御するツインダンパ53を有している。ツインダンパを用いることで3つのステッピングモータで6つのダンパを制御し、省スペース化と低コスト化を図っている。なお、送風制御部は、空気の流通量を調整できればツインダンパに限られず、種々公知の手段を採用できる。また、ツインダンパ50に代えて、又は加えて、端部25b近傍に位置して、冷蔵温度帯の貯蔵室の戻り口からの送風を制御するツインダンパを設けても良い。   In the refrigerator 1 of the present embodiment, a total of six dampers 50L (dampers between the first evaporator and the outlet of the first storage chamber) and 50R (second evaporator and the first) are used as the air blowing control unit. Damper between the outlets of the storage chamber), 52L (damper between the outlet of the first evaporator and the second storage chamber), 52R (discharger of the second evaporator and the second storage chamber) 53L (damper between the first evaporator and the return port of the second storage chamber), 53R (damper between the second evaporator and the return port of the second storage chamber) Prepare. More specifically, the twin damper 50 that controls airflow to the outlet of the storage room in the refrigeration temperature zone located near the end 25a, and the storage room in the refrigeration temperature zone located near the end 25c. The twin damper 52 for controlling the air blowing to the discharge port and the twin damper 53 for controlling the air blowing from the return port are provided near the end 25d. By using twin dampers, six dampers are controlled by three stepping motors, saving space and reducing costs. The air blowing control unit is not limited to the twin damper as long as the air flow rate can be adjusted, and various known means can be employed. Further, instead of or in addition to the twin damper 50, a twin damper may be provided that is located in the vicinity of the end portion 25b and controls air flow from the return port of the storage room in the refrigeration temperature zone.

各ダンパ50−53は、上記の通り、蒸発器室仕切り壁25の端部近傍に位置している。各ダンパの位置は、具体的には、各ダンパの開閉により、蒸発器室8と風路11−15との間を開放及び閉塞できる位置、すなわち、空気の通過と不通過とを制御できる位置であればよい。   Each damper 50-53 is located in the vicinity of the end of the evaporator chamber partition wall 25 as described above. Specifically, the position of each damper is a position where the space between the evaporator chamber 8 and the air passage 11-15 can be opened and closed by opening / closing each damper, that is, a position where the passage and non-passage of air can be controlled. If it is.

風路構成部材81bには、冷凍室側ファン9bの背面側(吸込み側)にツインダンパ52が設けられている。ツインダンパ52は風路8Lbから冷凍室60への空気の流入を制御する第五のダンパであるダンパ52Lと、風路8Rbから冷凍室60への空気の流入を制御する第六のダンパであるダンパ52Rを設けてある。   The air path constituting member 81b is provided with a twin damper 52 on the back side (suction side) of the freezer compartment fan 9b. The twin damper 52 is a damper 52L that is a fifth damper that controls the inflow of air from the air passage 8Lb to the freezer compartment 60, and a sixth damper that controls the inflow of air from the air passage 8Rb to the freezer compartment 60. A damper 52R is provided.

風路構成部材81aには、冷凍室60と風路12を連通させる冷凍室吐出口65が設けられている。冷凍室吐出口65は1つでも2つ以上でも良い。また、風路構成部材81aの下部で、第一の蒸発器室8L及び第二の蒸発器室8Rと、冷凍室60とを連通させる冷凍室戻り口66には、ツインダンパ53が設けられている。ツインダンパ53は、冷凍室60から第一の蒸発器7Lへの空気の流入を制御する第七のダンパであるダンパ53Lと、冷凍室60から第二の蒸発器7Rへの空気の流入を制御する第八のダンパであるダンパ53Rを設けている。   The air passage constituting member 81a is provided with a freezer compartment discharge port 65 that allows the freezer compartment 60 and the air passage 12 to communicate with each other. There may be one freezing chamber discharge port 65 or two or more. In addition, a twin damper 53 is provided at a freezer return port 66 that communicates the first evaporator chamber 8L, the second evaporator chamber 8R, and the freezer chamber 60 at the lower portion of the air passage constituting member 81a. Yes. The twin damper 53 controls the damper 53L, which is a seventh damper that controls the inflow of air from the freezer compartment 60 to the first evaporator 7L, and the inflow of air from the freezer compartment 60 to the second evaporator 7R. A damper 53R which is an eighth damper is provided.

[ファンの配置]
ファン9の前後の領域は、一般的にファン9の吸込側に比べ、ファン9の吐出側の方が、流速が不均一になる。そのため、空気が分流する領域から遠方にファン9の吐出側を配すると、空気の振り分け精度の点で好ましい。具体的には、風路14と、風路8Ra,8Laの境界部である端部25bから冷蔵室側ファン9aを離し、また、風路15と、風路8Ra,8Laの境界部である端部25dから冷凍室側ファン9bを離すように配すると好ましい。このため、本実施例では、風路11や風路12にファン9を配している。一方、ファン9を冷蔵室2、野菜室6、冷凍室60の下流側の風路、例えば風路13,14,15に設けると、より暖かな空気に接するため、ファン9の結露又は着霜を抑制できる点で好ましい。
[Fan layout]
In general, the flow velocity of the region before and after the fan 9 is more uneven on the discharge side of the fan 9 than on the suction side of the fan 9. For this reason, it is preferable in terms of air distribution accuracy to dispose the discharge side of the fan 9 far from the region where air flows. Specifically, the refrigerator compartment side fan 9a is separated from the air passage 14 and the end 25b that is the boundary between the air passages 8Ra and 8La, and the air passage 15 and the end that is the boundary between the air passages 8Ra and 8La. It is preferable to arrange the freezer compartment side fan 9b away from the portion 25d. For this reason, in this embodiment, the fan 9 is arranged in the air passage 11 and the air passage 12. On the other hand, if the fan 9 is provided in the air passages downstream of the refrigerator compartment 2, the vegetable compartment 6, and the freezer compartment 60, for example, the air passages 13, 14, and 15, the fan 9 is in contact with warmer air. It is preferable at the point which can suppress.

なお、空気が分流する領域(風路8La,8Rb)から遠方にファン9の吐出側を配することは、空気が分流する領域の近くにファン9の吸込側を配することと考えても良い。   It should be noted that disposing the discharge side of the fan 9 far from the region where the air is diverted (the air passages 8La, 8Rb) may be considered as arranging the suction side of the fan 9 near the region where the air is diverted. .

≪運転モード≫
次に、冷蔵庫1の除霜運転について説明する。
≪Operation mode≫
Next, the defrosting operation of the refrigerator 1 will be described.

Figure 2016161268

図7は除霜運転時の各運転モードを示した模式図である。除霜運転は、蒸発器7に付着した霜を融解させる運転である。除霜運転の最中は、蒸発器7近傍に設けたヒータ等の電源を任意でオンにしてもよい。図中の白色の矢印は除霜運転中の蒸発器7からの空気の流れで、黒色の矢印は冷凍サイクルにより冷却している状態の蒸発器7からの空気の流れである。表1は各運転モードにおいて、冷凍サイクルにより冷却する蒸発器7とダンパ50、52、53の開閉の組み合わせをまとめたものである。表中の○印は、蒸発器に冷媒を流す場合、または各ダンパを開ける場合を示している。
Figure 2016161268

FIG. 7 is a schematic diagram showing each operation mode during the defrosting operation. The defrosting operation is an operation for melting the frost attached to the evaporator 7. During the defrosting operation, a power source such as a heater provided in the vicinity of the evaporator 7 may be arbitrarily turned on. The white arrow in the figure is the flow of air from the evaporator 7 during the defrosting operation, and the black arrow is the flow of air from the evaporator 7 that is cooled by the refrigeration cycle. Table 1 summarizes the combinations of opening and closing of the evaporator 7 and the dampers 50, 52, and 53 that are cooled by the refrigeration cycle in each operation mode. The circles in the table indicate the case where a refrigerant is passed through the evaporator or the case where each damper is opened.

図7に示すように、第一の蒸発器7Lを除霜する際の運転モードはA、B、Cの3通りであり、第二の蒸発器7Rを除霜する際の運転モードはD、E、Fの3通りである。このうち運転モードCと運転モードFは、第一の蒸発器7L、または第二の蒸発器7Rの除霜中に、冷蔵室2の冷却不足を補う運転モードである。   As shown in FIG. 7, there are three operation modes A, B, and C when defrosting the first evaporator 7L, and the operation mode when defrosting the second evaporator 7R is D, There are three ways, E and F. Among these, the operation mode C and the operation mode F are operation modes that compensate for insufficient cooling of the refrigerator compartment 2 during the defrosting of the first evaporator 7L or the second evaporator 7R.

[運転モードA]
まず、運転モードAについて説明する。第一の蒸発器7Lの除霜運転である運転モードAでは、圧縮機24を停止している状態で、ダンパ50Lを開にし、冷蔵室側ファン9aを運転する。ダンパ50Lを開にしているので、第一の蒸発器7Lを通過する空気は、風路8Lb、ダンパ50Lの順に流れて風路11aに至る。風路11aを通過する空気は、冷蔵室側ファン9aによって昇圧されるので、風路11bを介して冷蔵室吐出口61から冷蔵室2に送風される。次に、冷蔵室2の空気は、冷蔵室戻り口62、風路13、野菜室吐出口63を経由して野菜室6に送風される。野菜室6の空気は野菜室戻り口64、風路14、風路8Laを経由して第一の蒸発器7Lに戻る。
なお、本実施例では、冷蔵室2に送風する場合は、必ず野菜室6にも送風される構成となっている。冷蔵室2と野菜室6の一方でも同様の効果を奏することができるため、各モードの説明では、説明の便宜上、冷蔵室2と野菜室6をあわせて、単に冷蔵室2と呼ぶことがある。
[Operation mode A]
First, the operation mode A will be described. In the operation mode A which is the defrosting operation of the first evaporator 7L, the damper 50L is opened and the refrigerator compartment side fan 9a is operated while the compressor 24 is stopped. Since the damper 50L is opened, the air passing through the first evaporator 7L flows in the order of the air path 8Lb and the damper 50L and reaches the air path 11a. Since the air passing through the air passage 11a is pressurized by the refrigerating room side fan 9a, it is blown from the refrigerating compartment discharge port 61 to the refrigerating compartment 2 through the air passage 11b. Next, the air in the refrigerator compartment 2 is blown into the vegetable compartment 6 via the refrigerator compartment return port 62, the air passage 13, and the vegetable compartment outlet 63. The air in the vegetable compartment 6 returns to the first evaporator 7L via the vegetable compartment return port 64, the air passage 14, and the air passage 8La.
In addition, in a present Example, when ventilating to the refrigerator compartment 2, it is the structure by which it is surely ventilated also to the vegetable compartment 6. FIG. Since one of the refrigerator compartment 2 and the vegetable compartment 6 can achieve the same effect, in the explanation of each mode, the refrigerator compartment 2 and the vegetable compartment 6 may be simply referred to as the refrigerator compartment 2 for convenience of explanation. .

圧縮機24が停止している運転モードAでは、第一の蒸発器7Lと冷蔵室2の間で空気を循環させると、冷蔵室2の0℃以上の空気によって第一の蒸発器7Lの霜が加熱され、同時に第一の蒸発器7Lの霜によって冷却された空気で冷蔵室2が冷却される。この空気の循環により、冷蔵室2の空気を熱源として第一の蒸発器7Lに付着した霜を加熱し、第一の蒸発器7Lの除霜を行う。なお、ダンパ50R,52,53は閉である。ダンパ50Rを閉にしているため、蒸発器7Rの温度が上昇することを抑制できる。また、ダンパ52,53を共に閉にしているため、第一の蒸発器7Lと冷蔵室2の間を循環する比較的温度の高い空気が冷凍室60に送風されることを効果的に抑制している。すなわち、冷凍室60の温度上昇を抑制している。   In the operation mode A in which the compressor 24 is stopped, when air is circulated between the first evaporator 7L and the refrigerator compartment 2, the frost of the first evaporator 7L is caused by the air in the refrigerator compartment 2 at 0 ° C. or higher. Is heated, and at the same time, the refrigerator compartment 2 is cooled by the air cooled by the frost of the first evaporator 7L. By the circulation of the air, the frost attached to the first evaporator 7L is heated using the air in the refrigerator compartment 2 as a heat source, and the first evaporator 7L is defrosted. The dampers 50R, 52, and 53 are closed. Since the damper 50R is closed, an increase in the temperature of the evaporator 7R can be suppressed. In addition, since both the dampers 52 and 53 are closed, it is possible to effectively prevent the relatively high temperature air circulating between the first evaporator 7L and the refrigerator compartment 2 from being blown to the freezer compartment 60. ing. That is, the temperature rise of the freezer compartment 60 is suppressed.

冷蔵庫では、除霜に電気ヒータが通常用いられるが、電気ヒータの消費電力は約100〜200Wと大きく、例えば除霜時間を30分としても、除霜時の消費電力量は50〜100Whとなる。一方、冷蔵室2の空気を熱源として除霜する運転モードAでは、冷蔵室側ファン9aの消費電力(約1〜2W)だけで済み、例えば除霜に2時間を要しても、除霜時の消費電力量は4〜8Whとなる。   In the refrigerator, an electric heater is usually used for defrosting, but the power consumption of the electric heater is as large as about 100 to 200 W. For example, even if the defrosting time is 30 minutes, the power consumption during defrosting is 50 to 100 Wh. . On the other hand, in the operation mode A in which the air in the refrigerator compartment 2 is defrosted using the heat source, only power consumption (about 1 to 2 W) of the refrigerator compartment side fan 9a is required. The power consumption at that time is 4 to 8 Wh.

[運転モードB]
次に運転モードBについて説明する。第一の蒸発器7Lの除霜運転中に冷凍室60の温度が高くなった場合に使用する。第一の蒸発器7Lを除霜する運転モードAの制御に加え、第二の蒸発器7Rにより冷凍室60を冷却する。圧縮機24を運転し、三方弁201により第二の蒸発器7Rに冷媒を流し、冷凍サイクルにより第二の蒸発器7Rを冷却する。また、ダンパ50Lを開かつ冷蔵室側ファン9aを運転させることに加えて、ダンパ52R及び53Rを開にし、冷凍室側ファン9bを運転する。
[Operation mode B]
Next, the operation mode B will be described. It is used when the temperature of the freezer compartment 60 becomes high during the defrosting operation of the first evaporator 7L. In addition to the control in the operation mode A for defrosting the first evaporator 7L, the freezer compartment 60 is cooled by the second evaporator 7R. The compressor 24 is operated, the three-way valve 201 causes the refrigerant to flow into the second evaporator 7R, and the second evaporator 7R is cooled by the refrigeration cycle. In addition to opening the damper 50L and operating the refrigerator compartment side fan 9a, the dampers 52R and 53R are opened and the freezer compartment side fan 9b is operated.

このときの冷凍室60への空気の流れを、図6を参照して説明する。まず、第一の蒸発器7L、及び冷蔵室2に関する空気の流れは運転モードAと同様である。次に、圧縮機24を運転して冷媒を循環させているので、第二の蒸発器7Rは低温(例えば−25℃)になる。第二の蒸発器7Rで冷却された空気は、ダンパ50Rを閉、ダンパ52Rを開にしているので、風路8Rb、ダンパ52Rを通過して風路12aに至る。風路12aを流れる低温の空気は、冷凍室側ファン9bによって昇圧されるので、風路12bを介して冷凍室吐出口65から冷凍室60に流入し、冷凍室60内を冷却する。冷凍室60内を冷却した空気は、冷凍室戻り口66に設けたダンパ53Rと風路8Raを経由して第二の蒸発器7Rに戻って再び冷却される。なお、運転モードBを実行している最中に、冷凍室60の温度が十分に低温になった場合は運転モードAに戻すことができ、冷凍室60の温度を適正な範囲に制御することができる。   The flow of air to the freezer compartment 60 at this time will be described with reference to FIG. First, the air flow relating to the first evaporator 7L and the refrigerator compartment 2 is the same as in the operation mode A. Next, since the compressor 24 is operated and the refrigerant is circulated, the second evaporator 7R has a low temperature (for example, −25 ° C.). Since the air cooled by the second evaporator 7R closes the damper 50R and opens the damper 52R, it passes through the air path 8Rb and the damper 52R and reaches the air path 12a. Since the low-temperature air flowing through the air passage 12a is pressurized by the freezer compartment fan 9b, it flows into the freezer compartment 60 from the freezer outlet 65 via the air passage 12b, and cools the inside of the freezer compartment 60. The air that has cooled the inside of the freezer compartment 60 returns to the second evaporator 7R via the damper 53R and the air passage 8Ra provided at the freezer compartment return port 66, and is cooled again. In addition, when the temperature of the freezer compartment 60 becomes sufficiently low during the execution of the operation mode B, it can be returned to the operation mode A, and the temperature of the freezer compartment 60 is controlled to an appropriate range. Can do.

[運転モードD、E]
第二の蒸発器7Rの除霜運転である運転モードD、Eは、それぞれ運転モードA、Bにおける第一の蒸発器7Lと第二の蒸発器7Rとを置き換えた運転である。運転モードDでは、圧縮機24を停止している状態で、ダンパ50Rは開、ダンパ50L、51L、52L、53L、52R、53Rは閉にして、冷蔵室側ファン9aを運転する。これにより、第二の蒸発器7Rは冷蔵室2からの循環空気によって、第二の蒸発器7Rを加熱して除霜を行う。
[Operation modes D and E]
Operation modes D and E which are defrosting operations of the second evaporator 7R are operations in which the first evaporator 7L and the second evaporator 7R in the operation modes A and B are replaced, respectively. In the operation mode D, with the compressor 24 stopped, the damper 50R is opened, the dampers 50L, 51L, 52L, 53L, 52R, and 53R are closed, and the refrigerator-side fan 9a is operated. Thus, the second evaporator 7R performs defrosting by heating the second evaporator 7R with the circulating air from the refrigerator compartment 2.

運転モードEは、第二の蒸発器7Rの除霜運転中に冷凍室60の温度が高くなった場合に使用する運転で、第二の蒸発器7Rを除霜する運転モードDの制御に加えて、第一の蒸発器7Lによって冷凍室60を冷却している。圧縮機24を運転し、三方弁201により第一の蒸発器7Lに冷媒を流した状態で、ダンパは50Rと、ダンパ52L、53Lを開にして冷蔵室側ファン9a、冷凍室側ファン9bを運転する。これにより、除霜を行う第二の蒸発器7Rにより、冷蔵室2を冷却しつつ、冷凍サイクルにより冷却する第一の蒸発器7Lにより、冷凍室60を冷却することができる。   The operation mode E is an operation used when the temperature of the freezer compartment 60 becomes high during the defrosting operation of the second evaporator 7R. In addition to the control of the operation mode D for defrosting the second evaporator 7R. Thus, the freezer compartment 60 is cooled by the first evaporator 7L. In a state where the compressor 24 is operated and the refrigerant flows into the first evaporator 7L by the three-way valve 201, the damper 50R, the dampers 52L and 53L are opened, and the refrigerator compartment side fan 9a and the freezer compartment side fan 9b are connected. drive. Thereby, the freezer compartment 60 can be cooled by the 1st evaporator 7L cooled by the refrigerating cycle, cooling the refrigerator compartment 2 by the 2nd evaporator 7R which performs defrosting.

[運転モードC、F]
次に、蒸発器7Lの除霜中に冷蔵室2の冷却不足を補う、運転モードCについて具体的に説明する。
運転モードCでは、第一の蒸発器7Lを除霜している最中に、運転モードA,Bに比して高い冷却能力で冷蔵室2を冷却する。第二の蒸発器7Rにより冷媒を蒸発させて冷凍室60を冷却しつつ、第一の蒸発器7Lの霜で冷却された空気により冷蔵室2を冷却する運転である。運転モードBと同様に、圧縮機24を運転し、三方弁201により第二の蒸発器7Rに冷媒を流した状態で、ダンパ50L、52R、53Rを開にして、冷蔵室側ファン9a、冷凍室側ファン9bを運転する。運転モードCでは、加えて、ダンパ50Rを開にする。
[Operation modes C, F]
Next, the operation mode C that compensates for insufficient cooling of the refrigerator compartment 2 during the defrosting of the evaporator 7L will be specifically described.
In the operation mode C, the refrigerator compartment 2 is cooled with a higher cooling capacity than the operation modes A and B while the first evaporator 7L is being defrosted. In this operation, the refrigerating chamber 2 is cooled by the frost of the first evaporator 7L while the freezing chamber 60 is cooled by evaporating the refrigerant by the second evaporator 7R. Similarly to the operation mode B, the compressor 24 is operated, and the refrigerant flows into the second evaporator 7R by the three-way valve 201, the dampers 50L, 52R, 53R are opened, the refrigerator-side fan 9a, the freezer The room side fan 9b is operated. In the operation mode C, in addition, the damper 50R is opened.

第一の蒸発器7Lで冷却された空気は冷蔵室2に送風され、第二の蒸発器7Rで冷却された空気は冷蔵室2と冷凍室60に送風される。冷蔵室2には、除霜中の第一の蒸発器7Lからの空気に加え、冷媒を流している第二の蒸発器7Rによって冷却された空気(例えば−25℃)も送風される。これにより、第一の蒸発器7Lを通過した空気の温度よりも、冷蔵室2に流入する空気の温度の方が低温になるので、冷蔵室2の冷却能力を高めることができる。ダンパ52L及び53Lは閉じているので、この間も、第一の蒸発器7Lには冷蔵室2の空気のみが流入する。ダンパ52L,53Lの両方を配しているため、冷凍室60に第一の蒸発器7Lの空気(例えば0℃以上)が供給されることを、何れか一方の場合より効果的に抑制できる。送風された空気は冷蔵室2内で熱交換し、第一の蒸発器7Lよりも高い温度で第一の蒸発器7Lに流入しやすいので、第一の蒸発器7Lを加熱することができ、運転モードA、Bと同様に第一の蒸発器7Lの除霜運転を行うことができる。   The air cooled by the first evaporator 7L is sent to the refrigerator compartment 2, and the air cooled by the second evaporator 7R is supplied to the refrigerator compartment 2 and the freezer compartment 60. In addition to the air from the first evaporator 7L during defrosting, air (for example, −25 ° C.) cooled by the second evaporator 7R flowing the refrigerant is also blown into the refrigerator compartment 2. Thereby, since the temperature of the air which flows into the refrigerator compartment 2 becomes lower than the temperature of the air which passed the 1st evaporator 7L, the cooling capacity of the refrigerator compartment 2 can be improved. Since the dampers 52L and 53L are closed, only the air in the refrigerator compartment 2 flows into the first evaporator 7L during this time. Since both the dampers 52L and 53L are arranged, the supply of air (for example, 0 ° C. or higher) from the first evaporator 7L to the freezer compartment 60 can be more effectively suppressed than in either case. The blown air exchanges heat in the refrigerator compartment 2 and easily flows into the first evaporator 7L at a temperature higher than that of the first evaporator 7L. Therefore, the first evaporator 7L can be heated, Similar to the operation modes A and B, the defrosting operation of the first evaporator 7L can be performed.

従って、運転モードCを設けることで、第一の蒸発器7Lの除霜運転を行いながら、冷却能力を高めた冷蔵室2の冷却運転を行うことができる。
なお、運転モードCの実行中は、例えば冷蔵室吐出口61付近の空気温度が第一の蒸発器7Lを通過した直後の空気の温度より低温になる。また、冷凍室60の温度上昇を或る程度許容できる場合は、ダンパ52L,53Lの一方のみを配しても良い。
Therefore, by providing the operation mode C, it is possible to perform the cooling operation of the refrigerator compartment 2 with the increased cooling capacity while performing the defrosting operation of the first evaporator 7L.
Note that during the execution of the operation mode C, for example, the air temperature in the vicinity of the refrigerator outlet 61 becomes lower than the temperature of the air immediately after passing through the first evaporator 7L. Moreover, when the temperature rise of the freezer compartment 60 can be tolerated to some extent, only one of the dampers 52L and 53L may be arranged.

第二の蒸発器7Rの除霜運転を行う場合も同様で、第二の蒸発器7Rを除霜している最中に、運転モードD、Eに高い冷却能力で冷蔵室2を冷却する運転モードFを実行できる。運転モードFでは、運転モードEの各制御に加え、ダンパ50Lを開にする。冷蔵室2には、除霜中の第二の蒸発器7Rを通過する空気と、冷媒を流している第一の蒸発器7Lによって冷却された空気が送風される。冷蔵室吐出口62から冷蔵室2に流入する空気の温度は、運転モードD及びEよりも低くなり、冷蔵室2の冷却能力を高めることができる。ダンパ52R,53Rの両方を配しているため、冷凍室60に第二の蒸発器7Rの空気(例えば0℃以上)が供給されることを、何れか一方の場合より効果的に抑制できる。冷凍室60の温度上昇を或る程度許容できる場合は、ダンパ52R,53Rの一方のみを配しても良い。   The same applies to the defrosting operation of the second evaporator 7R. During the defrosting of the second evaporator 7R, the operation of cooling the refrigerator compartment 2 with high cooling capacity in the operation modes D and E. Mode F can be executed. In the operation mode F, in addition to each control of the operation mode E, the damper 50L is opened. Air that passes through the second evaporator 7 </ b> R during defrosting and air that is cooled by the first evaporator 7 </ b> L that flows the refrigerant are blown into the refrigerator compartment 2. The temperature of the air flowing into the refrigerating room 2 from the refrigerating room discharge port 62 becomes lower than that of the operation modes D and E, and the cooling capacity of the refrigerating room 2 can be increased. Since both the dampers 52R and 53R are arranged, the supply of air (for example, 0 ° C. or higher) from the second evaporator 7R to the freezer compartment 60 can be more effectively suppressed than in either case. If the temperature increase of the freezer compartment 60 can be tolerated to some extent, only one of the dampers 52R and 53R may be provided.

以上のように、第一の蒸発器7L、または第二の蒸発器7Rの除霜運転は、運転モードA、B、D、Eに加え、除霜を行いながら高い冷却能力で冷蔵室2を冷却する運転モードC、Fを備えている。運転モードC、Fを備えることで、冷凍室60及び冷蔵室2へのそれぞれに対する空気分配量を高精度に制御可能で、冷蔵室2の空気を熱源に用いた省エネルギー性能が高い除霜運転を行いつつ、冷蔵室2(及び野菜室6)と冷凍室60の温度を適切に制御できる冷蔵庫を提供できる。   As described above, in the defrosting operation of the first evaporator 7L or the second evaporator 7R, in addition to the operation modes A, B, D, E, the refrigerating room 2 is set with high cooling capacity while performing defrosting. Operation modes C and F for cooling are provided. By providing operation modes C and F, the amount of air distributed to the freezer compartment 60 and the refrigerator compartment 2 can be controlled with high accuracy, and the defrosting operation with high energy saving performance using the air in the refrigerator compartment 2 as a heat source. While performing, the refrigerator which can control the temperature of the refrigerator compartment 2 (and vegetable compartment 6) and the freezer compartment 60 appropriately can be provided.

本実施例の冷蔵庫1は、冷蔵室側ファン9a及び冷凍室側ファン9bの配置位置を上記のようにしてあり、また、ファン9の風量をそれぞれ制御できるため、各貯蔵室への空気分配量を高精度に制御できる。すなわち、冷蔵室2の温度が上昇した場合、冷蔵室2に対して分配する空気量を増加させて効果的に冷却できる。なお、本実施例の冷蔵庫1は、第一の蒸発器7L、第二の蒸発器7Rそれぞれから冷凍室60に至るまでの風路抵抗が、第一の蒸発器7L、第二の蒸発器7Rそれぞれから冷蔵室2に至るまでの風路抵抗より小さい。   In the refrigerator 1 of this embodiment, the arrangement positions of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b are as described above, and the air volume of the fan 9 can be controlled, so the air distribution amount to each storage compartment Can be controlled with high accuracy. That is, when the temperature of the refrigerator compartment 2 rises, it can cool effectively by increasing the amount of air distributed to the refrigerator compartment 2. In addition, the refrigerator 1 of a present Example has the air path resistance from the 1st evaporator 7L and the 2nd evaporator 7R to the freezer compartment 60 respectively, and the 1st evaporator 7L and the 2nd evaporator 7R. It is smaller than the air path resistance from each to the refrigerator compartment 2.

[運転モードC、Fのファン制御]
図8a、図8bは、運転モードCにおける冷蔵室側ファン9a及び冷凍室側ファン9bの回転速度を変えた場合の空気の流れを説明する概略図である。図8aは冷蔵室側ファン9aを低速で運転し、冷凍室側ファン9bを高速で運転した場合、図8bは冷蔵室側ファン9aを高速で運転し、冷凍室側ファン9bを低速で運転した場合である。
[Fan control for operation modes C and F]
8a and 8b are schematic diagrams illustrating the air flow when the rotation speeds of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b in the operation mode C are changed. Fig. 8a shows that the refrigerator compartment fan 9a is operated at a low speed and the refrigerator compartment fan 9b is operated at a high speed. Fig. 8b shows that the refrigerator compartment fan 9a is operated at a high speed and the refrigerator compartment fan 9b is operated at a low speed. Is the case.

図7と同様に、図中の白色の矢印は除霜運転中の第一の蒸発器7Lからの空気の流れで、黒色の矢印は冷凍サイクルにより冷却している第二の蒸発器7Rからの空気の流れである。
冷蔵室側ファン9aは、風路11から風路14の間の風路中に設けている。また、冷凍室側ファン9bは、風路12から風路15の間の風路中に設けている。すなわち、冷蔵室側ファン9aは、ダンパ50より下流側に位置し、冷凍室側ファン9bは、ダンパ52より下流側に位置している。冷蔵室2側への送風を冷蔵室側ファン9aで行い、冷凍室60への送風を冷凍室側ファン9bで行う構成とした。これにより、冷蔵室側ファン9aの回転速度を速くすると冷蔵室2側への風量を増やすことができ、冷凍室側ファン9bの回転速度を速くすると冷凍室60側への風量を増やすことができる。従って、第一の蒸発器7Lの除霜を行っている間に、冷蔵室側ファン9aと冷凍室側ファン9bの回転速度を調整することで、冷凍室60の温度上昇を抑制、又は温度を低下させて、冷凍室60の温度を適切な範囲に制御しつつ、冷却能力を高めた冷蔵室2の冷却運転を行うこともできる。
具体的には、図8aに示した冷蔵室側ファン9aを低速運転、冷凍室側ファン9bを高速運転にした場合と比べ、図8bに示した冷蔵室側ファン9aを高速運転、冷凍室側ファン9bを低速運転にした場合の方が、冷蔵室2への風量を多く、冷凍室60への風量を少なくすることができる。従って、第一の蒸発器7Lが除霜中でも、冷蔵室2と冷凍室60への風量の分配を制御できるので、冷蔵室2と冷凍室60の温度を適切に制御することが可能となる。
As in FIG. 7, the white arrow in the figure is the air flow from the first evaporator 7L during the defrosting operation, and the black arrow is from the second evaporator 7R cooled by the refrigeration cycle. It is the flow of air.
The refrigerator compartment side fan 9 a is provided in the air passage between the air passage 11 and the air passage 14. In addition, the freezer compartment fan 9 b is provided in the air path between the air path 12 and the air path 15. That is, the refrigerator compartment side fan 9 a is located on the downstream side of the damper 50, and the freezer compartment side fan 9 b is located on the downstream side of the damper 52. It was set as the structure which performs ventilation to the refrigerator compartment 2 side with the refrigerator compartment side fan 9a, and performs ventilation to the freezer compartment 60 with the freezer compartment side fan 9b. Thus, if the rotational speed of the refrigerator compartment side fan 9a is increased, the air volume to the refrigerator compartment 2 side can be increased, and if the rotational speed of the freezer compartment fan 9b is increased, the air volume to the freezer compartment 60 side can be increased. . Therefore, during the defrosting of the first evaporator 7L, the temperature increase of the freezer compartment 60 is suppressed or the temperature is adjusted by adjusting the rotational speeds of the refrigerator compartment fan 9a and the freezer compartment fan 9b. The cooling operation of the refrigerating room 2 with an increased cooling capacity can be performed while reducing the temperature of the freezing room 60 to an appropriate range.
Specifically, compared with the case where the refrigerator compartment side fan 9a shown in FIG. 8a is operated at a low speed and the refrigerator compartment fan 9b is operated at a high speed, the refrigerator compartment side fan 9a shown in FIG. When the fan 9b is operated at a low speed, the air volume to the refrigerator compartment 2 can be increased and the air volume to the freezer compartment 60 can be reduced. Therefore, since the distribution of the air volume to the refrigerator compartment 2 and the freezer compartment 60 can be controlled even when the first evaporator 7L is defrosted, the temperatures of the refrigerator compartment 2 and the refrigerator compartment 60 can be appropriately controlled.

また、第二の蒸発器7Rの除霜運転である運転モードFでも同様の制御が行える。すなわち、冷蔵室側ファン9aを低速運転、冷凍室側ファン9bを高速運転にした場合と比べ、冷蔵室側ファン9aを高速運転、冷凍室側ファン9bを低速運転にした場合の方が、冷蔵室2への風量を多く、冷凍室60への風量を少なくできる。従って、第二の蒸発器7Rの除霜運転である運転モードFにおいても、冷蔵室2と冷凍室60の温度を適切に制御することが可能である。   The same control can be performed in the operation mode F which is the defrosting operation of the second evaporator 7R. In other words, the refrigeration room side fan 9a is operated at high speed and the freezer room side fan 9b is operated at low speed, and the freezer room side fan 9b is operated at low speed as compared with the case where the refrigerator room side fan 9a is operated at low speed and the freezer room side fan 9b is operated at high speed. The airflow to the chamber 2 can be increased, and the airflow to the freezer compartment 60 can be reduced. Therefore, even in the operation mode F that is the defrosting operation of the second evaporator 7R, it is possible to appropriately control the temperatures of the refrigerator compartment 2 and the freezer compartment 60.

なお、本実施例では、冷蔵室側ファン9aと冷凍室側ファン9bの何れも回転速度が変更可能なファンにしているが、何れか一方のみを回転速度が変更可能なファンであっても同様の制御が行える。例えば、冷蔵室側ファン9aが回転速度を変えられるファンとした場合、冷凍室ファン9bの回転速度は一定であるが、冷蔵室側ファン9aの回転速度を上げると冷蔵室2への風量が増え、それに伴い冷凍室60の風量を減らすことができる。反対に冷蔵室側ファン9aの回転速度を下げると、冷蔵室2への風量が減り、それに伴い冷凍室60の風量を増やすことができる。但し、本実施例のように、冷蔵室側ファン9aと冷凍室側ファン9bの両方のファンを回転速度が変更可能にすれば、冷蔵室2と冷凍室60の風量制御を細かくできるようになる。   In the present embodiment, both the refrigerator compartment side fan 9a and the freezer compartment side fan 9b are fans whose rotation speed can be changed, but only one of them can be a fan whose rotation speed can be changed. Can be controlled. For example, when the refrigerating room side fan 9a is a fan whose rotation speed can be changed, the rotation speed of the freezing room fan 9b is constant, but if the rotation speed of the refrigerating room side fan 9a is increased, the air volume to the refrigerating room 2 increases. Accordingly, the air volume in the freezer compartment 60 can be reduced. On the contrary, if the rotational speed of the refrigerator compartment side fan 9a is lowered, the air volume to the refrigerator compartment 2 is reduced, and accordingly, the air volume of the freezer compartment 60 can be increased. However, if the rotational speeds of both the refrigerator compartment side fan 9a and the freezer compartment side fan 9b can be changed as in this embodiment, the air volume control of the refrigerator compartment 2 and the refrigerator compartment 60 can be finely controlled. .

なお、例えば冷蔵室吐出口61及び冷凍室吐出口65の風速を1日測定し、ファン初動時を除いても、同様の条件(例えば冷蔵室2と冷凍室60の両方に送風している状態)でありながら風速が異なる場合があるとき、冷蔵室側ファン9a、または冷凍室ファン9bの何れかの回転速度が変更可能と判断できる。また、冷蔵室側ファン9a、及び冷凍室ファン9bの消費電力を1日測定し、同様の条件でありながら、冷蔵室側ファン9a、及び冷凍室ファン9bで消費する電力が異なる場合があるときも同様に判断できる。   It should be noted that, for example, the wind speed of the refrigerator compartment outlet 61 and the freezer compartment outlet 65 is measured for one day, and the same conditions (for example, the state where air is blown to both the refrigerator compartment 2 and the freezer compartment 60 except when the fan is initially activated) ), However, it can be determined that the rotational speed of either the refrigerator compartment side fan 9a or the freezer compartment fan 9b can be changed. Further, when the power consumption of the refrigerator compartment fan 9a and the freezer compartment fan 9b is measured for one day, and the power consumed by the refrigerator compartment fan 9a and the freezer compartment fan 9b may be different under the same conditions. Can be judged similarly.

以上のように、第一の蒸発器7L及び第二の蒸発器7Rにより冷却した空気を、冷蔵室2側には冷蔵室側ファン9aによって送風し、冷凍室60側には冷凍室側ファン9bによって送風する構成において、冷蔵室側ファン9aと冷凍室側ファン9bの少なくとも一方のファンを回転速度が変更可能なファンとする。これにより、冷凍室60及び冷蔵室2へのそれぞれに対する空気分配量をさらに高精度に制御可能になる。冷蔵室2の空気を熱源に用いた省エネルギー性能が高い除霜運転を行い、除霜運転中であっても、冷凍室60の温度を制御しつつ、高い冷却能力で冷蔵室2を冷却することができ、冷蔵室2(及び野菜室6)と冷凍室60の温度を適切に制御する冷蔵庫を提供することができる。   As described above, the air cooled by the first evaporator 7L and the second evaporator 7R is blown by the refrigerator compartment side fan 9a on the refrigerator compartment 2 side, and the refrigerator compartment fan 9b on the refrigerator compartment 60 side. In this configuration, at least one of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b is a fan whose rotation speed can be changed. Thereby, the air distribution amount to each of the freezer compartment 60 and the refrigerator compartment 2 can be controlled with higher accuracy. Performing defrosting operation with high energy saving performance using the air in the refrigerator compartment 2 as a heat source, and cooling the refrigerator compartment 2 with high cooling capacity while controlling the temperature of the freezer compartment 60 even during the defrosting operation. The refrigerator which controls the temperature of the refrigerator compartment 2 (and vegetable compartment 6) and the freezer compartment 60 appropriately can be provided.

以上に加え、実施例1の冷蔵庫1では、図6に示した風路構成を利用して、冷蔵室側ファン9a及び冷凍室側ファン9bの省エネルギー性能に配慮したことについて説明する。   In addition to the above, in the refrigerator 1 of Example 1, it will be described that the energy saving performance of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b is taken into consideration using the air passage configuration shown in FIG.

冷蔵庫では、冷蔵室2に比べて冷凍室60の方が低温で庫外からの熱の侵入が多いことから、冷凍室60の方が冷却し易いよう、冷凍室60への風量を通常多くする。すなわち、冷凍室60側の風路の損失係数を通常優先して小さくする。損失係数を小さくすると、同一風量において生じる圧力損失が小さくなる。例えば、本実施例の冷蔵庫1では、第一の蒸発器7Lと第二の蒸発器7Rを設置している第一の蒸発器室8L、第二の蒸発器室8Rを冷凍室60の背面に設け、冷凍室60側の風路を比較的短くしている。また、冷凍室吐出口65は、冷蔵室吐出口61よりも開口面積を大きくしている(図3参照)。これらにより、冷蔵室2側の風路に比べて冷凍室60側の風路の方が、損失係数が小さくなるようにしている。従って、冷蔵室2側の風路と冷凍室60側の風路とで、同一風量において生じる圧力損失が異なるので、それぞれの風路に応じてファンを選定することが効果的である。具体的には、冷凍室60側の風路に送風する冷凍室側ファン9bに比べ、冷蔵室2側の風路に送風する冷蔵室側ファン9aの方が、同じ回転速度、同じ風量において、圧力が大きくなるファンを用いるとよい。これにより、冷蔵室2へ送風する場合も冷凍室60に送風する場合も、ファンの効率が比較的高い状態で送風することができ、高い省エネルギー性能を得られる。   In the refrigerator, since the freezer compartment 60 has a lower temperature and more heat enters from the outside of the refrigerator compartment 2 than the refrigerator compartment 2, the amount of air to the freezer compartment 60 is usually increased so that the freezer compartment 60 can be cooled more easily. . In other words, the loss coefficient of the air path on the freezer compartment 60 side is usually reduced with priority. If the loss factor is reduced, the pressure loss that occurs at the same air volume is reduced. For example, in the refrigerator 1 of the present embodiment, the first evaporator chamber 8L and the second evaporator chamber 8R in which the first evaporator 7L and the second evaporator 7R are installed are placed on the back of the freezer compartment 60. The air path on the freezer compartment 60 side is relatively short. The freezer compartment discharge port 65 has an opening area larger than that of the refrigerator compartment discharge port 61 (see FIG. 3). As a result, the loss factor of the air passage on the freezer compartment 60 side is made smaller than the air passage on the refrigerator compartment 2 side. Therefore, since the pressure loss generated in the same air volume differs between the air passage on the refrigerator compartment 2 side and the air passage on the freezer compartment 60 side, it is effective to select a fan according to each air passage. Specifically, in comparison with the freezer compartment fan 9b that sends air to the air passage on the freezer compartment 60 side, the refrigerating room fan 9a that sends air to the air passage on the refrigerator compartment 2 side has the same rotational speed and the same air volume. A fan that increases pressure may be used. Thereby, even when it blows to the refrigerating room 2 or when it blows to the freezer compartment 60, it can blow in the state where the efficiency of a fan is comparatively high, and can obtain high energy-saving performance.

ここで、本実施例の冷蔵庫1では、冷蔵室側ファン9aに遠心ファンを用い、冷凍室側ファン9bにプロペラファンを用いている。プロペラファンに比べ、遠心ファンの方が同じ回転速度、同じ風量において、圧力が大きくなり易く、冷蔵室2側の風路と冷凍室60側の風路の何れに送風する場合も比較的高い効率で送風することができる。なお、これは遠心ファンとプロペラファンに限るものではなく、風路に応じてファンを選択すればよいので、例えば冷蔵室側ファン9aに、冷凍室側ファン9bよりも小さなプロペラファンを用いることでも同様の効果が得られる。   Here, in the refrigerator 1 of the present embodiment, a centrifugal fan is used for the refrigerator compartment side fan 9a, and a propeller fan is used for the freezer compartment side fan 9b. Compared with a propeller fan, a centrifugal fan tends to have a large pressure at the same rotational speed and the same air volume, and has a relatively high efficiency when air is blown into either the air passage on the refrigerator compartment 2 side or the air passage on the freezer compartment 60 side. It can be blown with. Note that this is not limited to the centrifugal fan and the propeller fan, and the fan may be selected according to the air path. For example, a propeller fan smaller than the freezer compartment fan 9b may be used for the refrigerator compartment fan 9a. Similar effects can be obtained.

また、本実施例では、蒸発器を2つ有する冷蔵庫について説明したが、蒸発器を1つ有する冷蔵庫についても同様の効果を得られる。すなわち、蒸発器と冷凍室の吐出口の間に設けた冷凍室ダンパより冷凍室側に冷凍室側ファンを設け、及び/又は蒸発器と冷蔵室の吐出口の間に設けた冷蔵室ダンパより冷蔵室側に冷蔵室側ファンを設ければよい。   Moreover, although the present Example demonstrated the refrigerator which has two evaporators, the same effect is acquired also about the refrigerator which has one evaporator. That is, a freezer compartment side fan is provided on the freezer compartment side from the freezer damper provided between the evaporator and the freezer compartment outlet, and / or a refrigerator compartment damper provided between the evaporator and the refrigerator outlet. What is necessary is just to provide the refrigerator compartment side fan in the refrigerator compartment side.

以下、本発明の実施例2を説明する。本実施例は実施例1の冷蔵室2、野菜室6、冷凍室60の配置を変更したものである。本実施例の構成は、以下の点を除いて実施例1と同様にできる。   Embodiment 2 of the present invention will be described below. In the present embodiment, the arrangement of the refrigerator compartment 2, the vegetable compartment 6, and the freezer compartment 60 of the first embodiment is changed. The configuration of the present embodiment can be the same as that of the first embodiment except for the following points.

図9は実施例2に関する冷蔵庫1の正面図である。右側に冷凍室60を配し、左側の上部に冷蔵室2、下部に野菜室6を配している。冷蔵室2と野菜室6には天井面から見て右回りに回動する冷蔵室扉2a、野菜室扉6aをそれぞれ設け、冷凍室60には天井面から見て左回りに回動する冷凍室扉60aを設けている。   FIG. 9 is a front view of the refrigerator 1 according to the second embodiment. A freezer room 60 is arranged on the right side, a refrigerator room 2 is arranged on the upper left side, and a vegetable room 6 is arranged on the lower side. The refrigerator compartment 2 and the vegetable compartment 6 are respectively provided with a refrigerator compartment door 2a and a vegetable compartment door 6a that rotate clockwise when viewed from the ceiling surface, and the freezer compartment 60 that is rotated counterclockwise when viewed from the ceiling surface. A chamber door 60a is provided.

図10は実施例2に関する風路の正面図である。実施例2では風路構成部材81aと81bの代わりに風路構成部材81cを設け、風路12a、12bは、風路構成部材81cと断熱箱体10により構成されている。各部材の配置や形状は異なるが、模式的に表すと、風路構成は実施例1と同様の図6になる。   FIG. 10 is a front view of an air passage relating to the second embodiment. In the second embodiment, an air path constituent member 81c is provided instead of the air path constituent members 81a and 81b, and the air paths 12a and 12b are configured by the air path constituent member 81c and the heat insulating box 10. Although the arrangement and shape of each member are different, when schematically represented, the air path configuration is the same as that of the first embodiment shown in FIG.

例えば、実施例2の冷蔵庫においても、ダンパ50Lを開とし、冷蔵室側ファン9aを運転すれば、第一の蒸発器7Lを通過した空気は、順に風路8Lb、ダンパ50L、風路11a、冷蔵室側ファン9a、風路11b、冷蔵室吐出口61、冷蔵室2、冷蔵室戻り口62、風路13、野菜室吐出口63、野菜室6、野菜室戻り口64、風路14、風路8Laと流れ、再び第一の蒸発器7Lに戻される。すなわち、実施例1と同様に、第一の蒸発器7Lと冷蔵室2及び野菜室6の間を空気が循環する。従って、ダンパ50Lを開にし、冷蔵室側ファン9aを運転することで、実施例1と同様に、冷蔵室2及び野菜室6の空気を用いた第一の蒸発器7Lの除霜運転を行うことができる。   For example, also in the refrigerator of Example 2, if the damper 50L is opened and the refrigerator compartment side fan 9a is operated, the air that has passed through the first evaporator 7L is, in order, the air path 8Lb, the damper 50L, the air path 11a, Refrigerating room side fan 9a, air passage 11b, refrigerating room outlet 61, refrigerating room 2, refrigerating room return port 62, air passage 13, vegetable room outlet 63, vegetable room 6, vegetable room return port 64, air path 14, It flows through the air path 8La and is returned to the first evaporator 7L again. That is, as in the first embodiment, air circulates between the first evaporator 7L, the refrigerator compartment 2, and the vegetable compartment 6. Accordingly, by opening the damper 50L and operating the refrigerator compartment side fan 9a, the defrosting operation of the first evaporator 7L using the air in the refrigerator compartment 2 and the vegetable compartment 6 is performed as in the first embodiment. be able to.

冷凍室60も同様で、例えば冷凍室側ファン9bを運転している状態で、ダンパ52R、53Rを開にすれば、第二の蒸発器7Rを通過した空気は、順に風路8Rb、ダンパ52R、風路11a、冷凍室側ファン9b、風路11b、冷凍室吐出口65、冷凍室60、冷凍室戻り口66、ダンパ53R、風路8Raと流れ、再び第二の蒸発器7Rに戻される。すなわち、実施例1と同様に、第二の蒸発器7Rと冷凍室60の間を空気が循環する。従って、実施例1と同様に、第一の蒸発器7Lが除霜中においても、第二の蒸発器7Rによる冷凍室60の冷却運転を行うことができる。   The same applies to the freezer compartment 60. For example, if the dampers 52R and 53R are opened while the freezer compartment fan 9b is in operation, the air that has passed through the second evaporator 7R flows in the order of the air path 8Rb and the damper 52R. , Flows through the air passage 11a, the freezer compartment side fan 9b, the air passage 11b, the freezer compartment discharge port 65, the freezer compartment 60, the freezer compartment return port 66, the damper 53R, and the air passage 8Ra, and is returned to the second evaporator 7R again. . That is, as in the first embodiment, air circulates between the second evaporator 7R and the freezer compartment 60. Therefore, similarly to Example 1, the cooling operation of the freezer compartment 60 by the second evaporator 7R can be performed even when the first evaporator 7L is defrosting.

同様に、冷蔵室側ファン9aを運転している状態でダンパ50Rを開にすれば、第二の蒸発器7Rと冷蔵室2及び野菜室6の間を空気が循環する。冷凍室側ファン9bを運転している状態でダンパ52L、53Lを開にすれば、第一の蒸発器7Lと、冷凍室60の間を空気が循環する。すなわち、実施例1と同様の制御が可能である。   Similarly, if the damper 50R is opened while the refrigerator compartment fan 9a is operating, air circulates between the second evaporator 7R, the refrigerator compartment 2, and the vegetable compartment 6. If the dampers 52L and 53L are opened while the freezer compartment fan 9b is in operation, air circulates between the first evaporator 7L and the freezer compartment 60. That is, the same control as in the first embodiment is possible.

以上、図9、図10に示すように、各貯蔵室の配置が実施例1と異なる場合であっても、図6に示す風路構成にすることで、冷凍室60及び冷蔵室2へのそれぞれに対する空気分配量を高精度に制御可能であり、冷蔵室2の空気を熱源に用いた省エネルギー性能が高い除霜運転を行い、除霜運転中であっても冷蔵室2(及び野菜室6)と冷凍室60の温度を適切に制御できる冷蔵庫を提供できる。   As described above, as shown in FIGS. 9 and 10, even if the arrangement of the storage chambers is different from that in the first embodiment, the air channel configuration shown in FIG. The amount of air distributed to each can be controlled with high accuracy, and the defrosting operation is performed with high energy saving performance using the air in the refrigerator compartment 2 as a heat source. Even during the defrosting operation, the refrigerator compartment 2 (and the vegetable compartment 6). And a refrigerator capable of appropriately controlling the temperature of the freezer compartment 60.

以下、本発明の実施例3を説明する。本実施例の構成は、以下の点を除いて実施例1又は2と同様にできる。   Embodiment 3 of the present invention will be described below. The configuration of this embodiment can be the same as that of Embodiment 1 or 2 except for the following points.

実施例3は、実施例1及び実施例2に対し、冷蔵室側ファン9a、冷凍室側ファン9bの位置を変えたものである。図11は、実施例3に関する風路構成を示す概略図である。   The third embodiment is different from the first and second embodiments in the positions of the refrigerator compartment side fan 9a and the freezer compartment side fan 9b. FIG. 11 is a schematic diagram illustrating an air path configuration according to the third embodiment.

実施例1では、冷蔵室ファン9aを、ダンパ50L、50Rから冷蔵室2に至る風路11内に設けているのに対し、本実施例では、野菜室6から冷蔵温度帯の貯蔵室の戻り口と空気が第一の蒸発器7L及び第二の蒸発器7Rに向かって分流する領域に至るまでの風路である風路14内に設けている。また、実施例1では、冷凍室ファン9bが、ダンパ52L、52Rから冷凍室60に至る風路12内に設けているのに対し、本実施例では、冷凍室60とダンパ53L、53Rの間に設けられている。なお、冷凍室ファン9bを冷凍室60内に設けてもよい。   In the first embodiment, the refrigerator compartment fan 9a is provided in the air passage 11 from the dampers 50L and 50R to the refrigerator compartment 2, whereas in this embodiment, the vegetable compartment 6 returns from the storage compartment in the refrigerator temperature zone. It is provided in the air path 14 which is an air path to the area | region where an opening and air branch to the 1st evaporator 7L and the 2nd evaporator 7R. In the first embodiment, the freezer compartment fan 9b is provided in the air passage 12 from the dampers 52L and 52R to the freezer compartment 60, whereas in this embodiment, the freezer compartment fan 9b is provided between the freezer compartment 60 and the dampers 53L and 53R. Is provided. In addition, you may provide the freezer compartment fan 9b in the freezer compartment 60. FIG.

冷蔵室側ファン9aと冷凍室側ファン9bの位置は異なるが、図7、表1などで示した実施例1と同様の制御が可能である。ダンパ50Lを開にし、冷蔵室側ファン9aを運転すれば、第一の蒸発器7Lと冷蔵室2の間を空気が循環する。ダンパ50Rを開にし、冷蔵室側ファン9aを運転すれば、第二の蒸発器7Rと冷蔵室2の間を空気が循環する。ダンパ52L、53Lを開にし、冷凍室側ファン9bを運転すれば、第一の蒸発器7Lと冷凍室60の間を空気が循環する。ダンパ52R、53Rを開にし、冷凍室側ファン9bを運転すれば、第二の蒸発器7Rと冷凍室60の間を空気が循環する。   Although the positions of the refrigerating room side fan 9a and the freezing room side fan 9b are different, the same control as that of the first embodiment shown in FIG. When the damper 50L is opened and the refrigerator compartment side fan 9a is operated, air circulates between the first evaporator 7L and the refrigerator compartment 2. If the damper 50R is opened and the refrigerator compartment side fan 9a is operated, air circulates between the second evaporator 7R and the refrigerator compartment 2. If the dampers 52L and 53L are opened and the freezer compartment fan 9b is operated, air circulates between the first evaporator 7L and the freezer compartment 60. If the dampers 52R and 53R are opened and the freezer compartment fan 9b is operated, air circulates between the second evaporator 7R and the freezer compartment 60.

また、実施例3においても、冷蔵室側ファン9aは、風路11から風路14の間の冷蔵温度流通風路中に設けられ、冷凍室側ファン9bは、風路12から風路15の間の冷凍温度流通風路中に設けられている。すなわち、冷蔵室2側への送風を冷蔵室側ファン9aで行い、冷凍室60側への送風を冷凍室側ファン9bで行う構成となっている。従って、冷蔵室側ファン9aの回転速度を速くすると冷蔵室2側への風量のみが増加し、冷凍室側ファン9bの回転速度を速くすると冷凍室60側への風量のみが増加する。   Also in the third embodiment, the refrigerator compartment side fan 9a is provided in the refrigeration temperature circulation air passage between the air passage 11 and the air passage 14, and the freezer compartment fan 9b is provided between the air passage 12 and the air passage 15. It is provided in the freezing temperature circulation air passage between. That is, it is configured such that air to the refrigerator compartment 2 side is blown by the refrigerator compartment side fan 9a and air to the freezer compartment 60 side is blown by the refrigerator compartment side fan 9b. Accordingly, if the rotational speed of the refrigerator compartment side fan 9a is increased, only the air volume to the refrigerator compartment 2 side is increased, and if the rotational speed of the freezer compartment side fan 9b is increased, only the air volume to the freezer compartment 60 side is increased.

これにより、実施例1と同様に、図7、表1の各運転モードの実施に加え、図8a、図8bを用いて説明した運転モードCの風量制御が可能である。   Thus, in the same manner as in the first embodiment, in addition to the implementation of the respective operation modes in FIG. 7 and Table 1, the air volume control in the operation mode C described with reference to FIGS. 8a and 8b is possible.

例えば、冷蔵室側ファン9aを低速運転、冷凍室側ファン9bを高速運転にした場合は、図8aと同様に冷蔵室2への風量が少なく、冷凍室60への風量が多くなり、冷蔵室側ファン9aを高速運転、冷凍室側ファン9bを低速運転にした場合は、図8bと同様に冷蔵室2への風量が多く、冷凍室60への風量が少なくなる。   For example, when the refrigerating room side fan 9a is operated at a low speed and the freezing room side fan 9b is operated at a high speed, the air volume to the refrigerating room 2 is small and the air volume to the freezing room 60 is increased as in FIG. When the side fan 9a is operated at a high speed and the freezer compartment fan 9b is operated at a low speed, the air volume to the refrigerator compartment 2 is large and the air volume to the freezer compartment 60 is reduced as in FIG. 8b.

以上のように、実施例3の冷蔵庫においても、冷凍室60及び冷蔵室2へのそれぞれに対する空気分配量を高精度に制御可能であり、冷蔵室2の空気を熱源に用いた省エネルギー性能が高い除霜運転を行い、除霜運転中であっても冷蔵室2(及び野菜室6)と冷凍室60の温度を適切に制御することができる。   As mentioned above, also in the refrigerator of Example 3, the amount of air distribution to each of the freezer compartment 60 and the refrigerator compartment 2 can be controlled with high accuracy, and the energy saving performance using the air of the refrigerator compartment 2 as a heat source is high. The defrosting operation is performed, and the temperatures of the refrigerator compartment 2 (and the vegetable compartment 6) and the freezer compartment 60 can be appropriately controlled even during the defrosting operation.

以下、本発明の実施例4を説明する。本実施例の構成は、以下の点を除いて実施例1乃至3何れかと同様にできる。   Embodiment 4 of the present invention will be described below. The configuration of this embodiment can be the same as that of any of Embodiments 1 to 3 except for the following points.

実施例4は、冷蔵室側の送風を制御するツインダンパの配設位置を変えたものである。図12は実施例4に関する風路構成を示す概略図である。   Example 4 changes the arrangement | positioning position of the twin damper which controls ventilation by the side of a refrigerator compartment. FIG. 12 is a schematic diagram illustrating an air path configuration relating to the fourth embodiment.

図6に示す実施例1において示した、風路11aと風路8Rb、及び風路11aと風路8Lb間の送風を制御するツインダンパ50の代わりに、実施例4では、風路14と風路8Ra、及び風路14と風路8Laの送風を制御するツインダンパ51を設けている。ツインダンパ51は、野菜室6から第一の蒸発器7Lへの空気の流入を制御する第三のダンパであるダンパ51Lと、野菜室6から第二の蒸発器7Rへの空気の流入を制御する第四のダンパであるダンパ51Rを設けている。   Instead of the twin damper 50 for controlling the air flow between the air passage 11a and the air passage 8Rb and between the air passage 11a and the air passage 8Lb shown in the embodiment 1 shown in FIG. A twin damper 51 that controls the air flow of the air path 8Ra and the air path 14 and the air path 8La is provided. The twin damper 51 controls the damper 51L, which is a third damper that controls the inflow of air from the vegetable compartment 6 to the first evaporator 7L, and the inflow of air from the vegetable compartment 6 to the second evaporator 7R. A damper 51R which is a fourth damper is provided.

冷蔵室側の送風を制御するツインダンパの位置は異なるが、図7、表1で示した実施例1と同様の制御が可能である。ダンパ51Lを開にし、冷蔵室側ファン9aを運転すれば、冷蔵室2(野菜室6を含む)の空気が風路14から第一の蒸発器7Lに流れ、第一の蒸発器7Lから風路11を介して冷蔵室2に流れる。すなわち、実施例1でダンパ50Lを開とした場合と同様に、第一の蒸発器7Lと冷蔵室2の間を空気が循環する。ここで、質量保存の法則から、流入する空気の量と流出する空気の量は等しくなるので、ダンパ51Rを閉とし、第二の蒸発器7Rへの空気の流入を抑制すれば、第二の蒸発器7Rから冷蔵室2側への空気の流出も抑制される。すなわち、ダンパ51Rを閉にすれば、実施例1でダンパ50Rを閉にした場合と同様に、第二の蒸発器7Rと冷蔵室2の間の空気の循環を抑制できる。同様に、ダンパ51Rを開にし、冷蔵室側ファン9aを運転すれば、実施例1でダンパ50Rを開にした場合と同様に、第二の蒸発器7Rと冷蔵室2の間を空気が循環する。また、ダンパ51Lを閉にすれば、実施例1でダンパ50Lを閉にした場合と同様に、第一の蒸発器7Lと冷蔵室2との間の空気の循環を抑制できる。冷凍室60側の構成は実施例1と同様である。   Although the position of the twin damper that controls the ventilation in the refrigerator compartment is different, the same control as that of the first embodiment shown in FIG. If the damper 51L is opened and the refrigerator compartment side fan 9a is operated, the air in the refrigerator compartment 2 (including the vegetable compartment 6) flows from the air passage 14 to the first evaporator 7L, and the air flows from the first evaporator 7L. It flows into the refrigerator compartment 2 through the path 11. That is, air circulates between the first evaporator 7L and the refrigerator compartment 2 as in the case where the damper 50L is opened in the first embodiment. Here, from the law of conservation of mass, the amount of air flowing in is equal to the amount of air flowing out. Therefore, if the damper 51R is closed and the inflow of air into the second evaporator 7R is suppressed, the second The outflow of air from the evaporator 7R to the refrigerator compartment 2 side is also suppressed. That is, if the damper 51R is closed, the air circulation between the second evaporator 7R and the refrigerator compartment 2 can be suppressed as in the case where the damper 50R is closed in the first embodiment. Similarly, if the damper 51R is opened and the refrigerator-side fan 9a is operated, the air circulates between the second evaporator 7R and the refrigerator compartment 2 as in the case where the damper 50R is opened in the first embodiment. To do. Further, if the damper 51L is closed, the air circulation between the first evaporator 7L and the refrigerator compartment 2 can be suppressed as in the case where the damper 50L is closed in the first embodiment. The configuration on the freezer compartment 60 side is the same as that of the first embodiment.

以上のように、実施例4の冷蔵庫においても、実施例1と同様の制御ができるので、実施例1と同様の効果を得ることができる。すなわち、冷凍室60及び冷蔵室2へのそれぞれに対する空気分配量を高精度に制御可能であり、冷蔵室2の空気を熱源に用いた省エネルギー性能が高い除霜運転を行い、除霜運転中であっても冷蔵室2(及び野菜室6)と冷凍室60の温度を適切に制御することができる。   As described above, also in the refrigerator according to the fourth embodiment, since the same control as that of the first embodiment can be performed, the same effect as that of the first embodiment can be obtained. That is, the amount of air distribution to the freezer compartment 60 and the refrigerator compartment 2 can be controlled with high accuracy, and the defrosting operation with high energy saving performance using the air in the refrigerator compartment 2 as a heat source is performed. Even if it exists, the temperature of the refrigerator compartment 2 (and vegetable compartment 6) and the freezer compartment 60 can be controlled appropriately.

なお、実施例1のように、各蒸発器7から冷蔵室2への風路中にダンパ50R、50Lを設けると、例えば冷蔵室2は十分に低温で、冷凍室60のみを冷却する際に、各蒸発器7Lから冷蔵室2への空気の流入をより効果的に抑制でき、冷蔵室2の温度制御が行い易い点で好ましい。また、実施例4のように、冷蔵室2(野菜室6)各蒸発器7への風路中にダンパ51R、51Lを設けると、例えば運転モードBにおいて、冷蔵室2の空気が第二の蒸発器7Rへ流入することをより効果的に抑えられる、すなわち、除霜に用いる冷蔵室2からの暖かな空気が第一の蒸発器7Lのみに流入し易くなる点で好ましい。   If the dampers 50R and 50L are provided in the air path from each evaporator 7 to the refrigerating chamber 2 as in the first embodiment, for example, the refrigerating chamber 2 is sufficiently low in temperature and only the freezing chamber 60 is cooled. The inflow of air from each evaporator 7L to the refrigerator compartment 2 can be more effectively suppressed, and this is preferable in that the temperature of the refrigerator compartment 2 can be easily controlled. Moreover, when the dampers 51R and 51L are provided in the air path to each evaporator 7 in the refrigerator compartment 2 (vegetable compartment 6) as in the fourth embodiment, for example, in the operation mode B, the air in the refrigerator compartment 2 is the second air. It is preferable in that it can be more effectively suppressed from flowing into the evaporator 7R, that is, warm air from the refrigerator compartment 2 used for defrosting can easily flow into only the first evaporator 7L.

以下、本発明の実施例5を説明する。本実施例の構成は、以下の点を除いて実施例1乃至4何れかと同様にできる。   Embodiment 5 of the present invention will be described below. The configuration of this embodiment can be the same as that of any of Embodiments 1 to 4 except for the following points.

実施例5は、実施例1及び2に対し、実施例4で示したツインダンパ51を追加したものである。図13は実施例5に関する風路構成を示す概略図である。   In the fifth embodiment, the twin damper 51 shown in the fourth embodiment is added to the first and second embodiments. FIG. 13 is a schematic diagram showing an air passage configuration relating to the fifth embodiment.

実施例1と比較すると、ダンパ50Lに加え、ダンパ51Lを開とすることで、第一の蒸発器7Lと冷蔵室2の間を空気が循環する。また、ダンパ50Rに加え、ダンパ51Rを開とすることで、第二の蒸発器7Rと冷蔵室2の間を空気が循環する。冷凍室60側の構成は実施例1と同様である。   Compared to the first embodiment, air is circulated between the first evaporator 7L and the refrigerator compartment 2 by opening the damper 51L in addition to the damper 50L. Moreover, air is circulated between the second evaporator 7R and the refrigerator compartment 2 by opening the damper 51R in addition to the damper 50R. The configuration on the freezer compartment 60 side is the same as that of the first embodiment.

以上のように、実施例5の冷蔵庫においても、実施例1と同様の制御ができるので、実施例1と同様の効果を得ることができる。すなわち、冷凍室60及び冷蔵室2へのそれぞれに対する空気分配量を高精度に制御可能であり、冷蔵室2の空気を熱源に用いた省エネルギー性能が高い除霜運転を行い、除霜運転中であっても冷蔵室2(及び野菜室6)と冷凍室60の温度を適切に制御することができる。   As described above, also in the refrigerator of the fifth embodiment, the same control as that of the first embodiment can be performed, so that the same effect as that of the first embodiment can be obtained. That is, the amount of air distribution to the freezer compartment 60 and the refrigerator compartment 2 can be controlled with high accuracy, and the defrosting operation with high energy saving performance using the air in the refrigerator compartment 2 as a heat source is performed. Even if it exists, the temperature of the refrigerator compartment 2 (and vegetable compartment 6) and the freezer compartment 60 can be controlled appropriately.

加えて、例えば第一の蒸発器7Lと冷蔵室2の間を空気が循環を抑える際に、ダンパ50L、51Lの両方を閉として、第一の蒸発器7Lから冷蔵室2への風路と、冷蔵室2から第一の蒸発器7Lへの風路の両方を閉塞することで、より効果的に第一の蒸発器7Lと冷蔵室2の間の空気循環を抑えることができる。   In addition, for example, when air is suppressed from circulating between the first evaporator 7L and the refrigerator compartment 2, both the dampers 50L and 51L are closed, and the air path from the first evaporator 7L to the refrigerator compartment 2 is The air circulation between the first evaporator 7L and the refrigerator compartment 2 can be more effectively suppressed by closing both the air paths from the refrigerator compartment 2 to the first evaporator 7L.

[まとめ]
以上が、本発明に関する冷蔵庫の各実施例の構成である。本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[Summary]
The above is the configuration of each embodiment of the refrigerator according to the present invention. The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.

例えば、冷蔵温度帯の貯蔵室として、各実施例では冷蔵室2と野菜室6を備えているが、冷蔵温度帯の貯蔵室は何れか1つでも構わない。また、各実施例では、冷蔵温度帯の冷蔵室2と野菜室6の風路を直列に接続、すなわち冷蔵室2に送風すると、野菜室6にも送風される風路としているが、冷蔵室2と野菜室6の風路を並列にして、何れか一方のみに送風できるように構成しても構わない。この場合、各実施例で説明した冷蔵室2に関する制御を、野菜室6の制御に適用しても構わない。   For example, although the refrigerator compartment 2 and the vegetable compartment 6 are provided in each embodiment as the storage compartment in the refrigeration temperature zone, any one of the storage compartments in the refrigeration temperature zone may be used. Moreover, in each Example, although the air path of the refrigerator compartment 2 and the vegetable compartment 6 of a refrigeration temperature range is connected in series, ie, when it ventilates to the refrigerator compartment 2, it is set as the air passage which is also ventilated also to the vegetable compartment 6, 2 and the vegetable room 6 may be arranged in parallel so that only one of them can be blown. In this case, you may apply the control regarding the refrigerator compartment 2 demonstrated in each Example to the control of the vegetable compartment 6. FIG.

各実施例において、冷蔵室側ファン9aは、冷蔵温度流通風路に設けることができる。すなわち、第一の蒸発器7L及び第二の蒸発器7Rそれぞれで冷却された空気が合流する冷蔵側空気合流部から冷蔵側戻り空気分流部までの領域に設けることができる。
より具体的には、端部25aから冷蔵室吐出口61にかけてと、冷蔵室2と、冷蔵室戻り口62から野菜室吐出口63にかけてと、野菜室6と、野菜室戻り口64から端部25bにかけてと、のいずれかに設けることができる。端部25a近傍にダンパ50を設けた場合は、端部25aに代えてダンパ50より下流側であればよい。端部25b近傍にダンパ51を設けた場合は、端部25bに代えてダンパ51より上流側であればよい。
In each embodiment, the refrigerating room side fan 9a can be provided in the refrigerating temperature circulation air passage. That is, it can be provided in a region from the refrigeration side air merging portion where the air cooled by the first evaporator 7L and the second evaporator 7R merges to the refrigeration side return air diversion portion.
More specifically, from the end 25a to the refrigerator compartment outlet 61, from the refrigerator compartment 2, from the refrigerator compartment return port 62 to the vegetable compartment outlet 63, the vegetable compartment 6, and the vegetable compartment return port 64 to the end portion. It can be provided either in the direction of 25b. When the damper 50 is provided in the vicinity of the end portion 25a, the damper 50 may be provided on the downstream side of the damper 50 in place of the end portion 25a. When the damper 51 is provided in the vicinity of the end portion 25b, the damper 51 may be provided upstream of the damper 51 instead of the end portion 25b.

各実施例において、冷凍室側ファン9bは、冷凍温度流通風路に設けることができる。すなわち、第一の蒸発器7L及び第二の蒸発器7Rそれぞれで冷却された空気が合流する冷凍側空気合流部から冷凍側戻り空気分流部までの領域に設けることができる。
より具体的には、端部25cから冷凍室吐出口65にかけてと、冷凍室60と、冷凍室戻り口66から端部25dにかけてと、のいずれかに設けることができる。端部25c近傍にダンパ52を設けた場合は、端部25cに代えてダンパ52より下流側であればよい。端部25d近傍にダンパ53を設けた場合は、端部25dに代えてダンパ53より上流側であればよい。
In each embodiment, the freezer compartment fan 9b can be provided in the freezing temperature circulation air passage. That is, it can be provided in a region from the refrigeration side air merging portion where the air cooled by the first evaporator 7L and the second evaporator 7R merges to the refrigeration side return air branching portion.
More specifically, it can be provided either from the end 25c to the freezer discharge port 65, the freezer 60, or from the freezer return 66 to the end 25d. When the damper 52 is provided in the vicinity of the end portion 25c, the damper 52 may be provided on the downstream side of the damper 52 in place of the end portion 25c. In the case where the damper 53 is provided in the vicinity of the end portion 25d, it may be upstream of the damper 53 instead of the end portion 25d.

なお、蒸発器室仕切り壁25が分割された部材で構成されている場合は、空気合流部が端部25a,25cより下流で、戻り空気分流部が端部25b,25dより上流とは限らない。   In addition, when the evaporator chamber partition wall 25 is comprised by the member divided | segmented, the air confluence | merging part is not necessarily downstream from the edge parts 25a and 25c, and a return air diversion part is not necessarily upstream from the edge parts 25b and 25d. .

《他の技術的思想》
本発明は、下記の技術的思想を包含する。
[付記1]
冷蔵温度帯の第一の貯蔵室を含む冷蔵温度流通風路と、冷凍温度帯の第二の貯蔵室を含む冷凍温度流通風路と、第一の蒸発器と、を備え、上記第一の蒸発器より下流で、空気を上記冷蔵温度流通風路と上記冷凍温度流通風路とに向けて分流させ、上記第一の蒸発器より上流で、上記第一の貯蔵室を通過した戻り空気と上記第二の貯蔵室を通過した戻り空気が合流する冷蔵庫であって、空気を上記第一の貯蔵室に送風する第一のファンを、上記冷蔵温度流通風路のうち、上記分流させる部分より下流、かつ、上記合流させる部分より上流に配し、空気を上記第二の貯蔵室に送風する第二のファンを、上記冷凍温度流通風路のうち、上記分流させる部分より下流、かつ、上記合流させる部分より上流に配したことを特徴とする冷蔵庫。
《Other technical ideas》
The present invention includes the following technical ideas.
[Appendix 1]
A refrigeration temperature circulation air passage including a first storage chamber in a refrigeration temperature zone; a refrigeration temperature circulation air passage including a second storage chamber in a refrigeration temperature zone; and a first evaporator. Downstream from the evaporator, the air is diverted toward the refrigeration temperature circulation air passage and the refrigeration temperature circulation air passage, and the return air passed through the first storage chamber upstream from the first evaporator. It is a refrigerator where the return air that has passed through the second storage chamber is joined, and the first fan that blows air to the first storage chamber is divided from the portion of the refrigeration temperature circulation air passage that is divided. A second fan that is arranged downstream and upstream from the portion to be merged and blows air to the second storage chamber is downstream of the portion to be diverted in the refrigeration temperature circulation air passage, and the above A refrigerator characterized by being arranged upstream from the part to be merged.

付記1の構成によれば、冷蔵温度帯の貯蔵室および冷凍温度帯の貯蔵室それぞれに対する空気の分配量を高精度に制御できる。   According to the configuration of Supplementary Note 1, it is possible to control the distribution amount of air to each of the storage room in the refrigeration temperature zone and the storage room in the freezing temperature zone with high accuracy.

[付記2]
上記第一の蒸発器より下流かつ上記第二の貯蔵室の吐出口より上流の領域と、上記第一の蒸発器より上流かつ上記第二の貯蔵室の戻り口より下流の領域と、上記第一の蒸発器より下流かつ上記第一の貯蔵室の吐出口より上流の領域又は上記第一の蒸発器より上流かつ上記第一の貯蔵室の戻り口より下流の領域と、のそれぞれに、送風制御部を有することを特徴とする付記1に記載の冷蔵庫。
[Appendix 2]
A region downstream from the first evaporator and upstream from the outlet of the second storage chamber, a region upstream from the first evaporator and downstream from the return port of the second storage chamber, and the first Air flow to each of a region downstream from one evaporator and upstream from the discharge port of the first storage chamber or a region upstream from the first evaporator and downstream from the return port of the first storage chamber. The refrigerator according to appendix 1, which has a control unit.

1 冷蔵庫
2 冷蔵室(第一の貯蔵室)
3 製氷室(第二の貯蔵室)
4 上段冷凍室(第二の貯蔵室)
5 下段冷凍室(第二の貯蔵室)
6 野菜室(第一の貯蔵室)
7L 第一の蒸発器
7R 第二の蒸発器
8L 第一の蒸発器室
8R 第二の蒸発器室
8La,8Ra 風路
8Lb,8Rb 風路
9a 冷蔵室側ファン(第一のファン)
9b 冷凍室側ファン(第二のファン)
10 断熱箱体
11 風路(冷蔵側合流部)11a 第一のファンより上流側
11b 第一のファンより下流側
12 風路(冷凍側合流部)
12a 第二のファンより上流側
12b 第二のファンより下流側
13、14、15 風路
20 機械室
21 樋
22 排水管
23 蒸発皿
24 圧縮機
25 蒸発器室仕切り壁
25a 冷蔵室吐出口側の端部
25b 野菜室戻り口側の端部(冷蔵側戻り空気分流部)
25c 冷凍室吐出口側の端部
25d 冷凍室戻り口側の端部(冷凍側戻り空気分流部)
26 真空断熱材
27 野菜室ヒータ
28、29、30 仕切り壁
31 制御基板
32 ポケット
33 冷蔵室温度センサ
34 冷凍室温度センサ
35 野菜室温度センサ
36L 第一の蒸発器温度センサ
36R 第二の蒸発器温度センサ
37 外気温度センサ
38 扉ヒンジカバー
39 棚
41 放熱器
42 キャピラリチューブ(減圧手段)
50 ツインダンパ(蒸発器と第一の貯蔵室の吐出口の間のダンパ)
51 ツインダンパ(蒸発器と第一の貯蔵室の戻り口の間のダンパ)
52 ツインダンパ(蒸発器と第二の貯蔵室の吐出口の間のダンパ)
53 ツインダンパ(蒸発器と第二の貯蔵室の戻り口の間のダンパ)
50L ダンパ(第一のダンパ)
50R ダンパ(第二のダンパ)
51L ダンパ(第三のダンパ)
51R ダンパ(第四のダンパ)
52L ダンパ(第五のダンパ)
52R ダンパ(第六のダンパ)
53L ダンパ(第七のダンパ)
53R ダンパ(第八のダンパ)
60 冷凍室(第二の貯蔵室)
61 冷蔵室吐出口
62 冷蔵室戻り口
63 野菜室吐出口
64 野菜室戻り口
65 冷凍室吐出口
66 冷凍室戻り口
80 風路構成部材
81a、81b、81c 風路構成部材
201 三方弁
202、203 逆止弁
204 冷媒合流部
1 Refrigerator 2 Cold room (first storage room)
3 Ice making room (second storage room)
4 Upper freezer room (second storage room)
5 Lower freezer room (second storage room)
6 Vegetable room (first storage room)
7L 1st evaporator 7R 2nd evaporator 8L 1st evaporator room 8R 2nd evaporator room 8La, 8Ra Air path 8Lb, 8Rb Air path 9a Refrigeration room side fan (first fan)
9b Freezer compartment side fan (second fan)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Air path (refrigeration side confluence | merging part) 11a The upstream side 11b from a 1st fan 12 downstream side from a 1st fan 12
12a Upstream side from the second fan 12b Downstream side from the second fan 13, 14, 15 Air passage 20 Machine room 21 樋 22 Drain pipe 23 Evaporating dish 24 Compressor 25 Evaporator compartment partition wall 25a On the refrigerator outlet side End 25b End of vegetable room return side (refrigeration side return air diversion part)
25c End part on the discharge side of the freezer compartment 25d End part on the return side of the freezer compartment (refrigeration side return air distribution part)
26 Vacuum insulation material 27 Vegetable room heaters 28, 29, 30 Partition wall 31 Control board 32 Pocket 33 Cold room temperature sensor 34 Freezer room temperature sensor 35 Vegetable room temperature sensor 36L First evaporator temperature sensor 36R Second evaporator temperature Sensor 37 Outside temperature sensor 38 Door hinge cover 39 Shelf 41 Radiator 42 Capillary tube (pressure reduction means)
50 Twin damper (Damper between the outlet of the evaporator and the first storage chamber)
51 Twin damper (Damper between the evaporator and the return of the first storage room)
52 Twin damper (Damper between the outlet of the evaporator and the second storage chamber)
53 Twin damper (Damper between the evaporator and the return of the second storage room)
50L damper (first damper)
50R damper (second damper)
51L damper (third damper)
51R damper (fourth damper)
52L damper (fifth damper)
52R damper (sixth damper)
53L damper (seventh damper)
53R damper (eighth damper)
60 Freezer room (second storage room)
61 Refrigeration room discharge port 62 Refrigeration room return port 63 Vegetable room discharge port 64 Vegetable room return port 65 Freezer room discharge port 66 Freezer room return port 80 Airway component 81a, 81b, 81c Airway component 201 Three-way valve 202, 203 Check valve 204 Refrigerant junction

Claims (5)

冷蔵温度帯の第一の貯蔵室を含む冷蔵温度流通風路と、
冷凍温度帯の第二の貯蔵室を含む冷凍温度流通風路と、
第一の蒸発器を有する第一の蒸発器室と、
第二の蒸発器を有する第二の蒸発器室と、を備える冷蔵庫であって、
前記冷蔵温度流通風路は、
前記第一の蒸発器で冷却された空気と前記第二の蒸発器で冷却された空気とが、前記第一の蒸発器及び前記第二の蒸発器より前記第一の貯蔵室側で合流可能な冷蔵側空気合流部と、
前記第一の貯蔵室を通過した空気を前記第一の蒸発器側と前記第二の蒸発器側とに分流させる冷蔵側戻り空気分流部と、を有し、
前記冷凍温度流通風路は、
前記第一の蒸発器で冷却された空気と前記第二の蒸発器で冷却された空気とが、前記第一の蒸発器及び前記第二の蒸発器より前記第二の貯蔵室側で合流可能な冷凍側空気合流部と、
前記第二の貯蔵室を通過した空気を前記第一の蒸発器側と前記第二の蒸発器側とに分流させる冷凍側戻り空気分流部と、を有し、
前記冷蔵側空気合流部より下流、かつ、前記冷蔵側戻り空気分流部より上流に、第一のファンを有し、
前記冷凍側空気合流部より下流、かつ、前記冷凍側戻り空気分流部より上流に、第二のファンを有することを特徴とする冷蔵庫。
A refrigerated temperature distribution air passage including a first storage chamber in a refrigerated temperature zone;
A refrigeration temperature distribution air passage including a second storage chamber in a refrigeration temperature zone;
A first evaporator chamber having a first evaporator;
A refrigerator comprising a second evaporator chamber having a second evaporator,
The refrigerated temperature distribution air passage is
The air cooled by the first evaporator and the air cooled by the second evaporator can merge on the first storage chamber side from the first evaporator and the second evaporator. Refrigerated air merging section,
A refrigeration-side return air diverting section for diverting the air that has passed through the first storage chamber to the first evaporator side and the second evaporator side;
The refrigeration temperature circulation air passage is
The air cooled by the first evaporator and the air cooled by the second evaporator can merge on the second storage chamber side from the first evaporator and the second evaporator. A freezing side air merging section,
A refrigeration-side return air diverting section for diverting the air that has passed through the second storage chamber to the first evaporator side and the second evaporator side;
Having a first fan downstream from the refrigeration side air merging section and upstream from the refrigeration side return air distribution section;
A refrigerator having a second fan downstream from the refrigeration-side air merging section and upstream from the refrigeration-side return air branching section.
前記第一のファンは、前記第一の貯蔵室の吐出口より上流に位置し、及び/又は
前記第二のファンは、前記第二の貯蔵室の吐出口より上流に位置していることを特徴とする請求項1に記載の冷蔵庫。
The first fan is located upstream from the outlet of the first storage chamber, and / or the second fan is located upstream of the outlet of the second storage chamber. The refrigerator according to claim 1.
前記第一の蒸発器若しくは前記第二の蒸発器から前記冷凍側合流部へ流れる空気と、
前記冷凍側戻り空気分流部から前記第一の蒸発器若しくは前記第二の蒸発器へ流れる空気と、
前記第一の蒸発器若しくは前記第二の蒸発器から前記冷蔵側合流部へ流れる空気、又は前記冷蔵側戻り空気分流部から前記第一の蒸発器若しくは前記第二の蒸発器へ流れる空気と、を制御する送風制御部を有することを特徴とする請求項1又は2に記載の冷蔵庫。
Air flowing from the first evaporator or the second evaporator to the refrigeration-side merging section;
Air flowing from the refrigeration-side return air diverting section to the first evaporator or the second evaporator;
Air flowing from the first evaporator or the second evaporator to the refrigeration-side merging section, or air flowing from the refrigeration-side return air branching section to the first evaporator or the second evaporator; The refrigerator according to claim 1, further comprising a ventilation control unit that controls the air flow.
圧縮機と、前記第一の蒸発器と、前記第二の蒸発器と、弁と、を有し、冷媒が循環する冷凍サイクルを備え、
前記冷媒が前記第二の蒸発器側に流れるように前記弁を制御し、
前記第一の蒸発器から前記冷蔵側合流部にかけてと、
前記冷蔵側戻り空気分流部から前記第一の蒸発器にかけてと、
前記第二の蒸発器から前記冷蔵側合流部にかけてと、
前記第二の蒸発器から前記冷凍側合流部にかけてと、
前記冷蔵側戻り空気分流部から前記第二の蒸発器にかけてと、
前記冷凍側戻り空気分流部から前記第二の蒸発器にかけてと、の範囲を空気が通過するように、前記送風制御部を制御するモードを実行することを特徴とする請求項3に記載の冷蔵庫。
A compressor, the first evaporator, the second evaporator, and a valve, comprising a refrigeration cycle in which refrigerant circulates,
Controlling the valve so that the refrigerant flows to the second evaporator side,
From the first evaporator to the refrigeration side confluence,
From the refrigerated return air diverting section to the first evaporator,
From the second evaporator to the refrigeration side confluence,
From the second evaporator to the refrigeration side confluence,
From the refrigerated return air diverter to the second evaporator,
4. The refrigerator according to claim 3, wherein a mode for controlling the air blowing control unit is executed such that air passes through a range from the refrigeration-side return air distribution unit to the second evaporator. .
前記冷媒が前記第一の蒸発器側に流れるように前記弁を制御し、
前記第二の蒸発器から前記冷蔵側合流部にかけてと、
前記冷蔵側戻り空気分流部から前記第二の蒸発器にかけてと、
前記第一の蒸発器から前記冷蔵側合流部にかけてと、
前記第一の蒸発器から前記冷凍側合流部にかけてと、
前記冷蔵側戻り空気分流部から前記第一の蒸発器にかけてと、
前記冷凍側戻り空気分流部から前記第一の蒸発器にかけてと、の範囲を空気が通過するように、前記送風制御部を制御するモードを実行することを特徴とする請求項4に記載の冷蔵庫。
Controlling the valve so that the refrigerant flows to the first evaporator side,
From the second evaporator to the refrigeration side confluence,
From the refrigerated return air diverter to the second evaporator,
From the first evaporator to the refrigeration side confluence,
From the first evaporator to the refrigeration side confluence,
From the refrigerated return air diverting section to the first evaporator,
5. The refrigerator according to claim 4, wherein a mode for controlling the air blowing control unit is executed such that air passes through a range from the refrigeration-side return air distribution unit to the first evaporator. .
JP2015043096A 2015-03-05 2015-03-05 refrigerator Expired - Fee Related JP6343576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043096A JP6343576B2 (en) 2015-03-05 2015-03-05 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043096A JP6343576B2 (en) 2015-03-05 2015-03-05 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018095044A Division JP2018124060A (en) 2018-05-17 2018-05-17 refrigerator

Publications (2)

Publication Number Publication Date
JP2016161268A true JP2016161268A (en) 2016-09-05
JP6343576B2 JP6343576B2 (en) 2018-06-13

Family

ID=56846708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043096A Expired - Fee Related JP6343576B2 (en) 2015-03-05 2015-03-05 refrigerator

Country Status (1)

Country Link
JP (1) JP6343576B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078495A (en) * 2017-10-26 2019-05-23 日立アプライアンス株式会社 refrigerator
JP2019132496A (en) * 2018-01-31 2019-08-08 日立グローバルライフソリューションズ株式会社 refrigerator
JP2020118346A (en) * 2019-01-23 2020-08-06 日立グローバルライフソリューションズ株式会社 refrigerator
CN113959162A (en) * 2021-05-13 2022-01-21 海信(山东)冰箱有限公司 Refrigerator and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317851A (en) * 2000-04-28 2001-11-16 Sanyo Electric Co Ltd Refrigerator
JP2004125311A (en) * 2002-10-03 2004-04-22 Sanyo Electric Co Ltd Refrigerator
JP2004324943A (en) * 2003-04-23 2004-11-18 Hitachi Home & Life Solutions Inc Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317851A (en) * 2000-04-28 2001-11-16 Sanyo Electric Co Ltd Refrigerator
JP2004125311A (en) * 2002-10-03 2004-04-22 Sanyo Electric Co Ltd Refrigerator
JP2004324943A (en) * 2003-04-23 2004-11-18 Hitachi Home & Life Solutions Inc Refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078495A (en) * 2017-10-26 2019-05-23 日立アプライアンス株式会社 refrigerator
JP2019132496A (en) * 2018-01-31 2019-08-08 日立グローバルライフソリューションズ株式会社 refrigerator
JP7028661B2 (en) 2018-01-31 2022-03-02 日立グローバルライフソリューションズ株式会社 refrigerator
JP2020118346A (en) * 2019-01-23 2020-08-06 日立グローバルライフソリューションズ株式会社 refrigerator
JP7223581B2 (en) 2019-01-23 2023-02-16 日立グローバルライフソリューションズ株式会社 refrigerator
CN113959162A (en) * 2021-05-13 2022-01-21 海信(山东)冰箱有限公司 Refrigerator and control method thereof

Also Published As

Publication number Publication date
JP6343576B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
KR101328959B1 (en) food storaging apparatus
KR101260277B1 (en) Refrigerator
JP6344895B2 (en) refrigerator
WO2013143383A1 (en) Refrigerator
JP6343576B2 (en) refrigerator
CN105452785B (en) Refrigerator
CN106247741A (en) A kind of refrigerator
KR101396956B1 (en) Refrigerator
JP4739926B2 (en) refrigerator
JP2015045480A (en) Refrigerator
JP5184469B2 (en) refrigerator
JP2017072325A (en) refrigerator
JP6469966B2 (en) refrigerator
JPH11173729A (en) Refrigerator
JP5363247B2 (en) refrigerator
JP2018124060A (en) refrigerator
JP2018096646A (en) Refrigerator
JP5513920B2 (en) refrigerator
JP2014040966A (en) Refrigerator
JP5931329B2 (en) refrigerator
KR20150045796A (en) Refrigerator
JP2016023845A (en) refrigerator
JP2021042865A (en) refrigerator
EP3410046A1 (en) Refrigerator
JP7454458B2 (en) refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6343576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees