JP2016159226A - Method for producing photocatalyst, and photocatalyst produced thereby - Google Patents

Method for producing photocatalyst, and photocatalyst produced thereby Download PDF

Info

Publication number
JP2016159226A
JP2016159226A JP2015039720A JP2015039720A JP2016159226A JP 2016159226 A JP2016159226 A JP 2016159226A JP 2015039720 A JP2015039720 A JP 2015039720A JP 2015039720 A JP2015039720 A JP 2015039720A JP 2016159226 A JP2016159226 A JP 2016159226A
Authority
JP
Japan
Prior art keywords
photocatalyst
mixed powder
sintering
powder
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015039720A
Other languages
Japanese (ja)
Other versions
JP6375565B2 (en
Inventor
吉田 浩之
Hiroyuki Yoshida
浩之 吉田
一茂 城之内
Kazushige Jonouchi
一茂 城之内
祐二 西村
Yuji Nishimura
祐二 西村
云 魯
Un Ro
云 魯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Prefectural Government
Chiba University NUC
Original Assignee
Chiba Prefectural Government
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Prefectural Government, Chiba University NUC filed Critical Chiba Prefectural Government
Priority to JP2015039720A priority Critical patent/JP6375565B2/en
Publication of JP2016159226A publication Critical patent/JP2016159226A/en
Application granted granted Critical
Publication of JP6375565B2 publication Critical patent/JP6375565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a photocatalyst, in which the visible light-responsive photocatalyst usable for a long period of time is produced simply with high productivity.SOLUTION: The method for producing the photocatalyst comprises: a mixed powder preparation step of mixing powder of titanium oxide with powder of a nitrogen compound to prepare mixed powder; and a sintering step of sintering the prepared mixed powder. It is preferable that the nitrogen compound is urea or a derivative of the urea. It is preferable since the photocatalytic function of a sintered product is improved that the mixed powder is sintered at the temperature of 500-900°C. It is preferable that the mixed powder is sintered by spark plasma sintering. It is preferable that the mixed powder is sintered while applying the pressure of 5-40 MPa thereto at the sintering step. It is preferable that a weight ratio of the nitrogen compound in the mixed powder is made larger than 0% and made smaller than 30%.SELECTED DRAWING: Figure 6

Description

本発明は、光触媒の製造方法及びこれにより製造される光触媒に関する。   The present invention relates to a method for producing a photocatalyst and a photocatalyst produced thereby.

光触媒は、光を照射することにより触媒作用を示す物質であり、二酸化チタン(TiO)がよく知られている。光触媒は、上記触媒作用によって防汚、抗菌、殺菌、脱臭、浄化等の様々な効果があることから上記効果が必要とされる製品への利用が期待されている。 A photocatalyst is a substance that exhibits catalytic action when irradiated with light, and titanium dioxide (TiO 2 ) is well known. The photocatalyst has various effects such as antifouling, antibacterial, sterilization, deodorization, purification, and the like due to the above catalytic action, and is expected to be used for products that require the above effect.

しかしながら、一般に光触媒は、紫外線の照射によって機能するものであるが、その紫外線は太陽光のわずか3〜4%程度しか含まれていないといった課題がある。すなわち、より効率のよい光触媒効果を得るためには、広範囲な波長範囲、好ましくは可視光領域において機能する光触媒を得ることが重要である。   However, in general, the photocatalyst functions by irradiation with ultraviolet rays, but there is a problem that the ultraviolet rays contain only about 3 to 4% of sunlight. That is, in order to obtain a more efficient photocatalytic effect, it is important to obtain a photocatalyst that functions in a wide wavelength range, preferably in the visible light region.

上記に関連した光触媒に関する技術として、例えば非特許文献1では、酸化チタンと尿素を重量比1:1で混合した後、アンモニア気流下450℃で窒素ドープ処理する方法が記載されている。   As a technique related to the above-mentioned photocatalyst, for example, Non-Patent Document 1 describes a method in which titanium oxide and urea are mixed at a weight ratio of 1: 1 and then nitrogen-doped at 450 ° C. in an ammonia stream.

田島政弘、井上淳、塩村隆信「可視光応答型光触媒の開発」島根県産業技術センタ−研究報告第47号、2011年2月発行Tajima Masahiro, Inoue Satoshi, Shiomura Takanobu “Development of Visible Light Responsive Photocatalyst” Shimane Industrial Technology Center Research Report 47, February 2011

ところで上記非特許文献1で示すように、一般に酸化チタンは微粉末であり、光触媒機能を利用するためには何らかの方法で固定化する必要がある。非特許文献1に記載の方法では光触媒の固定化に関し課題が残る。   By the way, as shown in the said nonpatent literature 1, in general, a titanium oxide is a fine powder, and in order to utilize a photocatalytic function, it is necessary to fix | immobilize with a certain method. In the method described in Non-Patent Document 1, there remains a problem regarding the immobilization of the photocatalyst.

一方、一般に光触媒を固定化する方法として、ポリマーバインダーに粉末状の光触媒を混合して基材に塗布する方法がある。しかしながら、この方法では、製造工程が複雑であり、バインダーが時間の経過により分解又は劣化し、長期間安定的に固定化する観点において課題がある。   On the other hand, as a method for fixing the photocatalyst, there is a method in which a powdery photocatalyst is mixed with a polymer binder and applied to a substrate. However, in this method, the manufacturing process is complicated, and the binder is decomposed or deteriorated over time, and there is a problem in terms of stably fixing for a long time.

また、別の光触媒の固定化法として、光触媒を基材に薄膜コーティングする方法がある。しかしながら、この方法も、薄膜の耐久性が低く、長期間使用できないという課題がある。   As another method for immobilizing a photocatalyst, there is a method in which a photocatalyst is coated on a base material in a thin film. However, this method also has a problem that the durability of the thin film is low and it cannot be used for a long time.

そこで、本発明は上記課題に鑑み、より広範囲な波長範囲に適用可能であるとともに、簡便な方法で光触媒を長期間安定的に固定化する光触媒の製造方法、及び、これにより製造される光触媒を提供することを目的とする。   Therefore, in view of the above problems, the present invention is applicable to a wider wavelength range, and provides a photocatalyst production method for stably fixing a photocatalyst for a long period of time by a simple method, and a photocatalyst produced thereby. The purpose is to provide.

上記課題を解決する本発明の一観点に係る光触媒の製造方法は、酸化チタン粉末と窒素化合物粉末を混合して混合粉を作製する混合粉作製工程と、混合粉を焼結する焼結工程と、を有するものである。   The method for producing a photocatalyst according to one aspect of the present invention that solves the above problems includes a mixed powder preparation step of mixing a titanium oxide powder and a nitrogen compound powder to prepare a mixed powder, and a sintering step of sintering the mixed powder. , Has.

また、本発明の他の一観点に係る光触媒は、酸化チタンの粉末と窒素化合物の粉末を混合した混合粉を焼結して得たものである。   The photocatalyst according to another aspect of the present invention is obtained by sintering a mixed powder obtained by mixing a titanium oxide powder and a nitrogen compound powder.

以上、本発明によれば、より広範囲な波長範囲に適用可能であるとともに、簡便な方法で光触媒を長期間安定的に固定化する光触媒の製造方法、及び、これにより製造される光触媒を提供することができる。   As described above, according to the present invention, a method for producing a photocatalyst that can be applied to a wider wavelength range and stably fix the photocatalyst for a long period of time by a simple method, and a photocatalyst produced thereby are provided. be able to.

光触媒の基本原理を示す図である。It is a figure which shows the basic principle of a photocatalyst. 酸化チタン及び窒素ドープ酸化チタンのエネルギーバンド図を示す図である。It is a figure which shows the energy band figure of a titanium oxide and a nitrogen dope titanium oxide. 酸化チタンの焼結温度と紫外線による光触媒機能の関係を示す図である。It is a figure which shows the relationship between the sintering temperature of a titanium oxide, and the photocatalytic function by an ultraviolet-ray. 放電プラズマ焼結装置の概略を示す図である。It is a figure which shows the outline of a discharge plasma sintering apparatus. 光触媒焼結体の外観を示す図である。It is a figure which shows the external appearance of a photocatalyst sintered compact. 放電プラズマ焼結時のチャンバ−内の圧力及び混合粉末の温度の変化を示す図である。It is a figure which shows the change of the pressure in the chamber at the time of spark plasma sintering, and the temperature of mixed powder. 実施例1で用いた色素分解法の概略を示す図である。1 is a diagram showing an outline of a pigment decomposition method used in Example 1. FIG. 可視光照射時間とMB水溶液濃度の関係を示す図である。It is a figure which shows the relationship between visible light irradiation time and MB aqueous solution density | concentration. 各焼結体(φ20)の分解活性指数を示す図である。It is a figure which shows the decomposition activity index | exponent of each sintered compact ((phi) 20). 各焼結体(φ40)の分解活性指数を示す図である。It is a figure which shows the decomposition activity index | exponent of each sintered compact ((phi) 40). 700℃で高温酸化した焼結体を使用した場合の可視光照射時間とMB水溶液濃度の関係を示す図である。It is a figure which shows the relationship of visible light irradiation time at the time of using the sintered compact oxidized at high temperature at 700 degreeC, and MB aqueous solution density | concentration.

以下、本発明を実施するための形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の記載にのみ狭く限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the following description of the embodiments and examples.

図1は、光触媒の基本原理を示す図である。太陽光からの紫外線1が酸化チタン2に照射されると、酸化チタン2に電子(e)3と正孔(h)4が生じる。そして空気中の酸素(O)5と電子3、水(HO)6と正孔4がそれぞれ反応を起こし、酸化チタン2の表面に、スーパーオキサイドイオン(O )7、水酸ラジカル(OH)8という分解力を持つ2種類の活性酸素が発生する。そして、これらの活性酸素が汚染物質9を分解することにより、防汚、抗菌、殺菌、脱臭、浄化等の様々な効果を発揮することができる。 FIG. 1 is a diagram showing the basic principle of a photocatalyst. When the titanium oxide 2 is irradiated with ultraviolet rays 1 from sunlight, electrons (e ) 3 and holes (h + ) 4 are generated in the titanium oxide 2. Then, oxygen (O 2 ) 5 and electrons 3, water (H 2 O) 6 and holes 4 in the air react with each other, and superoxide ions (O 2 ) 7, hydroxides are formed on the surface of titanium oxide 2. Two types of active oxygen having a decomposition ability of radical (OH) 8 are generated. And these active oxygen can exhibit various effects, such as antifouling, antibacterial, sterilization, deodorizing, and purification, by decomposing the pollutant 9.

ところで図2(a)は、一般的な酸化チタンのバンド図を示す図である。酸化チタンのバンドギャップは約3.2eVであり、波長が380nm以下の紫外線が照射されたときにしか電子が導電帯に励起せず、光触媒として機能しない。一方、太陽光に含まれる紫外線はわずか約3%程度に過ぎず、一般的な酸化チタンでは、太陽光の可視光波長成分のエネルギーを有効に利用することができない。   FIG. 2A is a diagram showing a general band diagram of titanium oxide. The band gap of titanium oxide is about 3.2 eV, and electrons are excited to the conduction band only when irradiated with ultraviolet rays having a wavelength of 380 nm or less, and function as a photocatalyst. On the other hand, ultraviolet rays contained in sunlight are only about 3%, and general titanium oxide cannot effectively use the energy of the visible light wavelength component of sunlight.

これに対し図2(b)は、窒素をドープした酸化チタンのバンド図を示すものである。本図に記載の酸化チタンは、バンドギャップが小さくなっており、波長が500nm以下の可視光でも電子が導電帯に励起し、光触媒として機能することができる。したがって、酸化チタンに窒素をドープすることで、可視光にも応答する光触媒が製造できる。   In contrast, FIG. 2B shows a band diagram of titanium oxide doped with nitrogen. The titanium oxide shown in this figure has a small band gap, and even when visible light has a wavelength of 500 nm or less, electrons are excited to the conduction band and can function as a photocatalyst. Therefore, a photocatalyst that also responds to visible light can be produced by doping titanium oxide with nitrogen.

まず、本実施形態の光触媒製造方法は、(1)酸化チタン粉末と窒素化合物粉末を混合して混合粉を作製する混合粉作製工程と、(2)混合粉を焼結する焼結工程と、を有する。   First, the photocatalyst production method of the present embodiment includes (1) a mixed powder preparation step of mixing a titanium oxide powder and a nitrogen compound powder to prepare a mixed powder, and (2) a sintering step of sintering the mixed powder, Have

本実施形態において、酸化チタン粉末とは、言葉のとおり酸化チタンを含む粉末であり、光触媒として機能させることができる限りにおいて限定されるわけではないが、二酸化チタン(TiO)、より好ましくはアナターゼ型の二酸化チタンを含むことが好ましい。 In the present embodiment, the titanium oxide powder is a powder containing titanium oxide as the word says, and is not limited as long as it can function as a photocatalyst, but titanium dioxide (TiO 2 ), more preferably anatase. It is preferred to include a type of titanium dioxide.

また本実施形態において、酸化チタン粉末の大きさは、後述する焼結工程によって十分に焼結することができる限りにおいて限定されるわけではないが、例えば平均粒径が1nm以上100nm以下、より好ましくは20nm以下の粉末である。なおこの粒径の測定方法としては限定されるわけではないが、X線回折法による測定によって得られるピークの半値幅に基づき推定する方法が簡便である。   Further, in the present embodiment, the size of the titanium oxide powder is not limited as long as it can be sufficiently sintered by the sintering process described later, but, for example, the average particle size is more preferably 1 nm or more and 100 nm or less. Is a powder of 20 nm or less. In addition, although it does not necessarily limit as a measuring method of this particle size, the method of estimating based on the half value width of the peak obtained by the measurement by X-ray diffraction method is simple.

なお本実施形態において、酸化チタン粉末は、材料全体が酸化チタン粉末であってもよいが、鉄等の金属表面に酸化チタンをコーティングした粉末であってもよい。なおこの場合であれば、粉末の平均粒径を500μm以下にまで広くすることができる。このように金属表面に酸化チタンをコーティングすると、金属との複合効果を利用してより高機能化を図ることができるといった利点がある。   In this embodiment, the titanium oxide powder may be a titanium oxide powder as a whole, or may be a powder obtained by coating titanium oxide on a metal surface such as iron. In this case, the average particle diameter of the powder can be increased to 500 μm or less. When titanium oxide is coated on the metal surface in this manner, there is an advantage that higher functionality can be achieved by utilizing a composite effect with the metal.

また本実施形態において、窒素化合物は、窒素を含む物質であり本発明の効果を奏するものである限りにおいて限定されるわけではないが、例えば尿素及び尿素誘導体、並びに炭酸水素アンモニウムの少なくともいずれかを含むものであることが好ましい。ここで尿素誘導体とは、尿素を母体として官能基を導入、酸化、還元、多量体化、合成等を施した化合物をいい、例えば尿素を二量体化したビウレット、シアヌル酸を含むがこれに限定されない。   In the present embodiment, the nitrogen compound is a substance containing nitrogen and is not limited as long as it exhibits the effects of the present invention. For example, at least one of urea, a urea derivative, and ammonium hydrogen carbonate is used. It is preferable that it is included. Here, the urea derivative means a compound in which functional group is introduced with urea as a base, oxidation, reduction, multimerization, synthesis, etc., and includes, for example, biuret and cyanuric acid obtained by dimerizing urea. It is not limited.

また、本実施形態において窒素化合物粉末の大きさは、本実施形態において製造される光触媒の機能を十分に確保できる限りにおいて限定されるわけではないが、10μm以上1mm以下であることが好ましい。   Further, in the present embodiment, the size of the nitrogen compound powder is not limited as long as the function of the photocatalyst produced in the present embodiment can be sufficiently ensured, but is preferably 10 μm or more and 1 mm or less.

また本実施形態において、混合粉における窒素化合物の重量の割合は、製造される光触媒の機能を確保することができる限りにおいて限定されるわけではないが、0重量%より大きく30重量%よりも小さい範囲にあることが好ましい。30重量%よりも小さくすることで焼結の際割れてしまうことを防止できる。   In the present embodiment, the ratio of the weight of the nitrogen compound in the mixed powder is not limited as long as the function of the photocatalyst to be produced can be ensured, but it is greater than 0% by weight and less than 30% by weight. It is preferable to be in the range. By making it smaller than 30% by weight, it is possible to prevent cracking during sintering.

また本実施形態において、酸化チタン粉末と窒素化合物粉末の混合方法としは、均一に混合することができる限りにおいて限定されず、例えばロータリーミキサー等を用いて混合することができる。   In the present embodiment, the method of mixing the titanium oxide powder and the nitrogen compound powder is not limited as long as it can be uniformly mixed, and for example, the mixing can be performed using a rotary mixer or the like.

また本実施形態において混合粉を焼結する焼結工程は、限定されるわけではないが、放電プラズマ焼結によって行われることが好ましい。放電プラズマ焼結は迅速な昇温(短時間での処理と粒成長の抑制)と還元雰囲気中での処理が可能といった特徴を備え、この焼結法によって光触媒の固定化を行うとともに、可視領域にまで広げた光触媒機能を発揮させることができる。   In the present embodiment, the sintering step for sintering the mixed powder is not limited, but is preferably performed by discharge plasma sintering. Discharge plasma sintering has features such as rapid temperature rise (processing in a short time and suppression of grain growth) and processing in a reducing atmosphere. This sintering method immobilizes the photocatalyst and makes it visible. The photocatalytic function that has been expanded to the maximum can be exhibited.

また本実施形態において、焼結工程は、500℃以上900℃以下の温度で焼結することが好ましく、より好ましくは600℃以上800℃以下である。500℃以上とすることで十分な焼結体の硬度を確保できるといった利点があり、900℃以下とすることで酸化チタンのルチル化を抑制できるといった利点がある。   Moreover, in this embodiment, it is preferable that a sintering process is sintered at the temperature of 500 to 900 degreeC, More preferably, it is 600 to 800 degreeC. There exists an advantage that sufficient hardness of a sintered compact can be ensured by setting it as 500 degreeC or more, and there exists an advantage that the rutileization of a titanium oxide can be suppressed by setting it as 900 degrees C or less.

また本実施形態において、焼結工程は、混合粉に5MPaから40MPaの圧力を加えて焼結することが好ましい。この範囲とすることで、安定的に固定化することができる。   In the present embodiment, the sintering step is preferably performed by applying a pressure of 5 MPa to 40 MPa to the mixed powder. By setting it as this range, it can fix stably.

また本実施形態において、焼結工程は、上記の温度で焼結することができる限りにおいて限定されるわけではないが、1分以上30分以下行うことが好ましい。   Further, in the present embodiment, the sintering step is not limited as long as it can be sintered at the above temperature, but it is preferably performed for 1 minute to 30 minutes.

以上、本実施形態によれば、一回の焼結工程すなわち短時間で固定化された可視光応答性光触媒焼結体を製造することができ、生産効率を飛躍的に向上させることができる。また、本方法では焼結工程を採用しておりバインダーポリマーの劣化や酸化チタン薄膜の低耐久性の問題がなく耐久性に優れ、成形加工しやすい可視光応答性光触媒が製造できる。   As described above, according to the present embodiment, the visible light-responsive photocatalyst sintered body fixed in a single sintering step, that is, in a short time can be manufactured, and the production efficiency can be greatly improved. In addition, this method employs a sintering step, and can produce a visible light responsive photocatalyst that is excellent in durability and easy to be molded without problems of deterioration of the binder polymer and low durability of the titanium oxide thin film.

ここで、上記実施形態の効果を確認するため、実際に光触媒を製造しその効果を検証した。以下具体的に示す。   Here, in order to confirm the effect of the said embodiment, the photocatalyst was actually manufactured and the effect was verified. This is specifically shown below.

(実施例1)
図3は、事前検討として尿素を混合していないTiOの焼結温度と紫外線照射により評価した光触媒機能の関係を示す図である。原料粉末としてTiO粉末(平均粒径7nm、石原産業株式会社製)を用い、これをグラファイトの型(焼結ダイ)に敷き詰め、放電プラズマ焼結(SPS:Spark Plasma Sintering)装置により500℃から900℃の範囲内において加熱して焼結を行った。
Example 1
FIG. 3 is a diagram showing the relationship between the sintering temperature of TiO 2 not mixed with urea and the photocatalytic function evaluated by ultraviolet irradiation as a preliminary study. TiO 2 powder (average particle size: 7 nm, manufactured by Ishihara Sangyo Co., Ltd.) was used as the raw material powder, and this was spread on a graphite mold (sintering die), and from 500 ° C. by a spark plasma sintering (SPS) apparatus. Sintering was performed by heating in the range of 900 ° C.

一方図4は、放電プラズマ焼結装置の概略を示す図である。紛体52は焼結ダイ51に詰められ、加圧機構59により上部パンチ4と下部パンチ5に圧力が加えられ、紛体52に圧力が加えられる。焼結ダイ51はグラファイト型であり、内径φは20mm(φ20)とした。焼結ダイ51には、焼結電源(パルス電源)58によりON、OFFが繰り返される直流パルス電圧が印加され、焼結ダイ51に直流パルス電流が流れることにより急速に温度が上昇する。焼結ダイ51の温度上昇に伴って紛体2も急速に加熱される。53は水冷真空チャンバーである。   On the other hand, FIG. 4 is a diagram showing an outline of a discharge plasma sintering apparatus. The powder 52 is packed in the sintering die 51, and pressure is applied to the upper punch 4 and the lower punch 5 by the pressurizing mechanism 59, and pressure is applied to the powder 52. The sintering die 51 was a graphite type, and the inner diameter φ was 20 mm (φ20). A direct current pulse voltage that is repeatedly turned on and off is applied to the sintering die 51 by a sintering power source (pulse power source) 58, and a direct current pulse current flows through the sintering die 51, so that the temperature rises rapidly. As the temperature of the sintering die 51 rises, the powder 2 is also rapidly heated. 53 is a water-cooled vacuum chamber.

この焼結の結果、図5で示すとおり、焼結温度が500℃から700℃の間では、紫外線照射による光触媒機能が高く、700℃で焼結した際に最も光触媒機能が高くなったため、以下の実験では焼結温度を主として700℃(973K)として実験を行った。   As a result of this sintering, as shown in FIG. 5, when the sintering temperature is between 500 ° C. and 700 ° C., the photocatalytic function by ultraviolet irradiation is high, and the photocatalytic function is the highest when sintered at 700 ° C. In this experiment, the sintering temperature was mainly set to 700 ° C. (973 K).

本実施例では、原料粉末としてTiO粉末(平均粒径7nm、石原産業株式会社製ST−01)及び尿素(CHO)粉末(和光純薬社製)を用い、秤量したTiO粉末と尿素粉末をロータリーミキサーで12時間混合してからグラファイトの型(焼結ダイ)に敷き詰め、放電プラズマ焼結(SPS:Spark Plasma Sintering)装置により700℃(973K)に加熱しながら30MPaの圧力を加え、700℃になった後の保持時間を3分間として焼結を行った。なお尿素は、0%、10%、20%、30%のそれぞれの配合量(%は重量%を意味する。以下同じ。)として複数作成した。なお、尿素の融点は、約133℃程であり、いずれにおいても焼結の際に昇華したと考えられる。 In this example, TiO 2 powder (average particle size 7 nm, manufactured by Ishihara Sangyo Co., Ltd. ST-01) and urea (CH 4 N 2 O) powder (manufactured by Wako Pure Chemical Industries, Ltd.) were used as raw material powders and weighed TiO 2. Powder and urea powder are mixed with a rotary mixer for 12 hours, then spread on a graphite mold (sintering die), and heated to 700 ° C. (973 K) with a spark plasma sintering (SPS) apparatus at a pressure of 30 MPa. Was added, and the sintering was performed for 3 minutes after the temperature reached 700 ° C. A plurality of ureas were prepared as blending amounts of 0%, 10%, 20% and 30% (% means weight%, the same applies hereinafter). Note that the melting point of urea is about 133 ° C., and in any case, it is considered that the urea sublimated during sintering.

図6は、焼結により得られた光触媒焼結体の外観を示す図である。尿素は30%混合した焼結体には亀裂が入ってしまっていることを確認した。したがって、尿素は30%未満であることが好ましい旨確認した。   FIG. 6 is a view showing the appearance of a photocatalyst sintered body obtained by sintering. It was confirmed that the sintered body mixed with 30% of urea had cracks. Therefore, it was confirmed that urea is preferably less than 30%.

また図7は、放電プラズマ焼結時のチャンバー内の圧力及び混合粉末の温度の変化を示す図である。混合粉末の温度は、最終的には973Kとなっていることが確認できた一方、圧力は一度非常に高い値を数分程度維持した後再び低くなっていった。これは、推論の域ではあるが酸化チタンと尿素が反応し、水蒸気となって圧力が上昇したが、数分後にはこの水蒸気が除去されたため圧力が低くなっていったと考えられる。   FIG. 7 is a diagram showing changes in the pressure in the chamber and the temperature of the mixed powder during spark plasma sintering. While it was confirmed that the temperature of the mixed powder was finally 973 K, the pressure once again kept low after maintaining a very high value for several minutes. Although this is in the range of reasoning, titanium oxide and urea reacted to increase the pressure as water vapor, but after a few minutes, the water pressure was reduced because the water vapor was removed.

次に、得られた焼結体(尿素0%、10%、20%)について、それぞれ色素分解法による光触媒機能の評価を行った。ここで色素分解法とは、色素を光触媒表面に吸着させ、その脱色速度を測定し、分解活性を評価する方法である。   Next, the obtained sintered body (urea 0%, 10%, 20%) was evaluated for the photocatalytic function by a pigment decomposition method. Here, the dye decomposition method is a method in which a dye is adsorbed on the photocatalyst surface, the decolorization rate is measured, and the decomposition activity is evaluated.

図8は、本実施例で行った色素分解法の概略を示す図である。前処理として、(1)アセトンによる洗浄、(2)自然乾燥(24時間)、(3)紫外線照射(24時間)、(4)暗所にてメチレンブルー(20μmol)の吸着(12時間)を行った。その後、内径20mmのセル81に光触媒焼結体82を入れ、10μmol/Lの試験用メチレンブルー(MB)水溶液83を7mL注ぎ、ブラックライト84(Pananasonic社製蛍光灯。FL20SS−ECW)により1mW/cm、照度:5000lxの光を照射し1時間ごとの吸光度を測定して、Beerの法則により濃度を測定した。 FIG. 8 is a diagram showing an outline of the dye decomposition method performed in this example. As pretreatment, (1) washing with acetone, (2) natural drying (24 hours), (3) ultraviolet irradiation (24 hours), and (4) adsorption of methylene blue (20 μmol) in the dark (12 hours) It was. Thereafter, the photocatalyst sintered body 82 is put into a cell 81 having an inner diameter of 20 mm, and 7 mL of a 10 μmol / L aqueous methylene blue (MB) solution for test 83 is poured, and 1 mW / cm by a black light 84 (Panasonic fluorescent lamp, FL20SS-ECW). 2. Illuminance: 5000 lx light was irradiated, the absorbance was measured every hour, and the concentration was measured according to Beer's law.

図9に、可視光照射時間とMB水溶液濃度の関係を示す。尿素を混合していない尿素0%の焼結体を使用した場合、MB水溶液濃度が上昇しており、可視光には応答していないことが示された。これに対して、尿素10%、20%の焼結体を使用した場合、照射時間が長くなるにつれてMB水溶液濃度が低下し、可視光応答性があることが示された。   FIG. 9 shows the relationship between the visible light irradiation time and the MB aqueous solution concentration. When a 0% urea sintered body not mixed with urea was used, the MB aqueous solution concentration was increased, indicating that it did not respond to visible light. On the other hand, when the sintered body of urea 10% and 20% was used, it was shown that the MB aqueous solution concentration decreased as the irradiation time became longer, and there was visible light responsiveness.

また図10に、得られた各焼結体の分解活性指数を示す。尿素を混合していない焼結体(TiO+UREA0%)については、分解活性指数は約−12[nmol・L−1・min−1]であり、可視光応答性がみられなかった。これに対して、尿素を10%加えた焼結体(TiO+UREA10%)については、約9[nmol・L−1・min−1]、尿素を20%加えた焼結体(TiO+UREA20%)については、約10[nmol・L−1・min−1]の分解活性指数があることが分かり、これらの焼結体には可視光応答性があることが示された。 FIG. 10 shows the decomposition activity index of each obtained sintered body. The sintered body not mixed with urea (TiO 2 + UREA 0%) had a decomposition activity index of about −12 [nmol·L −1 · min −1 ], and no visible light response was observed. In contrast, for the urea 10% added sintered body (TiO 2 + UREA10%), about 9 [nmol · L -1 · min -1], urea 20% added sintered body (TiO 2 + UREA20 %) Was found to have a decomposition activity index of about 10 [nmol·L −1 · min −1 ], indicating that these sintered bodies have visible light responsiveness.

以上、本実施例により、本発明の効果を確認することができた。   As described above, the effect of the present invention could be confirmed by this example.

(実施例2)
実施例1ではφ20(直径20mm)の焼結体で実験を行ったが、本実施例ではφ40の焼結体で実施例1と同様の実験を行った。また、尿素の配合量として、0%、5%、10%、15%の4種類に絞って焼結体の製造を行った。
(Example 2)
In Example 1, an experiment was performed using a sintered body having a diameter of 20 (diameter 20 mm). In the present example, an experiment similar to Example 1 was performed using a sintered body having a diameter of 40. Moreover, the sintered compact was manufactured by restricting the blending amount of urea to four types of 0%, 5%, 10%, and 15%.

そして、作製した各焼結体の分解活性指数を図11に示しておく。この結果、尿素を混合しない焼結体(TiO+UREA0%)は、分解活性を示していないことを確認した。一方、尿素を混合した焼結体TiO+UREA5%、TiO+UREA10%、TiO+UREA15%では、20[nmol・L−1・min−1]以上の分解活性を示すことが分かり、これらの焼結体に高い可視光応答性があることが示された。 And the decomposition activity index | exponent of each produced sintered compact is shown in FIG. As a result, it was confirmed that the sintered body (TiO 2 + UREA 0%) not mixed with urea did not show decomposition activity. On the other hand, the sintered TiO 2 + UREA5% mixed with urea, TiO 2 + UREA10%, the TiO 2 + UREA15%, found to exhibit 20 [nmol · L -1 · min -1] or more degrading activity, these baked It was shown that the knot has high visible light responsiveness.

以上、本実施例によっても本発明の効果を確認することができた。   As mentioned above, the effect of this invention was able to be confirmed also by the present Example.

(実施例3)
上記実施例1及び実施例2により、尿素を混合した酸化チタンの焼結体に高い可視光応答性があることが示された。可視光応答性が高い理由としては、酸化チタンに窒素がドープされている、又は酸素欠損によるものであると推察される。そこで、本実施例では、尿素を15wt%混合し、700℃真空中でSPS焼結した焼結体に、700℃大気雰囲気で2時間高温酸化処理したものについて、実施例1及び実施例2と同様の実験を行った。図12は、MB水溶液濃度の変化を示す図である。
(Example 3)
Example 1 and Example 2 show that the titanium oxide sintered body mixed with urea has high visible light response. It is inferred that the reason why the visible light response is high is that titanium oxide is doped with nitrogen or is due to oxygen deficiency. Therefore, in this example, 15% by weight of urea and SPS sintered in a 700 ° C. vacuum were subjected to high temperature oxidation treatment in a 700 ° C. atmosphere for 2 hours. A similar experiment was conducted. FIG. 12 is a diagram showing changes in the concentration of the MB aqueous solution.

本実験によると、700℃で高温酸化処理をした焼結体についても、MB水溶液濃度が低下している。この結果から、尿素混合焼結体の可視光応答性が高い理由は、酸素欠陥によるものでなく、窒素がドープされていることによるものであると考えられる。   According to this experiment, the MB aqueous solution concentration also decreases for the sintered body that has been subjected to high-temperature oxidation treatment at 700 ° C. From this result, it is considered that the reason why the visible light responsiveness of the urea mixed sintered body is high is not due to oxygen defects but to nitrogen doping.

本発明は、光触媒及び光触媒の製造方法として産業上利用可能である。   The present invention is industrially applicable as a photocatalyst and a photocatalyst production method.

1 紫外線
2 酸化チタン
3 電子
4 正孔
5 O
6 H
7 O
8 OH
9 汚染物質
51 焼結ダイ
52 粉体
53 水冷真空チャンパ−
54 上部パンチ
55 下部パンチ
56 上部パンチ電極
57 下部パンチ電極
58 焼結電源(パルス電源)
59 加圧機構
81 セル
82 光触媒焼結体
83 MB水溶液
84 蛍光灯
1 UV 2 Titanium oxide 3 Electron 4 Hole 5 O 2
6 H 2 O
7 O 2
8 OH
9 Pollutant 51 Sintering die 52 Powder 53 Water-cooled vacuum chamber
54 Upper punch 55 Lower punch 56 Upper punch electrode 57 Lower punch electrode 58 Sintering power source (pulse power source)
59 Pressurizing mechanism 81 Cell 82 Sintered photocatalyst 83 MB aqueous solution 84 Fluorescent lamp

Claims (7)

酸化チタン粉末と窒素化合物粉末を混合して混合粉を作製する混合粉作製工程と、
前記混合粉を焼結する焼結工程と、を有する光触媒製造方法。
A mixed powder preparation process for preparing a mixed powder by mixing titanium oxide powder and nitrogen compound powder;
And a sintering step of sintering the mixed powder.
前記窒素化合物が尿素及び尿素誘導体の少なくともいずれかを含む請求項1記載の光触媒製造方法。   The photocatalyst manufacturing method according to claim 1, wherein the nitrogen compound contains at least one of urea and a urea derivative. 前記焼結工程は、500℃以上900℃以下の温度で前記混合粉を焼結する請求項1記載の光触媒製造方法。   The photocatalyst manufacturing method according to claim 1, wherein the sintering step sinters the mixed powder at a temperature of 500 ° C. or higher and 900 ° C. or lower. 前記焼結工程は、放電プラズマ焼結により前記混合粉を焼結する請求項1記載の光触媒製造方法。   The photocatalyst manufacturing method according to claim 1, wherein in the sintering step, the mixed powder is sintered by discharge plasma sintering. 前記焼結工程は、前記混合粉に5MPa以上40MPa以下の圧力を加えて焼結する請求項1記載の光触媒製造方法。   The photocatalyst manufacturing method according to claim 1, wherein the sintering step is performed by applying a pressure of 5 MPa to 40 MPa to the mixed powder. 前記混合粉において前記窒素化合物は、0重量%より大きく30重量%よりも小さい範囲で含まれる請求項1記載の光触媒製造方法。   The method for producing a photocatalyst according to claim 1, wherein the nitrogen compound is contained in the mixed powder in a range larger than 0 wt% and smaller than 30 wt%. 酸化チタンの粉末と窒素化合物の粉末を混合した混合粉を焼結して得られる光触媒。   A photocatalyst obtained by sintering a mixed powder obtained by mixing titanium oxide powder and nitrogen compound powder.
JP2015039720A 2015-02-28 2015-02-28 Photocatalyst production method Active JP6375565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039720A JP6375565B2 (en) 2015-02-28 2015-02-28 Photocatalyst production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039720A JP6375565B2 (en) 2015-02-28 2015-02-28 Photocatalyst production method

Publications (2)

Publication Number Publication Date
JP2016159226A true JP2016159226A (en) 2016-09-05
JP6375565B2 JP6375565B2 (en) 2018-08-22

Family

ID=56846012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039720A Active JP6375565B2 (en) 2015-02-28 2015-02-28 Photocatalyst production method

Country Status (1)

Country Link
JP (1) JP6375565B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044334A (en) * 1998-07-29 2000-02-15 Yamaha Corp Sintered anatase-type titania and its production
JP2002154823A (en) * 2000-11-10 2002-05-28 Toyota Central Res & Dev Lab Inc Manufacturing method of inorganic oxynitride and inorganic oxynitride
JP2002321907A (en) * 2001-04-24 2002-11-08 Toyota Central Res & Dev Lab Inc Surface modified inorganic oxide and inorganic oxynitride
JP2004175623A (en) * 2002-11-27 2004-06-24 Sumitomo Coal Mining Co Ltd Nano-structured metal oxide sintered compact having preferred orientation and method of manufacturing the same
JP2004243212A (en) * 2003-02-13 2004-09-02 Fumiyoshi Saito Method for reforming oxide based catalyst and oxide based reforming catalyst obtained by the method
JP2006095520A (en) * 2004-09-02 2006-04-13 Shimane Pref Gov Manufacturing method of heteroatom introduction-type titanium oxide photocatalyst
JP2008179528A (en) * 2006-12-26 2008-08-07 Toho Titanium Co Ltd Manufacture method of titanium oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044334A (en) * 1998-07-29 2000-02-15 Yamaha Corp Sintered anatase-type titania and its production
JP2002154823A (en) * 2000-11-10 2002-05-28 Toyota Central Res & Dev Lab Inc Manufacturing method of inorganic oxynitride and inorganic oxynitride
JP2002321907A (en) * 2001-04-24 2002-11-08 Toyota Central Res & Dev Lab Inc Surface modified inorganic oxide and inorganic oxynitride
JP2004175623A (en) * 2002-11-27 2004-06-24 Sumitomo Coal Mining Co Ltd Nano-structured metal oxide sintered compact having preferred orientation and method of manufacturing the same
JP2004243212A (en) * 2003-02-13 2004-09-02 Fumiyoshi Saito Method for reforming oxide based catalyst and oxide based reforming catalyst obtained by the method
JP2006095520A (en) * 2004-09-02 2006-04-13 Shimane Pref Gov Manufacturing method of heteroatom introduction-type titanium oxide photocatalyst
JP2008179528A (en) * 2006-12-26 2008-08-07 Toho Titanium Co Ltd Manufacture method of titanium oxide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N. KIKUCHI ET AL.: "Study on the fabrication of visible light response type N-doped TiO2 photocatalyst by SPS", ADVANCES IN SCIENCE AND TECHNOLOGY, vol. 77, JPN6018002111, 11 September 2012 (2012-09-11), pages 59-64. *
S. J. KIM ET AL.: "Fabrication of Sputtered TiO2-xNx Photocatalyst Using Spark Plasma Sintered Targets", MATERIALS SCIENCE FORUM, vol. 539-543, JPN6018002112, 2007, pages 3562-3567. *
吉田 浩之ら: "チタニアによる環境調和型新機能性材料の開発〜焼結温度による光触媒活性への影響〜", 千葉県産業支援技術研究所研究報告, vol. 6, JPN6018002109, October 2008 (2008-10-01), pages 54-56. *

Also Published As

Publication number Publication date
JP6375565B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
Chabri et al. Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing
Sakamoto et al. Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light
Song et al. Construction of Z-scheme Ag2CO3/N-doped graphene photocatalysts with enhanced visible-light photocatalytic activity by tuning the nitrogen species
Gole et al. Highly efficient formation of visible light tunable TiO2-x N x photocatalysts and their transformation at the nanoscale
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
Lee et al. Photocatalytic characteristics of boron and nitrogen doped titania film synthesized by micro-arc oxidation
JP2011031139A (en) Photocatalyst material and method for manufacturing the same
Song et al. High-throughput measurement of the influence of pH on hydrogen production from BaTiO3/TiO2 core/shell photocatalysts
EP3166724A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
Pudukudy et al. WO3 nanocrystals decorated Ag3PO4 tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous medium
CN105664920A (en) Cs2W3O10 (cesium tungstate) powder, preparation method and application thereof
KR20150108504A (en) Photocatalytic composition comprising Ag-titanium dioxide wrapped with carbone nanotubes and preparation method thereof
RU2627496C1 (en) Method for producing photocatalizer based on a mechanoactivated powder of zinc oxide
CN110548533A (en) Preparation method and application of metal and nonmetal co-doped carbon nitride nano material
Ordoñez et al. One-pot synthesis of Ag-modified SrTiO3: synergistic effect of decoration and doping for highly efficient photocatalytic NOx degradation under LED
KR100578044B1 (en) A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide
CN106178941B (en) Cadmium telluride quantum dot/titanium dioxide composite material and application thereof
KR20180012525A (en) Manufacturing method of TiO2/reduced graphene Oxide composites using precipitation
JP6375565B2 (en) Photocatalyst production method
KR102185381B1 (en) Manfacturing method of n-doped titanium nanotube/reduced graphene oxide composites
JPWO2011102353A1 (en) Tungsten oxide photocatalyst modified with copper ion and method for producing the same
JP2005206412A (en) Titanium dioxide particulate and titanium dioxide porous material
JP4000378B2 (en) Visible light responsive complex oxide photocatalyst and method for decomposing and removing harmful chemicals using the same
KR101728688B1 (en) Preparation method of photoelectrode base on tantalum nitride
JP2023025408A (en) Method for producing photocatalyst and photocatalyst produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6375565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250