JP2016160503A - Electrolytic copper foil, and electrical component and battery comprising the same - Google Patents

Electrolytic copper foil, and electrical component and battery comprising the same Download PDF

Info

Publication number
JP2016160503A
JP2016160503A JP2015041704A JP2015041704A JP2016160503A JP 2016160503 A JP2016160503 A JP 2016160503A JP 2015041704 A JP2015041704 A JP 2015041704A JP 2015041704 A JP2015041704 A JP 2015041704A JP 2016160503 A JP2016160503 A JP 2016160503A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
heat treatment
foil according
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041704A
Other languages
Japanese (ja)
Other versions
JP6014186B2 (en
Inventor
ヒョン イ、ソン
Sun Hyoung Lee
ヒョン イ、ソン
チン チョ、テ
Tae Jin Jo
チン チョ、テ
キ パク、ソル
Seul Ki Park
キ パク、ソル
ドク ソン、キ
Ki Deok Song
ドク ソン、キ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iljin Mat Co Ltd
Iljin Materials Co Ltd
Original Assignee
Iljin Mat Co Ltd
Iljin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iljin Mat Co Ltd, Iljin Materials Co Ltd filed Critical Iljin Mat Co Ltd
Priority to JP2015041704A priority Critical patent/JP6014186B2/en
Publication of JP2016160503A publication Critical patent/JP2016160503A/en
Application granted granted Critical
Publication of JP6014186B2 publication Critical patent/JP6014186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: low-roughness electrolytic copper foil that allows high elongation in spite of thin thickness and high mechanical strength; and an electrical component and a battery that comprise the electrolytic copper foil.SOLUTION: An electrolytic copper foil is presented in which the average diameter of pores is from 1 nm to 100 nm, the pores being regions between protruding surface elements on a deposition face. The electrolytic copper foil exhibits a high elongation percentage while maintaining low roughness and high strength, and can be used in, e.g., a semiconductor packaging substrate for tape automated bonding (TAB) used in a tape carrier package (TCP) and a collector of a medium to large scale lithium ion secondary battery.SELECTED DRAWING: Figure 5

Description

本発明は、電解銅箔、電解銅箔を含む電気部品および電池に関するものであって、より詳細には、高温熱処理後も高い引張強度と延伸率を同時に備えた低粗度、高強度および高延伸の電解銅箔に関するものである。   The present invention relates to an electrolytic copper foil, an electrical component including the electrolytic copper foil, and a battery. More specifically, the present invention relates to low roughness, high strength, and high strength that simultaneously have high tensile strength and stretch ratio even after high-temperature heat treatment. The present invention relates to a drawn electrolytic copper foil.

二次電池の集電体としては、一般的に銅箔が用いられる。前記銅箔は、圧延加工による圧延銅箔が主に用いられるが、製造費用が高価であり、広幅の銅箔の製造が困難である。また、圧延銅箔は、圧延加工時に潤滑油を使用しなければならないことから、潤滑油の汚染によって活物質との密着性が低下し、電池の充放電サイクル特性が低下することがある。   A copper foil is generally used as the current collector of the secondary battery. As the copper foil, a rolled copper foil obtained by rolling is mainly used, but the manufacturing cost is expensive and it is difficult to produce a wide copper foil. In addition, since the rolled copper foil must use a lubricating oil during the rolling process, the adhesion with the active material may deteriorate due to contamination of the lubricating oil, and the charge / discharge cycle characteristics of the battery may deteriorate.

リチウム電池は、充放電時の体積変化および過充電による発熱現象を伴う。また、電極活物質との密着性を向上させ、充放電サイクルによる活物質層の膨張収縮に関連して銅箔基材への影響がより少なく、集電体としての銅箔にシワ、破断などの発生を防止する効果があるように、銅箔の表面粗度が低くなければならない。したがって、リチウム電池の体積変化および発熱現象に耐えられ、活物質との密着性に優れた高延伸、高強度および低粗度の銅箔が要求される。   Lithium batteries are accompanied by a change in volume during charging and discharging and a heat generation phenomenon due to overcharging. In addition, the adhesion with the electrode active material is improved, the influence on the copper foil base material is less related to the expansion and contraction of the active material layer due to the charge / discharge cycle, the copper foil as a current collector is wrinkled, broken, etc. The surface roughness of the copper foil must be low so that there is an effect of preventing the occurrence of. Accordingly, there is a demand for a highly stretched, high strength and low roughness copper foil that can withstand volume changes and exothermic phenomena of lithium batteries and has excellent adhesion to the active material.

また、電子機器の軽薄短小の要求によって、高機能化、小型化、軽量化による少ない面積内に回路の集積度を高めるべく、半導体実装基板やメインボード基板の微細配線化に対する要求が増加している。このような微細パターンを有するプリント配線板の製造に厚い銅箔が用いられると、配線回路形成のためのエッチング時間が長くなり、配線パターンの側壁の垂直性が低下する。特に、エッチングによって形成される配線パターンの配線の線幅が狭い場合には、配線が断線することがある。したがって、微細ピッチ回路を得るためには、より厚さの薄い銅箔が要求される。しかし、薄い銅箔は銅箔の厚さが制限されるため、機械的強度が弱く、プリント配線基板の製造時にシワや折れ曲がりなどの不良発生頻度が高くなる。   In addition, due to the demands for light and thin electronic devices, there is an increasing demand for miniaturization of semiconductor mounting boards and main board boards in order to increase the degree of circuit integration within a small area due to high functionality, miniaturization, and weight reduction. Yes. When a thick copper foil is used for the production of a printed wiring board having such a fine pattern, the etching time for forming a wiring circuit becomes long, and the verticality of the side wall of the wiring pattern is lowered. In particular, when the line width of the wiring pattern formed by etching is narrow, the wiring may be disconnected. Therefore, in order to obtain a fine pitch circuit, a thinner copper foil is required. However, since the thickness of the thin copper foil is limited, the mechanical strength is weak, and the frequency of occurrence of defects such as wrinkles and bending is increased during the production of the printed wiring board.

そして、TCP(Tape Carrier Package)に使用されるTAB(Tape Automated Bonding)用半導体パッケージング(packaging)基板などにおいて、製品の中央部に位置するデバイスホール(device hall)に配置されるインナーリード(inner lead)に対してICチップの複数の端子を直接ボンディングし、この時、ボンディング装置を用いて瞬間的に電流を流して加熱し、一定の圧力を加える。したがって、電解銅箔のエッチングによって形成されたインナーリードがボンディング圧によって引っ張られて伸びることになる。   In a TAB (Tape Automated Bonding) semiconductor packaging substrate used for TCP (Tape Carrier Package), an inner lead (inner) disposed in a device hole located at the center of the product. lead), a plurality of terminals of the IC chip are directly bonded, and at this time, an electric current is instantaneously applied using a bonding apparatus to heat and a certain pressure is applied. Therefore, the inner lead formed by etching the electrolytic copper foil is stretched by being pulled by the bonding pressure.

したがって、厚さが薄く、機械的強度が高いながらも高延伸が可能な低粗度の銅箔が要求される。   Accordingly, there is a demand for a low-roughness copper foil that is thin and has high mechanical strength but can be drawn at a high rate.

本発明の一側面は、新たな電解銅箔を提供する。   One aspect of the present invention provides a new electrolytic copper foil.

本発明の他の側面は、電解銅箔を含む電気部品を提供する。   Another aspect of the present invention provides an electrical component that includes an electrolytic copper foil.

本発明のさらに他の側面は、電解銅箔を含む電池を提供する。   Yet another aspect of the present invention provides a battery including an electrolytic copper foil.

以上のような目的を達成するための、本発明の一側面による電解銅箔は、析出面の突出した表面要素の間の領域であるポア(pore)の平均直径が1nm〜100nmである。   In order to achieve the above object, the electrolytic copper foil according to one aspect of the present invention has a pore having an average diameter of 1 nm to 100 nm, which is a region between protruding surface elements.

ポアの断面積は、析出面の面積に対して10%〜50%であってよく、ポアは100個/μm〜1000個/μmであってよい。 The cross-sectional area of the pores may be 10% to 50% with respect to the area of the deposition surface, and the pores may be 100 / μm 2 to 1000 / μm 2 .

ポアの析出面における平均密度の、突出した表面要素の析出面における平均密度に対する割合は10%〜50%であってよい。   The ratio of the average density at the pore precipitation surface to the average density at the precipitation surface of the protruding surface element may be 10% to 50%.

析出面の幅方向に対する光沢度(Gs(60゜))が500以上であってよい。   The glossiness (Gs (60 °)) in the width direction of the deposition surface may be 500 or more.

電解銅箔は、熱処理前の引張強度が40kgf/mm〜70kgf/mmであってよく、熱処理後の引張強度も40kgf/mm〜70kgf/mmであってよい。熱処理は、180℃で1時間行われてよい。さらに、熱処理後の引張強度は、熱処理前の引張強度の85%〜99%であることが好ましい。 The electrolytic copper foil may have a tensile strength before heat treatment of 40 kgf / mm 2 to 70 kgf / mm 2 , and a tensile strength after heat treatment of 40 kgf / mm 2 to 70 kgf / mm 2 . The heat treatment may be performed at 180 ° C. for 1 hour. Furthermore, the tensile strength after heat treatment is preferably 85% to 99% of the tensile strength before heat treatment.

電解銅箔は、熱処理前の延伸率が2%〜15%であってよく、熱処理後の延伸率は4%〜15%であってよい。熱処理は、180℃で1時間行われてよい。さらに、熱処理後の延伸率は、熱処理前の延伸率の1倍〜4.5倍であってよい。   The electrolytic copper foil may have a stretch ratio before heat treatment of 2% to 15%, and a stretch ratio after heat treatment of 4% to 15%. The heat treatment may be performed at 180 ° C. for 1 hour. Furthermore, the stretch ratio after heat treatment may be 1 to 4.5 times the stretch ratio before heat treatment.

電解銅箔の角の巻き角度は0゜〜45゜であってよく、角の巻き高さは0mm〜40mmであってよく、電解銅箔の厚さは2μm〜10μmであってよい。   The corner winding angle of the electrolytic copper foil may be 0 ° to 45 °, the corner winding height may be 0 mm to 40 mm, and the thickness of the electrolytic copper foil may be 2 μm to 10 μm.

本発明の他の側面によれば、前記のような電解銅箔を含む電池が提案される。   According to another aspect of the present invention, a battery including the above electrolytic copper foil is proposed.

本発明のさらに他の側面によれば、絶縁性基材と、絶縁性基材の一表面に付着した前記電解銅箔とを含む電気部品が提案される。   According to still another aspect of the present invention, an electrical component including an insulating base and the electrolytic copper foil attached to one surface of the insulating base is proposed.

本発明の電解銅箔は、析出面から外部に突出した表面要素の間のポアの大きさおよび密度が相対的に小さく、後処理工程の前にも高光沢度を示し、製品の品質を向上させる効果がある。また、本発明にかかる電解銅箔は、高強度を示しながらもこれと共に高延伸率を示し、電解銅箔の内部ストレスが小さくて角の巻き現象を防止することができる。したがって、本発明にかかる電解銅箔は、低粗度、高強度および高延伸率を示して工程の実行が有利であり、製品の不良率を減少させ、PCBまたは二次電池の負極集電体などのような製品に用いられる場合、製品の信頼性を向上させることができる。   The electrolytic copper foil of the present invention has relatively small pore size and density between surface elements protruding outward from the deposition surface, and exhibits high gloss before the post-treatment process, improving the quality of the product There is an effect to make. In addition, the electrolytic copper foil according to the present invention exhibits a high drawing ratio while exhibiting high strength, and the internal stress of the electrolytic copper foil is small, thereby preventing the corner winding phenomenon. Therefore, the electrolytic copper foil according to the present invention exhibits low roughness, high strength, and high stretch ratio, and is advantageous in executing the process, reducing the defective rate of the product, and negative electrode current collector of PCB or secondary battery When used in a product such as, the reliability of the product can be improved.

本発明の一実施形態にかかる電解銅箔の2,000倍の電界放出走査電子顕微鏡(Field emission scanning electron microscopy、FESEM)イメージである。It is a field emission scanning electron microscope (FESEM) image of 2,000 times of the electrolytic copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる電解銅箔の10,000倍のFESEMイメージである。It is a 10,000 times FESEM image of the electrolytic copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる電解銅箔の50,000倍のFESEMイメージである。It is a 50,000 times FESEM image of the electrolytic copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる電解銅箔の100,000倍のFESEMイメージである。It is a 100,000 times FESEM image of the electrolytic copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる電解銅箔の100,000倍のFESEMイメージである。It is a 100,000 times FESEM image of the electrolytic copper foil concerning one Embodiment of this invention. 実施例1で製造された電解銅箔の析出面に対するXRD(X−ray diffraction)スペクトルである。3 is an XRD (X-ray diffraction) spectrum with respect to the deposition surface of the electrolytic copper foil produced in Example 1. FIG. 実施例1で製造された電解銅箔の表面に対する走査電子顕微鏡(scanning electron microscopy、SEM)イメージである。2 is a scanning electron microscope (SEM) image of the surface of the electrolytic copper foil manufactured in Example 1. FIG. 実施例2の電解銅箔の表面に対するSEMイメージである。3 is a SEM image of the surface of the electrolytic copper foil of Example 2. 実施例3の電解銅箔の表面に対するSEMイメージである。4 is a SEM image of the surface of the electrolytic copper foil of Example 3. 実施例4の電解銅箔の表面に対するSEMイメージである。4 is a SEM image of the surface of the electrolytic copper foil of Example 4. 比較例1の電解銅箔の表面に対するSEMイメージである。3 is a SEM image of the surface of the electrolytic copper foil of Comparative Example 1. 比較例2の電解銅箔の表面に対するSEMイメージである。4 is a SEM image for the surface of the electrolytic copper foil of Comparative Example 2. 比較例3の電解銅箔の表面に対するSEMイメージである。4 is a SEM image of the surface of the electrolytic copper foil of Comparative Example 3. 比較例4の電解銅箔の表面に対するSEMイメージである。6 is a SEM image of the surface of the electrolytic copper foil of Comparative Example 4.

以下、本発明にかかる電解銅箔、前記電解銅箔を含む電気部品および電池、および電解銅箔の製造方法に関してより詳細に説明する。   Hereinafter, the electrolytic copper foil according to the present invention, electric parts and batteries including the electrolytic copper foil, and a method for producing the electrolytic copper foil will be described in more detail.

本発明の一実施形態にかかる電解銅箔は、析出面(Matte side)の突出した表面要素の間の領域であるポア(pore)の平均直径は1nm〜100nmである。本実施形態にかかる電解銅箔は、析出面に見える暗い部分、すなわち、2個の表面要素の間に存在する暗い部分であるポアの平均直径がnm単位で小さい。本明細書において、「表面要素」とは、析出面に見える明るい部分であって電解銅箔の表面に突出した部分を、「ポア」とは、電解銅箔の表面から上部に突出している表面要素の間に形成され、内部に引き込まれた部分であって暗く見える部分を意味する。   In the electrolytic copper foil according to an embodiment of the present invention, the average diameter of the pore, which is a region between the protruding surface elements of the matte side, is 1 nm to 100 nm. In the electrolytic copper foil according to the present embodiment, the average diameter of pores, which are dark portions visible on the deposition surface, that is, dark portions existing between two surface elements, is small in nm units. In this specification, “surface element” means a bright portion that appears on the deposition surface and protrudes from the surface of the electrolytic copper foil, and “pore” means a surface that protrudes upward from the surface of the electrolytic copper foil. It means the part that is formed between the elements and is drawn into the interior and looks dark.

本発明にかかる電解銅箔は、析出面の幅方向に対する光沢度(Gs(60゜))が500以上であってよい。すなわち、電解銅箔の析出面の光沢度が非常に高い。電解銅箔は、銅電解液槽に浸漬された回転する陰極ドラムと陽極との間に電流を供給して、陰極ドラムの表面に銅箔を析出させて得るが、電解銅箔中の陰極ドラムと接触する面は光沢面(Shiny side、S面)であり、その反対面を析出面という。析出面は、ドラムと接触する光沢面とは異なり、電解された銅箔がそのまま析出される面であるので、原則的に光択が少なく、表面粗度が高い。したがって、析出面は後処理により表面粗度を低下させ、必要に応じて光沢を付与する処理を行う。   The electrolytic copper foil according to the present invention may have a glossiness (Gs (60 °)) of 500 or more in the width direction of the deposition surface. That is, the glossiness of the deposited surface of the electrolytic copper foil is very high. Electrolytic copper foil is obtained by supplying a current between a rotating cathode drum immersed in a copper electrolyte bath and an anode, and depositing copper foil on the surface of the cathode drum. The surface in contact with the surface is a glossy surface (Shiny side, S surface), and the opposite surface is called a precipitation surface. Unlike the glossy surface that comes into contact with the drum, the deposited surface is a surface on which the electrolyzed copper foil is deposited as it is, so that in principle there is little light selection and the surface roughness is high. Therefore, the deposited surface is subjected to a post-treatment to reduce the surface roughness and to give a gloss as necessary.

しかし、本発明にかかる電解銅箔の析出面の光沢度は高い。図1は、本発明の一実施形態にかかる電解銅箔の2,000倍の電界放出走査電子顕微鏡(Field emission scanning electron microscopy、FESEM)イメージである。   However, the glossiness of the deposited surface of the electrolytic copper foil according to the present invention is high. FIG. 1 is a field emission scanning electron microscope (FESEM) image of an electrolytic copper foil according to an embodiment of the present invention at a magnification of 2,000.

析出面は、工程の特性上、一般的に2,000倍のFESEM分析を行う場合、表面に凹凸が現れ、光沢度が高くない。反面、図1において、本発明にかかる電解銅箔の析出面は、光沢面と類似して鏡上(mirror)のような光沢を示している。   In general, when the FESEM analysis of 2,000 times is performed on the deposited surface, unevenness appears on the surface and the glossiness is not high due to the characteristics of the process. On the other hand, in FIG. 1, the deposition surface of the electrolytic copper foil according to the present invention shows a mirror-like luster similar to the glossy surface.

FESEM分析の解像度を高めて、図2の10,000倍のFESEMイメージ、図3の50,000倍のFESEMイメージ、および図4の100,000倍のFESEMイメージを分析すれば、解像度を高めるほど、表面に凹凸が現れている。しかし、10,000倍のFESEMイメージからも凹凸を確認しにくく、50,000倍のFESEMおよび100,000倍のFESEM分析のような超高解像度で凹凸が確認されている。   Increasing the resolution of the FESEM analysis and analyzing the 10,000 times FESEM image in FIG. 2, the 50,000 times FESEM image in FIG. 3, and the 100,000 times FESEM image in FIG. Unevenness appears on the surface. However, it is difficult to confirm the unevenness from the 10,000 times FESEM image, and the unevenness is confirmed at ultrahigh resolution such as 50,000 times FESEM and 100,000 times FESEM analysis.

図4の100,000倍のFESEMイメージには、電解銅箔の析出面において突出した表面要素の間の領域であるポア(pore)が示される。図4において、本発明にかかる電解銅箔は、析出面の表面要素の大きさおよび高さが均一であり、ポアの直径が小さくかつ、ポアの大きさが比較的均一である。同一のサンプルに対して52度チルト(tilt)させて、100,000倍のFESEM分析を行った結果が、図5に示されている。図5では、突出した表面要素の間のポアがより明確に示される。   The 100,000 times FESEM image of FIG. 4 shows pores, which are regions between protruding surface elements on the deposited surface of the electrolytic copper foil. In FIG. 4, the electrolytic copper foil according to the present invention has a uniform surface element size and height on the deposition surface, a small pore diameter, and a relatively uniform pore size. FIG. 5 shows the result of FESEM analysis performed by tilting the same sample by 52 degrees and performing 100,000-fold FESEM analysis. In FIG. 5, the pores between the protruding surface elements are more clearly shown.

表面が同一の表面粗度を有する場合にも、ポアの大きさが小さいかその個数が小さい場合、表面光沢度は向上する。例えば、析出面におけるポアの体積が同一の場合にポアの深さが低く、平均直径が大きければ、表面に現れた暗い領域であるポアがより大きく光沢度に影響を及ぼし得る。すなわち、ポアの体積が同一であるものの、ポアの深さが深く、平均直径が小さければ、光沢度が向上できるのである。   Even when the surface has the same surface roughness, the surface glossiness is improved if the pore size is small or the number thereof is small. For example, when the pore volume on the deposition surface is the same and the pore depth is low and the average diameter is large, pores that are dark regions appearing on the surface can have a greater effect on glossiness. That is, if the pore volume is the same, but the pore depth is deep and the average diameter is small, the glossiness can be improved.

したがって、本発明にかかる電解銅箔の析出面におけるポアは、相対的に深さは深く、平均直径は小さいことが、光沢度の面で好ましい。析出面において表面粗度Rzが1.4μm以下の点を考慮する時、ポアの平均直径が1nm〜100nmであるとは、ポアの暗い部分が析出面に多く露呈しないようにポアの深さが深いことを意味する。   Therefore, it is preferable in terms of glossiness that the pores on the deposition surface of the electrolytic copper foil according to the present invention have a relatively deep depth and a small average diameter. When considering the point that the surface roughness Rz is 1.4 μm or less on the precipitation surface, the average pore diameter is 1 nm to 100 nm. The pore depth is so that a dark portion of the pore is not exposed to the precipitation surface. Mean deep.

また、ポアは、析出面の全体面積に対して10%〜50%の断面積を示すことができる。これは、ポアが析出面の全体面積に対して50%以下の面積を示すことが好ましいことを意味する。同時に、ポアの析出面における平均密度の、突出した表面要素の析出面における平均密度に対する割合は10%〜50%であってよい。ポアは外部に突出した表面要素に比べて少ない数で存在することが、光沢度の面で好ましい。また、ポアは100個/μm〜1000個/μmであってよい。 Moreover, the pore can show a cross-sectional area of 10% to 50% with respect to the entire area of the precipitation surface. This means that the pore preferably exhibits an area of 50% or less with respect to the entire area of the precipitation surface. At the same time, the ratio of the average density at the precipitation surface of the pores to the average density at the precipitation surface of the protruding surface elements may be 10% to 50%. It is preferable in terms of glossiness that the pores are present in a smaller number than the surface elements protruding outward. The pores may be 100 / μm 2 to 1000 / μm 2 .

ポアの断面積は、図3または図4のイメージから、暗い領域の全体の広さを、ポアの個数で除して算出することができる。   The cross-sectional area of the pore can be calculated from the image of FIG. 3 or FIG. 4 by dividing the entire area of the dark region by the number of pores.

例示的な一実施形態にかかる電解銅箔は、析出面の表面粗度Rzが1.4μm以下であり、熱処理後の引張強度が40kgf/mm以上であり、延伸率が4%以上である。 The electrolytic copper foil according to an exemplary embodiment has a surface roughness Rz of the deposited surface of 1.4 μm or less, a tensile strength after heat treatment of 40 kgf / mm 2 or more, and a draw ratio of 4% or more. .

前記電解銅箔は、表面粗度Rzが1.4μm以下の低粗度の銅箔でありながらも、40kgf/mm以上の高い引張強度を有するので、機械的強度が高い。これと同時に、前記電解銅箔は、高温を経た後も4%以上の高延伸率を有する。 The electrolytic copper foil has a high mechanical strength because it has a high tensile strength of 40 kgf / mm 2 or more even though it is a low-roughness copper foil having a surface roughness Rz of 1.4 μm or less. At the same time, the electrolytic copper foil has a high stretch ratio of 4% or more even after high temperature.

また、本発明にかかる電解銅箔は、角の巻き(curl)角度が0゜〜45゜である。角の巻き角度は、電解銅箔を平らな底の上に置いた場合、電解銅箔の端部分、すなわち、角や周縁の曲がる角度を意味する。電解銅箔の角の巻き現象は、電解銅箔の内部エネルギーが不均一の場合に発生することが知られているが、角の巻きが発生した場合、PCB工程における積層などの工程で角が破れるといった不良が多数発生することがあり、リチウム二次電池工程では、活物質コーティングの際、角が破れたり折れたり、またはシワが発生するなどの問題が発生することがある。電解銅箔の角の巻き角度が大きければ、後続の工程に使用しにくいので、角の巻き角度は0゜〜45゜であることが好ましい。また、電解銅箔を平らな底の上に広げてX字状に切断し、切断した部分の持ち上がる高さを角の巻き高さというが、角の巻き高さは0mm〜40mmであることが好ましい。本発明にかかる電解銅箔の場合、銅結晶内に不純物が存在して強度が高いので、角の巻き程度が大きいことが予想されるが、銅結晶粒界に不純物が存在せず、内部ストレスが低下して角の巻き程度が低くなる。   In addition, the electrolytic copper foil according to the present invention has a curl angle of 0 ° to 45 °. The corner winding angle means an angle at which the end portion of the electrolytic copper foil, that is, the corner or the periphery is bent, when the electrolytic copper foil is placed on a flat bottom. The corner winding phenomenon of the electrolytic copper foil is known to occur when the internal energy of the electrolytic copper foil is non-uniform. However, when corner winding occurs, the corner is rounded in a process such as lamination in the PCB process. Many defects such as tearing may occur, and in the lithium secondary battery process, problems such as corner breaks or breakage or wrinkles may occur during active material coating. If the winding angle of the corner of the electrolytic copper foil is large, it is difficult to use in the subsequent process. Therefore, the winding angle of the corner is preferably 0 ° to 45 °. Further, the electrolytic copper foil is spread on a flat bottom and cut into an X shape. The height at which the cut portion is lifted is referred to as the corner winding height, and the corner winding height is 0 mm to 40 mm. preferable. In the case of the electrolytic copper foil according to the present invention, since there is an impurity in the copper crystal and the strength is high, it is expected that the degree of corner winding is large, but there is no impurity at the copper crystal grain boundary, and internal stress Decreases and the degree of corner winding decreases.

したがって、前記電解銅箔は、PCB(Printed Circuit Board)/FPC(Flexible PCB)用途および電池の集電体用途に同時に使用できる。   Therefore, the electrolytic copper foil can be used simultaneously for PCB (Printed Circuit Board) / FPC (Flexible PCB) and battery current collector.

前記電解銅箔において、析出面の表面粗度Rzが1.4μm超過であれば、負極集電体用電解銅箔の表面と活物質との接触面が小くなり、充放電サイクルの寿命および充電初期の電気容量が低くなり得る。また、前記析出面の表面粗度Rzが1.4μm超過であれば、プリント配線板で微細ピッチを有する高密度回路を形成するのが容易でない。   In the electrolytic copper foil, if the surface roughness Rz of the deposited surface exceeds 1.4 μm, the contact surface between the surface of the electrolytic copper foil for the negative electrode current collector and the active material becomes small, and the life of the charge / discharge cycle and The electric capacity at the initial stage of charging can be lowered. Moreover, if the surface roughness Rz of the precipitation surface exceeds 1.4 μm, it is not easy to form a high-density circuit having a fine pitch with a printed wiring board.

前記電解銅箔は、引張強度が40kgf/mm〜70kgf/mmで高強度特性を有する。また、前記電解銅箔は、熱処理後も引張強度が40kgf/mm〜70kgf/mmである。熱処理は、例えば150℃〜220℃で行われてよく、詳細には180℃で行われてよい。熱処理は、30分、1時間、2時間および数時間にわたって行われてよいが、1時間以上行ってはじめて一定の引張強度が維持できる。熱処理は、電解銅箔の引張強度を測定するためのものであって、電解銅箔を保管したり後続の工程に投入した場合、一定レベルに変化しない値に維持される引張強度や延伸率を得るための処理である。 The electrolytic copper foil has a tensile strength of 40 kgf / mm 2 to 70 kgf / mm 2 and high strength characteristics. Further, the electrolyte copper foil, tensile strength after heat treatment is 40kgf / mm 2 ~70kgf / mm 2 . The heat treatment may be performed, for example, at 150 ° C. to 220 ° C., and in detail, may be performed at 180 ° C. The heat treatment may be performed for 30 minutes, 1 hour, 2 hours, and several hours, but a certain tensile strength can be maintained only after 1 hour or more. The heat treatment is for measuring the tensile strength of the electrolytic copper foil, and when the electrolytic copper foil is stored or put into a subsequent process, the tensile strength and the stretch ratio that are maintained at values that do not change to a certain level are set. It is a process to obtain.

前記電解銅箔は、熱処理後の引張強度が40kgf/mm未満であれば、機械的強度が弱くて取り扱いが困難であり得る。 If the tensile strength after heat treatment is less than 40 kgf / mm 2 , the electrolytic copper foil may be difficult to handle due to its low mechanical strength.

前記電解銅箔は、熱処理後の引張強度が熱処理前の引張強度と類似していることが好ましい。前記電解銅箔の熱処理後の引張強度は、熱処理前の引張強度の85%〜99%であることが好ましいが、熱処理後も強度を維持すれば、後続する工程での取り扱いが容易で、歩留まりが高くなる。   The electrolytic copper foil preferably has a tensile strength after heat treatment similar to that before heat treatment. The tensile strength after heat treatment of the electrolytic copper foil is preferably 85% to 99% of the tensile strength before heat treatment. However, if the strength is maintained even after the heat treatment, it is easy to handle in the subsequent process and yield. Becomes higher.

前記電解銅箔は、熱処理前の延伸率が2%〜15%であってよい。また、前記電解銅箔は、熱処理後の延伸率が4%〜15%であってよいが、熱処理は、180℃で1時間行われてよい。あるいは、熱処理後の延伸率は、熱処理前の延伸率の1倍〜4.5倍であってよい。   The electrolytic copper foil may have a stretch ratio before heat treatment of 2% to 15%. The electrolytic copper foil may have a stretch rate of 4% to 15% after heat treatment, but the heat treatment may be performed at 180 ° C. for 1 hour. Alternatively, the stretch ratio after heat treatment may be 1 to 4.5 times the stretch ratio before heat treatment.

前記電解銅箔において、熱処理後の延伸率が4%未満であれば、後続の工程が高温工程の場合、クラックが発生することがある。例えば、前記電解銅箔が二次電池の負極集電体として用いられる場合、負極集電体製造時の工程が高温工程であり、充放電時に活物質層の体積変化が伴うので、クラックが発生して不良を誘発し得るため、熱処理後、所定の延伸率を維持しなければならない。   In the electrolytic copper foil, if the stretch ratio after heat treatment is less than 4%, cracks may occur when the subsequent process is a high-temperature process. For example, when the electrolytic copper foil is used as a negative electrode current collector of a secondary battery, a crack is generated because the process during the production of the negative electrode current collector is a high-temperature process and the volume of the active material layer is changed during charging and discharging. In order to induce defects, a predetermined stretch ratio must be maintained after the heat treatment.

前記電解銅箔は、析出面に対するXRDスペクトルにおいて、(200)結晶面に対する回折ピークの強度(I(200))と、(111)結晶面に対する回折ピークの強度(I(111))との比であるI(200)/I(111)が0.5〜1.0であってよい。   The electrolytic copper foil has a ratio of the diffraction peak intensity (I (200)) to the (200) crystal plane and the diffraction peak intensity (I (111)) to the (111) crystal plane in the XRD spectrum with respect to the precipitation surface. I (200) / I (111) may be 0.5 to 1.0.

例えば、図6に示されるように、析出面に対するXRDスペクトルにおいて、回折角度(2θ)43.0゜±1.0゜で(111)結晶面に対する回折ピークを示し、回折角度(2θ)50.5゜±1.0゜で(200)結晶面に対する回折ピークを示し、これらの強度比I(200)/I(111)が0.5〜1.0以上であってよい。   For example, as shown in FIG. 6, in the XRD spectrum with respect to the precipitation surface, a diffraction peak with respect to the (111) crystal plane is shown at a diffraction angle (2θ) of 43.0 ° ± 1.0 °, and a diffraction angle (2θ) of 50.degree. A diffraction peak with respect to the (200) crystal plane is shown at 5 ° ± 1.0 °, and the intensity ratio I (200) / I (111) may be 0.5 to 1.0 or more.

例えば、前記電解銅箔において、I(200)/I(111)が0.5〜0.8であってよい。前記電解銅箔において、前記析出面に対するXRDスペクトルにおいて、(200)結晶面に対する配向指数(M(200))と、(111)結晶面に対する配向指数(M(111))とから得られる配向指数の比であるM(200)/M(111)が1.1〜1.5であってよい。前記配向指数(orientation index)は、任意の試料に対する特定結晶面の相対的なピーク強度を、すべての結晶面に対して無配向の標準試料から得られる特性結晶面の相対的なピーク強度で除した値である。例えば、前記電解銅箔において、M(200)/M(111)が1.2〜1.4であってよい。   For example, in the electrolytic copper foil, I (200) / I (111) may be 0.5 to 0.8. In the electrolytic copper foil, an orientation index obtained from an orientation index (M (200)) relative to the (200) crystal plane and an orientation index (M (111)) relative to the (111) crystal plane in the XRD spectrum relative to the precipitation surface. The ratio of M (200) / M (111) may be 1.1 to 1.5. The orientation index is obtained by dividing the relative peak intensity of a specific crystal plane with respect to an arbitrary sample by the relative peak intensity of a characteristic crystal plane obtained from a non-oriented standard sample with respect to all crystal planes. It is the value. For example, in the electrolytic copper foil, M (200) / M (111) may be 1.2 to 1.4.

前記電解銅箔は、180℃で1時間熱処理後の延伸率が10%以上であってよい。すなわち、前記電解銅箔は、高温熱処理後の延伸率が10%以上の高延伸率を有することができる。例えば、前記電解銅箔は、高温熱処理後の延伸率が10%〜20%であってよい。例えば、前記電解銅箔は、高温熱処理後の延伸率が10%〜15%であってよい。例えば、前記電解銅箔は、高温熱処理後の延伸率が10%〜13%であってよい。前記電解銅箔は、熱処理前の延伸率が2%以上であってよい。例えば、前記電解銅箔は、熱処理前の延伸率が2%〜20%であってよい。例えば、前記電解銅箔は、熱処理前の延伸率が5%〜20%であってよい。例えば、前記電解銅箔は、熱処理前の延伸率が5%〜15%であってよい。例えば、前記電解銅箔は、熱処理前の延伸率が5%〜10%であってよい。前記「熱処理前」という用語は、高温状態で熱処理する前の温度である25℃〜130℃を意味する。前記延伸率は、電解銅箔が破断する直前まで延伸された距離を、電解銅箔の最初の長さで除した値である。   The electrolytic copper foil may have a stretching ratio of 10% or more after heat treatment at 180 ° C. for 1 hour. That is, the electrolytic copper foil can have a high draw ratio of 10% or more after the high temperature heat treatment. For example, the electrolytic copper foil may have a stretching ratio of 10% to 20% after the high temperature heat treatment. For example, the electrolytic copper foil may have a stretching ratio of 10% to 15% after the high temperature heat treatment. For example, the electrolytic copper foil may have a stretching ratio of 10% to 13% after the high-temperature heat treatment. The electrolytic copper foil may have a stretching ratio of 2% or more before heat treatment. For example, the electrolytic copper foil may have a stretch ratio before heat treatment of 2% to 20%. For example, the electrolytic copper foil may have a stretch ratio before heat treatment of 5% to 20%. For example, the electrolytic copper foil may have a stretch ratio before heat treatment of 5% to 15%. For example, the electrolytic copper foil may have a stretching ratio of 5% to 10% before heat treatment. The term “before heat treatment” means 25 ° C. to 130 ° C., which is a temperature before heat treatment in a high temperature state. The stretch ratio is a value obtained by dividing the distance stretched until immediately before the electrolytic copper foil breaks by the initial length of the electrolytic copper foil.

前記電解銅箔は、析出面の表面粗度Rzが0.7μm以下であってよい。前記電解銅箔は、Rzが0.7μm以下の低粗度を有することにより、PCB/FPC用銅箔および二次電池用負極集電体用銅箔としてすべて使用できる。例えば、前記電解銅箔は、析出面の表面粗度Rzが0.5μm以下であってよい。例えば、前記電解銅箔は、析出面の表面粗度Rzが0.45μm以下であってよい。   The electrolytic copper foil may have a surface roughness Rz of 0.7 μm or less on the deposition surface. The electrolytic copper foil can be used as a copper foil for PCB / FPC and a copper foil for a negative electrode current collector for a secondary battery by having a low roughness of Rz of 0.7 μm or less. For example, the electrolytic copper foil may have a surface roughness Rz of 0.5 μm or less. For example, the electrolytic copper foil may have a deposition surface with a surface roughness Rz of 0.45 μm or less.

前記電解銅箔は、析出面の表面粗度Raが0.15μm以下であってよい。前記電解銅箔は、Raが0.15μm以下の低粗度を有することにより、PCB/FPC用銅箔および二次電池用負極集電体用銅箔としてすべて使用できる。例えば、前記電解銅箔は、析出面の表面粗度Raが0.12μm以下であってよい。例えば、前記電解銅箔は、析出面の表面粗度Raが0.11μm以下であってよい。   The electrolytic copper foil may have a deposition surface with a surface roughness Ra of 0.15 μm or less. The electrolytic copper foil can be used as a copper foil for PCB / FPC and a copper foil for a negative electrode current collector for a secondary battery because Ra has a low roughness of 0.15 μm or less. For example, the electrolytic copper foil may have a deposition surface with a surface roughness Ra of 0.12 μm or less. For example, the electrolytic copper foil may have a deposition surface with a surface roughness Ra of 0.11 μm or less.

前記電解銅箔の熱処理後の引張強度が、熱処理前の引張強度の85%以上であってよい。例えば、前記電解銅箔の、180℃で1時間熱処理後の引張強度が、熱処理前の引張強度の90%以上であってよい。前記熱処理前の引張強度は、高温熱処理なしに得られた銅箔の引張強度である。前記電解銅箔の熱処理前の引張強度は40kgf/mm〜70kgf/mmであってよい。 The tensile strength after heat treatment of the electrolytic copper foil may be 85% or more of the tensile strength before heat treatment. For example, the tensile strength of the electrolytic copper foil after heat treatment at 180 ° C. for 1 hour may be 90% or more of the tensile strength before heat treatment. The tensile strength before the heat treatment is the tensile strength of the copper foil obtained without the high temperature heat treatment. The tensile strength before heat treatment of the electrolytic copper foil may be 40 kgf / mm 2 to 70 kgf / mm 2 .

前記電解銅箔において、析出面の幅方向に対する光沢度(Gs(60゜))が500以上であってよい。例えば、前記電解銅箔において、析出面の幅方向に対する光沢度(Gs(60゜))が500〜1000であってよい。前記光沢度は、JIS Z871−1997によって測定された値である。   In the electrolytic copper foil, the gloss (Gs (60 °)) in the width direction of the deposition surface may be 500 or more. For example, in the electrolytic copper foil, the gloss (Gs (60 °)) in the width direction of the deposition surface may be 500 to 1000. The glossiness is a value measured according to JIS Z871-1997.

前記電解銅箔の厚さは35μm以下であってよい。例えば、前記電解銅箔の厚さは6〜35μmであってよい。例えば、前記電解銅箔の厚さは6〜18μmであってよい。また、例えば、前記電解銅箔の厚さは2〜10μmであってよい。   The electrolytic copper foil may have a thickness of 35 μm or less. For example, the thickness of the electrolytic copper foil may be 6 to 35 μm. For example, the thickness of the electrolytic copper foil may be 6 to 18 μm. For example, the thickness of the electrolytic copper foil may be 2 to 10 μm.

前記電解銅箔は、絶縁樹脂などと接着する必要がある場合、密着性を実用レベルまたはそれ以上にするために、表面処理が追加的に実施できる。銅箔上での表面処理としては、例えば、耐熱および耐化学性処理、クロメート処理、シランカップリング処理のうちのいずれか1つ、またはそれらの組み合わせなどが挙げられ、どのような表面処理をどのように施すかは、絶縁樹脂として用いる樹脂や工程条件に応じて、本発明の属する技術分野における通常の知識を有する者が選択して行われる。   When the electrolytic copper foil needs to be bonded to an insulating resin or the like, a surface treatment can be additionally performed in order to bring the adhesion to a practical level or higher. Examples of the surface treatment on the copper foil include any one of heat resistance and chemical resistance treatment, chromate treatment, silane coupling treatment, or a combination thereof. This is done by a person having ordinary knowledge in the technical field to which the present invention belongs according to the resin used as the insulating resin and the process conditions.

例示的な一実施形態にかかる電気部品は、絶縁性基材と、前記絶縁性基材の一表面に付着した上述の電解銅箔とを含み、前記電解銅箔をエッチングして形成された回路を含む。   An electrical component according to an exemplary embodiment includes an insulating substrate and the above-described electrolytic copper foil attached to one surface of the insulating substrate, and is a circuit formed by etching the electrolytic copper foil. including.

前記電気部品は、例えば、TABテープ、プリント配線板(PCB)、フレキシブルプリント配線板(FPC、Flexible PCB)などであるが、必ずしもこれらに限定されず、前記電解銅箔を絶縁性基材上に付着させて使用するものとして、当該技術分野で使用できるものであればすべて可能である。   The electrical component is, for example, a TAB tape, a printed wiring board (PCB), a flexible printed wiring board (FPC, Flexible PCB), etc., but is not necessarily limited thereto, and the electrolytic copper foil is placed on an insulating substrate. Any material can be used as long as it can be used in the technical field.

例示的な一実施形態にかかる電池は、前記電解銅箔を含む。前記電解銅箔は、前記電池の負極集電体として使用できるが、必ずしもこれらに限定されず、電池に使用される他の構成要素としても使用可能である。前記電池は特に限定されず、一次電池、二次電池をすべて含み、リチウムイオン電池、リチウムポリマー電池、リチウム空気電池など、電解銅箔を集電体として用いる電池として、当該技術分野で使用できる電池であればすべて可能である。   A battery according to an exemplary embodiment includes the electrolytic copper foil. The electrolytic copper foil can be used as a negative electrode current collector of the battery, but is not necessarily limited thereto, and can be used as another component used in the battery. The battery is not particularly limited, and includes all primary batteries and secondary batteries, such as lithium ion batteries, lithium polymer batteries, lithium air batteries, and the like, which can be used in the technical field as batteries using an electrolytic copper foil as a current collector. If it is all possible.

例示的な一実施形態にかかる電解銅箔の製造方法は、添加剤A;添加剤B;添加剤C;および添加剤Dを含む銅電解液を電解するステップを含み、前記添加剤Aがチオウレア系化合物および窒素を含むヘテロ環にチオール基の連結された化合物からなる群より選択された1つ以上であり、前記添加剤Bが硫黄原子を含む化合物のスルホン酸またはその金属塩であり、前記添加剤Cが非イオン性水溶性高分子であり、前記添加剤Dがフェナジニウム(phenazinium)系化合物である。   The method for producing an electrolytic copper foil according to an exemplary embodiment includes the step of electrolyzing a copper electrolyte solution containing additive A; additive B; additive C; and additive D, wherein the additive A is thiourea. One or more selected from the group consisting of a system compound and a compound in which a thiol group is linked to a nitrogen-containing heterocycle, and the additive B is a sulfonic acid of a compound containing a sulfur atom or a metal salt thereof, The additive C is a nonionic water-soluble polymer, and the additive D is a phenazinium compound.

前記電解銅箔の製造方法は、新たな組成の添加剤を含むことにより、厚さが薄く、機械的強度が高いながらも高延伸が可能な低粗度の銅箔を製造することができる。前記銅電解液は、濃度1〜40ppmの塩素(塩素イオン)を含むことができる。銅電解液中に塩素イオンが少量存在すると、電解めっきの際、初期核生成サイトが多くなって結晶粒が微細になり、結晶粒界の界面に形成されるCuClの析出物が高温に加熱時に結晶の成長を抑制して、高温での熱的安定性を向上させることができる。前記塩素イオンの濃度が1ppm未満であれば、硫酸−硫酸銅電解液中に必要な塩素イオンの濃度が不足して熱処理前の引張強度が低下し、高温での熱的安定性が低下することがある。塩素イオンの濃度が40ppm超過であれば、析出面の表面粗度が上昇して低粗度の電解銅箔の製造が困難であり、熱処理前の引張強度が低下し、高温での熱的安定性が低下することがある。 By including an additive having a new composition, the electrolytic copper foil production method can produce a low-roughness copper foil that can be stretched while being thin and having high mechanical strength. The copper electrolyte may contain chlorine (chlorine ions) having a concentration of 1 to 40 ppm. If a small amount of chlorine ions are present in the copper electrolyte, the number of initial nucleation sites increases during electroplating, the crystal grains become finer, and the CuCl 2 precipitate formed at the interface between the crystal grain boundaries is heated to a high temperature. Sometimes crystal growth can be suppressed to improve thermal stability at high temperatures. If the concentration of the chlorine ions is less than 1 ppm, the concentration of chloride ions required in the sulfuric acid-copper sulfate electrolyte is insufficient, the tensile strength before heat treatment is reduced, and the thermal stability at high temperature is reduced. There is. If the concentration of chloride ions exceeds 40 ppm, the surface roughness of the precipitation surface will increase and it will be difficult to produce low-roughness electrolytic copper foil, the tensile strength before heat treatment will decrease, and thermal stability at high temperatures will occur. May decrease.

前記銅電解液において、前記添加剤Aの含有量が1〜10ppmであり、前記添加剤Bの含有量が10〜200ppmであり、前記添加剤Cの含有量が5〜40ppmであり、前記添加剤Dの含有量が1〜10ppmであってよい。   In the copper electrolyte, the content of the additive A is 1 to 10 ppm, the content of the additive B is 10 to 200 ppm, the content of the additive C is 5 to 40 ppm, and the addition The content of the agent D may be 1 to 10 ppm.

前記銅電解液において、添加剤Aは、電解銅箔の製造安定化を向上させ、電解銅箔の強度を向上させることができる。前記添加剤Aの含有量が1ppm未満であれば、電解銅箔の引張強度が低下することがあり、前記添加剤Aの含有量が10ppm超過であれば、析出面の表面粗度が上昇して低粗度の電解銅箔の製造が困難であり、引張強度が低下することがある。   In the copper electrolyte, the additive A can improve the production stability of the electrolytic copper foil and improve the strength of the electrolytic copper foil. If the content of the additive A is less than 1 ppm, the tensile strength of the electrolytic copper foil may decrease. If the content of the additive A exceeds 10 ppm, the surface roughness of the precipitation surface increases. Therefore, it is difficult to produce a low roughness electrolytic copper foil, and the tensile strength may be lowered.

前記銅電解液において、添加剤Bは、電解銅箔の表面光沢を向上させることができる。前記添加剤Bの含有量が10ppm未満であれば、電解銅箔の光沢が低下することがあり、前記添加剤Bの含有量が200ppm超過であれば、析出面の表面粗度が上昇して低粗度の電解銅箔の製造が困難であり、電解銅箔の引張強度が低下することがある。   In the copper electrolyte, additive B can improve the surface gloss of the electrolytic copper foil. If the content of the additive B is less than 10 ppm, the gloss of the electrolytic copper foil may decrease. If the content of the additive B exceeds 200 ppm, the surface roughness of the precipitation surface increases. Production of low-roughness electrolytic copper foil is difficult, and the tensile strength of the electrolytic copper foil may decrease.

前記銅電解液において、添加剤Cは、電解銅箔の表面粗度を低下させ、表面光沢を向上させることができる。前記添加剤Cの含有量が5ppm未満であれば、析出面の表面粗度が上昇して低粗度の電解銅箔の製造が困難であり、電解銅箔の光沢が低下することがあり、前記添加剤Cの含有量が40ppm超過であれば、電解銅箔の物性や外観に差がなく、経済的でないことがある。   In the copper electrolyte, the additive C can reduce the surface roughness of the electrolytic copper foil and improve the surface gloss. If the content of the additive C is less than 5 ppm, the surface roughness of the precipitated surface is increased, making it difficult to produce a low roughness electrolytic copper foil, and the gloss of the electrolytic copper foil may be reduced. If the content of the additive C exceeds 40 ppm, there is no difference in physical properties and appearance of the electrolytic copper foil, which may not be economical.

前記銅電解液において、添加剤Dは、電解銅箔の表面を平坦さを向上させる役割を果たすことができる。前記添加剤Dの含有量が1ppm未満であれば、析出面の表面粗度が上昇して低粗度の電解銅箔の製造が困難であり、電解銅箔の光沢が低下することがあり、前記添加剤Dの含有量が40ppm超過であれば、電解銅箔の析出状態が不安定になり、電解銅箔の引張強度が阻害されることがある。   In the copper electrolyte, the additive D can play a role of improving the flatness of the surface of the electrolytic copper foil. If the content of the additive D is less than 1 ppm, the surface roughness of the precipitation surface is increased, making it difficult to produce a low roughness electrolytic copper foil, and the gloss of the electrolytic copper foil may be reduced. If the content of the additive D exceeds 40 ppm, the deposited state of the electrolytic copper foil becomes unstable, and the tensile strength of the electrolytic copper foil may be hindered.

前記チオウレア系化合物は、ジエチルチオウレア、エチレンチオウレア、アセチレンチオウレア、ジプロピルチオウレア、ジブチルチオウレア、N−トリフルオロアセチルチオウレア(N−trifluoroacetylthiourea)、N−エチルチオウレア(N−ethylthiourea)、N−シアノアセチルチオウレア(N−cyanoacetylthiourea)、N−アリルチオウレア(N−allylthiourea)、o−トリルチオウレア(o−tolylthiourea)、N,N’−ブチレンチオウレア(N,N’−butylenethiourea)、チアゾリジンチオール(thiazolidinethiol)、4−チアゾリンチオール(4−thiazolinethiol)、4−メチル−2−ピリミジンチオール(4−methyl−2−pyrimidinethiol)、2−チオウラシル(2−thiouracil)からなる群より選択された1つ以上であってよいが、必ずしもこれらに限定されず、当該技術分野で添加剤として使用可能なチオウレア化合物であればすべて可能である。前記窒素を含むヘテロ環にチオール基の連結された化合物は、例えば、2−メルカプト−5−ベンゾイミダゾールスルホン酸ナトリウム塩(2−mercapto−5−benzoimidazole sulfonic acid sodium salt)、ナトリウム3−(5−メルカプト−1−テトラゾリル)ベンゼンスルホネート(Sodium3−(5−mercapto−1−tetrazolyl)benzene sulfonate)、2−メルカプトベンゾチアゾール(2−mercapto benzothiazole)であってよい。   The thiourea compounds include diethylthiourea, ethylenethiourea, acetylenethiourea, dipropylthiourea, dibutylthiourea, N-trifluoroacetylthiourea, N-ethylthiourea, N-cyanoacetylthiourea. N-cyanoacetylthiourea), N-allylthiourea, o-tolylthiourea, N, N'-butylenethiourea, thiazolthiol 4-thiazolthiol Thiol (4-thiazolinethiol), 4- It may be one or more selected from the group consisting of 4-methyl-2-pyrimidinethiol and 2-thiouracil, but is not necessarily limited thereto, and the technical field Any thiourea compound that can be used as an additive is possible. Examples of the compound in which a thiol group is linked to the nitrogen-containing heterocycle include 2-mercapto-5-benzimidazolesulfonic acid sodium salt (sodium 2-mercapto-5-benzimidazolide sodium salt), sodium 3- (5- It may be mercapto-1-tetrazolyl) benzenesulfonate (Sodium 3- (5-mercapto-1-tetrazolyl) benzonesulfonate), 2-mercaptobenzothiazole (2-mercaptobenzothiazole).

前記硫黄原子を含む化合物のスルホン酸またはその金属塩は、例えば、ビス−(3−スルホプロピル)−ジスルフィドジナトリウム塩(SPS)、3−メルカプト−1−プロパンスルホン酸(MPS)、3−(N,N−ジメチルチオカルバモイル)−チオプロパンスルホネートナトリウム塩(DPS)、3−[(アミノ−イミノメチル)チオ]−1−プロパンスルホネートナトリウム塩(UPS)、o−エチルジチオカーボネート−S−(3−スルホプロピル)−エステルナトリウム塩(OPX)、3−(ベンゾチアゾリル−2−メルカプト)−プロピル−スルホン酸ナトリウム塩(ZPS)、エチレンジチオジプロピルスルホン酸ナトリウム塩(Ethylenedithiodipropylsulfonic acid sodium salt)、チオグリコール酸(Thioglycolic acid)、チオリン酸−o−エチル−ビス−(ω−スルホプロピル)エステルジナトリウム塩(Thiophosphoric acid−o−ethyl−bis−(ω−sulfopropyl)ester disodium salt)、チオリン酸−トリス−(ω−スルホプロピル)エステルトリナトリウム塩(Thiophosphoric acid−tris−(ω−sulfopropyl)ester trisodium salt)からなる群より選択された1つ以上であってよいが、必ずしもこれらに限定されず、当該技術分野で添加剤として使用できる硫黄原子を含む化合物のスルホン酸またはその金属塩であればすべて可能である。   Examples of the sulfonic acid or a metal salt thereof containing the sulfur atom include bis- (3-sulfopropyl) -disulfide disodium salt (SPS), 3-mercapto-1-propanesulfonic acid (MPS), 3- ( N, N-dimethylthiocarbamoyl) -thiopropanesulfonate sodium salt (DPS), 3-[(amino-iminomethyl) thio] -1-propanesulfonate sodium salt (UPS), o-ethyldithiocarbonate-S- (3- Sulfopropyl) -ester sodium salt (OPX), 3- (benzothiazolyl-2-mercapto) -propyl-sulfonic acid sodium salt (ZPS), ethylene dithiodipropyl sulfonic acid sodium salt (Ethylenedithiopropylsulfonic acid sodium) alt), thioglycolic acid, thiophosphoric acid-o-ethyl-bis- (ω-sulfopropyl) ester disodium salt (Thiophosphoric acid-o-ethyl-bis- (ω-sulfopropyl) ester disodium salt), It may be one or more selected from the group consisting of thiophosphoric acid-tris- (ω-sulfopropyl) ester trisodium salt (Thiophosphoric acid-tris- (ω-sulfopropyl) ester trisodium salt), but is not necessarily limited thereto. Any sulfonic acid or metal salt of a compound containing a sulfur atom that can be used as an additive in the art is possible.

前記非イオン性水溶性高分子は、ポリエチレングリコール、ポリグリセリン、ヒドロキシエチルセルロース、カルボキシメチルセルロース(Carboxymethylcellulose)、ノニルフェノールポリグリコールエーテル(Nonylphenol polyglycol ether)、オクタンジオール−ビス−(ポリアルキレングリコールエーテル(Octane diol−bis−(polyalkylene glycol ether)、オクタノールポリアルキレングリコールエーテル(Ocatanol polyalkylene glycol ether)、オレイン酸ポリグリコールエーテル(Oleic acid polyglycol ether)、ポリエチレンプロピレングリコール(Polyethylene propylene glycol)、ポリエチレングリコールジメチルエーテル(Polyethylene glycol dimethyl ether)、ポリオキシプロピレングリコール(Polyoxypropylene glycol)、ポリビニルアルコール(Polyvinyl alcohol)、β−ナフトールポリグリコールエーテル(β−naphthol polyglycol ether)、ステアリン酸ポリグリコールエーテル(Stearic acid polyglycol eter)、ステアリルアルコールポリグリコールエーテル(Stearyl alcohol polyglycol ether)からなる群より選択された1つ以上であってよいが、必ずしもこれらに限定されず、当該技術分野で添加剤として使用できる水溶性高分子であればすべて可能である。例えば、前記ポリエチレングリコールは、分子量が2000〜20000であってよい。   The nonionic water-soluble polymer may be polyethylene glycol, polyglycerin, hydroxyethyl cellulose, carboxymethyl cellulose (Carboxymethylcellulose), nonylphenol polyglycol ether, octanediol-bis- (polyalkylene glycol ether (Octane diol-bis). -(Polyalkylene glycol ether), octanol polyalkylene glycol ether (Ocatanol polyalkylene glycol ether), oleic acid polyglycol ether (Oleic acid polyglycol ether), polyethylene propylene glycol (Poly) polyethylene propylene glycol, polyoxypropylene glycol, polyoxypropylene glycol, polyoxypropylene glycol (polyether glycol), poly (propylene glycol), poly (propylene glycol), poly (propylene glycol), poly (propylene glycol) It may be one or more selected from the group consisting of (Stearic acid polyglycol ether) and stearyl alcohol polyglycol ether, but is not necessarily limited thereto. However, any water-soluble polymer that can be used as an additive in the technical field is possible, for example, the polyethylene glycol may have a molecular weight of 2000 to 20000.

前記フェナジニウム系化合物は、サフラニン−O(Safranine−O)、ヤーヌスグリーンB(Janus Green B)などからなる群より選択された1つ以上であってよい。   The phenazinium-based compound may be one or more selected from the group consisting of Safranine-O and Janus Green B.

前記製造方法で使用される銅電解液の温度は30〜60℃であってよいが、必ずしもこの範囲に限定されるものではなく、本発明の目的を達成できる範囲内で適宜調整可能である。例えば、前記銅電解液の温度は40〜50℃であってよい。   The temperature of the copper electrolyte used in the production method may be 30 to 60 ° C., but is not necessarily limited to this range, and can be appropriately adjusted within the range in which the object of the present invention can be achieved. For example, the temperature of the copper electrolyte may be 40-50 ° C.

前記製造方法で使用される電流密度は20〜500A/dmであってよいが、必ずしもこの範囲に限定されるものではなく、本発明の目的を達成できる範囲内で適宜調整可能である。例えば、前記電流密度は30〜40A/dmであってよい。前記銅電解液は、硫酸−硫酸銅電解液であってよい。前記硫酸−硫酸銅電解液において、前記Cu2+イオンの濃度は60g/L〜180g/Lであってよいが、必ずしもこの範囲に限定されるものではなく、本発明の目的を達成できる範囲内で適宜調整可能である。例えば、前記Cu2+の濃度は65g/L〜175g/Lであってよい。 The current density used in the manufacturing method may be 20 to 500 A / dm 2 , but is not necessarily limited to this range, and can be appropriately adjusted within a range in which the object of the present invention can be achieved. For example, the current density may be 30~40A / dm 2. The copper electrolyte may be a sulfuric acid-copper sulfate electrolyte. In the sulfuric acid-copper sulfate electrolytic solution, the concentration of the Cu 2+ ions may be 60 g / L to 180 g / L, but is not necessarily limited to this range, and within the range in which the object of the present invention can be achieved. It can be adjusted as appropriate. For example, the Cu 2+ concentration may be 65 g / L to 175 g / L.

前記銅電解液は、公知の方法で製造できる。例えば、Cu2+イオンの濃度は、銅イオンまたは硫酸銅の添加量を調整して得ることができ、SO 2+イオンの濃度は、硫酸および硫酸銅の添加量を調整して得ることができる。 The copper electrolyte can be produced by a known method. For example, the concentration of Cu 2+ ions can be obtained by adjusting the addition amount of copper ions or copper sulfate, and the concentration of SO 4 2+ ions can be obtained by adjusting the addition amounts of sulfuric acid and copper sulfate.

前記銅電解液に含まれる添加剤の濃度は、銅電解液に投入される添加剤の投入量および分子量から得られるか、銅電解液に含まれた添加剤をカラムクロマトグラフィーのような公知の方法で分析して得ることができる。   The concentration of the additive contained in the copper electrolyte can be obtained from the amount and molecular weight of the additive added to the copper electrolyte, or the additive contained in the copper electrolyte can be obtained by a known method such as column chromatography. It can be obtained by analyzing the method.

前記電解銅箔の製造方法は、上述の銅電解液を用いたことを除いては、公知の方法で製造できる。   The method for producing the electrolytic copper foil can be produced by a known method except that the above-described copper electrolytic solution is used.

例えば、前記電解銅箔は、回転するチタン製ドラム上のチタンの曲面上の陰極表面と陽極との間に前記銅電解液を供給し、電解して、陰極表面に電解銅箔を析出させ、これを連続的に巻き取って電解銅箔を製造することができる。   For example, the electrolytic copper foil is supplied with the copper electrolyte between the cathode surface and the anode on the curved surface of titanium on a rotating titanium drum, electrolyzed, and the electrolytic copper foil is deposited on the cathode surface, This can be wound up continuously to produce an electrolytic copper foil.

以下、実施例を挙げて、本発明をより詳細に説明するが、本発明がこれに限定されるわけではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not necessarily limited to this.

(電解銅箔の製造)
実施例1
電解による電解銅箔を製造するために、20L/minで循環可能な3L容量の電解槽システムを用い、銅電解液の温度は45℃に一定に維持した。陽極は、厚さが5mmで、大きさが10X10cmのDSE(Dimentionally Stable Electrode)極板を使用し、陰極は、陽極と同一の大きさおよび厚さを有するチタン極板を使用した。
(Manufacture of electrolytic copper foil)
Example 1
In order to produce electrolytic copper foil by electrolysis, a 3 L capacity electrolytic cell system that can be circulated at 20 L / min was used, and the temperature of the copper electrolyte was kept constant at 45 ° C. The anode used was a DSE (Dimentionally Stable Electrode) plate having a thickness of 5 mm and a size of 10 × 10 cm 2 , and the cathode was a titanium plate having the same size and thickness as the anode.

Cu2+イオンの移動を円滑にするために、電流密度は35A/dmでめっきを実施し、18μmの厚さの電解銅箔を製造した。 In order to make Cu 2+ ions move smoothly, plating was performed at a current density of 35 A / dm 2 to produce an electrolytic copper foil having a thickness of 18 μm.

銅電解液の基本組成は、次の通りである。
CuSO・5HO:250〜400g/L
SO:80〜150g/L
前記銅電解液に塩素イオンおよび添加剤が追加され、添加された添加剤および塩素イオンの組成は、下記の表1に示した。下記の表1において、ppmはmg/Lと同一の濃度である。
The basic composition of the copper electrolyte is as follows.
CuSO 4 · 5H 2 O: 250~400g / L
H 2 SO 4: 80~150g / L
Chlorine ions and additives were added to the copper electrolyte, and the compositions of the added additives and chloride ions are shown in Table 1 below. In Table 1 below, ppm is the same concentration as mg / L.

製造された電解銅箔の析出面(Matte面、M面)表面の走査電子顕微鏡写真を、図7に示した。   FIG. 7 shows a scanning electron micrograph of the surface of the produced electrolytic copper foil on the deposition surface (Matte surface, M surface).

実施例2〜4および比較例1〜4
銅電解液の組成を下記の表1のように変更したことを除いては、実施例1と同様の方法で電解銅箔を製造した。実施例2〜4および比較例1〜4で製造された電解銅箔の析出面表面の走査電子顕微鏡写真を、図8〜図14にそれぞれ示した。
Examples 2 to 4 and Comparative Examples 1 to 4
An electrolytic copper foil was produced in the same manner as in Example 1 except that the composition of the copper electrolyte was changed as shown in Table 1 below. Scanning electron micrographs of the deposition surface of the electrolytic copper foils produced in Examples 2 to 4 and Comparative Examples 1 to 4 are shown in FIGS.

前記表1において、略字は下記の化合物を意味する。
DET:ジエチルチオウレア
SPS:ビス−(3−スルホプロピル)−ジスルフィド
MPS:3−メルカプト−1−プロパンスルホン酸
PEG:ポリエチレングリコール(関東ケミカル、Cas No.25322−68−3)
ZPS:3−(ベンゾチアゾリル−2−メルカプト)−プロピル−スルホン酸ナトリウム塩
JGB:ヤーヌスグリーンB
SAO:サフラニン−O(Safranine−O)
2M−SS;2−メルカプト−5−ベンゾイミダゾールスルホン酸
DDAC:ジアリルジメチルアンモニウムクロライド
PGL:ポリグリセリン(KCI、PGL104KC)
In Table 1, the abbreviations mean the following compounds.
DET: diethylthiourea SPS: bis- (3-sulfopropyl) -disulfide MPS: 3-mercapto-1-propanesulfonic acid PEG: polyethylene glycol (Kanto Chemical, Cas No. 25322-68-3)
ZPS: 3- (benzothiazolyl-2-mercapto) -propyl-sulfonic acid sodium salt JGB: Janus Green B
SAO: Safranine-O
2M-SS; 2-mercapto-5-benzimidazolesulfonic acid DDAC: diallyldimethylammonium chloride PGL: polyglycerin (KCI, PGL104KC)

評価例1:走査電子顕微鏡実験
実施例1〜4および比較例1〜4で得られた電解銅箔の析出面の表面に対して走査電子顕微鏡を測定して、その結果を図7〜図14にそれぞれ示した。
Evaluation Example 1: Scanning Electron Microscope Experiment A scanning electron microscope was measured on the surface of the deposited surface of the electrolytic copper foil obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the results were shown in FIGS. Respectively.

図7〜図14に示されるように、実施例1〜4の電解銅箔は、比較例1〜4の電解銅箔に比べて表面が平坦で、粗度が低かった。   As shown in FIGS. 7 to 14, the electrolytic copper foils of Examples 1 to 4 had a flat surface and lower roughness than the electrolytic copper foils of Comparative Examples 1 to 4.

評価例2:光沢度の測定
実施例1〜4および比較例1〜4で得られた電解銅箔の析出面の表面に対して光沢度を測定した。前記光沢度は、JIS Z871−1997によって測定された値である。
Evaluation Example 2: Measurement of Glossiness Glossiness was measured with respect to the surface of the deposited surface of the electrolytic copper foil obtained in Examples 1-4 and Comparative Examples 1-4. The glossiness is a value measured according to JIS Z871-1997.

光沢度の測定は、電解銅箔の流れ方向(MD方向)に沿って当該銅箔の表面に入射角60゜で測定光を照射し、反射角60゜で反射した光の強度を測定したもので、光沢度の測定方法であるJIS Z8741−1997に準じて測定した。   Glossiness is measured by irradiating the surface of the copper foil with measurement light at an incident angle of 60 ° along the flow direction (MD direction) of the electrolytic copper foil and measuring the intensity of the light reflected at a reflection angle of 60 °. Then, it measured according to JIS Z8741-1997 which is a measuring method of glossiness.

測定の結果を、下記の表2に示した。
The measurement results are shown in Table 2 below.

前記表2に記載されているように、実施例1〜4の電解銅箔は、比較例1〜4の電解銅箔に比べて向上した光沢度を示した。   As described in Table 2, the electrolytic copper foils of Examples 1 to 4 exhibited improved gloss compared to the electrolytic copper foils of Comparative Examples 1 to 4.

評価例3:XRD実験
実施例1〜4および比較例1〜4で得られた電解銅箔の析出面に対してXRD(X−ray diffraction)スペクトルを測定した。実施例1に対するXRDスペクトルを、図6に示した。
Evaluation Example 3: XRD Experiment An XRD (X-ray diffraction) spectrum was measured on the precipitation surfaces of the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4. The XRD spectrum for Example 1 is shown in FIG.

図6に示されるように、(111)結晶面のピーク強度が最も高く、次が(200)結晶面であった。   As shown in FIG. 6, the peak intensity of the (111) crystal plane was the highest, and the next was the (200) crystal plane.

前記(200)結晶面に対する回折ピークの強度(I(200))と、(111)結晶面に対する回折ピークの強度(I(111))との比であるI(200)/I(111)は0.605であった。   I (200) / I (111), which is the ratio of the diffraction peak intensity (I (200)) to the (200) crystal plane and the diffraction peak intensity (I (111)) to the (111) crystal plane, is It was 0.605.

また、前記析出面に対するXRDスペクトルにおいて、(111)、(200)、(220)、(311)、(222)結晶面に対する配向指数(orientation index、M)を測定して、その結果を下記の表3に示した。   Further, in the XRD spectrum for the precipitation surface, the orientation index (M) for the (111), (200), (220), (311), (222) crystal plane was measured, and the result was expressed as follows: It is shown in Table 3.

配向指数は、S.Yoshimura、S.Yoshihara、T.Shirakashi、E.Sato、Electrochim.Acta39、589(1994)で提案した配向指数(M)を用いて測定した。   The orientation index is S.I. Yoshimura, S .; Yoshihara, T .; Shirakashi, E .; Sato, Electrochim. Measurement was performed using the orientation index (M) proposed in Acta 39, 589 (1994).

例えば、(111)面を有する試験片の場合、次のような方法で配向指数(orientation index)(M)を計算する。
IFR(111)=IF(111)/{IF(111)+IF(200)+IF(220)+IF(311)}
IR(111)=I(111)/{I(111)+I(200)+I(220)+I(311)}
M(111)=IR(111)/IFR(111)
IF(111)はJCPDSカード(Cards)におけるXRD強度であり、I(111)は実験値である。M(111)が1より大きければ、(111)面に平行な優先方位を有し、Mが1より小さければ、優先方位が減少することを意味する。
For example, in the case of a test piece having a (111) plane, the orientation index (M) is calculated by the following method.
IFR (111) = IF (111) / {IF (111) + IF (200) + IF (220) + IF (311)}
IR (111) = I (111) / {I (111) + I (200) + I (220) + I (311)}
M (111) = IR (111) / IFR (111)
IF (111) is the XRD intensity in the JCPDS card (Cards), and I (111) is an experimental value. If M (111) is greater than 1, it has a preferred orientation parallel to the (111) plane, and if M is less than 1, it means that the preferred orientation is reduced.

前記表3を参照して、前記析出面に対するXRDスペクトルにおいて、(200)結晶面に対する配向指数(M(200))と、(111)結晶面に対する配向指数(M(111))とから得られる配向指数の比であるM(200)/M(111)は1.31であった。   Referring to Table 3, in the XRD spectrum with respect to the precipitation surface, it is obtained from the orientation index (M (200)) with respect to the (200) crystal plane and the orientation index (M (111)) with respect to the (111) crystal plane. The ratio of orientation index M (200) / M (111) was 1.31.

評価例4:表面粗度(Rz)の測定
実施例1〜4および比較例1〜4で得られた電解銅箔の析出面および光沢面の表面粗度RzおよびRaを、JISB0601−1994規格によって測定した。前記測定方法で得られた表面粗度RzおよびRaを、下記の表4に示した。値が低いほど、粗度が低いことを意味する。
Evaluation Example 4 Measurement of Surface Roughness (Rz) The surface roughness Rz and Ra of the deposited and glossy surfaces of the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were determined according to JIS B0601-1994 standard. It was measured. The surface roughness Rz and Ra obtained by the above measuring method are shown in Table 4 below. The lower the value, the lower the roughness.

評価例5:常温引張強度、常温延伸率、高温引張強度および高温延伸率の測定
実施例1〜4および比較例1〜4で得られた電解銅箔を、幅12.7mmXゲージ長50mmで引張試験片を採取した後、50.8mm/minのクロスヘッド速度で、引張試験をIPC−TM−650 2.4.18B規格によって実施し、測定される引張強度の最大荷重を常温引張強度とし、破断時の延伸率を常温延伸率とした。ここで、常温は25℃である。
Evaluation Example 5: Measurement of room temperature tensile strength, room temperature stretching ratio, high temperature tensile strength and high temperature stretching ratio The electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were pulled at a width of 12.7 mm and a gauge length of 50 mm. After collecting the test piece, the tensile test was performed according to the IPC-TM-650 2.4.18B standard at a crosshead speed of 50.8 mm / min, and the maximum load of the tensile strength measured was normal temperature tensile strength, The stretch ratio at break was defined as the room temperature stretch ratio. Here, the normal temperature is 25 ° C.

常温での引張強度および延伸率の測定に使用された電解銅箔と同一の電解銅箔を、180℃で1時間熱処理後、取り出して、前記と同様の方法で引張強度および延伸率を測定し、高温引張強度および高温延伸率とした。   The same electrolytic copper foil as that used for measurement of tensile strength and stretch ratio at room temperature was taken out after heat treatment at 180 ° C. for 1 hour, and the tensile strength and stretch ratio were measured in the same manner as described above. The high-temperature tensile strength and the high-temperature stretch ratio were set.

前記測定方法で得られた常温引張強度、常温延伸率、高温引張強度、高温延伸率を、下記の表4に示した。   Table 4 below shows the room temperature tensile strength, the room temperature stretching ratio, the high temperature tensile strength, and the high temperature stretching ratio obtained by the measurement method.

前記表4に示されるように、実施例1〜4の電解銅箔は、表面粗度Rzが0.5μm未満と低く、高温熱処理後の引張強度が40kgf/mm以上であり、高温熱処理後の延伸率が大部分10%以上と高かった。 As shown in Table 4, the electrolytic copper foils of Examples 1 to 4 have a low surface roughness Rz of less than 0.5 μm, a tensile strength after high temperature heat treatment of 40 kgf / mm 2 or more, and after high temperature heat treatment. The stretch ratio was as high as 10% or more.

これに対し、比較例1〜4の電解銅箔は、実施例1〜4の電解銅箔に比べて表面粗度が高く、高温熱処理後の延伸率が低くて、二次電池用負極集電体および/またはPCB/FPC用の低粗度の銅箔として用いるのに不適であった。   On the other hand, the electrolytic copper foils of Comparative Examples 1 to 4 have a higher surface roughness than the electrolytic copper foils of Examples 1 to 4 and a low stretch ratio after the high-temperature heat treatment. It was unsuitable for use as a low roughness copper foil for body and / or PCB / FPC.

評価例6:角の巻き(curl)程度の測定
実施例1〜4および比較例1〜4で得られた電解銅箔を、幅10cmX長さ10cmで試験片を採取した後、平らな底の上に置いて、角部分の曲がった角度(角の巻き角度)、およびX字状に切断した後、切断した部分の持ち上がる高さ(角の巻き高さ)を測定して、下記の表5に示した。
Evaluation Example 6: Measurement of curl degree About the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4, after taking a test piece with a width of 10 cm × a length of 10 cm, a flat bottom Table 5 below shows the angle at which the corner portion is bent (corner winding angle) and the height of the cut portion (corner winding height) is measured after cutting into an X shape. It was shown to.

表5に示されるように、実施例1〜4の電解銅箔は、角の巻き角度が5〜30゜で45゜以下であった。しかし、比較例1〜比較例4の電解銅箔は、角の巻き角度が46゜〜52゜で45゜を超え、後続の工程での取り扱いが難しい状態を示した。同時に、比較例1〜比較例4の電解銅箔は、角の巻き高さが40mmを超え、品質が不良な状態を示した。したがって、本発明にかかる電解銅箔は、高強度でありながらも内部ストレスが低くて角の巻き現象が少なくなり、優れた性能を示した。   As shown in Table 5, the electrolytic copper foils of Examples 1 to 4 had a corner winding angle of 5 to 30 ° and 45 ° or less. However, the electrolytic copper foils of Comparative Examples 1 to 4 had a corner winding angle of 46 ° to 52 ° and exceeded 45 °, indicating that it was difficult to handle in subsequent steps. At the same time, the electrolytic copper foils of Comparative Examples 1 to 4 showed a state in which the corner winding height exceeded 40 mm and the quality was poor. Therefore, the electrolytic copper foil according to the present invention showed excellent performance because it had high strength but low internal stress and reduced corner winding phenomenon.

本発明は、上述の実施形態および添付した図面によって限定されるものではなく、添付した請求の範囲によって解釈されなければならない。また、本発明について請求の範囲に記載された本発明の技術的思想を逸脱しない範囲内で多様な形態の置換、変形および変更が可能であることは、当該技術分野における通常の知識を有する者に自明である。   The present invention should not be limited by the above-described embodiments and the accompanying drawings, but should be interpreted by the appended claims. In addition, those having ordinary knowledge in the technical field that various forms of substitution, modification, and change are possible without departing from the technical idea of the present invention described in the claims of the present invention. It is self-evident.

Claims (18)

析出面の突出した表面要素の間の領域であるポア(pore)の平均直径は1nm〜100nmであることを特徴とする、電解銅箔。   An electrolytic copper foil, wherein an average diameter of a pore, which is a region between protruding surface elements of a deposition surface, is 1 nm to 100 nm. 前記ポアの断面積は、前記析出面の面積に対して10%〜50%であることを特徴とする、請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein a cross-sectional area of the pore is 10% to 50% with respect to an area of the deposition surface. 前記ポアは100個/μm〜1000個/μmであることを特徴とする、請求項1に記載の電解銅箔。 2. The electrolytic copper foil according to claim 1, wherein the number of pores is 100 / μm 2 to 1000 / μm 2 . 前記析出面における前記ポアの平均密度は、前記析出面における前記突出した表面要素の平均密度の10%〜50%であることを特徴とする、請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein an average density of the pores on the deposition surface is 10% to 50% of an average density of the protruding surface elements on the deposition surface. 析出面の幅方向に対する光沢度(Gs(60°))が500以上であることを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the degree of gloss (Gs (60 °)) in the width direction of the deposition surface is 500 or more. 熱処理前の引張強度が40kgf/mm〜70kgf/mmであることを特徴とする、請求項1に記載の電解銅箔。 2. The electrolytic copper foil according to claim 1, wherein the tensile strength before the heat treatment is 40 kgf / mm 2 to 70 kgf / mm 2 . 熱処理後の引張強度は40kgf/mm〜70kgf/mmであることを特徴とする、請求項1に記載の電解銅箔。 2. The electrolytic copper foil according to claim 1, wherein the tensile strength after the heat treatment is 40 kgf / mm 2 to 70 kgf / mm 2 . 180℃で1時間熱処理後の引張強度は40kgf/mm〜70kgf/mmであることを特徴とする、請求項1に記載の電解銅箔。 2. The electrolytic copper foil according to claim 1, wherein the tensile strength after heat treatment at 180 ° C. for 1 hour is 40 kgf / mm 2 to 70 kgf / mm 2 . 熱処理後の引張強度は、熱処理前の引張強度の85%〜99%であることを特徴とする、請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein the tensile strength after the heat treatment is 85% to 99% of the tensile strength before the heat treatment. 熱処理前の延伸率が2%〜15%であることを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein a stretch ratio before heat treatment is 2% to 15%. 熱処理後の延伸率が4%〜15%であることを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the stretch ratio after heat treatment is 4% to 15%. 180℃で1時間熱処理後の延伸率が4%〜15%であることを特徴とする、請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein a stretch ratio after heat treatment at 180 ° C. for 1 hour is 4% to 15%. 熱処理後の延伸率は、熱処理前の延伸率の1倍〜4.5倍であることを特徴とする、請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein the stretch ratio after the heat treatment is 1 to 4.5 times the stretch ratio before the heat treatment. 角の巻き角度は0゜〜45゜であることを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the angle winding angle is 0 ° to 45 °. 角の巻き高さは0mm〜40mmであることを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein a corner winding height is 0 mm to 40 mm. 厚さが2μm〜10μmであることを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the thickness is 2 μm to 10 μm. 請求項1〜16のいずれか1項に記載の電解銅箔を含むことを特徴とする、電池。   A battery comprising the electrolytic copper foil according to claim 1. 絶縁性基材と、
前記絶縁性基材の一表面に付着した前記請求項1〜16のいずれか1項に記載の電解銅箔とを含むことを特徴とする、電気部品。
An insulating substrate;
An electrical component comprising the electrolytic copper foil according to any one of claims 1 to 16, which is attached to one surface of the insulating substrate.
JP2015041704A 2015-03-03 2015-03-03 Electrolytic copper foil, electrical parts and batteries including the same Active JP6014186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041704A JP6014186B2 (en) 2015-03-03 2015-03-03 Electrolytic copper foil, electrical parts and batteries including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041704A JP6014186B2 (en) 2015-03-03 2015-03-03 Electrolytic copper foil, electrical parts and batteries including the same

Publications (2)

Publication Number Publication Date
JP2016160503A true JP2016160503A (en) 2016-09-05
JP6014186B2 JP6014186B2 (en) 2016-10-25

Family

ID=56844480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041704A Active JP6014186B2 (en) 2015-03-03 2015-03-03 Electrolytic copper foil, electrical parts and batteries including the same

Country Status (1)

Country Link
JP (1) JP6014186B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178261A (en) * 2017-04-18 2018-11-15 長春石油化學股▲分▼有限公司 Electrodeposited copper foil with low repulsive force, method for production thereof, and use thereof
KR20190009048A (en) * 2017-07-18 2019-01-28 케이씨에프테크놀로지스 주식회사 Copper foil free from wrinkle and having improved charge discharge property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR20190012922A (en) * 2017-07-31 2019-02-11 케이씨에프테크놀로지스 주식회사 Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP2019199648A (en) * 2018-05-16 2019-11-21 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper foil, and secondary battery using the same
JP2019536211A (en) * 2016-11-11 2019-12-12 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper foil for secondary battery and method for producing the same
JP2020087842A (en) * 2018-11-30 2020-06-04 三洋電機株式会社 Secondary cell and manufacturing method thereof
KR20200096417A (en) * 2019-02-01 2020-08-12 장 춘 페트로케미컬 컴퍼니 리미티드 Copper foil with excellent adhesion
WO2021153256A1 (en) * 2020-01-30 2021-08-05 三井金属鉱業株式会社 Electrolytic copper foil
JP2022529462A (en) * 2019-11-21 2022-06-22 エスケー ネクシリス カンパニー リミテッド Copper foil with wrinkles prevented, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146289A (en) * 2005-10-31 2007-06-14 Mitsui Mining & Smelting Co Ltd Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil
WO2014073696A1 (en) * 2012-11-09 2014-05-15 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using same
JP2014135175A (en) * 2013-01-09 2014-07-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and electronic device
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146289A (en) * 2005-10-31 2007-06-14 Mitsui Mining & Smelting Co Ltd Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil
WO2014073696A1 (en) * 2012-11-09 2014-05-15 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using same
JP2014135175A (en) * 2013-01-09 2014-07-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and electronic device
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536211A (en) * 2016-11-11 2019-12-12 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper foil for secondary battery and method for producing the same
JP2018178261A (en) * 2017-04-18 2018-11-15 長春石油化學股▲分▼有限公司 Electrodeposited copper foil with low repulsive force, method for production thereof, and use thereof
KR20190009048A (en) * 2017-07-18 2019-01-28 케이씨에프테크놀로지스 주식회사 Copper foil free from wrinkle and having improved charge discharge property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR102413056B1 (en) * 2017-07-18 2022-06-23 에스케이넥실리스 주식회사 Copper foil free from wrinkle and having improved charge discharge property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
US11505873B2 (en) 2017-07-31 2022-11-22 Sk Nexilis Co., Ltd. Copper foil free from generation of wrinkles, electrode comprising the same, secondary battery comprising the same and method for manufacturing the same
KR20190012922A (en) * 2017-07-31 2019-02-11 케이씨에프테크놀로지스 주식회사 Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR102433032B1 (en) * 2017-07-31 2022-08-16 에스케이넥실리스 주식회사 Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP2019199648A (en) * 2018-05-16 2019-11-21 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper foil, and secondary battery using the same
JP7317511B2 (en) 2018-05-16 2023-07-31 ロッテ エナジー マテリアルズ コーポレイション Electrolytic copper foil and secondary battery using the same
CN110504453A (en) * 2018-05-16 2019-11-26 日进材料股份有限公司 Electrolytic copper foil and the secondary cell for using electrolytic copper foil
US11362336B2 (en) 2018-05-16 2022-06-14 Iljin Materials Co., Ltd. Electrolytic copper foil and secondary battery using the same
JP2020087842A (en) * 2018-11-30 2020-06-04 三洋電機株式会社 Secondary cell and manufacturing method thereof
JP7075332B2 (en) 2018-11-30 2022-05-25 三洋電機株式会社 Secondary battery and its manufacturing method
KR102253481B1 (en) * 2019-02-01 2021-05-20 장 춘 페트로케미컬 컴퍼니 리미티드 Copper foil with excellent adhesion
KR20210016440A (en) * 2019-02-01 2021-02-15 장 춘 페트로케미컬 컴퍼니 리미티드 Surface-treated copper foil and copper foil substrate
KR102269105B1 (en) 2019-02-01 2021-06-24 장 춘 페트로케미컬 컴퍼니 리미티드 Electrodeposited copper foil, current collector comprising same, electrode, and lithium ion secondary battery
KR102567837B1 (en) * 2019-02-01 2023-08-16 장 춘 페트로케미컬 컴퍼니 리미티드 Surface treated copper foil and copper foil substrate
KR102289847B1 (en) 2019-02-01 2021-08-17 장 춘 페트로케미컬 컴퍼니 리미티드 Surface treated copper foil
US11145867B2 (en) 2019-02-01 2021-10-12 Chang Chun Petrochemical Co., Ltd. Surface treated copper foil
US11283080B2 (en) 2019-02-01 2022-03-22 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil, current collector, electrode, and lithium ion secondary battery comprising the same
KR20210024179A (en) * 2019-02-01 2021-03-04 장 춘 페트로케미컬 컴퍼니 리미티드 Electrodeposited copper foil, current collector including same, electrode, and lithium ion secondary battery
US11362337B2 (en) 2019-02-01 2022-06-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same
KR102250785B1 (en) * 2019-02-01 2021-05-12 장 춘 페트로케미컬 컴퍼니 리미티드 Electrolytic copper foil with low profile
KR102567838B1 (en) * 2019-02-01 2023-08-16 장 춘 페트로케미컬 컴퍼니 리미티드 Surface treated copper foil and copper foil substrate
KR20210016455A (en) * 2019-02-01 2021-02-15 장 춘 페트로케미컬 컴퍼니 리미티드 Surface-treated copper foil and copper foil substrate
KR20200096416A (en) * 2019-02-01 2020-08-12 장 춘 페트로케미컬 컴퍼니 리미티드 Electrolytic copper foil with low profile
KR20200096418A (en) * 2019-02-01 2020-08-12 장 춘 페트로케미컬 컴퍼니 리미티드 Surface treated copper foil
KR20200096417A (en) * 2019-02-01 2020-08-12 장 춘 페트로케미컬 컴퍼니 리미티드 Copper foil with excellent adhesion
JP7326668B2 (en) 2019-11-21 2023-08-16 エスケー ネクシリス カンパニー リミテッド Wrinkle-preventing copper foil, electrode containing the same, secondary battery containing the same, and method for manufacturing the same
JP2022529462A (en) * 2019-11-21 2022-06-22 エスケー ネクシリス カンパニー リミテッド Copper foil with wrinkles prevented, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.
WO2021153256A1 (en) * 2020-01-30 2021-08-05 三井金属鉱業株式会社 Electrolytic copper foil

Also Published As

Publication number Publication date
JP6014186B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6379207B2 (en) Electrolytic copper foil, and electric parts and batteries including the same
JP6014186B2 (en) Electrolytic copper foil, electrical parts and batteries including the same
US9899683B2 (en) Electrolytic copper foil, electric component and battery including the same
TWI504764B (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
KR101605071B1 (en) Electrolytic copper foil
KR100389061B1 (en) Electrolytic copper foil and process producing the same
TWI449814B (en) Low internal stress copper electroplating method
KR101386093B1 (en) Copper electrolysis solution for production of electrolytic copper foil, process for producing electrolytic copper foil and electrolytic copper foil
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
EP0841412A1 (en) High-tensile electrolytic copper foil and process for producing the same
JPH0754183A (en) Electrodeposited copper foil and production of electro- deposited copper foil by using electrolyte solution containing chloride ion and additive for controlling organic additive
JP2004339558A (en) Low rough surface electrolytic copper foil, and its production method
CN105986288A (en) Electrolytic foil, electrical component containing electrolyte foil and battery
KR101571060B1 (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
KR101571064B1 (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
JP2004263289A (en) Low rough surface electrolytic copper foil, and production method therefor
KR101571063B1 (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
EP3067442A1 (en) Electrolytic copper foil, electric component and battery including the same
WO2014061983A1 (en) Electrolytic copper foil, electric part and battery including same, and method for manufacturing same
KR101502373B1 (en) Electrolytic copper foil, electric component and battery comprising the foil
KR101478464B1 (en) Electrolytic copper foil, electric component and battery comprising the foil
KR101571066B1 (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
TWI643982B (en) Electrolytic copper foil, electric component and battery comprising the foil
JP2004162144A (en) Method for manufacturing electrolytic copper foil
TW201714742A (en) Surface-treated copper foil and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160923

R150 Certificate of patent or registration of utility model

Ref document number: 6014186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350