JP2016158838A - 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法 - Google Patents

内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法 Download PDF

Info

Publication number
JP2016158838A
JP2016158838A JP2015039626A JP2015039626A JP2016158838A JP 2016158838 A JP2016158838 A JP 2016158838A JP 2015039626 A JP2015039626 A JP 2015039626A JP 2015039626 A JP2015039626 A JP 2015039626A JP 2016158838 A JP2016158838 A JP 2016158838A
Authority
JP
Japan
Prior art keywords
image signal
blood vessel
thickness
depth
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015039626A
Other languages
English (en)
Other versions
JP6408400B2 (ja
Inventor
祐樹 寺川
Yuki Terakawa
祐樹 寺川
杉崎 誠
Makoto Sugizaki
誠 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2015039626A priority Critical patent/JP6408400B2/ja
Publication of JP2016158838A publication Critical patent/JP2016158838A/ja
Application granted granted Critical
Publication of JP6408400B2 publication Critical patent/JP6408400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Endoscopes (AREA)

Abstract

【課題】目的深さ及び目的太さの血管の視認性を向上し、かつ、他の深さ及び太さの血管と識別可能にする内視鏡システム、内視鏡プロセッサ装置、及び内視鏡システムの作動方法を提供する。【解決手段】内視鏡システム10は、血管に対して深さ分解能を有するV光を発するV−LED20aと、血管に対して太さ分解能を有するG光を発するG−LED20cと、V光に対応する第1画像信号と、G光に対応する第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する血管画像生成部63と、を備える。【選択図】図2

Description

本発明は、血管を観察しやすくする内視鏡システム、内視鏡プロセッサ装置、及び内視鏡システムの作動方法に関する。
医療分野においては、内視鏡システムを用いた診断が広く行われている。内視鏡システムは、例えば、被検体内に挿入される内視鏡、内視鏡を通して、体腔の粘膜等の観察対象に向けて照射する光(以下、照明光という)を発する内視鏡光源装置、及び、照明光が照射された観察対象を撮像して得る信号を用いて観察対象の画像(以下、内視鏡画像という)を生成してモニタに表示する内視鏡プロセッサ装置等を備える。
近年では、波長帯域が狭い光(以下、狭帯域光という)を照明光にすることで、血管等の視認性を向上させる内視鏡システムが普及している。例えば青色狭帯域光及び緑色狭帯域光を用いる狭帯域光観察を行う内視鏡システムでは、青色狭帯域光が照射された観察対象を撮像して得る画像信号と、緑色狭帯域光が照射された観察対象を撮像して得られる画像信号とを組み合わせて用いる。そして、粘膜の表面から浅い位置にある比較的細い血管をマゼンタ系色(例えば茶色)に、粘膜の表面から深い位置にある比較的太い血管をシアン系色(例えば緑色)に表示することで、これらの血管の粘膜に対する視認性を向上させる。
また、中心波長が600nmと630nmの2種類の赤色狭帯域光を用いることで、粘膜の深い位置にある太い血管を明瞭に、かつ、適切な明るさで表示する内視鏡システムも知られている(特許文献1)。
内視鏡システムでは、上記のように照明光の波長帯域や照明光の組み合わせ等によって血管の視認性が向上される他、画像処理(あるいは信号処理)によって血管の視認性を向上させる場合がある。例えば、周波数処理によって画像(あるいは画像を生成するための信号)から所望の太さの血管を抽出して、強調表示する方法が知られている(特許文献2)。
血管の抽出には、テンプレートマッチングが用いられることもある。テンプレートマッチングによって血管を抽出し、強調する場合、例えば、血管の太さ及び粘膜表面からの深さに合わせた複数のテンプレートを用意しておき、これらのテンプレートの中から所望の深さ及び太さの血管に合致するテンプレートが選択して使用される(特許文献3)。
国際公開第2013/145410号 国際公開第2012/081297号 特開2004−181096号公報
大雑把に、粘膜の表面からの血管の深さを「浅い」と「深い」に2種類に分け、かつ、血管の太さを「細い」と「太い」の2種類に分ける場合でも、血管は、「浅く細い血管」、「浅く太い血管」、「深く細い血管」、及び「深く太い血管」の4種類に分類できる。
しかし、青色狭帯域光及び緑色狭帯域光を用いる狭帯域光観察では、血管を「浅く細い血管」と「深く太い血管」の2種類に大別して色分けをするので、「浅く太い血管」や「深く細い血管」は、「浅く細い血管」や「深く太い血管」のいずれかとほぼ同様に表示されてしまう。すなわち、青色狭帯域光及び緑色狭帯域光を用いる狭帯域光観察では、「浅く太い血管」や「深く細い血管」を識別することは難しい。
また、中心波長が600nmと630nmの2種類の赤色狭帯域光を用いると、「深く太い血管」を深さ毎にさらに細かく識別できるようになる可能性があるものの、「浅く太い血管」や「深く細い血管」の識別が困難であることは、上記青色狭帯域光及び緑色狭帯域光を用いる狭帯域光観察と同様である。
周波数処理やテンプレートマッチングによれば、よく視認できる血管の中から特定の周波数、あるいは特定のテンプレートに合致する血管を抽出することができるが、よく視認できない血管の抽出精度は良くない。「深く細い血管」は、狭帯域光観察等によって血管が強調された状態でも観察し難い血管なので、周波数処理やテンプレートマッチングでは「深く細い血管」を抽出し、強調表示することは難しい。
これらのことから、特殊光観察等でも観察し難い「深く細い血管」を含め、観察の目的とする血管の粘膜の表面からの距離(以下、目的深さという)と、観察目的とする血管の太さ(以下、目的太さという)を設定することで、任意の深さ及び太さの血管を、他の深さ及び太さの血管と識別して観察できるようにすることが望まれている。
本発明は、上記「深く細い血管」を含め、目的深さ及び目的太さの血管の視認性を向上し、かつ、他の深さ及び太さの血管と識別可能にする内視鏡システム、内視鏡プロセッサ装置、及び内視鏡システムの作動方法を提供することを目的とする。
本発明の内視鏡システムは、血管に対して深さ分解能を有する第1波長帯域の光を発する第1光源と、血管に対して太さ分解能を有する第2波長帯域の光を発する第2光源と、第1波長帯域の光に対応する第1画像信号と、第2波長帯域の光に対応する第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する血管画像生成部と、を備える。目的深さとは、観察目的とする血管の粘膜の表面からの距離であり、目的太さとは、観察目的とする血管の太さである。
深さ分解能は、太さが等しい複数の血管の粘膜に対するコントラストが粘膜の表面からの距離によって変化することを表す。
太さ分解能は、粘膜の表面からの距離が等しい複数の血管の粘膜に対するコントラストが、血管の太さによって変化することを表す。
血管画像生成部は、粘膜に対するコントラスト毎に前記第1画像信号を分解することにより、複数の深さ別画像信号を生成する深さ別画像信号生成部と、粘膜に対するコントラスト毎に第2画像信号を分解することにより、複数の太さ別画像信号を生成する太さ別画像信号生成部と、を備え、深さ別画像信号及び太さ別画像信号を用いて血管画像を生成することが好ましい。
血管画像生成部は、複数の深さ別画像信号に重み付けをして合成することにより、目的深さに対応する目的深さ画像信号を生成する目的深さ画像信号生成部と、複数の太さ別画像信号に重み付けをして合成することにより、目的太さに対応する目的太さ画像信号を生成する目的太さ画像信号生成部と、を備え、目的深さ画像信号と目的太さ画像信号とを合成して血管画像を生成することが好ましい。
目的深さ画像信号生成部は、目的深さに対応する深さ別画像信号に対する重み付けを、目的深さに対応する深さ別画像信号以外の深さ別画像信号に対する重み付けよりも大きくし、目的太さ画像信号生成部は、目的太さに対応する太さ別画像信号に対応する重み付けを、目的太さに対応する太さ別画像信号以外の太さ別画像信号に対する重み付けよりも大きくすることが好ましい。
目的深さ画像信号生成部は、複数の深さ別画像信号を全て用いて目的深さ画像信号を生成し、目的太さ画像信号生成部は、複数の太さ別画像信号を全て用いて目的太さ画像信号を生成することが好ましい。
血管画像生成部は、複数の深さ別画像信号から、目的深さに対応する目的深さ画像信号を選択する目的深さ画像信号選択部と、複数の太さ別画像信号から、目的太さに対応する目的太さ画像信号を選択する目的太さ画像信号選択部と、を備えることが好ましい。
血管画像生成部は、目的深さ画像信号と第1画像信号とを合成して第1合成画像信号を生成し、かつ、目的太さ画像信号と第2画像信号とを合成して第2合成画像信号を生成し、さらに第1合成画像信号と第2合成画像信号とを合成することにより、血管画像を生成することが好ましい。
血管画像生成部は、目的深さ画像信号及び目的太さ画像信号に共通する血管を抽出することにより、血管画像を生成することが好ましい。
第1波長帯域は、紫色波長帯域または青色波長帯域に含まれることが好ましい。
第2波長帯域は、緑色波長帯域に含まれることが好ましい。
本発明の内視鏡プロセッサ装置は、血管に対して深さ分解能を有する第1波長帯域の光に対応する第1画像信号と、血管に対して太さ分解能を有する第2波長帯域の光に対応する第2画像信号と、を取得する画像信号取得部と、第1画像信号と第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する血管画像生成部と、を備える。
本発明の内視鏡システムの作動方法は、第1光源が、血管に対して深さ分解能を有する第1波長帯域の光を発するステップと、第2光源が、血管に対して太さ分解能を有する第2波長帯域の光を発するステップと、血管画像生成部が、第1波長帯域の光に対応する第1画像信号と、第2波長帯域の光に対応する第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成するステップと、を備える。
本発明の内視鏡システム、内視鏡プロセッサ装置、及び内視鏡システムの作動方法は、血管に対して深さ分解能を有する第1波長帯域の光に対応する第1画像信号と、血管に対して太さ分解能を有する第2波長帯域の光に対応する第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成するので、「深く細い血管」を含め、目的深さ及び目的太さの血管の視認性を向上させ、かつ、他の深さ及び太さの血管と識別することができる。
内視鏡システムの外観図である。 内視鏡システムの機能を示すブロック図である。 光源が発する光の分光スペクトルを示すグラフである。 通常観察モードで用いる照明光の分光スペクトルを示すグラフである。 特殊観察モードで用いる照明光の分光スペクトルを示すグラフである。 粘膜に対する血管の深さと、血管の太さを示す説明図である。 粘膜と、深さ及び太さが異なる複数の血管の反射率を示すグラフである。 粘膜に対する明るさの求め方を示すグラフである。 紫色光を照射する場合に得られる血管の明るさを示すグラフである。 紫色光を照射する場合に得られる血管のコントラストを示すグラフである。 紫色光を照射する場合に得られる血管のコントラストを示すグラフを、同じ太さ毎に深さ順に並べ替えたグラフである。 緑色光を照射した場合に得られる血管の明るさを示すグラフである。 緑色光を照射する場合に得られる血管のコントラストを示すグラフである。 緑色光を照射する場合に得られる血管のコントラストを示すグラフを、同じ太さ毎に深さ順に並べ替えたグラフである。 カラーフィルタの分光特性を示すグラフである。 B画像信号における血管のコントラストと、血管の深さの関係を示す説明図である。 B画像信号における血管のコントラストと、血管の深さ及び血管の太さの関係を示す説明図である。 G画像信号における血管のコントラストと、血管の太さの関係を示す説明図である。 G画像信号における血管のコントラストと、血管の太さ及び血管の深さの関係を示す説明図である。 簡単な血管の分類を示す図である。 深さ別画像信号の生成方法を示す説明図である。 太さ別画像信号の生成方法を示す説明図である。 合成処理部の構成を示すブロック図である。 目的深さ画像信号の生成方法を示す説明図である。 目的太さ画像信号の生成方法を示す説明図である。 目的深さ及び目的太さの血管を表す血管画像の生成方法を示す説明図である。 特殊観察モード時の作用を示すフローチャートである。 変形例の光源装置を示すブロック図である。 変形例で使用する照明光の分光スペクトルを示すグラフである。 変形例の合成処理部の構成を示すブロック図である。 カプセル内視鏡の概略図である。
図1に示すように、内視鏡システム10は、内視鏡12と、内視鏡光源装置14と、内視鏡プロセッサ装置16と、モニタ18と、コンソール19とを有する。内視鏡12は、内視鏡光源装置14と光学的に接続されるとともに、内視鏡プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作によって先端部12dが所望の方向に向けられる。また、操作部12bには、アングルノブ12eの他、ズーム操作をするためのズーム操作部13aや観察モードを切り替えるためのモード切り替えスイッチ13b等が設けられている。内視鏡システム10は、観察対象を自然な色合いで通常の内視鏡画像(以下、通常画像という)を生成及び表示する通常観察モードと、目的深さ及び目的太さの血管を表す内視鏡画像(以下、血管画像という)を生成及び表示する特殊観察モードとを有する。
内視鏡プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、内視鏡画像や内視鏡画像に付帯する画像情報等を出力表示する。コンソール19は、機能設定等の入力操作を受け付けるユーザインタフェースとして機能する。特に、本実施形態では、コンソール19は、観察の目的とする血管の太さ及び粘膜表面からの深さ(すなわち、「目的深さ」及び「目的太さ」)を入力するための入力部として機能する。なお、内視鏡プロセッサ装置16には、画像や画像情報等を記録する外付けの記録部(図示省略)を接続してもよい。
図2に示すように、内視鏡光源装置14は、観察対象に照射する照明光を発生する装置であり、複数の光源を有する光源部20と、光源部20の各光源を制御する光源制御部22と、複数の光源の各発光量の比率を設定する光量比設定部23と、光源部20が発する光の光路を結合する光路結合部24とを備えている。
光源部20は、紫色LED(以下、V−LED(Violet Light Emitting Diode)という)20a、青色LED(以下、B−LED(Blue Light Emitting Diode)という)20b、緑色LED(以下、G−LED(Green Light Emitting Diode)という)20c、及び、赤色LED(以下、R−LED(Red Light Emitting Diode)という)20dの4色のLEDを有する。
図3に示すように、V−LED20aは、中心波長405nm、波長帯域380〜430nmの紫色光(以下、V光という)を発光する紫色光源である。B−LED20bは、中心波長450nm、波長帯域400〜500nmの青色光(以下、B光という)を発する青色光源である。G−LED20cは、波長帯域が480〜600nmに及ぶ緑色光(以下、G光という)を発する緑色光源である。R−LED20dは、中心波長620〜630nmで、波長帯域が600〜650nmに及び赤色光(以下、R光という)を発光する赤色光源である。なお、V−LED20a及びB−LED20bの中心波長は±5nmから±10nm程度の幅を有する。
また、B−LED20bが発光するB光のうち、約450nmから約500nmの波長の光は表層血管やピットパターン等の微細な構造のコントラストを低下させてしまうので、B−LED20bの光路中には、この約450nmから約500nmの波長帯域の光を低減するための帯域制限フィルタ25が配置されている。帯域制限フィルタ25は、B−LED20bが発光したB光から約450nmから約500nmの波長帯域の成分を低減した青色光(以下、Bs光という)を生成する。Bs光の中心波長は約450nmである。Bs光と、V光、G光、及びR光は、光路結合部24によって混合され、図4に示す照明光26になる。
すなわち、光源部20は、これらの互いに異なる色の光を独立して発光する複数の光源によって、V光、Bs光、G光、及びR光を重ね合わせたスペクトルを有する照明光26を発する。各LED20a〜20dの発光量(以下、単に光量という)や発光時間の長さ等はそれぞれ独立に制御可能であるため、照明光の分光スペクトルは、各LED20a〜20dの光量や発光時間の長さ等を変えることによって変化させることができる。
光源制御部22は、光量比設定部23が設定する光量比を用いて、光源部20が有する各LED20a〜20dの駆動電流や駆動電圧、駆動電流または駆動電圧を制御する。具体的には、各LED20a〜20dに入力する制御パルスのパルス幅やパルス長等を個別に制御することにより、各LED20a〜20dが発する各光の発光タイミングや光量、発光時間の長さ等を制御する。これにより、光源制御部22は、照明光の実質的な分光スペクトルを変化させる。本実施形態では、光源制御部22は、各LED20a〜20dの光量を制御する。
光量比設定部23は、光源制御部22に対してV光、B光、G光及びR光の光量比を設定する。光量比設定部23が設定する光量比は、各LED20a〜20dの制御パラメータであり、各LED20a〜20dの発光時間の長さを考慮した実質的な光量比(広義の光量比)である。本実施形態では、光源制御部22は、各LED20a〜20dの発光時間の長さを同じにし、単位時間あたりの発光量の比(狭義の光量比)を制御する。このため、光量比設定部23は、光源制御部22の制御方法に合わせて、各LED20a〜20dの単位時間あたりの発光量の比を光量比として設定する。
また、光量比設定部23が設定する光量比は、観察モードが通常観察モードにセットされている場合、図4に示す照明光26のように、V光、B光(Bs光)、G光、及びR光によって白色光が形成されるように、これらの光量比を設定する。一方、観察モードが特殊観察モードにセットされている場合、図5に示すように、離散的でなく、連続的なスペクトルを有し、主にV光及びG光を含む照明光27が形成されるように、V光、B光、G光及びR光の光量比を設定する。
観察モードが特殊観察モードの場合に、主にV光及びG光を含む照明光27を観察対象に照射するのは、V光が、血管に対して深さ分解能を有する第1波長帯域の光であり、かつ、G光が、血管に対して太さ分解能を有する第2波長帯域の光だからである。
深さ分解能とは、太さが等しい複数の血管の粘膜に対するコントラストが、粘膜の表面からの距離によって変化し、かつ、粘膜の表面からの距離(深さ)が等しければ、太さが異なる血管を比較してもほぼコントラストに違いがなく、血管の太さよりも血管の深さがコントラストの変化要因として支配的であることを表す。すなわち、深さ分解能とは、粘膜に対するコントラストの変化によって、粘膜の表面からの深さを識別できる特性である。
また、太さ分解能とは、粘膜の表面からの距離が等しい複数の血管の粘膜に対するコントラストが、血管の太さによって変化し、かつ、太さが等しければ、深さが異なっていてもほぼコントラストに違いがなく、血管の深さよりも血管の太さがコントラストの変化要因として支配的であることを表す。すなわち、太さ分解能とは、粘膜に対するコントラストの変化によって、血管の太さを識別できる特性である。
図6に示すように、観察対象の粘膜から血管の上端(最も粘膜に近い箇所)までの距離を血管の深さ「d」μm、血管の直径を血管の太さ「φ」μmとする場合に、粘膜と、深さ及び太さが異なる複数の血管の反射率をシミュレーションによって算出したグラフが図7である。図7及び以下では、粘膜表面からの深さを「d」と数値、血管の太さを「φ」と数値によって表す。例えば、深さ5μmかつ直径20μmの血管は「d5φ20」で表す。他の深さ及び太さの血管についても同様であり、図6では、d5φ20の血管の他、d5φ40(深さ5μm直径40μm)の血管、d15φ20(深さ15μm直径20μm)の血管、d50φ10(深さ50μm直径10μm)の血管、d50φ20(深さ50μm直径20μm)の血管の各反射率のグラフを示している。
図7から分かる通り、深さ及び太さが異なる複数の血管の反射率のグラフは、概ね390nm以上450nm以下の波長帯域(すなわち紫色波長帯域及び青色波長帯域)では、太さ「φ」が異なっていても、深さ「d」が同じ場合には概ね同じの反射率に収束し、かつ、深さ「d」の違いによって収束する反射率の値が異なる。そして、粘膜下の浅い位置にある血管ほど反射率は低く、粘膜下の深い位置にある血管ほど反射率が高くなって、粘膜の反射率に近づく。血管のコントラストは、例えば粘膜の反射率と血管の反射率の比(または差)であり、粘膜に対する明るさの違いが大きいほど視認性が高い。このため、概ね390nm以上450nm以下の光を照射して観察対象を撮像する場合、図7に反射率のグラフを示す血管の中では、深さ5μm(d5)の血管が最も反射率が低く、暗い血管なので、粘膜に対するコントラストが高く、視認性が良い。逆に、深さ50μm(d50)の血管は最も反射率が粘膜に近く、明るい血管なので、粘膜に対するコントラストは低く、視認性は最も悪い。したがって、概ね390nm以上450nm以下の波長帯域の光を照射して観察対象を撮像すると、血管の太さによらず、血管の深さによってコントラストがつく。そして、深さの違う血管を比較した場合、血管の深さによって、血管のコントラストに違いがでる。したがって、概ね390nm以上450nm以下の波長帯域の光は、深さ及び太さが異なる複数の血管に対して、深さ分解能を有する。
一方、概ね450nm以上600nm以下の波長帯域(すなわち緑色波長帯域)では、深さ「d」が異なっていても、太さ「φ」が同じ場合には概ね同じ反射率に収束し、かつ、太さ「φ」の違いによって収束する反射率の値が異なる。そして、太い血管ほど反射率が低く、細い血管ほど反射率が高くなって、粘膜の反射率に近づく。このため、概ね450nm以上600nm以下の光を照射して観察対象を撮像する場合、図7に反射率のグラフを示す血管の中では、太さ40μm(φ40)の血管が最も反射率が低く、暗い血管なので、粘膜に対するコントラストが高く、視認性が良い。逆に、太さ10μm(φ10)の血管は最も反射率が粘膜に近く、明るい血管可なので、粘膜に対するコントラストは低く、視認性は最も悪い。したがって、概ね450nm以上600nm以下の波長帯域の光を照射して観察対象を撮像すると、血管の深さによらず、血管の太さによってコントラストがつく。そして、太さの違う血管を比較した場合、血管の太さによって血管のコントラストに違いがでる。したがって、概ね450nm以上600nm以下の波長帯域の光は、深さ及び太さが異なる血管に対して太さ分解能を有する。
なお、図7によれば、概ね600nm以上の波長帯域の光は、血管の深さ及び太さによらず、全ての血管の反射率は粘膜の反射率に近くなるので、600nm以上の波長帯域の光を照射して観察対象を撮像しても、血管は観察し難いことが分かる。
図8に示すように、波長405nmの光を照射する場合のd5φ20の血管の粘膜に対する明るさは、図7のグラフを用いて、「d5φ20の血管の反射率R1/粘膜の反射率R0」(または、d5φ20の血管の反射率R1−粘膜の反射率R0)で求められ、波長450nmを照射する場合のd5φ20の血管の粘膜に対する明るさは「d5φ20の血管の反射率R3/粘膜の反射率R2」(または、d5φ20の血管の反射率R3−粘膜の反射率R2)で求められる。したがって、粘膜の反射率を照射する光の波長帯域で積分した値に対する血管の反射率を照射する光の波長帯域で積分した値の比(または差)が、粘膜に対する血管の明るさである。そして、粘膜に対する血管の明るさの逆数は、血管のコントラストを表す。
V光を照射する場合、深さ及び太さが異なる複数の血管の粘膜に対する明るさは、図9に示すとおりである。また、V光を照射する場合、深さ及び太さが異なる複数の血管のコントラストは、図10に示すとおりである。図10の棒グラフによれば、V光照射時の深さ及び太さが異なる血管のコントラストは、深さが等しければコントラストがほぼ等しい値になる。また、図10の棒グラフをφ20のグループとφ40のグループでそれぞれ深さ順に並べ直した図11からも分かるように、同じ太さの血管を比較すれば、粘膜下の浅い位置にあるほどコントラストが高なっており、深い位置にあるほど粘膜に対するコントラストが小さくなっている。したがって、V光は、深さ分解能を有しており、かつ、V光の深さ分解能は血管の太さには依らない。
本実施形態では、深さ分解能を有する第1波長帯域とはV光に対応する紫色波長帯域であり、第1波長帯域の光を発光する第1光源とはV−LED20aである。Bs光については、粘膜に対する明るさやコントラストの図示を省略するが、図7の反射率のグラフから明らかなように、Bs光の波長帯域も概ね深さ分解能を有している。このため、深さ分解能を有する第1波長帯域は、V光の波長帯域だけでなく、Bs光の波長帯域(青色波長帯域)を含んでいても良い。また、V光の代わりに、Bs光を、深さ分解能を有する第1波長帯域の光として利用することもできる。
G光を照射する場合、深さ及び太さが異なる複数の血管の粘膜に対する明るさは、図12に示すとおりである。また、G光を照射する場合、深さ及び太さが異なる複数の血管のコントラストは図13に示すとおりであり、図13の棒グラフをφ20のグループとφ40のグループでそれぞれ深さ順に並べ直したものが図14である。図13の棒グラフによれば、G光照射時の深さ及び太さが異なる血管のコントラストは、深さが等しくても、太さが異なれば血管のコントラストに差がつき、細い血管ほど粘膜に対するコントラストが小さく、太い血管ほど粘膜に対するコトンとラストが大きい。また、図14の棒グラフによれば、G高照射時の深さ及び太さが異なる血管のコントラストは、太さが等しければ、深さが異なっていてもほぼ一定の値になる。したがって、G光は、太さ分解能を有しており、かつ、G光の太さ分解能は血管の深さには依らない。
本実施形態では、太さ分解能を有する第2波長帯域とは、G光に対応する緑色波長帯域であり、第2波長帯域の光を発する第2光源とはG−LED20cである。図7の反射率のグラフからも明らかなように、G光の部分的な成分を有する光を、太さ分解能を有する第2波長帯域の光として用いることもできる。
上記のように光源部20及び帯域制限フィルタ25によって発生する光は、光路結合部24を介して挿入部12a内に相通されたライトガイド41に入射する(図2参照)。ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と内視鏡光源装置14及び内視鏡プロセッサ装置16とを接続するコード)内に内蔵されており、光路結合部24から導光される照明光を内視鏡12の先端部12dまで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた経がφ0.3〜0.5mmの細径なファイバケーブルを使用することができる。
内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41によって伝搬された照明光は観察対象に照射される。撮像光学系30bは、対物レンズ46、ズームレンズ47、撮像センサ48を有している。観察対象からの戻り光(反射光の他、観察対象等から発生する蛍光を含む光)は、対物レンズ46及びズームレンズ47を介して撮像センサ48に入射する。これにより、撮像センサ48に観察対象が結像される。なお、ズームレンズ47は、ズーム操作部13aを操作することで、テレ端とワイド端の間で自在に移動され、撮像センサ48に結像する観察対象を拡大または縮小する。
撮像センサ48はカラー撮像センサであり、観察対象からの戻り光を撮像して画像信号を出力する。撮像センサ48としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、図15に示すように、撮像センサ48は、R(赤色)カラーフィルタ,G(緑色)カラーフィルタ,及びB(青色)カラーフィルタの3色のカラーフィルタが画素毎に設けられており、観察対象からの戻り光を撮像して色毎の画像信号を出力する。すなわち、撮像センサ48は、Rカラーフィルタが設けられたR画素(赤色画素)と、Gカラーフィルタが設けられたG画素(緑色画素)と、Bカラーフィルタが設けられたB画素(青色画素)とを有し、各画素からそれぞれ画像信号を出力することにより、RGB画像信号を出力する。
通常観察モードの場合、撮像センサ48は、照明光26のうちV光とBs光の各戻り光をB画素で受光し、青色画像信号(以下、B画像信号という)を出力する。同様に、照明光のうちG光の戻り光をG画素で受光し、緑色画像信号(以下、G画像信号という)を出力し、R光の戻り光をR画素で受光し、赤色画像信号(以下、R画像信号という)を出力する。
特殊観察モードの場合、撮像センサ48は、照明光27のうち、V光の戻り光をB画素で受光してB画像信号を出力する。この特殊観察モードの場合に得られるB画像信号が、V光(第1波長帯域の光)に対応する画像信号(第1画像信号)である。
図16に示すように、特殊観察モード時に得られるB画像信号101に、例えば、血管Vb1、血管Vb2、及び血管Vb3の3種類の血管が写し出されているとする。特殊観察モード時に得られるB画像信号はV光に対応する画像信号であり、V光は深さ分解能を有する光なので、B画像信号101に写し出されている血管Vb1、血管Vb2、及び血管Vb3の粘膜MMに対するコントラストは、粘膜MMの表面からの深さに対応する。例えば、血管Vb1が最も暗く、粘膜MMに対してコントラストが最も高く、血管Vb3が最も明るく、粘膜MMに対して最もコントラストが最も低く、かつ、血管Vb2は血管Vb1と血管Vb3の中間的な明るさであり、粘膜MMに対して血管Vb1と血管Vb3の中間的なコントラストを有しているとする。この場合、B画像信号101からは、血管Vb1が粘膜MMの表面から最も浅い深さdaにあり、血管Vb3が最も深い深さdcにあることが分かる。そして、血管Vb2が血管Vb1と血管Vb3の間の深さdbにあることが分かる(da<db<dc)。
図16では、血管Vb1、血管Vb2、及び血管Vb3の太さが全て等しくなっているが、V光の深さ分解能は血管の太さに依らない。このため、図17に示す特殊観察モード時に得られるB画像信号102のように、血管の太さが異なっていても、粘膜MMに対する各々のコントラストによって、粘膜MMの表面からの深さを見積もることができる。例えば、B画像信号102の血管Vb4は、B画像信号101の血管Vb1よりも太いが、粘膜MMに対するコントラストはB画像信号101の血管Vb1と等しい。このため、B画像信号102の血管Vb4は、粘膜MMの表面から深さdaの位置にあり、この深さdaはB画像信号101の血管Vb1と等しい。同様に、B画像信号102の血管Vb6は、B画像信号101の血管Vb3と太さが異なっているが、粘膜MMに対するコントラストが等しい。このため、B画像信号102の血管Vb3は、粘膜MMの表面から深さdcの位置にあり、この深さdcはB画像信号101の血管Vb3と等しい。また、B画像信号102の血管Vb5は、B画像信号101の血管Vb2と太さも粘膜MMに対するコントラストも等しいので、粘膜MMの表面からの深さdbも等しい。
また、特殊観察モードの場合、撮像センサ48は、照明光27のうち、G光の戻り光をG画素で受光してG画像信号を出力する。この特殊観察モードの場合に得られるG画像信号は、G光(第2波長帯域の光)に対応する画像信号(第2画像信号)である。
図18に示すように、特殊観察モード時に得られるG画像信号111に、例えば、血管Vg1、血管Vg2、及び血管Vg3の3種類の血管が写し出されているとする。特殊観察モード時に得られるG画像信号は、G光に対応する画像信号であり、G光は太さ分解能を有する光なので、G画像信号111に写し出されている血管Vg1、血管Vg2、及び血管Vg3の粘膜MMに対するコントラストは、各血管の太さに対応する。例えば、血管Vg1が最も暗く、粘膜MMに対して最もコントラストが高く、血管Vg3が最も明るく、粘膜MMに対して最もコントラストが低く、かつ、血管Vg2は血管Vg1と血管Vg3の中間的な明るさであり、粘膜MMに対して血管Vg1と血管Vg3の中間的なコントラストを有しているとする。この場合、G画像信号111からは、血管Vg1は太さφaの血管であり最も太く、血管Vg3は太さφcの血管であり最も細く、かつ、血管Vg2は太さφbの血管であり、血管Vg1と血管Vg3の中間的な太さを有していることが分かる(φa>φb>φc)。
図18では、血管Vg1、血管Vg2、及び血管Vg3の深さが全て等しくなっているが、G光の太さ分解能は血管の深さには依らない。このため、図19に示す特殊観察モード時に得られるG画像信号112のように、血管の深さが異なっていても、粘膜MMに対するコントラストによって、血管の太さを見積もることができる。例えば、G画像信号112の血管Vg4は、G画像信号111の血管Vg1とは粘膜MMの表面からの深さが異なるが、粘膜MMに対するコントラストはG画像信号111の血管Vg1と等しい。このため、G画像信号112の血管Vg4は、太さφaの血管であり、この太さφaはG画像信号111の血管Vg1と等しい。同様に、G画像信号112の血管Vg5は、G画像信号111の血管Vg2とは異なる深さにあるが、G画像信号112の血管Vg5とG画像信号111の血管Vg2は、粘膜MMに対するコントラストが等しい。そして、G画像信号111の血管Vg6は、G画像信号111の血管Vg3とことなる深さにあるが、G画像信号112の血管Vg6とG画像信号111の血管Vg3は、粘膜MMに対するコントラストが等しい。したがって、G画像信号112の血管Vg5は、G画像信号111の血管Vg2と等しい太さφbの血管であり、G画像信号112の血管Vg6は、G画像信号111の血管Vg3と等しい太さφcの血管である。
なお、G画像信号111やG画像信号112を見れば、粘膜MMに対するコントラストから見積もるまでもなく、血管Vg1、血管Vg2、及び血管Vg3の太さの相対的関係や、血管Vg4、血管Vg5、及び血管Vg6の太さの相対的関係を、おおまかに把握することができる。しかし、血管は例えばチューブ状の立体的形状を有しているので、血管がある深さによっては、G画像信号111やG画像信号112では各血管のエッジが不鮮明な場合がある。この場合、G画像信号111やG画像信号112での幅(画素数)は、血管の太さを正確に表さない。一方、上記のように、粘膜MMに対するコントラスから血管の太さを算出すると、血管のエッジが不鮮明な場合でも正確な血管の太さを算出することができる。また、粘膜MMに対するコントラスから血管の太さを算出すると、μm等の実尺度で血管の太さを算出できる。
上記のように、撮像センサ48は、特殊観察モードの場合にB画像信号及びG画像信号を出力するが、さらにR画像信号も出力する。しかし、特殊観察モードで用いられる照明光27にはR画素で受光可能なR光成分がほとんど含まれていないので、R画像信号は観察対象に関する情報をほとんど含んでいない。
撮像センサ48から出力される画像信号は、CDS/AGC回路50に送信される。CDS/AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS;Correlated Double Sampling)や自動利得制御(AGC;Automatic Gain Control)を行う(図2参照)。CDS/AGC回路50を経た画像信号は、A/Dコンバータ51により、デジタル画像信号に変換される。A/D変換後のデジタル画像信号が内視鏡プロセッサ装置16に入力される。
内視鏡プロセッサ装置16は、受信部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、通常画像生成部62と、血管画像生成部63と、映像信号生成部66とを備えている。
受信部53は、内視鏡12からデジタルのRGB画像信号を受信する。特殊観察モードの場合、受信部53は、血管に対して深さ分解能を有するV光(第1波長帯域の光)に対応するB画像信号(第1画像信号)と、血管に対して太さ分解能を有するG光(第2波長帯域の光)に対応するG画像信号(第2画像信号)と、を取得する画像信号取得部として機能する。本実施形態では、受信部53は、内視鏡12からリアルタイムにRGB画像信号を受信するが、内視鏡12から受信するRGB画像信号をストレージ等に記憶しておく場合、受信部53はストレージ等に記憶されたRGB画像信号を受信(取得)することができる。
DSP56は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、及びデモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施されたRGB画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後のRGB画像信号に特定のゲインを乗じることにより信号レベルが整えられる。ゲイン補正処理後のRGB画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。リニアマトリクス処理後のRGB画像信号には、デモザイク処理(等方化処理、同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。
ノイズ除去部58は、DSP56でデモザイク処理等が施されたRGB画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等による)を施すことによって、RGB画像信号からノイズを除去する。ノイズが除去されたRGB画像信号は、観察モードに応じて通常画像生成部62または血管画像生成部63に送信される。
通常画像生成部62は、通常観察モードの場合に得られるRGB画像信号に対して、色変換処理、色彩強調処理、及び構造強調処理を行って、通常観察モードの内視鏡画像(以下、通常画像という)を生成する。色変換処理では、RGB画像信号に対して3×3のマトリックス処理、階調変換処理、及び3次元LUT(ルックアップテーブル)処理などにより色変換処理を行う。色彩強調処理は、色変換処理済みのRGB画像信号に対して行われる。構造強調処理は、例えば表層血管やピットパターン等の観察対象の構造を強調する処理であり、色彩強調処理後のRGB画像信号に対して行われる。上記のように、構造強調処理まで各種画像処理等を施したRGB画像信号を用いたカラー画像が通常画像である。映像信号生成部66は、通常画像生成部62が生成した通常画像をモニタ18で表示可能な映像信号に変換する。この映像信号を用いて、モニタ18は通常画像を表示する。
血管画像生成部63は、特殊観察モードの場合に得られるB画像信号及びG画像信号を用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する画像生成部であり、深さ別画像信号生成部71と、太さ別画像信号生成部72と、合成処理部73とを備える。
深さ別画像信号生成部71は、粘膜に対するコントラスト毎に、特殊観察モード時に得られるB画像信号(第1画像信号)を分解することにより、複数の深さ別画像信号を生成する。また、太さ別画像信号生成部72は、粘膜に対するコントラスト毎に、特殊観察モード時に得られるG画像信号(第2画像信号)を分解することにより、複数の太さ別画像信号を生成する。そして、合成処理部73は、深さ別画像信号及び太さ別画像信号を用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する。
以下、簡単のため、図20及び表1に示すように、観察対象121の粘膜MMからの距離の範囲を「浅い」及び「深い」の2種類に分け、観察対象121に含まれる血管の太さを「細い」及び「太い」の2種類に分ける。こうすると、観察対象121に含まれる血管は、浅く細い血管V1、深く細い血管V2、浅く太い血管V3、及び、深く太い血管V4の4種類に分類できる。
Figure 2016158838
血管画像生成部63にB画像信号が入力されると、図21に示すように、深さ別画像信号生成部71は、粘膜MMの明るさを算出し、算出した粘膜MMの明るさによってB画像信号を規格化することによって規格化B画像信号131を生成する。粘膜MMの明るさは、例えば、入力されたもとのB画像信号の全画素の画素値を平均値である(あるいは中央値等でも良い)。粘膜MMの明るさで規格化されているので、規格化B画像信号131の画素値は粘膜に対するコントラストを表す。
深さ別画像信号生成部71は、規格化B画像信号131を、粘膜MMの画素値を基準として設定する複数の画素値の範囲毎に分解する。例えば、含まれる画素値が小さい順に、第1範囲J1、第2範囲J2、第3範囲J3、第4範囲J4を設定し、規格化B画像信号131からこれらの各画素値の範囲に属する画素を抽出する。これにより、規格化B画像信号131から、第1範囲J1に対応する第1深さ別画像信号141、第2範囲J2に対応する第2深さ別画像信号142、第3範囲J3に対応する第3深さ別画像信号143、及び、第4範囲J4に対応する第4深さ別画像信号144を生成する。
規格化B画像信号131は、画素値が粘膜MMに対するコントラストを表すようにしただけで、血管に対して深さ分解能を有するV光に対応した画像信号であることに変わりはない。このため、深さ別画像信号生成部71が生成する第1深さ別画像信号141、第2深さ別画像信号142、第3深さ別画像信号143、及び、第4深さ別画像信号144は、もとのB画像信号をコントラスト毎に分解した画像信号である。観察対象121に含まれる血管を、浅く細い血管V1、深く細い血管V2、浅く太い血管V3、及び、深く太い血管V4の4種類に分類する場合には、例えば、第2深さ別画像信号142は深い血管V2及びV4が抽出された画像信号であり、第3深さ別画像信号143は、浅い血管V1及びV3が抽出された画像信号である。本実施形態では、第1深さ別画像信号141及び第4深さ別画像信号144には血管は含まれないが、浅い血管V1及びV3の中でも粘膜MMから極浅い位置にある血管は第4深さ別画像信号144に抽出される場合があり、深い血管V2及びV4の中でも粘膜MMから特に深い位置にある血管は第1深さ別画像信号141に抽出される場合がある。
図22に示すように、血管画像生成部63にG信号が入力されると、太さ別画像信号生成部72は、粘膜MMの明るさを算出し、算出した粘膜MMの明るさによってG画像信号を規格化することによって規格化G画像信号151を生成する。粘膜MMの明るさを、G画像信号の全画素の画素値の平均値等によって算出するのは、深さ別画像信号生成部71と同様である。規格化G画像信号151の画素値は、粘膜MMに対するコントラストを表す。
太さ別画像信号生成部72は、規格化G画像信号151を、粘膜MMの画素値を基準として設定する複数の画素値の範囲毎に分解する。例えば、含まれる画素値の値が小さい順に、第1範囲K1、第2範囲K2、第3範囲K3、及び第4範囲K4を設定し、規格化G画像信号151からこれらの各画素値の範囲に属する画素を抽出する。これにより、規格化G画像信号151から、第1範囲K1に対応する第1太さ別画像信号161、第2範囲K2に対応する第2太さ別画像信号162、第3範囲K3に対応する第3太さ別画像信号163、及び、第4範囲K4に対応する第4太さ別画像信号164を生成する。
規格化G画像信号151は、画素値が粘膜MMに対するコントラストを表すようにしただけで、血管に対して太さ分解能を有するG光に対応した画像信号であることに変わりはない。このため、太さ別画像信号生成部72が生成する第1太さ別画像信号161、第2太さ別画像信号162、第3太さ別画像信号163、及び第4太さ別画像信号164は、もとのG画像信号をコントラスト毎に分解した画像信号である。観察対象121に含まれる血管を、浅く細い血管V1、深く細い血管V2、浅く太い血管V3、及び、深く太い血管V4の4種類に分類する場合には、例えば、第2太さ別画像信号162は細い血管V1及びV2が抽出された画像信号であり、第3太さ別画像信号163は深い血管V3及びV4が抽出された画像信号である。本実施形態では、第1太さ別画像信号161及び第4太さ別画像信号164には血管は含まれないが、太い血管V3及びV4の中でも特に太い血管は第4太さ別画像信号164に抽出される場合があり、細い血管V1及びV2の中でも特に細い血管は第1太さ別画像信号161に抽出される場合がある。
図23に示すように、合成処理部73は、目的深さ画像信号生成部76と、目的太さ画像信号生成部77とを備える。また、合成処理部73は、コンソール19等を用いて目的深さ及び目的太さが入力される。
目的深さ画像信号生成部76は、深さ別画像信号生成部71が生成した複数の深さ別画像信号に、目的深さに応じた重み付けをして合成することにより、目的深さの血管を表す目的深さ画像信号を生成する。例えば、深さ別画像信号生成部71が第1深さ別画像信号141、第2深さ別画像信号142、第3深さ別画像信号143、及び第4深さ別画像信号144を生成する場合、図24に示すように、目的深さ画像信号生成部76は、コンソール19等を用いて入力される目的深さに基づいて、各深さ別画像信号141〜144に、それぞれ「A1」、「A2」、「A3」、及び「A4」の重み付けをして合成することにより、目的深さ画像信号171を生成する。目的深さとして、「浅い」及び「深い」の選択肢のうち、「深い」が選択された場合には、目的深さ画像信号生成部76は、深い血管V2及びV4が含まれる目的深さに対応する第2深さ別画像信号142の重み付け「A2」を、目的深さに対応する第2深さ別画像信号142以外の他の深さ別画像信号141,143,及び144の重み付けよりも大きく設定する。これにより、目的深さに合致する深い血管V2及びV4が強調され(あるいは浅い血管V1及びV3が抑制され)、目的深さに合致する血管V2及びV4を表す目的深さ画像信号171が生成される。
目的太さ画像信号生成部77は、太さ別画像信号生成部72が生成した複数の太さ別画像信号に、目的太さに応じた重み付けをして合成することにより、目的太さの血管を表す目的太さ画像信号を生成する。例えば、太さ別画像信号生成部72が第1太さ別画像信号161、第2太さ別画像信号162、第3太さ別画像信号163、及び第4太さ別画像信号164を生成する場合、図25に示すように、目的太さ画像信号生成部77は、コンソール19等を用いて入力される目的太さに基づいて、各太さ別画像信号161〜164に、それぞれ「B1」、「B2」、「B3」、及び「B4」の重み付けをして合成することにより、目的太さ画像信号172を生成する。目的太さとして、「細い」及び「太い」の選択肢のうち、「細い」が選択された場合には、目的太さ画像信号生成部77は、細い血管V1及びV2が含まれる目的太さに対応する第2太さ別画像信号162の重み付け「B2」を、目的太さに対応する第2太さ別画像信号162以外の他の太さ別画像信号161,163,及び164の重み付けよりも大きく設定する。これにより、目的太さに合致する細い血管V1及びV2が強調され(あるいは太い血管V3及びV4が抑制され)、目的太さに合致する血管V1及びV2を表す目的太さ画像信号172が生成される。
図26に示すように、合成処理部73は、目的深さ画像信号生成部76が生成する目的深さ画像信号171と、目的太さ画像信号生成部77が生成する目的太さ画像信号172とをさらに合成することにより、血管画像190を生成する。「深い」血管V2及びV4を表す目的深さ画像信号171と、「細い」血管V1及びV2を表す目的太さ画像信号172とを合成すると、これらの両方に含まれる「深く細い血管V2」が強調され(あるいは、深く細い血管V2以外の血管V1,V3,及びV4が抑制され)、深く細い血管V2が他の血管と識別できる血管画像190が得られる。
上記のように血管画像生成部63が生成した血管画像190は、通常画像と同様に、映像信号生成部66によってモニタ18で表示可能な映像信号に変換され、モニタ18に表示される。
次に、目的深さ及び目的太さの血管を表す血管画像を生成及び表示する場合の内視鏡システム10の作用を説明する。図27に示すように、まず、モード切り替えスイッチ13bによって内視鏡システム10の観察モードを特殊観察モードにセットし(S10)、観察対象に照射する照明光を、血管に対して深さ分解能を有するV光と血管に対して太さ分解能を有するG光を主として含む照明光27にする。また、特殊観察モードにセットした場合には、例えばコンソール19を用いて、観察目的とする血管の深さ及び太さである目的深さ及び目的太さを設定する。そして、主にV光及びG光を含む照明光27が照射された観察対象を撮像センサ48によって撮像し、V光に対応するB画像信号を取得し(S11)、かつ、G光に対応するG画像信号を取得する(S12)。
V光に対応するB画像信号とG光に対応するG画像信号が取得されると、血管画像生成部63では、深さ別画像信号生成部71によってV光に対応するB画像信号をコントラスト毎に分解することにより、複数の深さ別画像信号を生成し(S13)、太さ別画像信号生成部72によってG画像信号をコントラスト毎に分解することにより、複数の太さ別画像信号を生成する(S14)。その後、合成処理部73では、目的深さ画像信号生成部76が目的深さに応じて深さ別画像信号に重み付けをして合成することにより、目的深さ画像信号を生成し(S15)、目的太さ画像信号生成部77が目的太さに応じて太さ別画像信号に重み付けをして合成することにより、目的太さ画像信号を生成する(S16)。このため、合成処理部73では、目的深さ画像信号と目的太さ画像信号とをさらに合成して、目的深さ及び目的太さの血管を表す血管画像を生成する(S17)。目的深さ及び目的太さの血管を表す血管画像は、映像信号生成部66を介してモニタ18に表示される。
上記のように、内視鏡システム10は、深さ分解能を有する光と太さ分解能を有する光を照明光に用い、これの各光に対応する画像信号を用いて血管画像を生成する。このため、目的深さと目的太さを設定することにより、設定した目的深さ及び目的太さの血管を表す血管画像を生成及び表示することができる。特に、深く細い血管は、従来の狭帯域光観察等では観察し難い血管であるが、内視鏡システム10は、任意の目的深さ及び目的太さの血管を表す血管画像を生成できるので、深く細い血管も他の深さ及び太さの血管と識別し、明瞭に観察することができる。目的深さ及び目的太さの設定によっては、浅く細い血管や、浅く太い血管、及び深く太い血管をそれぞれ他の深さ及び太さの血管と識別して、明瞭に観察可能な血管画像を生成することもできる。
上記実施形態では、特殊観察モードの場合に、照明光27(図5参照)に太さ分解能を有する光として、G−LED20cが発するG光とをそのまま用いているが、特殊観察モードではG光の代わりに、G光の波長帯域を制限した緑色狭帯域光(以下、Gn光という)を用いても良い。この場合、例えば、図28に示すように、G−LED20cの光路中にG光の波長帯域を制限する帯域制限フィルタ225を挿抜自在に設ける。そして、通常観察モード時には帯域制限フィルタ225をG光の光路中から退避させることで、通常観察モードの照明光26にはG光を用い、特殊観察モード時には帯域制限フィルタ225をG光の光路中に挿入することで、G光からGn光を生成し、図29に示すように、主として、V光とGn光とを含む照明光227を観察対象に照射する。
上記実施形態では、目的深さ画像信号生成部76は、深さ別画像信号生成部71が生成する複数の深さ別画像信号を全て用いて目的深さ画像信号171を生成しているが、目的深さ画像信号生成部76は、深さ別画像信号生成部71が生成する複数の深さ別画像信号のうち、一部の深さ別画像信号を用いて目的深さ画像信号171を生成しても良い。例えば、目的深さ画像信号171の生成に使用する深さ別画像信号の重み付けを零以外の値にし、目的深さ画像信号171の生成に使用しない深さ別画像信号の重み付けを零にすることができる。また、目的深さ画像信号171の生成に使用する深さ別画像信号を選択し、選択した深さ別画像信号にだけ重み付けをして合成することにより、目的深さ画像信号171を生成しても良い。
同様に、上記実施形態では、目的太さ画像信号生成部77は、太さ別画像信号生成部72が生成する複数の太さ別画像信号を全て用いて目的太さ画像信号172を生成しているが、目的太さ画像信号生成部77は、太さ別画像信号生成部72が生成する複数の太さ別画像信号のうち、一部の太さ別画像信号を用いて目的太さ画像信号172を生成しても良い。例えば、目的太さ画像信号172の生成に使用する太さ別画像信号の重み付けをゼロ以外の値にし、目的太さ画像信号171の生成に使用しない太さ別画像信号の重み付けを零にすることができる。また、目的太さ画像信号172の生成に使用する深さ別画像信号を選択し、選択した深さ別画像信号にだけ重み付けをして合成することにより、目的太さ画像信号172を生成しても良い。
上記実施形態では、血管画像生成部63は合成処理部73によって血管画像を生成する際に、目的深さ画像信号生成部76によって深さ別画像信号を合成して目的深さ画像信号を生成し、目的太さ画像信号生成部77によって、太さ別画像信号を合成して目的太さ画像信号を生成しているが、目的深さ画像信号は複数の深さ別画像信号から選択しても良く、目的太さ画像信号は複数の深さ別画像信号から選択しても良い。この場合、図30に示すように、合成処理部73には、目的深さ画像信号生成部76及び目的太さ画像信号生成部77の代わりに、目的深さ画像信号選択部176及び目的太さ画像信号選択部177を設ける。目的深さ画像信号選択部176は、深さ別画像信号生成部71が生成する複数の深さ別画像信号から、目的深さに対応する深さ別画像信号を選択し、選択した深さ別画像信号を目的深さ画像信号とする。同様に、目的太さ画像信号選択部177は、太さ別画像信号生成部72が生成する複数の太さ別画像信号から、目的太さに対応する太さ別画像信号を選択し、選択した太さ別画像信号を目的太さ画像信号とする。
上記変形例のように、複数の深さ別画像信号から目的深さに対応する目的深さ画像信号を選択し、複数の太さ別画像信号から目的太さに対応する目的太さ画像信号を選択する場合、血管画像生成部63は、合成処理部73によって、もとのB画像信号に目的深さ画像信号を合成して第1合成画像信号を生成し、かつ、もとのG画像信号に目的太さ画像信号を合成して第2合成画像信号を生成する。そして、第1合成画像信号と第2合成画像信号とを合成することにより、目的深さ及び目的太さの血管を表す血管画像を生成する。
また、上記変形例のように、複数の深さ別画像信号から目的深さに対応する目的深さ画像信号を選択し、複数の太さ別画像信号から目的太さに対応する目的太さ画像信号を選択する場合、血管画像生成部63は、合成処理部73によって、目的深さ画像信号と目的太さ画像信号に共通する血管を抽出することにより、目的深さ及び目的太さの血管を表す血管画像を生成することもできる。目的深さ画像信号と目的太さ画像信号に共通する血管の抽出は、例えば、目的深さ画像信号と目的太さ画像信号をそれぞれ二値化し、二値化した目的深さ画像信号と目的太さ画像信号の論理積(AND)を算出する合成処理で行うことができる。このように、目的深さ画像信号と目的太さ画像信号に共通する血管を抽出する場合、抽出結果をもとのB画像信号やG画像信号に重畳する合成処理をして、血管画像を生成しても良い。
上記実施形態では、撮像センサ48に原色のカラー撮像センサを用いているが、代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるので、補色−原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換することにより、撮像センサ48と同様のRGB画像信号を得ることができる。また、撮像センサ48の代わりに、カラーフィルタを設けていないモノクロセンサを用いても良い。この場合、光源制御部22は、必要に応じて、V光、B光、G光、R光を時分割で点灯させる。但し、V光とB光はどちらもB画素で受光されるので、V光とB光は同時に点灯させても良い。
上記実施形態で用いる各LED20a〜20dの代わりに、中心波長等が異なる他の半導体光源を用いることもできる。例えば、上記実施形態では、中心波長405nmのV−LED20aを用いているが、このV−LED20aの代わりに、例えば中心波長415nmのV光を発するLEDを用いることもできる。
また、各LED20a〜20dの代わりに、レーザーダイオード等の他の半導体光源や、励起光を発する半導体光源と蛍光体を組み合わせた光源を利用することができる。V−LED20aと、V−LED20aが発光するV光を励起光としてB光を発生する蛍光体を用いれば、V−LED20aとこの蛍光体によって、上記実施形態のV光とB光(Bs光)を生成することができる。V光等の紫色光やV光よりも短波長帯域の紫外光を励起光として青色光を発生する蛍光体としては、例えばBaMgAlOや、MAl(Si,Al)(O,N)10等を用いることができる。「M」元素は、Ca、Sr、Ba、Eu、La、C、Sc、Y、またはこれらの組み合わせ等である。
上記実施形態では、撮像センサ48が設けられた内視鏡12を被検体内に挿入して観察を行う内視鏡システムによって本発明を実施しているが、カプセル内視鏡システムでも本発明は好適である。例えば、図31に示すように、カプセル内視鏡システムでは、カプセル内視鏡400と、プロセッサ装置(図示しない)とを少なくとも有する。
カプセル内視鏡400は、光源402と制御部403と、撮像センサ404と、血管画像生成部406と、送受信アンテナ408と、を備えている。光源402は、紫色光を発するV−LEDと、青色光を発するB−LEDと、緑色光を発するG−LEDと、赤色光を発するR−LEDと、を有しており、上記第1実施形態及び第2実施形態の光源部20に対応する。
制御部403は、上記実施形態の光源制御部22及び光量比設定部23と同様に機能する。また、制御部403は、送受信アンテナ408によって、カプセル内視鏡システムのプロセッサ装置と無線で通信可能である。カプセル内視鏡システムのプロセッサ装置は、上記実施形態の内視鏡プロセッサ装置16とほぼ同様であるが、血管画像生成部406はカプセル内視鏡400に設けられ、生成された血管画像は、送受信アンテナ408を介してプロセッサ装置に送信される。撮像センサ404は上記実施形態の撮像センサ48と同様に構成される。
10 内視鏡システム
26,27,227 照明光
63,406 血管画像生成部
71 深さ別画像信号生成部
72 太さ別画像信号生成部
73 合成処理部
76 目的深さ画像信号生成部
77 目的太さ画像信号生成部
176 目的深さ画像信号選択部
177 目的太さ画像信号選択部

Claims (14)

  1. 血管に対して深さ分解能を有する第1波長帯域の光を発する第1光源と、
    血管に対して太さ分解能を有する第2波長帯域の光を発する第2光源と、
    前記第1波長帯域の光に対応する第1画像信号と、前記第2波長帯域の光に対応する第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する血管画像生成部と、
    を備える内視鏡システム。
  2. 前記深さ分解能は、太さが等しい複数の血管の粘膜に対するコントラストが粘膜の表面からの距離によって変化することを表す請求項1に記載の内視鏡システム。
  3. 前記太さ分解能は、粘膜の表面からの距離が等しい複数の血管の粘膜に対するコントラストが、血管の太さによって変化することを表す請求項1または2に記載の内視鏡システム。
  4. 前記血管画像生成部は、
    粘膜に対するコントラスト毎に前記第1画像信号を分解することにより、複数の深さ別画像信号を生成する深さ別画像信号生成部と、
    粘膜に対するコントラスト毎に前記第2画像信号を分解することにより、複数の太さ別画像信号を生成する太さ別画像信号生成部と、
    を備え、
    前記深さ別画像信号及び前記太さ別画像信号を用いて前記血管画像を生成する請求項1〜3のいずれか1項に記載の内視鏡システム。
  5. 前記血管画像生成部は、
    複数の前記深さ別画像信号に重み付けをして合成することにより、目的深さに対応する目的深さ画像信号を生成する目的深さ画像信号生成部と、
    複数の前記太さ別画像信号に重み付けをして合成することにより、目的太さに対応する目的太さ画像信号を生成する目的太さ画像信号生成部と、
    を備え、
    前記目的深さ画像信号と前記目的太さ画像信号とを合成して前記血管画像を生成する請求項4に記載の内視鏡システム。
  6. 前記目的深さ画像信号生成部は、前記目的深さに対応する前記深さ別画像信号に対する重み付けを、前記目的深さに対応する深さ別画像信号以外の前記深さ別画像信号に対する重み付けよりも大きくし、
    前記目的太さ画像信号生成部は、前記目的太さに対応する前記太さ別画像信号に対応する重み付けを、前記目的太さに対応する前記太さ別画像信号以外の前記太さ別画像信号に対する重み付けよりも大きくする請求項5に記載の内視鏡システム。
  7. 前記目的深さ画像信号生成部は、複数の前記深さ別画像信号を全て用いて前記目的深さ画像信号を生成し、
    前記目的太さ画像信号生成部は、複数の前記太さ別画像信号を全て用いて前記目的太さ画像信号を生成する請求項5または6に記載の内視鏡システム。
  8. 前記血管画像生成部は、
    複数の前記深さ別画像信号から、目的深さに対応する目的深さ画像信号を選択する目的深さ画像信号選択部と、
    複数の前記太さ別画像信号から、目的太さに対応する目的太さ画像信号を選択する目的太さ画像信号選択部と、
    を備える請求項4に記載の内視鏡システム。
  9. 前記血管画像生成部は、
    前記目的深さ画像信号と前記第1画像信号とを合成して第1合成画像信号を生成し、かつ、前記目的太さ画像信号と前記第2画像信号とを合成して第2合成画像信号を生成し、
    さらに前記第1合成画像信号と前記第2合成画像信号とを合成することにより、前記血管画像を生成する請求項8に記載の内視鏡システム。
  10. 前記血管画像生成部は、
    前記目的深さ画像信号及び前記目的太さ画像信号に共通する血管を抽出することにより、前記血管画像を生成する請求項8に記載の内視鏡システム。
  11. 前記第1波長帯域は、紫色波長帯域または青色波長帯域に含まれる請求項1〜10のいずれか1項に記載の内視鏡システム。
  12. 前記第2波長帯域は、緑色波長帯域に含まれる請求項1〜11のいずれか1項に記載の内視鏡システム。
  13. 血管に対して深さ分解能を有する第1波長帯域の光に対応する第1画像信号と、血管に対して太さ分解能を有する第2波長帯域の光に対応する第2画像信号と、を取得する画像信号取得部と、
    前記第1画像信号と前記第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成する血管画像生成部と、
    を備える内視鏡プロセッサ装置。
  14. 第1光源が、血管に対して深さ分解能を有する第1波長帯域の光を発するステップと、
    第2光源が、血管に対して太さ分解能を有する第2波長帯域の光を発するステップと、
    血管画像生成部が、前記第1波長帯域の光に対応する第1画像信号と、前記第2波長帯域の光に対応する第2画像信号とを用いて、目的深さ及び目的太さを有する血管を表す血管画像を生成するステップと、
    を備える内視鏡システムの作動方法。
JP2015039626A 2015-02-27 2015-02-27 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法 Active JP6408400B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039626A JP6408400B2 (ja) 2015-02-27 2015-02-27 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039626A JP6408400B2 (ja) 2015-02-27 2015-02-27 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法

Publications (2)

Publication Number Publication Date
JP2016158838A true JP2016158838A (ja) 2016-09-05
JP6408400B2 JP6408400B2 (ja) 2018-10-17

Family

ID=56843495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039626A Active JP6408400B2 (ja) 2015-02-27 2015-02-27 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法

Country Status (1)

Country Link
JP (1) JP6408400B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158836A (ja) * 2015-02-27 2016-09-05 富士フイルム株式会社 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法
DE102017213725A1 (de) 2016-08-12 2018-02-15 Yazaki Corporation Steuersystem für Fahrzeugeinrichtungen
JP2018075108A (ja) * 2016-11-07 2018-05-17 株式会社アサヒビジョン 内視鏡装置及び生体内部器官観察方法
WO2019092950A1 (ja) * 2017-11-13 2019-05-16 ソニー株式会社 画像処理装置、画像処理方法および画像処理システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034893A (ja) * 2000-07-27 2002-02-05 Olympus Optical Co Ltd 内視鏡装置
WO2008093746A1 (ja) * 2007-01-31 2008-08-07 Olympus Corporation 蛍光観察装置および蛍光観察方法
JP2011098088A (ja) * 2009-11-06 2011-05-19 Fujifilm Corp 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び画像処理方法
JP2012125461A (ja) * 2010-12-16 2012-07-05 Fujifilm Corp 画像処理装置
JP2012152459A (ja) * 2011-01-27 2012-08-16 Fujifilm Corp 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像処理方法
WO2013042395A1 (ja) * 2011-09-20 2013-03-28 オリンパスメディカルシステムズ株式会社 画像処理装置及び内視鏡システム
JP2013146484A (ja) * 2012-01-23 2013-08-01 Fujifilm Corp 電子内視鏡システム、画像処理装置、画像処理方法及び画像処理プログラム
WO2013145407A1 (ja) * 2012-03-30 2013-10-03 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2014097758A1 (ja) * 2012-12-19 2014-06-26 オリンパスメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
JP2014161627A (ja) * 2013-02-27 2014-09-08 Olympus Corp 画像処理装置、画像処理方法、及び画像処理プログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034893A (ja) * 2000-07-27 2002-02-05 Olympus Optical Co Ltd 内視鏡装置
WO2008093746A1 (ja) * 2007-01-31 2008-08-07 Olympus Corporation 蛍光観察装置および蛍光観察方法
JP2011098088A (ja) * 2009-11-06 2011-05-19 Fujifilm Corp 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び画像処理方法
JP2012125461A (ja) * 2010-12-16 2012-07-05 Fujifilm Corp 画像処理装置
JP2012152459A (ja) * 2011-01-27 2012-08-16 Fujifilm Corp 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像処理方法
WO2013042395A1 (ja) * 2011-09-20 2013-03-28 オリンパスメディカルシステムズ株式会社 画像処理装置及び内視鏡システム
JP2013146484A (ja) * 2012-01-23 2013-08-01 Fujifilm Corp 電子内視鏡システム、画像処理装置、画像処理方法及び画像処理プログラム
WO2013145407A1 (ja) * 2012-03-30 2013-10-03 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2014097758A1 (ja) * 2012-12-19 2014-06-26 オリンパスメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
JP2014161627A (ja) * 2013-02-27 2014-09-08 Olympus Corp 画像処理装置、画像処理方法、及び画像処理プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158836A (ja) * 2015-02-27 2016-09-05 富士フイルム株式会社 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法
DE102017213725A1 (de) 2016-08-12 2018-02-15 Yazaki Corporation Steuersystem für Fahrzeugeinrichtungen
JP2018075108A (ja) * 2016-11-07 2018-05-17 株式会社アサヒビジョン 内視鏡装置及び生体内部器官観察方法
WO2019092950A1 (ja) * 2017-11-13 2019-05-16 ソニー株式会社 画像処理装置、画像処理方法および画像処理システム
JPWO2019092950A1 (ja) * 2017-11-13 2020-11-12 ソニー株式会社 画像処理装置、画像処理方法および画像処理システム

Also Published As

Publication number Publication date
JP6408400B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
US10039439B2 (en) Endoscope system and method for operating the same
EP3395230B1 (en) Endoscope system and processor device
JP6234350B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
WO2017170233A1 (ja) 画像処理装置、画像処理装置の作動方法、および画像処理プログラム
US11116384B2 (en) Endoscope system capable of image alignment, processor device, and method for operating endoscope system
US10791915B2 (en) Endoscope system, processor device, and method for operating endoscope system
JP6196598B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6533180B2 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP2016077756A (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP5892985B2 (ja) 内視鏡システム及びプロセッサ装置並びに作動方法
US20190021579A1 (en) Image processing device, method for operating same, endoscope processor device, and method for operating same
JP6408400B2 (ja) 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法
JP6576895B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JP2016158837A (ja) 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法
JP2019136555A (ja) 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法
JP6153913B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6378140B2 (ja) 内視鏡システム及びその作動方法
JP6153912B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6386939B2 (ja) 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法
JP2019122865A (ja) 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180920

R150 Certificate of patent or registration of utility model

Ref document number: 6408400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250