JP5184469B2 - refrigerator - Google Patents

refrigerator

Info

Publication number
JP5184469B2
JP5184469B2 JP2009202903A JP2009202903A JP5184469B2 JP 5184469 B2 JP5184469 B2 JP 5184469B2 JP 2009202903 A JP2009202903 A JP 2009202903A JP 2009202903 A JP2009202903 A JP 2009202903A JP 5184469 B2 JP5184469 B2 JP 5184469B2
Authority
JP
Japan
Prior art keywords
room
air
chilled
refrigerator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009202903A
Other languages
Japanese (ja)
Other versions
JP2011052910A (en
Inventor
弘誉 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009202903A priority Critical patent/JP5184469B2/en
Publication of JP2011052910A publication Critical patent/JP2011052910A/en
Application granted granted Critical
Publication of JP5184469B2 publication Critical patent/JP5184469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,少なくともチルド室,冷蔵室,野菜室の各収容室を有する冷蔵庫に関し,特に,各収容室への冷気の送風量の制御技術に関するものである。   The present invention relates to a refrigerator having at least each storage room such as a chilled room, a refrigerated room, and a vegetable room, and more particularly to a technique for controlling the amount of cool air blown into each storage room.

従来から,冷蔵庫には,冷蔵物を収容する収容室として,冷凍室,チルド室,冷蔵室,野菜室などが設けられる。そして,これらの収容室の庫内温度は,圧縮機や減圧装置(キャピラリーチューブ等)などに接続された冷却器で生成(熱交換)された冷気の各収容室への送風量によって調整される。ここで,これらの収容室は,冷凍室の庫内設定温度が最も低く,次いでチルド室,冷蔵室,野菜室の順で低い庫内設定温度に設定されている。
また,一般に冷蔵庫では,冷却器から冷蔵室を経た後の冷気が野菜室に供給される構成が採られる。そのため,例えば冷蔵室の扉の頻繁な開閉などにより冷蔵室の温度が高くなっている場合は,該冷蔵室を経た冷気の温度が高くなり,野菜室を十分に冷却することができないという問題が生じる。
そこで,例えば特許文献1では,冷却器から冷蔵室に向かう冷気の一部を,冷蔵室を経ることなく野菜室に直接供給するバイパスダクトを設けることが提案されている。これにより,温度の低い冷気を野菜室に供給することが可能となる。
Conventionally, refrigerators are provided with a freezer room, a chilled room, a refrigerator room, a vegetable room, etc. as storage rooms for storing refrigerated items. And the internal temperature of these storage chambers is adjusted by the amount of air blown into each storage chamber by the cool air generated (heat exchange) by a cooler connected to a compressor or a decompression device (capillary tube or the like). . Here, these storage rooms have the lowest set temperature in the freezer compartment, and then the lowest set temperature in the order of the chilled room, the refrigerator room, and the vegetable room.
In general, a refrigerator is configured such that cold air after passing through a refrigerator from a cooler is supplied to the vegetable compartment. Therefore, for example, when the temperature of the refrigerator compartment is high due to frequent opening and closing of the door of the refrigerator compartment, the temperature of the cold air passing through the refrigerator compartment becomes high, and the vegetable compartment cannot be cooled sufficiently. Arise.
Therefore, for example, Patent Document 1 proposes providing a bypass duct that directly supplies a part of the cold air from the cooler toward the refrigerating room to the vegetable room without passing through the refrigerating room. Thereby, it becomes possible to supply cold air with a low temperature to the vegetable compartment.

ところが,前記特許文献1に開示された構成では,冷却器から冷蔵室及び野菜室各々への冷気の送風量が固定されているため,冷蔵室だけを重点的に冷却することができず,常に野菜室も冷却されてしまうことになる。そのため,冷蔵室を冷却するために,野菜室の温度が下がり過ぎてしまうおそれがある。
さらに,この場合には,常に冷却器からの冷気が冷蔵室及び野菜室に分配されるため,本来不要な野菜室への冷気の供給により冷蔵庫の稼働効率が悪くなり,無駄に電力を消費することとなる。
これに対し,特許文献2では,冷却器からの冷気の送風経路上に設けられたダンパの開閉角度により,該送風経路から冷蔵室及び野菜室各々への冷気の送風量を個別に制御し得る構成が提案されている。これにより,例えば,必要に応じて冷却器からの冷気を野菜室に直接供給して該野菜室を十分に冷却することが可能となる。
However, in the configuration disclosed in Patent Document 1, the amount of cool air blown from the cooler to each of the refrigerator compartment and the vegetable compartment is fixed, so that only the refrigerator compartment cannot be intensively cooled. The vegetable room will also be cooled. Therefore, there is a risk that the temperature of the vegetable room will be too low to cool the refrigerator compartment.
Furthermore, in this case, since the cold air from the cooler is always distributed to the refrigerator compartment and the vegetable compartment, the supply of cold air to the vegetable compartment, which is essentially unnecessary, reduces the operating efficiency of the refrigerator and wastes power. It will be.
On the other hand, in patent document 2, the ventilation amount of the cold air from the ventilation path to the refrigerator compartment and the vegetable room can be individually controlled by the opening / closing angle of the damper provided on the ventilation path of the cold air from the cooler. A configuration is proposed. Thereby, for example, it becomes possible to supply the cold air from the cooler directly to the vegetable compartment as needed, thereby sufficiently cooling the vegetable compartment.

特開2004−271178号公報JP 2004-271178 A 特開2007−147112号公報JP 2007-147112 A

ところで,前記特許文献2では,冷却器から冷蔵室及び野菜室への冷気の送風量を個別に制御することが提案されているが,冷蔵室よりも温度が低いチルド室を有する冷蔵庫では,そのチルド室についても同様に冷却器からの送風量を冷蔵室と独立して制御し得ることが望ましい。
具体的には,冷却器からチルド室,冷蔵室及び野菜室への冷気の送風状態を,(1)チルド室,冷蔵室及び野菜室の全てに供給される状態,(2)チルド室及び冷蔵室のみに供給される状態,(3)チルド室のみに供給される状態,(4)チルド室,冷蔵室及び野菜室の全てに供給されない状態の少なくとも4段階に調整し得る構成が考えられる。
このとき,冷蔵庫では,チルド室,冷蔵室及び野菜室各々を予め設定された庫内設定温度に調整するための制御をどのように行うかにより,該冷蔵庫の稼働効率,即ち消費電力量が異なることになる。
ここで,冷蔵室やチルド室を経た冷気が野菜室に供給されることとなる構成において,冷蔵室やチルド室を重点的に冷却することを考える。この場合,その冷蔵室やチルド室を経た冷気が供給される野菜室の温度が高ければ,該野菜室を経て冷却器に戻る空気の温度が高くなる。そのため,冷却器における空気の冷却効率が悪くなり,省電力化が阻害されるという問題が生じる。また,チルド室を重点的に冷却するときに,該チルド室が収容された冷蔵室の温度が高い場合にも,該冷蔵室の温度の影響でチルド室が冷却されにくいという問題が生じる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,チルド室,冷蔵室及び野菜室の庫内温度の調整を効率的に行うことにより省電力化を図ることのできる冷蔵庫を提供することにある。
By the way, in the above-mentioned patent document 2, it is proposed to individually control the amount of cool air blown from the cooler to the refrigerating room and the vegetable room, but in a refrigerator having a chilled room whose temperature is lower than that of the refrigerating room, Similarly, for the chilled chamber, it is desirable that the amount of air blown from the cooler can be controlled independently of the refrigerator compartment.
Specifically, the air blow state from the cooler to the chilled room, the refrigerated room and the vegetable room is (1) the state where the chilled room, the refrigerated room and the vegetable room are supplied, A configuration that can be adjusted to at least four stages of a state in which only the chilled room is supplied, (3) a state in which only the chilled room is supplied, and (4) a state in which the chilled room, the refrigerator room, and the vegetable room are not supplied.
At this time, in the refrigerator, the operation efficiency of the refrigerator, that is, the power consumption varies depending on how control is performed to adjust each of the chilled room, the refrigerator room, and the vegetable room to a preset internal temperature. It will be.
Here, in the configuration in which the cold air that has passed through the refrigerated room and the chilled room is supplied to the vegetable room, consider cooling the refrigerated room and the chilled room with priority. In this case, if the temperature of the vegetable room to which the cold air passing through the refrigerated room or chilled room is supplied is high, the temperature of the air returning to the cooler through the vegetable room becomes high. For this reason, the cooling efficiency of the air in the cooler is deteriorated, resulting in a problem that power saving is hindered. In addition, when the chilled chamber is intensively cooled, even if the temperature of the refrigerated chamber in which the chilled chamber is housed is high, there is a problem that the chilled chamber is difficult to be cooled due to the temperature of the chilled chamber.
Accordingly, the present invention has been made in view of the above circumstances, and its object is to achieve power saving by efficiently adjusting the temperature in the chilled room, the refrigerator room, and the vegetable room. It is to provide a refrigerator that can be used.

上記目的を達成するために本発明は,予め庫内設定温度が順に低くなるように設定された野菜室,冷蔵室及び前記冷蔵室内に配置されたチルド室と,冷気を生成する冷却器と,前記冷却器から前記冷蔵室,前記野菜室及び前記チルド室各々に冷気を導く冷蔵室送風経路,野菜室送風経路及びチルド室送風経路と,前記冷蔵室を経た冷気及び前記チルド室を経た冷気のいずれか一方又は両方を前記野菜室に導く野菜室戻り経路と,前記野菜室を経た冷気を前記冷却器に導く冷却器戻り経路と,前記冷却器からの冷気を前記冷蔵室送風経路,前記野菜室送風経路及び前記チルド室送風経路のいずれか一又は複数に分岐する冷蔵冷気分岐部とを備えてなる冷蔵庫である。そして,当該冷蔵庫は,前記冷蔵冷気分岐部において前記冷却器からの冷気が前記チルド室送風経路,前記冷蔵室送風経路及び前記野菜室送風経路の全てに供給される第1の送風状態,該冷却器からの冷気が前記チルド室送風経路及び前記冷蔵室送風経路のみに供給される第2の送風状態,該冷却器からの冷気が前記チルド室送風経路のみに供給される第3の送風状態,該冷却器からの冷気が前記チルド室送風経路,前記冷蔵室送風経路及び前記野菜室送風経路の全てに供給されない第4の送風状態の少なくとも4段階の送風状態を形成する送風状態切換手段と,前記送風状態切換手段により形成される送風状態を,前記第1の送風状態,前記第2の送風状態,前記第3の送風状態,前記第4の送風状態の順に切り換えることにより,前記冷蔵室,前記野菜室及び前記チルド室各々の庫内温度を前記庫内設定温度に調整する温度調整手段とを更に備えてなることを特徴として構成される。
本発明によれば,前記野菜室が冷えていない状態で前記冷蔵室や前記チルド室の冷却が行われる時間や,前記冷蔵室が冷えていない状態で前記チルド室の冷却が行われる時間を極力短くすることが可能であり,前記冷却器に温度が高い冷気が戻される時間を短くすることができるため,当該冷蔵庫における冷却効率を高めて省電力化を実現することができる。
また,前記冷却器からの冷気を前記冷蔵室や前記野菜室に直接流入させることなく,前記チルド室のみに流入させることにより該チルド室を重点的に冷却することが可能であるため,該チルド室を前記冷蔵室内の任意の位置に配置することも可能である。例えば,一般に,前記チルド室は,前記冷蔵室で最も温度が低くなる最下部に配置されるが,本発明に係る構成では,前記チルド室を前記冷蔵室の最上部などに配置することも可能である。
In order to achieve the above object, the present invention provides a vegetable room, a refrigerated room, a chilled room disposed in the refrigerated room, a cooler for generating cold air, and a chilled room set in advance so that the set temperature in the cabinet decreases in order. Refrigeration room air flow path, vegetable room air flow path and chilled room air flow path for introducing cold air from the cooler to the refrigerating room, the vegetable room and the chilled room, cold air passing through the refrigerating room, A vegetable room return path that leads either or both to the vegetable room, a cooler return path that guides the cold air that has passed through the vegetable room to the cooler, and a cooler room air flow path that cools air from the cooler, the vegetable It is a refrigerator provided with the refrigeration cold air branch part branched into any one or more of a chamber ventilation path and the said chilled chamber ventilation path. The refrigerator has a first air supply state in which the cold air from the cooler is supplied to all of the chilled room air supply path, the refrigerator room air supply path, and the vegetable room air supply path in the refrigerated cold air branching section, the cooling A second blowing state in which the cool air from the cooler is supplied only to the chilled chamber blowing path and the refrigerated chamber blowing path, a third blowing state in which the cool air from the cooler is supplied only to the chilled chamber blowing path, A blowing state switching means for forming at least four stages of blowing states of a fourth blowing state in which the cool air from the cooler is not supplied to all of the chilled chamber blowing path, the refrigeration chamber blowing path, and the vegetable room blowing path; By switching the air blowing state formed by the air blowing state switching means in the order of the first air blowing state, the second air blowing state, the third air blowing state, and the fourth air blowing state. Chamber, constituted the vegetable compartment and the inside temperature of the chilled compartment each as characterized by being further provided with a temperature adjusting means for adjusting the in-compartment temperature setting.
According to the present invention, the time for cooling the chilled room and the chilled room when the vegetable room is not cooled, and the time for cooling the chilled room when the chilled room is not cooled are as much as possible. Since it can be shortened and the time during which the cool air having a high temperature is returned to the cooler can be shortened, the cooling efficiency in the refrigerator can be increased and power saving can be realized.
Further, since the cold air from the cooler can be intensively cooled by flowing only into the chilled room without directly flowing into the refrigerated room or the vegetable room, the chilled room can be cooled. It is also possible to arrange the chamber at an arbitrary position in the refrigerator compartment. For example, in general, the chilled room is disposed at the lowest part where the temperature is lowest in the refrigerated room. However, in the configuration according to the present invention, the chilled room may be disposed at the uppermost part of the refrigerated room. It is.

具体的に,前記送風状態切換手段は,前記冷蔵冷気分岐部において前記第1の送風状態から前記第4の送風状態が形成される第1の停止位置から第4の停止位置の少なくとも4段階に移動可能に支持された送風切換部材を含んでなることが考えられる。この場合,前記温度調整手段は,前記送風切換部材の位置を,前記第1の停止位置,前記第2の停止位置,前記第3の停止位置,前記第4の停止位置の順に切り換えることにより,前記冷蔵室,前記野菜室及び前記チルド室各々の庫内温度を前記庫内設定温度に調整することとなる。ここで,前記送風切換部材は,所定の回動軸を中心に回動されることにより,前記第1の停止位置から前記第4の停止位置の少なくとも4段階の間で停止位置が変動するものであることが考えられる。
このように,前記送風切換部材を移動させるだけの簡単な構成で本発明を具現すれば,本発明に係る冷蔵庫の容積効率を向上させ,低コスト化を実現することができる。
特に,前記送風切換部材が,前記第1の停止位置から前記第4の停止位置の間の任意の位置で停止可能なものであれば,前記第1の停止位置(前記第1の送風状態)から前記第4の停止位置(前記第4の送風状態)の間で自由に送風量を調整して温度調節をすることができる。
Specifically, the blowing state switching means is configured to change the first refrigeration state from the first blowing state to the fourth stopping position in at least four stages from the first blowing state in the refrigerated cold air branching portion. It is conceivable to include a ventilation switching member that is movably supported. In this case, the temperature adjusting means switches the position of the air blowing switching member in the order of the first stop position, the second stop position, the third stop position, and the fourth stop position, The internal temperature of each of the refrigerator compartment, the vegetable compartment and the chilled compartment is adjusted to the internal preset temperature. Here, the air blowing switching member has a stop position that varies between at least four stages from the first stop position to the fourth stop position by being rotated about a predetermined rotation axis. It is thought that it is.
In this way, if the present invention is embodied with a simple configuration that only moves the air blowing switching member, the volumetric efficiency of the refrigerator according to the present invention can be improved and the cost can be reduced.
In particular, if the air blowing switching member can be stopped at any position between the first stop position and the fourth stop position, the first stop position (the first air blowing state). From the fourth stop position (the fourth air blowing state), the air flow can be freely adjusted to adjust the temperature.

本発明のより具体的な構成としては,前記チルド室,前記冷蔵室及び前記野菜室の温度を検出する温度検出手段を更に備えてなり,前記温度調整手段が,前記送風状態切換手段により形成される送風状態を,前記温度検出手段による検出温度に応じて前記第1の送風状態から前記第4の送風状態に順に切り換えることにより,前記冷蔵室,前記野菜室及び前記チルド室各々の庫内温度を前記庫内設定温度に調整するものであることが考えられる。
例えば,前記温度調整手段が,前記第1の送風状態で前記野菜室の温度が該野菜室の庫内設定温度に達した場合に,前記第1の送風状態から前記第2の送風状態に切り換え,前記第2の送風状態で前記冷蔵室の温度が該冷蔵室の庫内設定温度に達した場合に,前記第2の送風状態から前記第3の送風状態に切り換え,前記第3の送風状態で前記チルド室の温度が該チルド室の庫内設定温度に達した場合に,前記第3の送風状態から前記第4の送風状態に切り換えることが考えられる。
これにより,前記野菜室,前記冷蔵室,前記チルド室各々を冷却しすぎることなく,高い冷却効率で既定の庫内設定温度まで冷却することができる。
As a more specific configuration of the present invention, it further comprises temperature detecting means for detecting temperatures of the chilled room, the refrigerated room, and the vegetable room, and the temperature adjusting means is formed by the blowing state switching means. By switching the air blowing state from the first air blowing state to the fourth air blowing state in order according to the temperature detected by the temperature detecting means, the internal temperature of each of the refrigerator compartment, the vegetable compartment, and the chilled compartment Can be adjusted to the set temperature in the cabinet.
For example, the temperature adjusting means switches from the first air blowing state to the second air blowing state when the temperature of the vegetable room reaches the set temperature inside the vegetable room in the first air blowing state. , When the temperature of the refrigerator compartment reaches the set temperature in the refrigerator compartment in the second blowing state, the second blowing state is switched to the third blowing state, and the third blowing state is established. Then, when the temperature of the chilled chamber reaches the set temperature inside the chilled chamber, switching from the third blowing state to the fourth blowing state can be considered.
Thereby, it is possible to cool the vegetable compartment, the refrigerator compartment, and the chilled compartment to a predetermined internal set temperature with high cooling efficiency without overcooling.

本発明によれば,前記野菜室が冷えていない状態で前記冷蔵室や前記チルド室の冷却が行われる時間や,前記冷蔵室が冷えていない状態で前記チルド室の冷却が行われる時間を極力短くすることが可能であり,前記冷却器に温度が高い冷気が戻される時間を短くすることができるため,当該冷蔵庫における冷却効率を高めて省電力化を実現することができる。
また,前記冷却器からの冷気を前記冷蔵室や前記野菜室に直接流入させることなく,前記チルド室のみに流入させることにより該チルド室を重点的に冷却することが可能であるため,該チルド室を前記冷蔵室内の任意の位置に配置することも可能である。例えば,一般に,前記チルド室は,前記冷蔵室で最も温度が低くなる最下部に配置されるが,本発明に係る構成では,前記チルド室を前記冷蔵室の最上部などに配置することも可能である。
According to the present invention, the time for cooling the chilled room and the chilled room when the vegetable room is not cooled, and the time for cooling the chilled room when the chilled room is not cooled are as much as possible. Since it can be shortened and the time during which the cool air having a high temperature is returned to the cooler can be shortened, the cooling efficiency in the refrigerator can be increased and power saving can be realized.
Further, since the cold air from the cooler can be intensively cooled by flowing only into the chilled room without directly flowing into the refrigerated room or the vegetable room, the chilled room can be cooled. It is also possible to arrange the chamber at an arbitrary position in the refrigerator compartment. For example, in general, the chilled room is disposed at the lowest part where the temperature is lowest in the refrigerated room. However, in the configuration according to the present invention, the chilled room may be disposed at the uppermost part of the refrigerated room. It is.

本発明の実施の形態に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫の側断面図である。It is a sectional side view of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫の側断面図である。It is a sectional side view of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫の背部を正面から透視した図である。It is the figure which saw through the back part of the refrigerator which concerns on embodiment of this invention from the front. 本発明の実施の形態に係る冷蔵庫の冷蔵冷気分岐部におけるダンパの開閉状態と送風状態との関係を示す模式図である。It is a schematic diagram which shows the relationship between the open / close state of a damper and the ventilation state in the refrigeration cold air branching part of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫の冷気回路を示す図である。It is a figure which shows the cold air circuit of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫で実行される温度調整処理の手順の一例を説明するフローチャート。The flowchart explaining an example of the procedure of the temperature adjustment process performed with the refrigerator which concerns on embodiment of this invention.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
まず,図1〜図6を用いて,本発明の実施の形態に係る冷蔵庫Xの概略構成について説明し,その後,図7を用いて冷蔵庫Xで実行される温度調整処理の手順の一例について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
First, a schematic configuration of the refrigerator X according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6, and then an example of a temperature adjustment process performed in the refrigerator X will be described with reference to FIG. 7. To do.

図1に示すように,前記冷蔵庫Xは,冷蔵室11,野菜室12,冷凍室13,上段冷凍室15,製氷室16を備えている。前記冷蔵庫Xでは,最上段に冷蔵室11,その下段右側に上段冷凍室15,下段左側に製氷室16が配置されている。そして,前記上段冷凍室15及び前記製氷室16の下段に冷凍室13が配置されており,更にその下段に野菜室12が配置されている。また,図3に示すように,前記冷蔵庫Xは,前記冷蔵室11内に配置されたチルド室14を有している。なお,前記冷蔵室11と前記チルド室14とは棚46によって仕切られている。   As shown in FIG. 1, the refrigerator X includes a refrigerating room 11, a vegetable room 12, a freezing room 13, an upper freezing room 15, and an ice making room 16. In the refrigerator X, the refrigerator compartment 11 is arranged at the top, the upper freezer compartment 15 on the lower right side, and the ice making room 16 on the lower left side. And the freezer compartment 13 is arrange | positioned at the lower stage of the said upper stage freezer compartment 15 and the said ice making room 16, and the vegetable compartment 12 is arrange | positioned further in the lower stage. As shown in FIG. 3, the refrigerator X has a chilled chamber 14 disposed in the refrigerator compartment 11. The refrigerator compartment 11 and the chilled compartment 14 are separated by a shelf 46.

ここに,前記冷蔵庫Xにおいて,前記冷蔵室11,前記野菜室12,前記チルド室14各々の庫内設定温度は,前記野菜室12,前記冷蔵室11,前記チルド室14の順に低くなるように予め設定されている。即ち,前記冷蔵庫Xにおいて,各収容室の庫内設定温度は,チルド室14<冷蔵室11<野菜室12となるように予め設定されている。
具体的に,前記野菜室12の庫内設定温度は,野菜の貯蔵に適した温度であって,例えば3℃〜8℃程度である。また,前記冷蔵室11の庫内設定温度は,前記野菜室12の温度よりも低い温度であって,例えば3℃程度である。さらに,前記チルド室14の庫内設定温度は,前記冷蔵室11の庫内温度よりも低い温度であって,例えば−1℃〜1℃程度である。
一方,前記冷凍室13,前記上段冷凍室15,前記製氷室16の庫内設定温度は,前記チルド室14よりも更に低い温度であって,例えば−18℃程度である。
Here, in the refrigerator X, the set temperatures in the refrigerator compartment 11, the vegetable compartment 12, and the chilled compartment 14 are respectively decreased in the order of the vegetable compartment 12, the refrigerator compartment 11, and the chilled compartment 14. It is set in advance. That is, in the refrigerator X, the set temperature in each storage room is set in advance so that the chilled room 14 <the refrigerator room 11 <the vegetable room 12.
Specifically, the set temperature in the vegetable compartment 12 is a temperature suitable for storing vegetables, for example, about 3 ° C to 8 ° C. Moreover, the set temperature in the refrigerator compartment 11 is lower than the temperature of the vegetable compartment 12, and is about 3 ° C., for example. Further, the set temperature in the chilled chamber 14 is lower than the temperature in the refrigerated chamber 11 and is, for example, about -1 ° C to 1 ° C.
On the other hand, the set temperatures in the freezer compartment 13, the upper freezer compartment 15, and the ice making compartment 16 are lower than that of the chilled compartment 14, and are, for example, about -18 ° C.

続いて,図2〜図4を参照しつつ,前記冷蔵庫Xの内部構成について説明する。ここに,図2,図3は冷蔵庫Xの側断面図であって,図2は図1におけるA−A矢視断面,図3は図1におけるB−B矢視断面である。また,図4は前記冷蔵庫Xの背部を正面から透視した図である。
図2に示すように,前記冷蔵庫Xは,外部を覆う外箱2aの内側に内箱2bが配され,外箱2aと内箱2bとの隙間には発泡ウレタン等の断熱材2cが充填されている。
また,前記冷蔵室11内には,冷蔵物を載置する複数の棚45が設けられている。そして,前記冷蔵室11の前面は,回動式の断熱扉3により開閉可能である。なお,前記断熱扉3には,冷蔵物を載置する複数の収納ポケット47が設けられている。
一方,前記野菜室12,前記冷凍室13は,前面がそれぞれスライド式の断熱扉4,6により開閉可能になっており,収納容器55,56を引出せるようになっている。また,前記製氷室16は,前面が回動式の断熱扉5aにより開閉可能になっている。なお,前記上段冷凍室15も,前面が回動式の断熱扉5bにより開閉可能である(図3参照)。
Next, the internal configuration of the refrigerator X will be described with reference to FIGS. 2 and 3 are side sectional views of the refrigerator X, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a sectional view taken along the line BB in FIG. FIG. 4 is a perspective view of the back of the refrigerator X from the front.
As shown in FIG. 2, in the refrigerator X, an inner box 2b is arranged inside an outer box 2a covering the outside, and a gap between the outer box 2a and the inner box 2b is filled with a heat insulating material 2c such as urethane foam. ing.
In the refrigerator compartment 11, a plurality of shelves 45 on which refrigerators are placed are provided. The front surface of the refrigerator compartment 11 can be opened and closed by a rotating heat insulating door 3. The heat insulating door 3 is provided with a plurality of storage pockets 47 for placing refrigerated items.
On the other hand, the vegetable compartment 12 and the freezing compartment 13 can be opened and closed by sliding heat insulating doors 4 and 6, respectively, so that the storage containers 55 and 56 can be pulled out. The ice making chamber 16 can be opened and closed by a heat insulating door 5a whose front surface is rotatable. Note that the upper freezer compartment 15 can also be opened and closed by a heat insulating door 5b whose front surface is rotatable (see FIG. 3).

前記冷蔵庫Xには,前記野菜室12の背後に圧縮機20が,前記冷凍室13の背後に冷却器21がそれぞれ設けられている。
前記圧縮機20には,吐出側に吐出パイプ(不図示)を介してイソブタン等の冷媒を凝縮させる凝縮器(不図示)が,吸込側に吸込パイプ(不図示)を介して前記冷却器(熱交換器)21がそれぞれ接続されている。前記凝縮器(不図示)と前記冷却器21とは冷媒を膨張させるキャピラリーチューブ(不図示,減圧装置)を介して連結されている。これにより,前記冷蔵庫Xでは,一連の冷凍サイクルが構成されている。
そして,前記圧縮機20の稼働により前記冷凍サイクルに冷媒が循環されると,前記冷却器21に低温の冷媒が供給される。これにより,前記冷却器21は,低温の冷媒と空気との熱交換により冷気を生成する。なお,前記冷却器21の下方には該冷却器21の除霜を行う除霜ヒータ62や,該冷却器21からのドレン水を受けるドレン受け部材64が設けられている。
The refrigerator X is provided with a compressor 20 behind the vegetable compartment 12 and a cooler 21 behind the freezer compartment 13.
The compressor 20 includes a condenser (not shown) for condensing a refrigerant such as isobutane on the discharge side via a discharge pipe (not shown), and the cooler (not shown) on the suction side via a suction pipe (not shown). Heat exchangers) 21 are connected to each other. The condenser (not shown) and the cooler 21 are connected via a capillary tube (not shown, a decompression device) that expands the refrigerant. Thereby, in the refrigerator X, a series of refrigeration cycles is configured.
When the refrigerant is circulated in the refrigeration cycle by the operation of the compressor 20, a low-temperature refrigerant is supplied to the cooler 21. Thereby, the cooler 21 generates cool air by heat exchange between the low-temperature refrigerant and air. A defrost heater 62 for defrosting the cooler 21 and a drain receiving member 64 for receiving drain water from the cooler 21 are provided below the cooler 21.

また,前記冷凍室13の背部には,前記冷却器21からの冷気を前記冷凍室13や後述の冷蔵冷気分岐部Yに導く冷気送風ダクト23が設けられている。なお,前記冷気送風ダクト23の下部は,内箱2bと樹脂成形品から成るエバカバー33とにより形成されている。
そして,前記冷気送風ダクト23内には,前記冷却器21からの冷気を前記冷凍室13や後述の冷蔵冷気分岐部Yに送風する送風機22が設けられている。
前記冷蔵冷気分岐部Yは,前記送風機22の上方に配置されており,前記冷却器21からの冷気を前記冷蔵室11,前記野菜室12及び前記チルド室14に続く冷蔵室送風ダクト28(冷蔵室送風経路の一例),野菜室送風ダクト30(野菜室送風経路の一例)及びチルド室送風ダクト29(チルド室送風経路の一例)のいずれか一又は複数に分岐するものである(図3参照)。具体的に,前記冷蔵冷気分岐部Yには,前記冷却器21で生成された冷気の送風先を調整するダンパ65(送風切換部材の一例)が設けられている。なお,前記ダンパ65の動作については後段で詳述する。
また,前記冷蔵冷気分岐部Yの更に上方には冷蔵室送風機26が設けられている。ここで,前記冷蔵庫Xでは,前記冷却器21,前記送風機22,前記ダンパ65,前記冷蔵室送風機26を鉛直線上に配置し,該冷蔵庫Xの内部スペースを効率的に利用することで容積効率の向上が図られている。
In addition, a cold air blowing duct 23 that guides the cold air from the cooler 21 to the freezer compartment 13 and a refrigerated cold air branching section Y described later is provided at the back of the freezer compartment 13. In addition, the lower part of the said cool air ventilation duct 23 is formed of the inner box 2b and the evaporative cover 33 which consists of a resin molded product.
In the cold air blow duct 23, a blower 22 for blowing the cold air from the cooler 21 to the freezer compartment 13 or a refrigerated cold air branching portion Y described later is provided.
The refrigerated cold air branching portion Y is disposed above the blower 22, and the cold air from the cooler 21 is connected to the refrigerated room 11, the vegetable room 12, and the chilled room 14. One example of a room air supply path), a vegetable room air supply duct 30 (an example of a vegetable room air supply path), and a chilled room air supply duct 29 (an example of a chilled room air supply path) are branched into one or more (see FIG. 3). ). Specifically, the refrigerated cold air branching portion Y is provided with a damper 65 (an example of an air blowing switching member) that adjusts the air blowing destination of the cold air generated by the cooler 21. The operation of the damper 65 will be described in detail later.
Further, a refrigerating room blower 26 is provided above the refrigerating / refrigerating branch Y. Here, in the refrigerator X, the cooler 21, the blower 22, the damper 65, and the refrigerator compartment blower 26 are arranged on a vertical line, and the internal space of the refrigerator X is efficiently used to achieve volume efficiency. Improvements are being made.

ここに,前記冷気送風ダクト23は,図2に示すように,前記エバカバー33に設けられた流入口13a,13b及び流出口13cにより前記冷凍室13と連通している。なお,前記流入口13aは,前記製氷室16及び前記冷凍室13の間に形成されている。さらに,前記冷気送風ダクト23は,前記エバカバー33に設けられた流入口15aにより上段冷凍室15とも連通している(図3参照)。
そして,前記冷却器21で冷却された冷気は,前記送風機22の駆動により,前記冷気送風ダクト23を経て前記エバカバー33の流入口13a,13b,15aから前記冷凍室13,前記上段冷凍室15に供給され,その後,前記冷凍室13から前記エバカバー33の流出口13cを通じて前記冷却器21に戻される。これにより,前記冷凍室13,前記上段冷凍室15,前記製氷室16が冷却される。
Here, the cold air duct 23 communicates with the freezer compartment 13 through inflow ports 13a and 13b and an outflow port 13c provided in the evaporative cover 33, as shown in FIG. The inflow port 13 a is formed between the ice making chamber 16 and the freezing chamber 13. Furthermore, the cold air duct 23 communicates with the upper freezer compartment 15 through an inflow port 15a provided in the evaporation cover 33 (see FIG. 3).
Then, the cold air cooled by the cooler 21 is driven by the blower 22 to the freezer compartment 13 and the upper freezer compartment 15 from the inlets 13a, 13b, and 15a of the evaporation cover 33 through the cold air duct 23. Thereafter, the refrigerant is returned from the freezer compartment 13 to the cooler 21 through the outlet 13c of the evaporative cover 33. As a result, the freezer compartment 13, the upper freezer compartment 15, and the ice making compartment 16 are cooled.

一方,図2及び図3に示すように,前記冷蔵室11の背部には,前記冷却器21からの冷気を前記冷蔵室11,前記チルド室14に導く冷蔵室送風ダクト28,チルド室送風ダクト29が設けられている。
前記冷蔵室送風ダクト28は,図4に示すように,前記冷蔵冷気分岐部Yから前記冷蔵室送風機26を経て上方に延設され,その後左右に分岐されている。そして,前記冷蔵室送風ダクト28には,前記冷蔵室11に連通する吐出口37a〜37fが形成されている。
また,図2及び図4に示すように,前記冷蔵室11の天井には,前記冷蔵室送風ダクト28と連通する天井ダクト54が設けられている。そして,前記天井ダクト54には,前記冷蔵室11に連通する天井吐出口43a,43bが形成されている。
これにより,前記冷蔵庫Xでは,前記送風機22及び前記冷蔵室送風機26が駆動されると,前記冷却器21からの冷気が前記冷蔵室送風ダクト28及び前記天井ダクト54に沿って導かれ,前記吐出口37a〜37f及び前記前記天井吐出口43a,43bから吐出されることにより前記冷蔵室11が冷却される。
On the other hand, as shown in FIGS. 2 and 3, at the back of the refrigerating room 11, a refrigerating room air duct 28 and a chilled room air duct that guide the cold air from the cooler 21 to the refrigerating room 11 and the chilled room 14 are provided. 29 is provided.
As shown in FIG. 4, the refrigerating room air duct 28 extends upward from the refrigerating / cooling air branching portion Y through the refrigerating room air blower 26, and then branches to the left and right. The refrigerating chamber air duct 28 is formed with discharge ports 37 a to 37 f communicating with the refrigerating chamber 11.
As shown in FIGS. 2 and 4, a ceiling duct 54 that communicates with the refrigeration chamber air duct 28 is provided on the ceiling of the refrigeration chamber 11. The ceiling duct 54 is formed with ceiling discharge ports 43 a and 43 b communicating with the refrigerator compartment 11.
Thus, in the refrigerator X, when the blower 22 and the cold room blower 26 are driven, the cold air from the cooler 21 is guided along the cold room blower duct 28 and the ceiling duct 54, and the discharge The refrigerator compartment 11 is cooled by being discharged from the outlets 37a to 37f and the ceiling discharge ports 43a and 43b.

一方,図3及び図4に示すように,前記チルド室送風ダクト29は,前記冷蔵冷気分岐部Yと前記チルド室14とを接続する送風経路である。前記チルド室送風ダクト29には,前記チルド室14に連通する吐出口35a,35bが形成されている。
そのため,前記冷蔵庫Xでは,前記チルド室14を前記冷蔵室11に吐出された冷気によって冷却するだけでなく,前記冷却器21から前記冷蔵室11を経ずに前記チルド室送風ダクト29の吐出口35a,35bを通じて前記チルド室14内に吐出される冷気によって直接冷却することも可能である。
On the other hand, as shown in FIGS. 3 and 4, the chilled chamber air duct 29 is an air flow path that connects the refrigerated cold air branching portion Y and the chilled chamber 14. In the chilled chamber air duct 29, discharge ports 35a and 35b communicating with the chilled chamber 14 are formed.
Therefore, in the refrigerator X, not only the chilled chamber 14 is cooled by the cold air discharged to the refrigerator compartment 11, but also the outlet of the chilled chamber air duct 29 from the cooler 21 without passing through the refrigerator compartment 11. It is also possible to directly cool by cold air discharged into the chilled chamber 14 through 35a and 35b.

さらに,図3及び図4に示すように,前記チルド室14の背部には,前記冷蔵室11や前記チルド室14を経た冷気を前記野菜室12に導くための野菜室戻りダクト35が設けられている。前記野菜室戻りダクト35には,前記チルド室14に連通する流出口35cが形成されている。そして,前記野菜室戻りダクト35の前記野菜室12側は,前記野菜室12に向かう野菜室合流ダクト31に接続されている。ここに,前記野菜室戻りダクト35及び前記野菜室合流ダクト31が野菜室戻り経路の一例である。
また,前記野菜室送風ダクト30は,前記冷却器21からの冷気を前記野菜室12に導く送風経路であって,前記冷蔵冷気分岐部Yと前記野菜室合流ダクト31とを接続している。従って,前記冷蔵庫Xでは,前記野菜室送風ダクト30及び前記野菜室戻りダクト35各々からの冷気を,前記野菜室合流ダクト31で合流させて前記野菜室12に導くことが可能である。そのため,前記冷蔵室11及び前記チルド室14各々から前記野菜室12への送風経路を設ける必要がなく,前記冷蔵庫Xにおける容積効率を高めることができる。もちろん,それらを個別に設けることも他の実施例として考えられる。
Further, as shown in FIGS. 3 and 4, a vegetable room return duct 35 is provided on the back of the chilled chamber 14 to guide the cold air passing through the refrigerated chamber 11 and the chilled chamber 14 to the vegetable chamber 12. ing. The vegetable compartment return duct 35 is formed with an outlet 35 c communicating with the chilled chamber 14. The vegetable room return duct 35 is connected to the vegetable room merging duct 31 toward the vegetable room 12 on the vegetable room 12 side. Here, the vegetable room return duct 35 and the vegetable room merging duct 31 are an example of the vegetable room return path.
The vegetable room air duct 30 is an air passage that guides the cool air from the cooler 21 to the vegetable room 12, and connects the refrigerated cold air branching portion Y and the vegetable room confluence duct 31. Therefore, in the refrigerator X, the cold air from each of the vegetable room air duct 30 and the vegetable room return duct 35 can be joined by the vegetable room merging duct 31 and guided to the vegetable room 12. Therefore, it is not necessary to provide a ventilation path from each of the refrigerator compartment 11 and the chilled compartment 14 to the vegetable compartment 12, and the volumetric efficiency in the refrigerator X can be increased. Of course, providing them individually is also conceivable as another embodiment.

前記野菜室合流ダクト31の下部には,前記野菜室12に連通する吐出部12aが形成されており,該野菜室合流ダクト31内の冷気は,前記吐出部12aから前記野菜室12の外周を通過した後,該野菜室12に形成された流出口12b(図2参照)を通じて前記冷却器21に戻される。これにより,前記野菜室12が冷却される。ここに,前記流出口12bによって形成され,前記野菜室12を経た冷気を前記冷却器21に導く戻り経路が冷却器戻り経路の一例である。
このような構成では,前記冷蔵室11や前記チルド室14を経た冷気が前記野菜室12を介して前記冷却器21に戻されるため,前記冷蔵室11や前記チルド室14からの冷気を前記冷却器21に戻すための経路を個別に設ける必要が無く,前記冷蔵庫Xにおける容積効率を高めることができる。
A discharge part 12a communicating with the vegetable room 12 is formed in the lower part of the vegetable room merging duct 31, and the cold air in the vegetable room merging duct 31 is moved from the discharge part 12a to the outer periphery of the vegetable room 12. After passing, it is returned to the cooler 21 through an outlet 12b (see FIG. 2) formed in the vegetable compartment 12. Thereby, the vegetable compartment 12 is cooled. Here, the return path that is formed by the outlet 12b and guides the cool air that has passed through the vegetable compartment 12 to the cooler 21 is an example of the cooler return path.
In such a configuration, since the cold air that has passed through the refrigerator compartment 11 and the chilled chamber 14 is returned to the cooler 21 via the vegetable compartment 12, the cold air from the refrigerator compartment 11 and the chilled chamber 14 is cooled. There is no need to provide a separate path for returning to the container 21, and the volumetric efficiency in the refrigerator X can be increased.

ここで,図5を参照しつつ,前記冷蔵冷気分岐部Yについて詳説する。ここに,図5(a)〜(d)は,前記冷蔵冷気分岐部Yにおける前記ダンパ65の開閉状態と送風状態との関係を示す模式図である。なお,以下の図5(a)〜(d)のいずれにおいても,前記冷却器21からの冷気は,前記冷凍室13,前記上段冷凍室15及び前記製氷室16に送風可能な状態である。
前記ダンパ65は,不図示の駆動モータ等の駆動手段(以下,「ダンパ駆動手段」という)に連結支持されており,該ダンパ駆動手段から伝達される駆動力(回転力など)によって,所定の回動軸Pを中心に回動することにより,前記冷蔵冷気分岐部Yにおける前記冷却器21からの冷気の流通経路を開閉する。ここに,前記ダンパ65及び前記ダンパ駆動手段が,送風状態切換手段の一例である。なお,前記送風状態切換手段は,回動式の前記ダンパ65を用いるものに限らず,同様の機能を発揮するものであればスライド式などであってもよい。
Here, the refrigerated cold air branching portion Y will be described in detail with reference to FIG. Here, FIGS. 5A to 5D are schematic views showing the relationship between the open / closed state of the damper 65 and the blowing state in the refrigerated cold air branching portion Y. FIG. 5A to 5D below, the cool air from the cooler 21 can be blown to the freezer compartment 13, the upper freezer compartment 15, and the ice making compartment 16.
The damper 65 is connected and supported by driving means such as a driving motor (not shown) (hereinafter referred to as “damper driving means”), and a predetermined driving force (rotational force, etc.) is transmitted from the damper driving means. By rotating about the rotation axis P, the flow path of the cold air from the cooler 21 in the refrigerated cold air branching section Y is opened and closed. Here, the damper 65 and the damper driving means are an example of a blowing state switching means. The air blowing state switching means is not limited to the one using the rotary damper 65, but may be a sliding type as long as the same function is exhibited.

図5(a)は,前記ダンパ65が,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室送風ダクト29,前記冷蔵室送風ダクト28及び前記野菜室送風ダクト30の全てに供給される第1の送風状態を形成する第1の停止位置で停止した状態を示している。即ち,前記第1の送風状態では,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室14,前記冷蔵室11,前記野菜室12の全てに供給される。   FIG. 5A shows that the damper 65 causes the cold air from the cooler 21 in the refrigerated cold air branching portion Y to pass through all of the chilled room air duct 29, the refrigerating room air duct 28, and the vegetable room air duct 30. The state which stopped in the 1st stop position which forms the 1st ventilation state supplied to is shown. That is, in the first air blowing state, the cool air from the cooler 21 is supplied to all of the chilled chamber 14, the refrigerator chamber 11, and the vegetable chamber 12 in the refrigerated cold air branching section Y.

図5(b)は,前記ダンパ65が,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室送風ダクト29及び前記冷蔵室送風ダクト28のみに供給される第2の送風状態を形成する第2の停止位置で停止した状態を示している。即ち,前記第2の送風状態では,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室14,前記冷蔵室11のみに供給される。   FIG. 5B shows that the damper 65 has a second air flow in which the cool air from the cooler 21 is supplied only to the chilled room air duct 29 and the refrigerating room air duct 28 in the refrigerating cold air branching section Y. The state which stopped in the 2nd stop position which forms a state is shown. That is, in the second blowing state, the cool air from the cooler 21 is supplied only to the chilled chamber 14 and the refrigerating chamber 11 in the refrigerating cold air branching portion Y.

図5(c)は,前記ダンパ65が,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室送風ダクト29のみに供給される第3の送風状態を形成する第3の停止位置で停止した状態を示している。即ち,前記第3の送風状態では,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室14のみに供給される。   FIG. 5C shows a third state in which the damper 65 forms a third blowing state in which the cold air from the cooler 21 is supplied only to the chilled chamber air duct 29 in the refrigerated cold air branching portion Y. It shows the state stopped at the stop position. That is, in the third air blowing state, the cold air from the cooler 21 is supplied only to the chilled chamber 14 in the refrigerated cold air branching portion Y.

図5(d)は,前記ダンパ65が,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室送風ダクト29,前記冷蔵室送風ダクト28及び前記野菜室送風ダクト30の全てに供給されない第4の送風状態を形成する第4の停止位置で停止した状態を示している。即ち,前記第1の送風状態では,前記冷蔵冷気分岐部Yにおいて前記冷却器21からの冷気が,前記チルド室14,前記冷蔵室11,前記野菜室12の全てに供給されない。   FIG. 5D shows that the damper 65 causes the cold air from the cooler 21 in the refrigerated cold air branching portion Y to pass through all of the chilled room air duct 29, the refrigerating room air duct 28, and the vegetable room air duct 30. The state which stopped in the 4th stop position which forms the 4th ventilation state which is not supplied to is shown. That is, in the first air blowing state, the cool air from the cooler 21 is not supplied to all of the chilled chamber 14, the refrigerating chamber 11, and the vegetable chamber 12 in the refrigerating cold air branching portion Y.

このように,前記ダンパ65は,前記第1の停止位置から前記第4の停止位置の少なくとも4段階の間で停止位置が変動するものである。なお,本実施の形態では,説明の便宜上,前記ダンパ65が,図5(a)〜(d)の少なくとも4段階に移動可能に支持されている場合を例に挙げて説明するが,該ダンパ65の開閉は,前記第1の停止位置と前記第4の停止位置との間の任意の位置で停止可能であること,即ち前記第1の送風状態と前記第4の送風状態との間でその位置を自由に調整することにより送風状態を変化させることが可能であることが望ましい。これにより,前記冷却器21からの冷気の前記冷蔵室11,前記野菜室12及び前記チルド室14への送風量をより細かく調整することができる。   Thus, the stop position of the damper 65 varies between at least four stages from the first stop position to the fourth stop position. In the present embodiment, for convenience of explanation, the damper 65 will be described as an example in which it is supported so as to be movable in at least four stages of FIGS. 5A to 5D. The opening and closing of 65 can be stopped at any position between the first stop position and the fourth stop position, that is, between the first blowing state and the fourth blowing state. It is desirable that the air blowing state can be changed by freely adjusting the position. Thereby, the ventilation volume of the cold air from the cooler 21 to the refrigerator compartment 11, the vegetable compartment 12, and the chilled compartment 14 can be adjusted more finely.

次に,図6を用いて,上述のように構成された前記冷蔵庫Xにおいて形成されている冷気回路Zについて説明する。
図6に示すように,前記冷蔵庫Xにおいて形成された冷気回路Zでは,前記冷却器21に対して,前記冷凍室13,前記製氷室16及び前記上段冷凍室15と前記冷蔵冷気分岐部Yとが前記送風機22を介して並列に配置されている。また,前記上段冷凍室15,前記製氷室16は,前記冷凍室13に直列に配置されている。そして,前記上段冷凍室15,前記製氷室16,前記冷凍室13を経た冷気は,前記流出口13c(図2参照)を通じて前記冷却器21に戻される。
Next, the cold air circuit Z formed in the refrigerator X configured as described above will be described with reference to FIG.
As shown in FIG. 6, in the cold air circuit Z formed in the refrigerator X, the refrigerator 21, the ice making chamber 16, the upper freezer chamber 15, the refrigerated cold air branching portion Y, and the cooler 21. Are arranged in parallel via the blower 22. The upper freezing chamber 15 and the ice making chamber 16 are arranged in series with the freezing chamber 13. And the cold air which passed through the said upper stage freezing room 15, the said ice making room 16, and the said freezing room 13 is returned to the said cooler 21 through the said outflow port 13c (refer FIG. 2).

一方,前記冷蔵冷気分岐部Yは,前記冷蔵室送風ダクト28,前記野菜室送風ダクト30及び前記チルド室送風ダクト29に接続されている。前記冷蔵冷気分岐部Yは,前記ダンパ65の停止位置によって,前記冷却器21からの冷気を前記冷蔵室送風ダクト28,前記野菜室送風ダクト30及び前記チルド室送風ダクト29のいずれか一又は複数に分配する。なお,前記冷蔵室送風ダクト28上には,前記冷蔵室送風機26が設けられている。
そして,前記冷蔵室11及び前記チルド室14を経た冷気は,前記野菜室戻りダクト35を通じて,前記野菜室合流ダクト31に導かれることにより,前記野菜室送風ダクト30の冷気と混合されて前記野菜室12に供給される。その後,前記野菜室12を経た冷気は,前記流出口12b(図2参照)を通じて前記冷却器21に戻される。
係る構成によれば,前記冷却器21からの比較的低温の冷気が直接前記野菜室12に吐出される場合のように温度が低すぎる冷気が前記野菜室12に供給されないため,該野菜室12に貯蔵された野菜が低温障害になることや乾燥することを防ぐことができる。また,前記野菜室送風ダクト30と前記野菜室戻りダクト35とを合流させているため,個別に設ける場合に比べて前記冷蔵庫Xにおける容積効率を高めることができる。
On the other hand, the refrigerated cold air branching portion Y is connected to the refrigerated room air duct 28, the vegetable room air duct 30 and the chilled room air duct 29. Depending on the stop position of the damper 65, the refrigeration / cold air branching section Y can supply the cool air from the cooler 21 to one or more of the refrigeration room air duct 28, the vegetable room air duct 30 and the chilled room air duct 29. To distribute. The refrigerating room blower 26 is provided on the refrigerating room air duct 28.
And the cold air which passed through the said refrigerator compartment 11 and the said chilled room 14 is mixed with the cold air of the said vegetable compartment ventilation duct 30 by being guide | induced to the said vegetable compartment merging duct 31 through the said vegetable compartment return duct 35, and the said vegetable It is supplied to the chamber 12. Thereafter, the cold air passing through the vegetable compartment 12 is returned to the cooler 21 through the outlet 12b (see FIG. 2).
According to such a configuration, since the cool air whose temperature is relatively low from the cooler 21 is discharged directly to the vegetable room 12, the cold air whose temperature is too low is not supplied to the vegetable room 12. The vegetables stored in can be prevented from becoming a low temperature obstacle and drying. Moreover, since the said vegetable compartment ventilation duct 30 and the said vegetable compartment return duct 35 are merged, the volumetric efficiency in the said refrigerator X can be improved compared with the case where it provides separately.

また,前記冷気回路Zでは,前述したダンパ65の停止位置(図5参照)によって,前記冷蔵冷気分岐部Yにおける前記冷却器21からの冷気の送風先が変更される。
具体的に,前記ダンパ65が,前記第1の停止位置(図5(a)参照)で停止した状態では,前記冷気送風ダクト23が,前記冷蔵室送風ダクト28,前記チルド室送風ダクト29及び前記野菜室送風ダクト30の全てと連通する。従って,前記冷却器21からの冷気は,前記冷気送風ダクト23を介して前記冷蔵室送風ダクト28,前記チルド室送風ダクト29及び前記野菜室送風ダクト30の全てに供給される。そして,前記野菜室12を経た冷気は,前記冷凍室13からの戻り空気と混合された後,前記冷却器21で冷却される。
Further, in the cold air circuit Z, the destination of the cold air from the cooler 21 in the refrigerated cold air branching portion Y is changed depending on the stop position of the damper 65 (see FIG. 5).
Specifically, in a state in which the damper 65 is stopped at the first stop position (see FIG. 5A), the cold air blow duct 23 includes the cold room blow duct 28, the chilled room blow duct 29, and the like. It communicates with all the vegetable room air ducts 30. Therefore, the cool air from the cooler 21 is supplied to all of the cold room air duct 28, the chilled room air duct 29, and the vegetable room air duct 30 through the cold air duct 23. The cold air that has passed through the vegetable compartment 12 is mixed with the return air from the freezer compartment 13 and then cooled by the cooler 21.

また,前記ダンパ65が,前記第2の停止位置(図5(b)参照)で停止した状態では,前記冷蔵冷気分岐部Yにおいて,前記冷気送風ダクト23が前記冷蔵室送風ダクト28及び前記チルド室送風ダクト29のみと連通する。従って,前記冷却器21からの冷気は,前記冷蔵室送風ダクト28及び前記チルド室送風ダクト29に供給される。
この場合には,前記冷却器21からの冷気が前記野菜室送風ダクト30に供給されないため,前記野菜室12は前記冷蔵室11及び前記チルド室14を冷却した戻り冷気のみで冷却される。そのため,前記ダンパ65が前記第1の停止位置(図5(a)参照)で静止した場合と比べて前記野菜室12の温度を高く制御することができ,該野菜室12を冷やしすぎることなく前記冷蔵室11や前記チルド室14を冷却することができる。
In the state where the damper 65 is stopped at the second stop position (see FIG. 5B), in the refrigerated cold air branching portion Y, the cold air blow duct 23 is connected to the cold room blow duct 28 and the chilled air. It communicates only with the chamber air duct 29. Accordingly, the cool air from the cooler 21 is supplied to the refrigerating room air duct 28 and the chilled room air duct 29.
In this case, since the cold air from the cooler 21 is not supplied to the vegetable room air duct 30, the vegetable room 12 is cooled only by the return cold air that has cooled the refrigerator room 11 and the chilled room 14. Therefore, the temperature of the vegetable compartment 12 can be controlled higher than when the damper 65 is stationary at the first stop position (see FIG. 5A), and the vegetable compartment 12 is not cooled too much. The refrigerator compartment 11 and the chilled chamber 14 can be cooled.

そして,前記ダンパ65が,前記第3の停止位置(図5(c)参照)で停止した状態では,前記冷蔵冷気分岐部Yにおいて,前記冷気送風ダクト23が前記冷蔵室送風ダクト28のみと連通する。従って,前記冷却器21からの冷気が前記チルド室送風ダクト29に供給される。
この場合には,前記冷却器21からの冷気が前記野菜室送風ダクト30に供給されないため,前記野菜室12は前記チルド室14を冷却した戻り冷気のみで冷却される。そのため,この場合にも,前記野菜室12を冷やしすぎることなく前記チルド室14を冷却することができる。
また,前記冷蔵庫Xでは,前記冷却器21からの冷気を前記冷蔵室11や前記野菜室12に直接流入させることなく,前記チルド室14のみに流入させることにより,該チルド室14を重点的に冷却することが可能であるため,該チルド室14を前記冷蔵室11内の任意の位置に配置することも可能である。例えば,一般に前記チルド室14は,前記冷蔵室11の最下部に配置されるが,本発明に係る構成では,前記チルド室14を前記冷蔵室11の最上部などに配置することも可能である。
In the state in which the damper 65 is stopped at the third stop position (see FIG. 5C), the cold air duct 23 communicates only with the cold room air duct 28 in the refrigerated cold air branching section Y. To do. Accordingly, the cool air from the cooler 21 is supplied to the chilled chamber air duct 29.
In this case, since the cool air from the cooler 21 is not supplied to the vegetable room air duct 30, the vegetable room 12 is cooled only by the return cold air that has cooled the chilled room 14. Therefore, also in this case, the chilled chamber 14 can be cooled without cooling the vegetable chamber 12 too much.
Further, in the refrigerator X, the cold air from the cooler 21 is flowed only into the chilled chamber 14 without flowing directly into the refrigerated chamber 11 or the vegetable chamber 12, thereby giving priority to the chilled chamber 14. Since it can be cooled, the chilled chamber 14 can be arranged at an arbitrary position in the refrigerator compartment 11. For example, in general, the chilled chamber 14 is disposed at the lowermost portion of the refrigerated chamber 11. However, in the configuration according to the present invention, the chilled chamber 14 may be disposed at the uppermost portion of the refrigerated chamber 11. .

また,前記ダンパ65が,前記第4の停止位置(図5(d)参照)で停止した状態では,前記冷気送風ダクト23が,前記冷蔵室送風ダクト28,前記チルド室送風ダクト29及び前記野菜室送風ダクト30の全てと連通しない。従って,前記冷却器21からの冷気は,前記冷蔵室送風ダクト28,前記チルド室送風ダクト29及び前記野菜室送風ダクト30の全てに供給されない。
この場合には,前記冷却器21からの冷気が,前記冷凍室13,前記上段冷凍室15,前記製氷室16に流入し,前記冷凍室13,前記上段冷凍室15,前記製氷室16の庫内のみが冷却されることとなる。
In the state where the damper 65 is stopped at the fourth stop position (see FIG. 5D), the cold air blow duct 23 is replaced with the cold room blow duct 28, the chilled room blow duct 29 and the vegetable. It does not communicate with all of the room air ducts 30. Therefore, the cool air from the cooler 21 is not supplied to all of the refrigerator compartment air duct 28, the chilled room air duct 29 and the vegetable compartment air duct 30.
In this case, the cold air from the cooler 21 flows into the freezer compartment 13, the upper freezer compartment 15, and the ice making chamber 16, and the freezer compartment 13, the upper freezer compartment 15, and the ice making compartment 16 are stored. Only the inside is cooled.

以上のように構成された前記冷蔵庫Xでは,該冷蔵庫Xに設けられた不図示の制御部(以下「制御部α」という)によって後述の温度調整処理が実行されることにより,該冷蔵庫Xの冷蔵室11,野菜室12,冷凍室13,チルド室14の各収容室の庫内温度が予め設定された庫内設定温度に調整される。
前記制御部αは,例えばCPUやRAM,ROMなどを有しており,該CPUによって所定の制御プログラムを実行することにより,各種の制御処理を実行するものである。
ここで,本実施の形態では,前記冷蔵庫Xにおいて,前記冷蔵室11,前記野菜室12,前記冷凍室13,前記チルド室14各々に,庫内温度を検出するサーミスタなどの温度センサ(不図示,温度検出手段に相当)が設けられているものとする。以下,前記冷蔵室11,前記野菜室12,前記冷凍室13,前記チルド室14各々に対応する前記温度センサを,「冷蔵室温度センサ」,「野菜室温度センサ」,「冷凍室温度センサ」,「チルド室温度センサ」という。そして,前記温度センサ各々による検出温度は,前記制御部αに入力されており,該制御部αは,後述するように,前記温度センサ各々による検出温度に応じて,前記第1の送風状態から前記第4の送風状態に順に切り換えることにより各収容室の庫内温度を調整する。
In the refrigerator X configured as described above, a temperature adjustment process described below is executed by a control unit (not shown) provided in the refrigerator X (hereinafter referred to as “control unit α”). The internal temperature of each storage room of the refrigerator compartment 11, the vegetable compartment 12, the freezer compartment 13, and the chilled compartment 14 is adjusted to the preset internal preset temperature.
The control unit α includes, for example, a CPU, a RAM, a ROM, and the like, and executes various control processes by executing predetermined control programs by the CPU.
Here, in the present embodiment, in the refrigerator X, a temperature sensor (not shown) such as a thermistor for detecting the internal temperature of the refrigerator compartment 11, the vegetable compartment 12, the freezer compartment 13, and the chilled compartment 14 is provided. , Corresponding to the temperature detecting means). Hereinafter, the temperature sensors corresponding to the refrigerator compartment 11, the vegetable compartment 12, the freezer compartment 13, and the chilled compartment 14 are referred to as "refrigerator compartment temperature sensor", "vegetable compartment temperature sensor", and "freezer compartment temperature sensor". , "Chilled room temperature sensor". The temperature detected by each of the temperature sensors is input to the control unit α, and, as will be described later, the control unit α starts from the first blowing state according to the temperature detected by each of the temperature sensors. The internal temperature of each storage chamber is adjusted by sequentially switching to the fourth blowing state.

以下,図7のフローチャートに従って,前記冷蔵庫Xにおいて前記制御部αによって実行される温度調整処理の手順の一例について説明する。なお,図中のS1,S2,…は処理手順(ステップ)の番号を表している。
図7に示すように,まずステップS1では,前記制御部αは,前記冷蔵庫Xにおいて前記冷蔵室11,前記野菜室12,前記冷凍室13,前記チルド室14等を冷却する冷却運転を実行する必要が生じたか否かを判断する。
具体的に,前記制御部αは,前記冷蔵庫Xの電源が投入された場合や,前記冷蔵庫X内に設けられた各種の前記温度センサの検出温度が既定の冷却開始温度に達した場合などに,当該冷却運転の実行が必要であると判断し(S1のYes側),処理をステップS2に移行させる。なお,冷却運転の実行の必要がない場合には(S1のNo側),当該ステップS1の判断処理が適時繰り返して実行される。
Hereinafter, according to the flowchart of FIG. 7, an example of the procedure of the temperature adjustment process executed by the control unit α in the refrigerator X will be described. In the figure, S1, S2,... Represent processing procedure (step) numbers.
As shown in FIG. 7, first, in step S1, the control unit α executes a cooling operation for cooling the refrigerator compartment 11, the vegetable compartment 12, the freezer compartment 13, the chilled compartment 14 and the like in the refrigerator X. Determine if a need arises.
Specifically, the control unit α is used when the power of the refrigerator X is turned on or when the detected temperatures of the various temperature sensors provided in the refrigerator X reach a predetermined cooling start temperature. Therefore, it is determined that it is necessary to execute the cooling operation (Yes side of S1), and the process proceeds to step S2. When there is no need to execute the cooling operation (No side of S1), the determination process in step S1 is repeatedly performed in a timely manner.

ステップS2では,前記制御部αは,前記ダンパ駆動手段(不図示)を制御することにより,前記ダンパ65を回転駆動させて前記第1の停止位置(図5(a)参照)に移動させる。これにより,前記冷却器21で生成された冷気が,前記冷蔵室11,前記野菜室12,前記冷凍室13及び前記チルド室14の全てに供給される第1の送風状態が形成される。なお,前記ダンパ65の初期位置は,前記第4の停止位置である。
そして,ステップS3では,前記制御部αは,前記圧縮機20,前記送風機22及び前記冷蔵室送風機26を駆動させることにより冷却運転を開始させる。これにより,前記圧縮機20が接続された冷凍サイクルの運転が開始され,前記冷却器21で生成された冷気は,前記送風機22及び前記冷蔵室送風機26によって前記冷気送風ダクト23等を通じて前記冷蔵室11,前記野菜室12,前記冷凍室13及び前記チルド室14の全てに供給され,各収容室が冷却される。そのため,前記野菜室12は,迅速に低温まで冷却される。
In step S2, the control unit α controls the damper driving means (not shown) to rotationally drive the damper 65 to move it to the first stop position (see FIG. 5A). Thereby, the 1st ventilation state in which the cold air produced | generated by the said cooler 21 is supplied to all the said refrigerator compartment 11, the said vegetable compartment 12, the said freezing compartment 13, and the said chilled compartment 14 is formed. The initial position of the damper 65 is the fourth stop position.
In step S3, the controller α starts the cooling operation by driving the compressor 20, the blower 22, and the refrigerator compartment blower 26. As a result, the operation of the refrigeration cycle to which the compressor 20 is connected is started, and the cold air generated by the cooler 21 is supplied to the refrigerator compartment through the cool air blower duct 23 and the like by the blower 22 and the refrigerator refrigerator 26. 11, all of the vegetable compartment 12, the freezer compartment 13 and the chilled compartment 14 are supplied to cool the storage compartments. Therefore, the vegetable compartment 12 is quickly cooled to a low temperature.

その後,ステップS4において,前記制御部αは,前記野菜室12に設けられた前記野菜室温度センサ(不図示)によって検出される前記野菜室12の庫内温度が,該野菜室12の庫内設定温度に達したことを待ち受ける(S4のNo側)。
ここで,前記野菜室12の庫内温度が該野菜室12の庫内設定温度に達したと判断されると(S4のYes側),処理はステップS41に移行する。
Thereafter, in step S4, the controller α determines that the temperature in the vegetable compartment 12 detected by the vegetable compartment temperature sensor (not shown) provided in the vegetable compartment 12 is the inside of the vegetable compartment 12. Wait until the set temperature is reached (No side of S4).
If it is determined that the internal temperature of the vegetable compartment 12 has reached the internal set temperature of the vegetable compartment 12 (Yes in S4), the process proceeds to step S41.

ステップS41では,前記制御部αは,前記ダンパ駆動手段(不図示)を制御することにより,前記ダンパ65を回転駆動させて前記第2の停止位置まで移動させる。即ち,前記第1の送風状態から前記第2の送風状態に切り換えられる。
これにより,その後,前記冷蔵庫Xでは,前記冷却器21で生成された冷気が,前記冷凍室13,前記冷蔵室11,前記チルド室14に供給されることとなり,前記野菜室12には前記冷却器21からの冷気が直接供給されない第2の送風状態が形成される。従って,この状態では,前記野菜室12に,前記冷却器21からの冷気は直接供給されない。
このとき,前記冷蔵室11及び前記チルド室14を経た冷気は,前記野菜室12を経て前記冷却器21に戻されるが,該野菜室12は既に十分に低い温度まで冷却されている。従って,前記冷却器21に戻る冷気の温度を低くすることができ,当該冷蔵庫Xにおける冷却効率を高めて省電力化を図ることができる。
In step S41, the control unit α controls the damper driving means (not shown) to rotationally drive the damper 65 and move it to the second stop position. That is, the first air blowing state is switched to the second air blowing state.
Thereby, after that, in the refrigerator X, the cold air generated by the cooler 21 is supplied to the freezer compartment 13, the refrigerator compartment 11, and the chilled compartment 14, and the vegetable compartment 12 is supplied with the cooling air. A second blowing state in which the cool air from the vessel 21 is not directly supplied is formed. Therefore, in this state, the cold air from the cooler 21 is not directly supplied to the vegetable compartment 12.
At this time, the cold air that has passed through the refrigerator compartment 11 and the chilled compartment 14 is returned to the cooler 21 via the vegetable compartment 12, but the vegetable compartment 12 has already been cooled to a sufficiently low temperature. Therefore, the temperature of the cool air returning to the cooler 21 can be lowered, and the cooling efficiency in the refrigerator X can be increased to save power.

次に,ステップS5において,前記制御部αは,前記冷蔵室温度センサ(不図示)によって検出される前記冷蔵室11の庫内温度が,該冷蔵室11の庫内設定温度に達したことを待ち受ける(S5のNo側)。
ここで,前記冷蔵室11の庫内温度が該冷蔵室11の庫内設定温度に達したと判断されると(S5のYes側),処理はステップS51に移行する。
ステップS51では,前記制御部αは,前記制御部αは,前記ダンパ駆動モータ(不図示)を制御することにより,前記ダンパ65を回転駆動させて前記第3の停止位置まで移動させる。即ち,前記第2の送風状態から前記第3の送風状態に切り換えられる。
これにより,その後,前記冷蔵庫Xでは,前記冷却器21で生成された冷気が,前記冷凍室13及び前記チルド室14に供給されることとなり,前記冷蔵室11及び前記野菜室12には前記冷却器21からの冷気が直接供給されない第3の送風状態が形成される。
このとき,前記チルド室14に供給された冷気は,前記冷蔵室11の温度の影響を受けるが,該冷蔵室11は既に十分に低い温度まで冷却されている。従って,前記冷却器21に戻る冷気の温度を低くすることができ,当該冷蔵庫Xにおける冷却効率を高めて省電力化を図ることができる。
Next, in step S5, the control unit α confirms that the internal temperature of the refrigerating chamber 11 detected by the refrigerating chamber temperature sensor (not shown) has reached the set internal temperature of the refrigerating chamber 11. Wait (No side of S5).
If it is determined that the internal temperature of the refrigerator compartment 11 has reached the internal set temperature of the refrigerator compartment 11 (Yes in S5), the process proceeds to step S51.
In step S51, the control unit α controls the damper drive motor (not shown) to rotationally drive the damper 65 to move it to the third stop position. That is, the second air blowing state is switched to the third air blowing state.
Thereby, after that, in the refrigerator X, the cold air generated by the cooler 21 is supplied to the freezer compartment 13 and the chilled compartment 14, and the refrigerator compartment 11 and the vegetable compartment 12 are supplied with the cooling air. A third blowing state in which the cool air from the vessel 21 is not directly supplied is formed.
At this time, the cold air supplied to the chilled chamber 14 is affected by the temperature of the refrigerator compartment 11, but the refrigerator compartment 11 has already been cooled to a sufficiently low temperature. Therefore, the temperature of the cool air returning to the cooler 21 can be lowered, and the cooling efficiency in the refrigerator X can be increased to save power.

続いて,ステップS6において,前記制御部αは,前記チルド室温度センサ(不図示)によって検出される前記チルド室14の庫内温度が,該チルド14の庫内設定温度に達したことを待ち受ける(S6のNo側)。
ここで,前記チルド室14の庫内温度が該チルド室14の庫内設定温度に達したと判断されると(S6のYes側),処理はステップS61に移行する。
ステップS61では,前記制御部αは,前記制御部αは,前記ダンパ駆動モータ(不図示)を制御することにより,前記ダンパ65を回転駆動させて前記第4の停止位置まで移動させる。即ち,前記第3の送風状態から前記第4の送風状態に切り換えられる。
これにより,その後,前記冷蔵庫Xでは,前記冷却器21で生成された冷気が,前記冷凍室13に供給されることとなり,前記冷蔵室11,前記チルド室14及び前記野菜室12には前記冷却器21からの冷気が直接供給されない状態(第4の送風状態に相当)が形成される。
Subsequently, in step S6, the control unit α waits for the internal temperature of the chilled chamber 14 detected by the chilled chamber temperature sensor (not shown) to reach the internal set temperature of the chilled 14. (No side of S6).
If it is determined that the internal temperature of the chilled chamber 14 has reached the internal set temperature of the chilled chamber 14 (Yes in S6), the process proceeds to step S61.
In step S61, the control unit α controls the damper drive motor (not shown) to rotationally drive the damper 65 to move it to the fourth stop position. In other words, the third blowing state is switched to the fourth blowing state.
Thereby, after that, in the refrigerator X, the cold air generated by the cooler 21 is supplied to the freezer compartment 13, and the refrigerator compartment 11, the chilled compartment 14, and the vegetable compartment 12 are cooled. A state where the cool air from the vessel 21 is not directly supplied (corresponding to the fourth blowing state) is formed.

そして,ステップS7において,前記制御部αは,前記冷凍室温度センサ(不図示)によって検出される前記冷凍室13の庫内温度が,該冷凍室13の庫内設定温度に達したことを待ち受ける(S7のNo側)。
ここで,前記冷凍室13の庫内温度が該冷凍室13の庫内設定温度に達したと判断されると(S7のYes側),前記ステップS3で開始された冷却運転は停止される(S71)。これにより,一連の温度調整処理は終了し,処理は前記ステップS1に戻される。
In step S7, the control unit α waits for the inside temperature of the freezer compartment 13 detected by the freezer temperature sensor (not shown) to reach the freezer compartment 13 set temperature. (No side of S7).
When it is determined that the internal temperature of the freezer compartment 13 has reached the internal set temperature of the freezer compartment 13 (Yes in S7), the cooling operation started in step S3 is stopped ( S71). As a result, the series of temperature adjustment processing ends, and the processing returns to step S1.

以上説明したように,前記冷蔵庫Xでは,前記制御部αが前記温度調整処理を実行することにより,前記冷蔵冷気分岐部Yにおける前記ダンパ65の停止位置を前記第1の停止位置,前記第2の停止位置,前記第3の停止位置,前記第4の停止位置の順に移動させ,前記冷蔵庫X内で形成される送風状態を,前記第1の送風状態,前記第2の送風状態,前記第3の送風状態,前記第4の送風状態の順に切り換えることにより,前記冷蔵室11,前記野菜室12,前記冷凍室13,前記チルド室14各々の庫内温度を前記庫内設定温度に調整している。ここに,前記温度調整処理を実行するときの前記制御部αが温度調整手段に相当する。
従って,前記野菜室12が冷えていない状態で前記冷蔵室11や前記チルド室14の冷却が行われる時間や,前記冷蔵室11が冷えていない状態で前記チルド室14の冷却が行われる時間を極力短くすることが可能であり,前記冷却器21に温度が高い冷気が戻される時間を短くすることができるため,当該冷蔵庫Xにおける冷却効率を高めて省電力化を実現することができる。
As described above, in the refrigerator X, the control unit α executes the temperature adjustment process, whereby the stop position of the damper 65 in the refrigerated cold air branching unit Y is set to the first stop position and the second stop position. The stop position, the third stop position, and the fourth stop position are moved in this order, and the blowing state formed in the refrigerator X is changed to the first blowing state, the second blowing state, the first 3 in order of the air blowing state and the fourth air blowing state, the internal temperature of each of the refrigerator compartment 11, the vegetable compartment 12, the freezer compartment 13, and the chilled compartment 14 is adjusted to the internal preset temperature. ing. Here, the control unit α when executing the temperature adjustment processing corresponds to a temperature adjustment unit.
Therefore, the time for cooling the refrigerated chamber 11 and the chilled chamber 14 when the vegetable chamber 12 is not cooled, and the time for cooling the chilled chamber 14 when the refrigerated chamber 11 is not cooled. It is possible to shorten the time as much as possible, and the time for returning the cool air having a high temperature to the cooler 21 can be shortened, so that the cooling efficiency in the refrigerator X can be increased and power saving can be realized.

なお,本実施の形態では,前記冷蔵室11,前記野菜室12,前記冷凍室13,前記チルド室14各々に温度センサ(温度検出手段に相当)が設けられている構成を例に挙げて説明した。一方,前記チルド室温度センサや前記野菜室温度センサなどを備えない構成では,以下のように前記ダンパ65を制御することが考えられる。
即ち,前記冷蔵庫Xの外気温度が高い時や扉開閉が多い場合など,前記野菜室12を積極的に冷却する必要がある場合には,前記ダンパ65が前記第1の停止位置で停止する時間を長くとり,その後に前記ダンパ65を前記第2の停止位置の状態とすればよい。
同様に前記冷蔵庫Xの外気温度が高い時や扉開閉が多い場合など,前記チルド室14を積極的に冷却する必要がある場合には,前記ダンパ65が前記第2の停止位置で停止する状態で前記冷蔵室11が該冷蔵室11の庫内設定温度に達した後,前記ダンパ65を一定時間,前記第3の停止位置で停止する状態とする。そして,その後に前記ダンパ65を前記第4の停止位置の状態とすればよい。
このような構成であっても,前記野菜室12の温度が高い状態で,前記冷蔵室11や前記チルド室14の冷却が行われる時間や,前記冷蔵室11の温度が高い状態で前記チルド室14の冷却が行われる時間が短くなるため,前記冷蔵庫Xの稼働効率を高めて省電力化を図ることができる。
In the present embodiment, a configuration in which temperature sensors (corresponding to temperature detecting means) are provided in the refrigerator compartment 11, the vegetable compartment 12, the freezer compartment 13, and the chilled compartment 14 will be described as an example. did. On the other hand, in a configuration that does not include the chilled room temperature sensor, the vegetable room temperature sensor, or the like, it is conceivable to control the damper 65 as follows.
That is, when it is necessary to actively cool the vegetable compartment 12, such as when the outside temperature of the refrigerator X is high or when the door is opened and closed frequently, the time for the damper 65 to stop at the first stop position. And then the damper 65 may be brought into the second stop position.
Similarly, when the chilled chamber 14 needs to be positively cooled, such as when the outside temperature of the refrigerator X is high or when the door is opened and closed frequently, the damper 65 is stopped at the second stop position. Then, after the refrigerator compartment 11 reaches the set temperature in the refrigerator compartment 11, the damper 65 is stopped at the third stop position for a certain period of time. Thereafter, the damper 65 may be brought into the fourth stop position.
Even in such a configuration, the chilled chamber 11 is heated in a state where the temperature of the refrigerated chamber 11 and the chilled chamber 14 is high while the temperature of the chilled chamber 11 is high. Since the cooling time of 14 is shortened, the operating efficiency of the refrigerator X can be increased to save power.

2a:外箱
2b:内箱
3,5,6:断熱扉
11:冷蔵室
12:野菜室
13:冷凍室
14:チルド室
15:上段冷凍室
16:製氷室
20:圧縮機
21:冷却器
22:送風機
23,28,29,30,31:各種送風ダクト
26:冷蔵室送風機
33:エバカバー
35a,35b:吐出口
35c:流出口
37a〜37f:吐出口
43a,43b:天井吐出口
45,46:棚
47:収納ポケット
54:天井ダクト
55,56:収納容器
62:除霜用ヒータ
64:ドレン受け部材
65:ダンパ(送風切換部材の一例)
S1,S2,…:処理手順(ステップ)番号
X:冷蔵庫
2a: outer box 2b: inner box 3, 5, 6: heat insulating door 11: refrigerator compartment 12: vegetable room 13: freezer room 14: chilled room 15: upper freezer room 16: ice making room 20: compressor 21: cooler 22 : Blowers 23, 28, 29, 30, 31: Various blower ducts 26: Refrigerating room blower 33: Eva cover 35a, 35b: Discharge port 35c: Outflow ports 37a-37f: Discharge ports 43a, 43b: Ceiling discharge ports 45, 46: Shelf 47: Storage pocket 54: Ceiling duct 55, 56: Storage container 62: Defrost heater 64: Drain receiving member 65: Damper (an example of a ventilation switching member)
S1, S2,...: Processing procedure (step) number X: Refrigerator

Claims (6)

予め庫内設定温度が順に低くなるように設定された野菜室,冷蔵室及び前記冷蔵室内に配置されたチルド室と,冷気を生成する冷却器と,前記冷却器から前記冷蔵室,前記野菜室及び前記チルド室各々に冷気を導く冷蔵室送風経路,野菜室送風経路及びチルド室送風経路と,前記冷蔵室を経た冷気及び前記チルド室を経た冷気のいずれか一方又は両方を前記野菜室に導く野菜室戻り経路と,前記野菜室を経た冷気を前記冷却器に導く冷却器戻り経路と,前記冷却器からの冷気を前記冷蔵室送風経路,前記野菜室送風経路及び前記チルド室送風経路のいずれか一又は複数に分岐する冷蔵冷気分岐部とを備えてなる冷蔵庫であって,
前記冷蔵冷気分岐部において前記冷却器からの冷気が前記チルド室送風経路,前記冷蔵室送風経路及び前記野菜室送風経路の全てに供給される第1の送風状態,該冷却器からの冷気が前記チルド室送風経路及び前記冷蔵室送風経路のみに供給される第2の送風状態,該冷却器からの冷気が前記チルド室送風経路のみに供給される第3の送風状態,該冷却器からの冷気が前記チルド室送風経路,前記冷蔵室送風経路及び前記野菜室送風経路の全てに供給されない第4の送風状態の少なくとも4段階の送風状態を形成する送風状態切換手段と,
前記送風状態切換手段により形成される送風状態を,前記第1の送風状態,前記第2の送風状態,前記第3の送風状態,前記第4の送風状態の順に切り換えることにより,前記冷蔵室,前記野菜室及び前記チルド室各々の庫内温度を前記庫内設定温度に調整する温度調整手段と,
を備えてなることを特徴とする冷蔵庫。
A vegetable room, a refrigeration room, a chilled room disposed in the refrigeration room, a cooler that generates cold air, and the refrigeration room, the vegetable room from the cooler, which are set in advance so that the set temperature in the cabinet decreases in order One of or both of a refrigeration room air passage, a vegetable room air passage, a chilled room air passage, and the cold air passing through the chilled room and the cold air passing through the chilled room are led to the vegetable room. Any of the vegetable room return path, the cooler return path that guides the cold air that has passed through the vegetable room to the cooler, and the cold air from the cooler, the refrigerator room air supply path, the vegetable room air supply path, and the chilled room air supply path. A refrigerator comprising a refrigerated cold air branching portion that branches into one or more,
In the refrigerated cold air branching section, the first air blowing state in which the cold air from the cooler is supplied to all of the chilled room air blowing path, the cold room air blowing path and the vegetable room air blowing path, the cold air from the cooler is the The second blowing state supplied only to the chilled chamber blowing path and the refrigerator compartment blowing path, the third blowing state where the cool air from the cooler is supplied only to the chilled chamber blowing path, and the cold air from the cooler A blowing state switching means for forming at least four stages of blowing states of a fourth blowing state that is not supplied to all of the chilled chamber blowing path, the refrigerator room blowing path, and the vegetable room blowing path;
By switching the air blowing state formed by the air blowing state switching means in the order of the first air blowing state, the second air blowing state, the third air blowing state, and the fourth air blowing state, Temperature adjusting means for adjusting the internal temperature of each of the vegetable room and the chilled room to the internal set temperature;
The refrigerator characterized by comprising.
前記送風状態切換手段が,前記冷蔵冷気分岐部において前記第1の送風状態から前記第4の送風状態が形成される第1の停止位置から第4の停止位置の少なくとも4段階に移動可能に支持された送風切換部材を含んでなり,
前記温度調整手段が,前記送風切換部材の位置を,前記第1の停止位置,前記第2の停止位置,前記第3の停止位置,前記第4の停止位置の順に切り換えることにより,前記冷蔵室,前記野菜室及び前記チルド室各々の庫内温度を前記庫内設定温度に調整するものである請求項1に記載の冷蔵庫。
The air blowing state switching means is supported to be movable in at least four stages from the first stop position where the fourth air blowing state is formed from the first air blowing state to the fourth stop position in the refrigerated cold air branching portion. An air flow switching member
The temperature adjusting means switches the position of the air blowing switching member in the order of the first stop position, the second stop position, the third stop position, and the fourth stop position, thereby the refrigerator compartment. The refrigerator according to claim 1, wherein the inside temperature of each of the vegetable room and the chilled room is adjusted to the set temperature in the room.
前記送風切換部材が,所定の回動軸を中心に回動されることにより,前記第1の停止位置から前記第4の停止位置の少なくとも4段階の間で停止位置が変動するものである請求項2に記載の冷蔵庫。   The stop position varies between at least four stages from the first stop position to the fourth stop position by rotating the air blowing switching member about a predetermined rotation axis. Item 3. The refrigerator according to Item 2. 前記送風切換部材が,前記第1の停止位置から前記第4の停止位置の間の任意の位置で停止可能なものである請求項3に記載の冷蔵庫。   The refrigerator according to claim 3, wherein the air blowing switching member can be stopped at an arbitrary position between the first stop position and the fourth stop position. 前記チルド室,前記冷蔵室及び前記野菜室の温度を検出する温度検出手段を更に備えてなり,
前記温度調整手段が,前記送風状態切換手段により形成される送風状態を,前記温度検出手段による検出温度に応じて前記第1の送風状態から前記第4の送風状態に順に切り換えることにより,前記冷蔵室,前記野菜室及び前記チルド室各々の庫内温度を前記庫内設定温度に調整するものである請求項1〜4のいずれかに記載の冷蔵庫。
Further comprising temperature detecting means for detecting the temperature of the chilled room, the refrigerator room and the vegetable room,
The temperature adjusting means switches the air blowing state formed by the air blowing state switching means from the first air blowing state to the fourth air blowing state in order according to the temperature detected by the temperature detecting means, whereby the refrigeration The refrigerator in any one of Claims 1-4 which adjusts the internal temperature of each chamber | chamber, the said vegetable compartment, and the said chilled room to the said internal set temperature.
前記温度調整手段が,
前記第1の送風状態で前記野菜室の温度が該野菜室の庫内設定温度に達した場合に,前記第1の送風状態から前記第2の送風状態に切り換え,
前記第2の送風状態で前記冷蔵室の温度が該冷蔵室の庫内設定温度に達した場合に,前記第2の送風状態から前記第3の送風状態に切り換え,
前記第3の送風状態で前記チルド室の温度が該チルド室の庫内設定温度に達した場合に,前記第3の送風状態から前記第4の送風状態に切り換えるものである請求項5に記載の冷蔵庫。
The temperature adjusting means is
When the temperature of the vegetable compartment reaches the set temperature in the vegetable compartment in the first blowing state, the first blowing state is switched to the second blowing state,
When the temperature of the refrigerator compartment reaches the set temperature in the refrigerator compartment in the second ventilation state, the second ventilation state is switched to the third ventilation state;
The switch from the third blowing state to the fourth blowing state when the temperature of the chilled chamber reaches a set temperature inside the chilled chamber in the third blowing state. Refrigerator.
JP2009202903A 2009-09-02 2009-09-02 refrigerator Expired - Fee Related JP5184469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202903A JP5184469B2 (en) 2009-09-02 2009-09-02 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202903A JP5184469B2 (en) 2009-09-02 2009-09-02 refrigerator

Publications (2)

Publication Number Publication Date
JP2011052910A JP2011052910A (en) 2011-03-17
JP5184469B2 true JP5184469B2 (en) 2013-04-17

Family

ID=43942100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202903A Expired - Fee Related JP5184469B2 (en) 2009-09-02 2009-09-02 refrigerator

Country Status (1)

Country Link
JP (1) JP5184469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144096B1 (en) 2021-11-16 2022-09-29 株式会社大都技研 coffee machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877297B2 (en) * 2011-04-05 2016-03-08 パナソニックIpマネジメント株式会社 refrigerator
JP5909426B2 (en) 2012-08-23 2016-04-26 日立アプライアンス株式会社 refrigerator
JP5909427B2 (en) * 2012-08-23 2016-04-26 日立アプライアンス株式会社 refrigerator
JP6211872B2 (en) * 2013-09-26 2017-10-11 東芝ライフスタイル株式会社 refrigerator
CN107084580B (en) * 2017-05-11 2020-02-18 海信(山东)冰箱有限公司 Air distribution device of air-cooled refrigerator, control method of air distribution device and air-cooled refrigerator
CN107940872B (en) * 2017-11-23 2020-06-16 海信(山东)冰箱有限公司 Air supply device and refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223432A (en) * 1992-02-06 1993-08-31 Toshiba Corp Refrigerator
JP3583821B2 (en) * 1994-11-30 2004-11-04 三洋電機株式会社 Freezer refrigerator
JP2001280800A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Air regulation device and air flow control device for storage room
JP4357436B2 (en) * 2005-03-07 2009-11-04 シャープ株式会社 refrigerator
WO2007029171A1 (en) * 2005-09-05 2007-03-15 Arcelik Anonim Sirketi A cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144096B1 (en) 2021-11-16 2022-09-29 株式会社大都技研 coffee machine

Also Published As

Publication number Publication date
JP2011052910A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
KR101387522B1 (en) Refrigerator and Controlling method for the same
JP5184469B2 (en) refrigerator
JP5178642B2 (en) refrigerator
JP5043938B2 (en) Refrigerator having cold air circulation device and control method of cold air circulation
US8341974B2 (en) Refrigerator and method of controlling the same
KR102418005B1 (en) Refrigerator and controlling method thereof
JP4739926B2 (en) refrigerator
JP2015010815A (en) Refrigerator
JP5868070B2 (en) refrigerator
JP5363247B2 (en) refrigerator
JP2008020159A (en) Refrigerator
JP2017116121A (en) refrigerator
JP6309156B2 (en) refrigerator
KR100678777B1 (en) Refrigerator
JP2001330361A (en) Refrigerator
JP6584525B2 (en) refrigerator
JP2011052934A (en) Refrigerator
JP6261535B2 (en) Freezer refrigerator
JP6446665B2 (en) refrigerator
KR100826934B1 (en) Refrigerator and method for control operating thereof
JP7475869B2 (en) refrigerator
JP2007120913A (en) Refrigerator
JP2006226614A (en) Refrigerator
KR100438939B1 (en) Apparatus for cooling air supply in refrigerator
JP2022165184A (en) refrigerator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees